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1. Introduction

Up until the early 1990s most of the underlying stochastic
processes used in the financial literature were based on
Brownian motion, modelling in continuous time a large
number of independent ‘microscopic’ price changes, with
finite total variance; and Poisson processes, modelling
occasional large changes. These two processes are the
canonical models for continuous sample paths and those
with a finite number of jumps, respectively. More
generally, dropping the assumption of finite variance,
the sum of many iid events always has, after appropriate
scaling and shifting, a limiting distribution termed a Lévy-
Stable law; this is the generalized version of the Ceatral
Limit Theorem (GCLT) (Samorodnitsky and Taqqu
1994), and the Gaussian distribution is one example.
Based on this fundamental result, it is plausible to
generalize the assumption of Gaussian price increments
by modelling the formation of prices in the market by the
sum of many stochastic events with a Lévy-Stable limiting
distribution.

An important property of Lévy-Stable distributions
is that of stability under addition: when two independent
copies of a Lévy-Stable random variable are added then,
up to scaling and shift, the resulting random variable is
again Lévy-Stable with the same shape. This property is
very desirable in models used in finance and particularly in
portfolio analysis and risk management; see, for example,
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Fama (1971), Ziemba (1974) and the more recent work by
Tokat and Schwartz (2002}, Ortobelli ef al. (2002) and
Mittnik et al. (2002). Only for Lévy-Stable distributed
returns do we have the property that linear combinations
of different return series, for example portfolios, again
have a Lévy-Stable distribution (Feller 1966).

Based on the GCLT we have, in general terms, two
ways of modelling stock prices or stock returns. If it is
believed that stock returns are at least approximately
governed by a Lévy-Stable distribution the accumulation
of the random events is additive. On the other hand, if it is
believed that the logarithm of stock prices is approxi-
mately governed by a Lévy-Stable distribution then the
accumulation is multiplicative. In the literature, most
models have assumed that log-prices, instead of returns,
follow a Lévy-Stable process. Mc-Culloch (1996) assumes
that assets are log Lévy-Stable and prices options using
a utility maximization argument; more recently, Carr and
Wu (2003) priced European options when the log-stock
price follows a maximally skewed Lévy-Stable process.

Finally, based on Mandelbrot (1997), Hurst et al
(1999) provide a model to price Eurcpean options when
returns follow a (symmetric) Lévy-Stable process. In their
models the Brownian motion that drives the stochastic
shocks to the stock process is subordinated to an intrinsic
time process that represents ‘operational time’ on which
the market operates. Option pricing can be done within
the Black—Scholes framework and one can show that the
subordinated Brownian motion is a symmetric Lévy-
Stable motion.
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The motivation of this paper is as follows. It is standard
to take as a starting point a model for the risk-neutral
evolution of the asset price in the form

S

S = rdt + o, dW Y,

where WY is the underlying Brownian motion, r is the
(constant) interest rate and o, is the volatility process; the
case when o, is constant is the usual Black-Scholes (BS)
moedel. It is then standard to specify a stochastic process
for o, resulting in one of a number of standard stochastic-
volatility models.

When o, and W,Q are independent for all 0 < ¢ =< T (as is
often approximately the case for FX markets), we have

T T
Sp= 5/ T0- [ otast o dm? ‘ 6}

and then the value of a European vanilla option written
on the underlying stock price S, is given by
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where the expected value is with respect to the random
variable ff alds, the integrated variance, under the risk-
neutral measure @, and Fyug is the usual Black—Scholes
value for a European option. In general, the distribution
or characteristic function of the integrated variance is not
known, so evaluating (2) is not straightforward. although
given the characteristic function of the integrated variance
we can use standard transform methods to evaluate
(S, 1) given by equation (2).

Notwithstanding these difficulties. the integrated
variance is an important quantity. representing
a measure of the total uncertainty in the evolution of
the asset price, and we use it as the starting point for our
model. We Investigate the properties of a two-factor
model in which the integrated variance follows a Lévy-
Stable process, while the shocks to the stock process are
conditionally Gaussian. i.e. Brownian motion, with
a volatility consistent with the integrated variance
process. We then show that the resulting distribution
of the log-stock prices is Lévy-Stable. We also provide
a characterization of the most general possible model
within our class of integrated variance processes, which
is an interesting result in its own right. In addition to
pricing options when the integrated variance process and
the stock process are independent (as above), we also
show how to incorporate a ‘leverage’ effect, restoring
a degree of ‘correlation’ between the two.

The paper is structured as follows. Section 2 presents
definitions and properties of Lévy-Stable processes. In
particular, we show how symmetric Lévy-Stable random
variables may be ‘built’ as a combination of two
independent Lévy-Stable random variables and
define Lévy-Stable processes as in Samorodnitsky and

Taqqu (1994). Section 3 discusses the path properties
required to model integrated variance as a totally skewed
to the right Lévy-Stable process. Section 4 describes the
dynamics of the stock process under both the physical and
risk-neutral measure and shows how option prices are
calculated when the stock returns or log-stock process
follows a Lévy-Stable process. Finally. section 5 shows
numerical resalts and section 6 concludes.

2. Lévy-Stable random variables and processes

In this section we show how to obtain any symmetric
Lévy-Stable process as a stochastic process whose
innovations are the product of two independent Lévy-
Stable random variables. The only conditions we require
(stated precisely in proposition 2.2) are that one of the
independent random variables is symmetric and the other
is totally skewed to the right. This is a simple. yet very
important, result since we can choose a Gaussian random
variable as one of the building blocks together with any
other totally skewed random variable to ‘produce’
symmetric Levy-Stable random variables. Furthermore,
choosing a Gaussian random variable as one of the
building blocks of a symmetric random variable will be
very convenient since we will be able to reformulate any
symmetric Lévy-Stable process as a conditional Brownian
motion, conditioned on the other building block, the
totally skewed Lévy-Stable random variable, which in our
case will be the model for integrated variance.

2.1. Lévy-Stable random variables

The characteristic function of a Lévy-Stable random
variable X is given by

logiEe® ] = w(g)
_ [ —®101%{1 — iBsign( tan{am/2)} +imb, fora+£1,
- —xlBl{ 1 +(2ip/m)sign(Fiog |01} + im#, fora=1,
(3)

where the parameter « € (0,2] is known as the stability
index, x>0 1is a scaling parameter, Bel—t.1] is
a skewness parameter and m is a location parameter
(Samoerodnitsky and Taqqu 1994). If the random variable
X has a Lévy-Stable distribution with parameters @, «, 8
and m we write X ~ S,{x, B, m).

It is straightforward to see that. for the case <o < 1.
the random variable X does not have any moments, and
for the case | <« <2 only the first moment exists (the case
a=2 is Gaussian); however, fractional moments Ej}X¥]
do exist for p<a (Samorodnitsky and Tagqu 1994).
Moreover, given the asymptotic behaviour of the tails of
the distribution of a Lévy-Stable random variable it can
be shown that the Laplace transform F[e ] of X exists
only when its distribution is totally skewed to the right,
that is 8= 1, which we state in the following proposition
which we use later.

Proposition 2.1:  (¢the Laplace transform: Samorodnitsky
and Tagqu (199 The Laplace transform [Ele ¥
with ©=0 of the Levy-Stable variable X~ S,(x,1,0)
with 0 <a <2 and scale parameter x > satisfies

—r" 7% sec{om/2),
(2 /mvlogr,

fora#1.
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log [E[e_TX] = {

The existence of the Laplace transform of a totally
skewed to the right Lévy-Stable random variable
will enable us to show how to price options as
a weighted average of the classical Black—Scholes
price when the shocks to the stock process follow
a Lévy-Stable process. First we see that any symmetric
Lévy-Stable random variable can be represented as
the product of a totally skewed with a symmetric
Lévy-Stable variable as shown by the following
proposttion.

Proposition 2.2: (constructing symmetric variables; p. 20
of Samorodnitsky and Tagqgu (1994)) Let X ~ Sg(x,0,0),
¥~ Sa/af((cos(rm;?a’))”"’“, 1, 0), with O<a<o’ <2, be
independent. Then the random variable

Z =YX~ §,0x0.0.

2.2. Lévy-Stable processes

A stochastic process {L,te T} is Lévy-Stable if all
its finite-dimensional distributions are Lévy-Stable.
A particular case of a Lévy-Stable process, which will
be denoted by {L*# 1> 0}, is the Lévy-Stable motion
{Samorodnitsky and Taqqu 1994).

Definition 2.3: (Lévy-Stable motion) A Lévy-Stable
process L? is called a Lévy-Stable motion if L5 # =0,
L*" has independent increments, and L®f — [2f ~
Sylir — 5% 8,0} for any O<s<i<oo and for some
O0<a<2and —1 <A< (time-homogeneity of the incre-
ments), Observe that when o =2 and f=0 it is Brownian
motion, while when <1 and 8= -1 {respectively g=1)
the process Lf"‘ﬁ has support on the negative (respectively
positive} line.

The log-characteristic function of a Lévy-Stable
motion L%? is given by (Samorodnitsky and Taqqu
1994)

logEfe® ] = W, (#)
—te®|B1* (1 — iBsign{ tan(ar,/2)}

_ +1imé, for e # 1.
T =gl + (2iB/n)sign(d) log |6]}
+timé, foree=1.
(5)

Proposition 2.2 can be extended to processes; hence
we may use Brownian motion as one of the building
blocks to obtain symmetric Lévy-Stable processes (see
proposition 3.8.1,p. 143, of Samorodnitsky and Taqqu
(1994)).

- o @
3. Stochastic volatility with Lévy-Stable shoc ) &

In modelling integrated wvariance as a building block
there are two properties that integrated variance ¥, r =
J " 62 ds should have:
i iy "

¢ it should be continuous and increasing in T and
e it should be time-consistent in that

T T T
y,.T:f crfds:f o‘fds+/ ods =Y+ Yo
t ! T
(6)
forall r<z<T.

As motivated in the Introduction, we seek a model in
which the shocks to the stock process are Lévy-Stable. I
we assume that the returns process is given by

ds
5 = mdttadw,

!

w1072 [ o2dst [ osaw,
so that ST =¢ e ¢ SRS

where i is a constant and d W, the increment of Brownian
motion, we might be tempted, based on proposition 2.2,
to model volatility by assuming that the integrated
vartance is given by

T T
V,p= f ads = [ dre/zt, (D
t i

Note that dL;"" 2! is the increment of a positive Lévy-
Stable motion (because a/2 < 1 so that (7) is an increasing
process). This seems a reasonable choice, since

E[ei{i I Ta.‘dW.f] = o (/2 seclan/4XT—-0l61"

hence the shocks to the process would be symmetric Lévy-
Stable by proposition 2.2.

Unfortunately, this model for integrated variance is
inconsistent since on the left-hand side of (7) we have
the integrated variance flTa_fds which is, by construc-
tion, a continuous process. However, on the right-hand
side, we have the non-negative Lévy-Stable motion
ff dL%1 which is, by construction, a purely discontin-
uous process. Despite these difficulties, we do not
abandon the idea of integrating apainst a Lévy-Stable
motion. Instead, we discuss a way of constructing
a process for the integrated variance that 1s Lévy-Stable
but with continunous paths in T

If the purely discontinuous process fIT dL#n 1 can be
modified to

T
j fls, TYALE !,
f

for a suitable deterministic function f(s, T'), the jumps can
be ‘damped’ and the resulting process made continuous
and increasing in 7. Specifically, we require that

f(s, T)>0 for s< T and that f(s,T)— 0 as st 7, so the

‘last’ jumps of the process become smoothed out. (For
a general discussion of the path behaviour of processes of
the type f{T F{s, THYdL¥ 1 and more general Lévy-Stable

2




s 's't.'o'chéstic iﬁfegrals, see Samorodnitsky and Tagqu 1994).

We now give conditions under which the stochastic
integral on the right-hand side of equaticn (8), given by
f,Tf(s, TYd 7/ 1, is continuous in T, denoting the class of
functions f{(s, T') for which this is true by F.

Proposition 3.1:  Ler f(s,T) be continuous in T with
ST, T)=0, and assume in addition that, for each T.
8f (s, TY/ds:=fis, T) is continuous on an  interval
0<s<T*<oo. Then the process X, r = f{Tf(s, TydLy!
is continuous in T for any T belonging to (s, T*].

Proof: TIntegrating by parts (Protter 1992), and using
ST, T)=0,

T T
f Flo, TYLYY = f, THLYS f Als, TILE™ ds.
! :

The first term is continuous in 7 by assumption on
f(t,T), as ¢t is fixed. Evaluating the second term at T4«
and T and subtracting gives
Tte T
fils, TH QLY ds — [ Als, THLY 21 ds
t

'

T
= [T+t Tyzras

T+e
+ Sils, T+ ) L2145,
T

Both terms on the right clearly tend to zero with e. [

Since we are interested in pricing options where the
underlying stochastic component is driven by a symmetric
Lévy-Stable process we would like to specify a kernel
f(s, T) so the finite-dimensional distribution of integrated
variance is totally skewed to the right Lévy-Stable. We
propose as a model for integrated variance

r T
Yir= / ofds = A, T)U,Z + f S, T)dL_‘f/z’l (8)
f t

for suitable positive [unctions f(t, T) and f(s,T). We
assume that /(7, ') =0 for all f to damp the Lévy-Stable
Jjumps, and that A(t, £y=0 for consistency when T'=1, and
for the same reason we also need to take oh(z, T)/
0T |7—,=1; this is shown below. For < T (respectively
s< 1) we require that iz, T) >0 (respectively f(s, T)>Q)
lo ensure that ¥, . is strictly positive and properly
random. Further conditions on f and % which specify
their general form are given in proposition 3.2. For
example, in our medel we may choose

h(t, T) = }l/(l - and  f(s, T) = ]3/(1 — e,

(N

for y>01In (8) to obtain, as a particular case, the QU-type
model for integrated wvariance first introduced by
Barndorff-Nielsen and Shephard (2001) where the incre-
ments in (8) are driven by a general non-negative Lévy
process L,. (Note, however, that, in general, the functions
A(t, T) and f(s,T) do not depend ounly on the lag T—¢

(respectively T—s) as one might expect. Their most
general form is given below.)

Before proceeding, we note an important point
concerning units. The integrated variance is dimensionless
(that is, as a pure number it has no units). Hence
the function A(z, T) must have the dimensions of time.
and since the Lévy process LY*' scales as time to the
power 2/a, the function f(s, 7) must have dimensions
of time to the power —2;. This distinction only matters,
of course, if we change the unit of time: in (9% f(5.T)
contains an implicit dimensional constant, equai to 1 in
the time units of the model, to make the dimensions
correct,

Proposition 3.2:  Suppose that the functions fis.T) and
h(t, T) are twice differentiable in their second argument and
once differentiable in their first argument, with f(s, T)>0
Jorall s<T, while f(T, T)=0, and h{t, T)>0 for all t<T.
while h(t,0)=0. Then the process

r T
Y, = f olds = h(t, T)o? + [ fls. TYALY>" (10
t !

is non-negative, continuous and increasing in T, and
satisfies the consistency condition Y, y=7Y,,+ Yoy if and
only if fis,T) and hir, T) are non-negative and rake the
Sorm

H(TY— H())

Mo ==

Fi5, Ty = Fs)HT) — Hix).
(1)

where H(\) is a stricily monotonic, differentiable fumciion
with derivative H'. and F(:) is continuous and positive
(respectively negative) if H(-} is increasing (respectively
decreasing).

Proof: We use subscripts | (respectively 2) on /{-, -) and
£, ) to denote differentiation with respect to (wri} the
first (respectively second) argument. with an obvious
extension to higher derivatives.

Suppose that, for t>1¢,

T T
f olds = hit, Tia” + f fis.oidLy, (123
1/ f

where L, denotes a non-negative Lévy process (including
L‘,"’Z‘J as a special case). This is clearly a positive process
with our assumptions.

Differentiating wrt t and using flz. 7} =0,

af = (1. r)cf -I-/ Sats, tyd L. {13)
I3

Note that this immediately implies that
]12(t3 t) - 17

as stated above,
Since

T T
/ o2ds = h(z, T)o + [ oL, (14

we have
13 T T
f oids + ] otds = k{1, Do? + h(z, T)al -+ f fls,ndL;
4 T f
T
+ f S, THdL,
T

= h(z, r)af2 +hit, T} (hz{t, r_)cr?

+ / ' fols, ‘E)de)

T r
+ [ rsodzt [ e,
= (h(t, %) + Iz, T)in(t, T)o?

+ [ (F(5,0) + bz, Tfls, AL

T
+ f s, TYAE .

Writing the left-hand side as ['o?ds, using (10)
and noting that the path is arbitrary, the consistency
condition (6) is met if and only if

R T) = h(t, )+ h(z, D, 1), (15)

S, Ty =f(s, 71+ Mz, T)fals, T, (16)

forall s.te(r. T).

We characterize fand # from the functional equations
(15) and (16) by a ‘separation of variables’ technique,
beginning with £. First differentiate (15) wrt 7 to give

O=h(t. o)+ iz, T)ha(r. T) + AT, Tihp(i. 1),
which is rearranged to

hp(t.r) _ I +Mm(z,T)
hoft. Ty At T)

The left-hand side of this equation is a function of 7 and =,
the right-hand side is a function of r and T, so both must
be equal to an arbitrary function of t alene. Setting the
left-hand side equal to this function, we have an ordinary
differential equation in 7 for (¢, ), whose most general
sclution satisfving M(r, 1) =0 and A(r, #)=1 is indeed
H(t) — o)

/I(T.TJ-w. ”7}
for an arbitrary non-constant function H(.). (The same
result can be obtained by differentiating (15) with respect
to T twice.)

As h(i,1)>0 and is bounded, a simple argument by
contradiction shows that, for each ¢, H{f)— H(t) either
ncreases or decreases as T — ¢ increases; it cannot have
4 turning point and H(-) is therefore monotonic.

Conversely. direct substitution shows that (17) satis-
fies (15).

The proof for fis similar: differentiation of (16) wrt
7 and rearrangement leads to

,fzz(ss t) . 1 + h](ri T)
fils.t) Mo, Ty °
from which both sides are equal to an arbitrary function

of 7; solving the resulting ordinary differential equation in
T for f(s,7), with the condition f(s,5)==0, shows that

fls, 1) = F(s}(G(v) — G(s)) for arbitrary F(-) and G(.), the

latter being differentiable. Substitution back into (16)
shows that G(-) = H("), as required. The sign of /() clearly
follows from (11} given that & is monotonic. The converse
is shown by direct substitution. |

Two possible choices for f(s, T) and h(z, T) aret

f6,7T)=T—s, Wt,Ty=T-—1t, st=<T (18)

| — g HT+ey ~(s+e))

vals+c)"

1 — g ¥UT+ ~(+)"})

Y=
J6,T) e

, b, T)=

3

(19}

for s, t=< T and 1 =n<2 where v is a positive constant
that can be seen as a damping factor which we can be
chosen freely, and ¢ =0 is constant. Both choices satisfy
the additivity condition (6); for example, {19) is obtained
by assuming H(T)=¢ "7 and Fg)=1LH{(s) in
proposition 3.2.

Henceforth, we take H(-)>0 without loss of generality,
and we further assume that

T
1 .
L%d3<m. for 0 < T < o0. {20}

which is a condition we wiil require below to price
instruments under the risk-neutral measure. It simply
amounts to saying that H'(0)>0, namely that the time
r—90 is not special (recall that H{(-) cannot have turning
points for 1> 0),

3.1, Hlustration

We now illustrate the different building blocks needed to
obtain the integrated variance process described above.
First we simulate a totally skewed to the right Lévy-Stable
motion; then we get the spot variance process, by
choosing an appropriate kernel, then we produce
the integrated variance process. We focus on kernels
of the integrated variance of the form (19). The solid line
in the two bottom graphs of figure 1 represents the case
withn=1,¢=0.1,1=0,0<7<1, 6 =0, y=25, which
is a standard OU-type process as in Barndorff-Nielsen
and Shephard (2001) with a two-week mean-reversion
period. In the same figure the dotted lines represent the
case n=12, T=1 and y=25.

tAlthough these functions are apparently the same, as remarked above, there is a dimensional constant multiplying them which

would change if the time ynits were changed.
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Figure 1. Simulated integrated variance with kernel f{s, T)=25"1(1 —e 2T+ -+ with ¢=0.1, n=1, T=1 (solid line).
and ¢=0.1, n=1.2, T=1 (dotted line). In both cases, t#=0 and oﬁ ={.

4. Model dynamics and option prices

We now turn to models of the asset price evolution and
the pricing of vanilla options. Section 4.1 looks at a basic
model where the shocks to the returns or log-stock
process are symmetric; section 4.2 extends it to a model
where shocks can also be asymmetric. Finally, section 4.3
shows how to price vanilla options when the shocks to the
underlying stock process follow a Lévy-Stable process for
a>1and -1 <8=<1,

Given the nature of the model, there is no unique
equivalent martingale measure (EMM). In line with most
of the Lévy process literature we choose an EMM that is
structure-preserving since, among other features (Cont
and Tankov 2004), transform methods for pricing are
straightforward to implement; this is discussed at the end
of section 4.2.

4.1. Modelling returns

As pointed out in the Introduction we can model either

returns or log-stock prices; when shocks are symmetric we

can take either route. For example, if we believe that the

shocks to the returns process follow a Lévy-Stable

distribation, we assume that, in the physical measure P,
ds;

I8 _ wde +ordw, 1)
S,

{ T
f ads = A0, Dof + f fendrg™', (22)
0 0

where dW, denotes the increment of the standard
Brownian motion, A(-, -} and f{-, ) satisfy the conditions
in proposition 3.2, f{-, ) €F and w is a constant. In the
following proposition we show the distribution of the
stock process.

Proposition 4.1: Ler the siock process follow (21) and
the integrated variance process follow (22). Assumne

Further that W, and L' are independent, then the log-

stock process (21} is the sum of two independent
processes: q symmetric Léyy-Stable process and a
Gaussian process.

Proof: First note that the stochastic component of the
log-stock process is given by

t
Un, = f o, AW, 23)
0

Now we calculate the characteristic function of the
random process Uy, We have

E[eo | = E[eiaj:a,dw]’

. / .
and by independence of o, and W, fo o, dW; is a zero-
mean Normal variable whose variance is the random

variable ﬁ: crszds. Thus the characteristic function of
[y oy dW is given by

Ee?to]= [E{exp[w%62 ftofdsﬂ
0

=exp [f%h(o. z)ogaz}

!
xIE[eXp[-—%QZ f Sis, ndLgf-‘Z-lﬂ
0

Further, using (5} we have that

] 1 2
fof(sa ALY ~ Sa,’z((fn Fs, 0% ds) .1, 0),

and using proposition 2.1 we write

e ] = exp [- %h (0, Nar 92}

X [E[exp [—%92 [ 1 Fis, r)dLjf'Q- ! :H
o

1 o

1 14
=exp [wih(ﬁ, Nott? —Wsec?nf s, d.s*l@l”‘] .
o

This is clearly the characteristic function of the sum
of a Gaussian process and an independent symmetric
Lévy-Stable process with index «. O

Note that we might also stipulate that our
departure point is the risk-neutral dynamics for the
stock process and that our model is as above with wu
replaced with

95 e +o,dWe, (24)

S}
with LTgfds as in (22), dW¥ being the increments of the
standard Brownian motion. However, we need not specify
the risk-neutral dynamics as a starting point since it is
possible to postulate the physical dynamics and then
choose an EMM. We discuss the relation between the
measures P and Q below for a model that also allows for
asymmetric Lévy-Stable shocks and the symmetric case
then becomes a particular case.

We also note that the stochastic integral f,T o, dW, can
be seen as a time-changed Brownian metion (Kallsen and
Shiryaev 2002). Tn this case the integrated variance
f!T o?ds represents the time change and it is straightfor-
ward to show that

T
[ wam L,

t

- T
where 77 r = f olds.

4.2, Modelling log-stock prices

Financial data suggest that returns are skewed rather than
symmetric (see, for example, Kraus and Litzenberger

(1976}, Campbell et af. (1997) and Carr and Wu (2003)).
For instance, since the stock market crash of 1987, the
US stock index options market has shown a pronounced
skewed implied volatility (volatility smirk) which indi-
cates that, under the risk-neutral measure, log-retums
have a negatively skewed distribution.

The synumetric model above can be extended to allow
the dynamics of the log-stock process to follow an
asymunetfric Lévy-Stable process. In stochastic volatility
models, one way to introduce skewness in the log-stock
process is to correlate the random shocks of the
volatility process to the shocks of the stock process.
It is typical in the literature to assume that the
Brownian motion of the stock process, say dW, is
correlated with the Brownian motion of the volatility
process, say dZ;. Thus dW,dZ,=pd 7 and we can write
Z, = pW, + /1 — p*Z,, where Z, is independent of W,
The correlation parameter p is also known in the
literature as the leverage effect and empirical studies
suggest that p<0 (Fouque ef a/. 2000). In our case the
notion of ‘correlation’ does not apply because, for
Lévy-Stable random variables, it is given that moments
of second and higher order do not exist, nor do
correlations. However, we may also include a leverage
effect via a parameter ¢ to produce skewness in the
stock returns.

Hence to allow for asymmetric Lévy-Stable shocks,
under the physical measure we assume that

T T
log(S7/S) = (T - 1) +f o, dW, + g&f di?,fl,
' f
(25)

T T
/ o’ds = hit, T)o? + f fs, TYALE2 (26)
i i

Here dW, denotes the increment of the standard
Brownian motion independent of both df*™' and
dL**! and we note that dL* ", independent of dL%>'
is totally skewed to the left and that | <@ <2. Moreover,
¢ and o =0 are constants, f(¢, T) and h(z, T) satisfy
the conditions in proposition 3.2 with f(z, T) € F and the
leverage parameter £>0. In appendix A we show that
the shocks to the price process are asymmetric Lévy-
Stable.t

Before proceeding we discuss the connection in this
model between the dynamics of the stock price under the
physical measure P and the risk-neutral measure Q.
Recall that a probability measure ( is called an EMM if it
is eguivalent to the physical prebability P and the
discounted price process is a martingale. It is straightfor-
ward to see that in the model proposed here the set of
EMMs is not upique, hence we must motivate the choice
of a particular EMM.

Tet us focus on the model with no leverage (i.e. £=0).
Based on Girsanov’s theorem (Karatzas and Shreve
1988), we assume that the risk-neutral dynamics of

FNote that here we model log-stock prices since we canmot include a similar legeraige effect in equation (21) because this allows
negative prices due to the jumps of the increments of the Lévy-Stable motion dL; .




the model are obtained via the Radon—Nikodym
derivative

Z, — el o)1/ [Jlr-n- (/20022 (27)

To be able to apply Girsanov’s theorem we need to
check two conditions.t First, we must verify that

T 1 )1
P/ r—u—=cty Sds<eco|=1, for0<T< oo,
0 270 ) o?

(28)

and second, that Z, is a martingale and

EZ,] = 1. (29)

Since ¥ —p is a constant the first condition is satisfied
if PIf ods<ool=1 and P[f(I/02)ds < o] =1 for
0<T<oco. To show the first, note that Xpr:=
Jo s, TIALE™Y ~ Sn((fy f(s, TI ds),1,0);  there-
fore, P[Xp r<ool=1 for all T because the cdf of X(T)
integrates to 1. To show the second, we use (13) and (20)
to show that fOT(l /a2)ds is bounded above:

/Tldv<ifT ! ds
0 O'_g‘ ' _0'5 0 /?2(0,5) )

_H©
%

T
1
T < oc;
fOH’(s)dS<OO’ for 0 < oo

thus, P[f (1/02)ds < oo] = 1 for 0 < T'<oc.

Te verify the martingale condition it is straightforward
to check, using the independence between L',’"z’ "and W,
that

E[Z,] — [E[E[e o120 o, (172

x chl-n=P s | 2 o oy

=1

Morgeover, it is simple to calculate E[Z,| F,|=2Z, (for
0<u<rt) and using the Radon-Nikodym derivative.
[EiS,‘Z;] =Sg C”.

Therefore, by Girsanov’s theorem,

WQ—W—/r(r~ flaz)lds
[ ¢ o \ H 2 s o5 s

and the risk-neutral dynamics of the stock, with £=0,
satisfy

ds
5 =rdi+ o, dW?,

T 1 L]
f cffds:I(lfe_MT"”)c,z—k f X(1~e*m"*f))dLs.
t !

The inclusion of the leverage is straightforward in this
setting, hence the risk-neutral dynamics of the model (25)
and (26) follows

! T 2 [t 4 an
log(S7/8) = v(F—£) — 3 a,ds 4 &% sec?(T— )]
!

T Tr
+f anWf+E&f dre,
! 1

(30)
T T )
/ ords = h(t, T)o? + f fls, THALY>t (3D
! 1

where W< is the standard Brownian motion ndependent
of the Lévy-Stable motions I:‘,”_' and L¥%! (also inde-
pendent from each other) and r is the (constant) risk-free
rate. This is the most general model that we consider; note
that, if £=10, we obtain the risk-neutral dynamics for the
case when the returns or log-stock process foliows
a symmetric Lévy-Stable process under P.

4.3. Option pricing with Lévy-Stable volatility

As motivated in the Introduction by equations (1) and (2),
the price of a vanilla option, using the EMM @, is given
by the iterated expectations

V(S, 1) = [ELQ‘*“‘ I:[Eg I:EQ[VBS (S;e&? f d[g—*f.

(32)
LE (T, 2 T)}f,f‘ o, | fg—l}}

where Y, 7 = [1/(T— 0] [ o2ds and Vs is the Black-
Scholes value for a European option. Note that, if we let
AL, TY=f(t,T)=0forall ¢, £==1 and 1 <2, then the
model reduces to

T
og(S2/S) — u(T'— 1) + & f diz,
t

which 1s the Finite Moment Log-Stable (FMLS) model of
Carr and Wu (2003).

Proposition 4.2: 1t is possible to extend the results above
to price European call and put options when the skewness

coefficient B0, 1].

Proof: Using put-<call inversion (McCulloch 1996), we
have by no-arbitrage that European call and put options
are related byi

S, 6 KTy, ) =8SKPIS™ K. Toa, — B).
O

As an example, we can use the approach above to
derive closed-form solutions for option prices when the
random shocks to the price process are distributed

tSec section 3.5 of Karatzas and Shreve (1988).

INote that using put—call inversion allows us fo obtain put prices when the log-stock price follows a positively skewed Lévy-Stable
process, based on call prices where the nnderlying log-stock price follows a negatively skewed Lévy-Stable process. Furthermore,
put-~call-parity allows us to obtain call prices when the skewness parameter —1 < <0,

according fo a Cauchy Lévy-Stable process, =1 and
B="01in (30) and (31), so that option prices are given by
T 4 /2 0
Ty ds
V(S i) = M—)m_
(T—0v2n Jo

wet j:rf (5. Y dsf(T=1\F /25 a7,

— 1
Ves(Si, £, K, (To, ', T)Jﬁ

where ¥, 7 = [1/(T — 1] frT a’ds. To see this, first we note
that the combination of a Gaussian random variable, the
Brownian motion in (30), and a Lévy-Smirnov Sip
(x.1.0) random variable, the process followed by the
integrated variance in (31), results in a Cauchy random
variable S,(x,0,0). This can be seen by calculating the
convolution of their respective pdfs. Now, recall that the
pdf for a Lévy-Smirnov random variable Syp(x, 1,0} is
given by (k/2m) 2x 7 e™/2* with support (0, 00); hence,
the distribution of the average integrated variance is
given by

— f

T
— af2, 1
Vir=s f f(s, )AL

~8 L([Tf(s T)"’st)z 1,0
172 (T—-wf)z f 2 s s H

and the value of the option is as required.

S. Numerical illustration: Lévy-Stable option prices

In this section we show how vanilla option prices can be
calculated according to the above derivations. One route
is to calculate the expected value of the Black—Scholes
formula weighted by the stochastic volatility component
and the leverage effect. Another route to price vanilla
options for stock prices that follow a geometric Lévy-
Stable process is to compute the option value as an
mtegral in Fourier space, using Complex Fourier
Transform techniques (Carr and Madan 1999, Lewis
2001).

We use the Black—Schoeles model as a benchmark to
compare the option prices obtained when the returns
follow a Lévy-Stable process. Our results are consistent
with the findings of Hull and White (1987) where
the Black-Scholes model underprices in- and out-of-the-
money cali option prices and overprices at-the-money
options.

5.1. Option prices for symmetric Lévy-Stable log-stock
prices ‘

We first obtain option prices and implied volatilities when
the log-stock prices follow a symmetric Lévy-Stable
process. Recall that, under the risk-neutral measure g,
and assuming, for simplicity, that a? = 0, the stock price
and variance process are given by

. T 5 d 0
Sp— Sle.(ﬂr)f(l/z) [ adst f. ndex,

T T
/ o?ds = f Fls. TALE,
i I3 -

The first step we take is to calculate the characteristic
function of the process

1 T T
z,,T:ﬁ—z-f afdsqu oy dW 2,
T {

Proposition 5.1:  The characteristic function of Z,y is
given by

T
[.EQ[ef'fo-rg:exp[—#sec(%?)(iﬁg)“s’z f 7Gs, T)z-f‘“ds].

(33)

where §=§&,+i& and —1<&<0. Moreover, the char-
acteristic function is analytic in the sirip —1 < £;<0.

Proof: The characteristic function is given by

N T T
[E9[e¥%1r] e [FQ [IEQ [exp |:~ %i’g‘] olds+ ié/ asd W‘Q}
t t

xlaf,()gsstﬂ
T T
:Eg{expl:~%i§jl Ugdsm—%ézf[ ofdsﬂ
=E%|ex i(f§+§2) f Tf(s T)ALy™!
= p 3 ) > s

T
—exp [72%/2860(%15) (E+&)" [ S, 7Y ds] ‘

The last step is possible since the expected value exists if
& is restricted so that "g',z_ — £} +& = 0, by consideration
of the penultimate line. The region where this is true
contains the strip —1 < &; < 0. Finally, it is straightforward
to observe that the characteristic function is analytic in
this strip. 1

To price call options we use the Fourier inversion
formula:

X, 1 —{T—i) koo —iEX, Kig (T—W(—8)
C(x,t):e"—z{ie K e s —et' ! dé,

i#&i—o0 %‘2 - l&
(34

where x,—log S, 0<& <1, and W(¢) is the logarithm of
the characteristic function of the process log St In
comparing these prices with Black—Scholes prices, we
have to decide how to choose the relevant parameters of
the two models. In fact, the only parameter that we must
examine carefully is the scaling parameter of the Lévy-
Stable process; we opt for one that can be related to the
standard deviation used when the classical Black—Scholes
model is used, One approach, as in Hurst et al. (1999), is
to match a given percentile of the Normal and
a symmetric Lévy-Stable distribution. For example, if
we want to match the first and third quartile of
a Brownian motion with standard deviation ogg=0.20
to a symmetric Lévy-Stable motion «dL%" with char-
acteristic exponent @=1.7, we would require the scaling
parameter «=0.1401. We have chosen these parameters
so that for options with 3 months to expiry these quartiles
match. Moreover, in the examples below, we use the
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Figure 2. Difference between Lévy-Stable and Black—Scholes call option prices for different expiry dates: one. three and six months.
In the Black—Scholes, annual volatility is opg=10.20 and e =1.7.

kernel f(s, T) = 5 (1 — e=>(T=9), which is as in (19) with Proposition 5.2: The characteristic function of ZE iy

n=1, where for illustrative purposes we have assumed given by
mean-reversion over a two-week period, i.e. y=25. 1

Figure 2 shows the difference between Furopean call  EZ2[eZir] = exp { — ﬁsec(g)(ié}+ gh?
options when the stock returns are distributed according 2 4

to a symmetric Lévy-Stable motion with ¢ = 1.7 and when
returns follow a Brownian motion with annual volatility
ops=10.20. For out-of-the-money call options the Lévy-
Stable call prices are higher than the Black-Scholes and
for at-the-money options Black-Scholes delivers higher
prices. These results are a direct consequence of the
heavier tails under the Lévy-Stable case.

5.2. Option prices for asymmetric Lévy-Stable
log-stock prices

We now obtain option prices and implied volatilities when
there is a negative leverage effect, ie. log-stock prices
follow an asymmetric Lévy-Stable process (figure 3).
Recall that, under the risk-neutral measure @, the stock
price and variance process are given by

Sy = S,/ T=0-172) [ 2Tt seofarn/2)
= I3 r

v o . pT Po—1
+ [ o dwfes Sk 5

T T
f s = ] Fls THLY
t i

where for simplicity we have assumed o7 = 0 in (26).
We proceed as above and calculate the characteristic
function of the process

' L, ’ 045 T
Z"T:_i, osds + : oy dW¥ - LG l dry,

T Tty
® f S Ty ds 4+ (T — N(ELG)" sec ?].
!

(35)
where —1 <&,<0, E=§,.+iE, and is analytic in the strip
—I<g&<0.

Proof: The proof is very similar 1o the one above.
It suffices to note that, for & <0,

L Py -t
B9t S 45 E[EQ[ie'Ede’ 4]

_E? [H I “LA“"'_}

< 00.

w 7 ru
Moreover, for &<0 we have that [EQ[e"f’f: W s
analytic, i.e.

LE ; T e (7 e
%EQ{e"‘?ﬁ'dLﬁ‘ 'ﬂ:’[EQ[i f dfg =gt ) o ]‘

H

< 0.

Putting these results together with the resuits from
proposition 5.1 we get the desired result. The requirement
—1<#<0 arises because 41>~ is totally skewed to the
left, so we need —£;> 0. O

We use the same f{s, T') as above and include a leverage
parameter £=1 and & =0.15 so that returns follow
a negatively skewed process with p(¢, T)=—0.5 when
there is 3 months to expiry. Figure 4 shows the difference
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Figure 3. Black—Scholes implied volatility for the Lévy-Stable call option prices when returns follow a symmetric Lévy-Stable
meotion with @=1.7. =0 and three expiry dates: one, three and six months,
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Figure 4. Difference between Iiévy-Stable and Black-Scholes call option prices for different expiry dates: one, three and six months.
In the Black—Scholes. annual volatility is og=0.20, a=1.7 and o = 0.15.

between Lévy-Stable and Black—Scholes call option prices 6. Conclusion

for different expiry dates. In the Black—Scholes case, ‘

annual volatility is opg =0.20. Finally, figure 5 shows the The GCLT provides a very s-trong. thfaore.twai founda-
corresponding implied volatility. The negative skewness tion to argue that the hlmltmg dlstrlbuuonr of stock
introduced produces a “hump’ for call prices with strike returns or log-stock prices follows a Lévy-Stable
below 100. This is financially intuitive since relative to the process. We have shown how to mod§1 stock returns
Black-Scholes the risk-neutral probability of the call and log-stock prices where the stochastic component is
option ending out-of-the-money is substantially higher in Lévy-Stable distributed covering the whole range of
the Lévy-Stable case. skewness Be]—1,1]. We showed that European-style
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Figure 5. Black—Scholes implied volatility for the Lévy-Stable call option prices when returns follow a symmetric Lévy-Stable
motion with ¢=1.7 and & = 0.15 and three expiry dates: one, three and six months.

option prices are straightforward to calculate using
transform methods and we compare them to Black—
Scholes prices where we obtain the expected volatility
smile.
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Appendix A

Suppose that the stock process, as assumed above
in section 4.2, follows

T 7
log(S7/S0) = (T — 1) + f on AW, 4 16 f ais .
! i

T 7
f Gfds = h(t. T_)cr[2 + f Fls. T)dLg’-‘”Z- I
f s

under P where dW, denotes the increment of the
standard Brownian motion independent of both df%!
and dZ¥*'. Then it is straightforward to verify that
the shocks to the above log-stock process under the
measure P are the sum of two independent processes:
those of a Gaussian component and those of a Lévy-
Stable process with negative skewness Se(—1,0]. Let
G, Ty = f,Tf(s,T)“ﬂds and, for simplicity in the
calculations, assume that o? = 0 (so we focus only on
the asymmetric Lévy process).
Now consider the process

T T
Uf_T:f (Tde.,,H&f are'.
! !

The log-characteristic function of U7 , is given by -

T T
iogtE{e""”’r}:mg[E[exp[ie(f oy AW, + 85 f de:’"])ﬂ
t t

i o

- —Wsec(~4—) GLT, 0161+ (GE (T — 1)/6]*

x {1 + isign(6) tan(gzﬂ) }

= (Z;ITSGC(%)G(I, T)+(T_ t)emé:a) |9|a

1 (T~ f)e=5e
V'~ @722 seclam /AG(, T) + (T — HE"aa
L. QT
x isign{f) tan (7) ] .

This is obviously the characteristic function of a skewed

Lévy-Stable process with (time-dependent) skewness
parameter

[ s 3

(e T)= _ {(I'-ni*e ’ -

(172¢/2ysec{an/DG(E, TY+ (T — HERG>

Moreover, when £=0 we obtain =0 and B— —1 as

£— oc.

Note that the integrated variance does not have a finite
first moment since «/2 < 1. However, in the case of the
leverage effect j,T dZe) its fiest moment exists, ie.
E[LT dL* '] < oo since 1 <a<2.

e(—1,0].
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