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Chapter 1

How to Sell to Buyers with
Crossholdings

Abstract. This paper characterizes the optimal selling mechanism in the presence

of horizontal crossholdings. We �nd that the optimal mechanism imposes a discrim-

ination policy against the stronger bidders so that the seller�s expected revenue is

increasing in both the common crossholding and the degree of asymmetry in crossh-

oldings. Furthermore, it can be implemented by a sequential procedure that includes

a price-preferences scheme and the possibility of an exclusive deal with the weakest

bidder. We also show that a simple sequential negotiation mechanism, although sub-

optimal, yields a larger seller�s expected revenue than both the �rst-price and the

second-price auctions.

Keywords: optimal auctions, crossholdings, asymmetric auctions, private values

JEL Classi�cation: C72, D44, D82, G32, G34
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1. How to Sell to Buyers with Crossholdings 4

1.1 Introduction

Auctions in which bidders have crossholdings in other bidders�surplus are very fre-

quent in practice, as there are many cases that resemble a contest with horizontal

crossholdings. For instance, it is usual in some markets for competing �rms to hold

shares in one other, or for an important proportion of a company�s ownership to belong

to non-controller block shareholders, which in turn also hold a controlling stake in a

rival company.1

Unlike the standard auctions, the presence of horizontal crossholdings introduces

counter-value incentives on bidders because they get a payo¤ not only when they win,

but also when they lose the auction. Since the loser bidder appropriates a proportion

of the winning surplus, he cares about the valuation and the price paid by the winner

bidder. Thus, losing transforms the bidder into a minority buyer, which induces a less

aggressive bidding behavior from him. That is, the incentive to lose counteracts the

natural bidder�s incentives to raise his bid in order to obtain the object.

The previous literature has studied this kind of auction in a framework where sig-

nals are independently distributed and values may be interdependent. This literature

has shown that the less aggressive bidding behavior induced by horizontal toeholds

produces the classical result of revenue equivalence between standard auctions (Myer-

son (1981), Riley and Samuelson (1981)) no longer holding, even when bidders have

symmetric crossholdings. A seller interested in maximizing her expected revenue

should therefore not be indi¤erent with respect to the mechanism used to assign the

object. Consequently, design of an optimal selling mechanism should be a very rele-

vant question for her.

In this paper, we address this question and characterize the optimal selling mecha-

nism in the presence of horizontal crossholdings. To this end, we follow the mechanism

design methodology introduced by Myerson (1981) in a setup with independent pri-

vate values and independently distributed signals. In addition, our modelling strategy

allows us to study issues which have not been considered so far.

Our approach is a normative one, instead of a positive one, which has been the focus

of most of the previous literature. In general, this literature compares some standard

auctions in terms of the expected revenue that they yield. As mentioned before,

the main conclusion is that the revenue equivalence breaks down in the presence of

1For the case of direct cross-ownership, Claessens et al. (1998) document the fact that other com-
panies (non-a¢ liated) constitute one of the most important blockholders in the corporate ownership
in various Asian countries. For the case of indirect cross-ownership, Hansen and Lott (1996) report
that the portfolios held by institutional investors in the U.S. include shares in competing �rms in some
markets like the computer industry and the automobile industry. Similarly, Brunello et al. (2001) and
Becht and Roell (1999) describe how the pyramidal groups are a very frequent structure for corporate
ownership in Italy, France and Belgium.
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horizontal crossholdings.2 In contrast, we do not assume the existence of a particular

auction format for exogenous reasons, but characterize how the maximizing expected

revenue mechanism should be and how this mechanism could be implemented.

One of the few papers that is normative as ours is that of Chillemi (2005). He

characterizes the optimal selling mechanism in the presence of horizontal crossholdings,

when bidders have positive and symmetric toeholds. His results show that the optimal

mechanism is such that the seller�s expected revenue is increasing in the common degree

of crossholdings since she can extract a higher surplus from the loser bidder. Our

work generalizes these results, as we allow for two types of agents: bidders with

asymmetric toeholds and bidders without toeholds. The presence of these bidders

results in an optimal allocation rule with a double bias. Firstly, among bidders

with positive crossholdings, the optimal mechanism discriminates against the bidder

with the highest crossholding; and secondly, this mechanism discriminates in a larger

degree against the bidder without crossholding. We conclude that this procedure is

such that the seller�s expected revenue is increasing not only in the size of a common

crossholding, but also in the degree of asymmetry of these toeholds.

Consequently, when we make endogenous the bidders�decision about buying/selling

crossholdings, we �nd that their best decision is to transfer no ownership at all. That

is, ex ante identical bidders will prefer to keep this symmetry in order to avoid the

discrimination policy imposed by the optimal allocation rule. A similar conclusion

emerges when we compare this optimal non-transference of crossholdings with two

joint bidding strategies: an illegal bid rigging and a legal consortium. In that case,

we show that when the seller can design an optimal mechanism as a reaction to these

agreements between bidders, the latter will also prefer to remain as symmetric players

whenever the informational advantage of collusion generated by its opacity disappears.

Our results concerning the bias against the stronger bidders are analogous to those

of the literature about optimal auctions with bidders asymmetrically informed (Povel

and Singh (2004) and Povel and Singh (2005)). For instance, Povel and Singh (2005)

analyze the case of takeover contests with a general value model that allows a private

and a common value environment. They characterize the optimal selling procedure

that a target company should design when it faces outside bidders (without vertical

toeholds) who are asymmetrically informed, and also conclude as to the optimality of

discriminating against the strongest bidder. Similarly, in this paper we �nd that in

the presence of horizontal crossholdings, the optimal mechanism also imposes a heavier

discrimination policy on the stronger players of the game. In our model, the strength

of each bidder is given by a stochastic comparative advantage resultant from the degree

2See Chillemi (2005) and Ettinger (2002) for private values; and Dasgupta and Tsui (2004) for
private and interdependent values.



1. How to Sell to Buyers with Crossholdings 6

in which each bidder appropriates of his own surplus. The asymmetric cross-ownership

structure here assumed is therefore, a central element in explaining the properties of

the optimal discrimination allocation rule, and in particular, the monotonicity of its

biases with respect to the ranking of advantaged bidders. As did Povel and Singh

(2005), we also prove that the optimal mechanism may also be implemented by a two-

stage procedure. In the �rst stage, the seller invites the stronger bidders to participate

in a second stage, in a modi�ed �rst price auction with personalized reserve prices. If

both of them reject participation, the object is awarded to the weakest bidder via an

exclusive deal for a price which he will always accept. Otherwise, a modi�ed �rst price

auction takes place with the accepting bidders (which will always include the weakest

bidder), where the discrimination policy is implemented through a price-preferences

scheme.

A central property of the optimal mechanism is that it has to be able to balance

out two opposite e¤ects on seller�s revenues properly. Since the discrimination policy

induces the stronger bidders with high signals to reveal the truth, this enables the

seller to extract more value from these bidders and thus, increase her expected revenue.

However, this incentive devise is based on a threat with potential costs in terms of

e¢ ciency (and thus in terms of creation of value) if it had to be materialized. If

the signals of the stronger bidder(s) are not su¢ ciently high so as to meet the more

demanding requirements of the discrimination policy, the seller will have to carry out

this threat and assign the object to a weaker bidder, with the risk that his value be

smaller than those of the excluded bidder(s). In consequence, the seller�s revenue may

decrease due to a less ex post creation of value. Notice that it is analogous to the

reserve price practice, although here the negative e¤ect on decreasing the creation of

value is less severe. This is because the eventual cost of the threat is only to sell the

object to a bidder with a smaller value than the excluded bidder, but with a value

larger than the seller�s one. In contrast, with a reserve price, the object is withdrawn

from the auction and is kept in the seller�s hands, which in our model always will be

worse in terms of created value.

Finally, it is shown that a more simple sequential negotiation mechanism, although

suboptimal, yields a larger seller�s expected revenue than both the �rst-price and

the second-price auctions. This �nding is explained by the fact that this procedure

considers exclusive deals with a timing that gives priority to the stronger bidders, as

an attempt to extract surplus selectively, and thus, to replicate the main property of

the optimal mechanism.

The remainder of this paper proceeds as follows. Section 1.2 constructs a model

of auctions with horizontal crossholdings. Section 1.3 characterizes and discusses the

properties of the optimal selling mechanism from the seller�s viewpoint. The e¤ects
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of this procedure on the bidders� participation strategies are analyzed in the next

section. The implementation of the optimal mechanism via auctions and negotiations

is examined in Section 1.5. Conclusions and extensions are discussed in Section 1.6.

All the proof are gathered in the Appendix.

1.2 The Model

We have a seller who wants to sell a single object to one of three risk-neutral bidders.

The value of the object to bidder i is ti, which is private information, but the seller and

the other bidders know that it is independently and identically distributed according to

the c.d.f. F with support
�
t; t
�
, density f and hazard rate H(ti) = f(ti)=(1�F (ti)).3

Denote by t0 the seller�s value, which is assumed common knowledge and normalized

to zero.

A horizontal crossholding of bidder i is de�ned as a partial participation of this bid-

der in another bidder�s surplus, and we suppose the following ownership link structure.

Bidders 1 and 2 have crossholdings in each other, and bidder 3 has no crossholdings in

the other bidders�surplus. The parameter �i represents the share of bidder i in bidder

j�s surplus, for all i; j = 1; 2 and i 6= j. Thus, (1 � �j) represents the participation

of bidder i in his own surplus. Crossholdings are assumed common knowledge, with

1=2 > �1 � �2 � 0. Finally, no ownership links between bidders and the seller are

considered.

It is worthy to make some remarks about the main assumptions of the model. First,

the adoption of the simplest valuation and information environment, i.e. the indepen-

dent private value framework, has the following justi�cation. Since we want to focus

on the e¤ects generated by the asymmetry stemming only from the di¤erent initial

stakes held by each bidder, we abstract away from any other sources of asymmetry

such as those caused by the valuation and information environment. Consequently,

we assume identically distributed signals. For a similar reason, we also work with

private valuations instead of interdependent ones. Since the presence of common val-

ues introduces an extra source of less aggressive bidding behavior -a di¤erent one from

that induced by crossholdings-, we prefer to examine a simpler valuation setting in

order to establish more clearly the e¤ects of crossholdings on the optimal mechanism.4

Second, although at �rst glance, our modelling strategy regarding the number of

bidders and the ownership structure seems to be very ad hoc, it indeed allows us

to analyze, in a very simple way, matters which have not been considered so far by

3We focus on the regular case, i.e., increasing hazard rates, as it is standard in auction theory.
4Although we recognize, of course, the importance of characterizing this mechanism under a richer

environment, this constitutes an extension of our basic model that should be the aim of future works.
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the received literature. In fact, the scarce literature with a normative approach

as our work (e.g. Chillemi (2005)) characterizes the optimal selling procedure when

bidders possess positive and symmetric stakes in their rivals. In contrast, our model

generalizes this analysis, as it considers two types of agents: bidders with asymmetric

crossholdings and bidders without crossholdings. We shall see that these novelties

concerning the ownership structure are crucial to attaining two remarkable results: to

obtain an optimal discriminatory allocation rule and to identify properly the source

and nature of the biases imposed by such a policy.

1.3 The Optimal Selling Mechanism

We restrict our attention to a special class of mechanisms: the direct revelation

mechanisms. Denote by t the vector of signals realizations, i.e., t = (t1; t2; t3), with

support T . Similarly, denote by t�i the vector of signal realizations of all bidders

except bidder i and T�i its corresponding support. Let pi(t) be the probability with

which the optimal mechanism allocates the object to bidder i, given the vector of

reported signal realizations t, and let xi(t) be the payment from bidder i to the seller.

Let Qi(ti) be bidder i�s conditional probability of winning given that he observes ti,

i.e., Qi(ti) �
R
T�i

pi(ti; t�i)f(t�i)dt�i. Bidder i�s expected payo¤, conditional on

signal ti and announcement bti, is then given by5
Ui(bti=ti) � Z

T�i

[(1� �j)(tipi � xi) + �i(tjpj � xj)] f(t�i)dt�i

for i; j = 1; 2; i 6= j, and

U3(bt3=t3) � Z
T�3

[t3p3 � x3] f(t�3)dt�3

for all ti;bti 2 �t; t�, i = 1; 2; 3. We de�ne the truthtelling payo¤ as Vi(ti) � Ui(ti=ti)

and the seller�s expected revenue when all bidders tell the truth as

U0 �
3X
i=1

Z
T
xi(t)f(t)dt

Following Myerson (1981) (see details in Appendix A), we can rewrite the seller�s

expected payo¤ as

U0 =

3X
i=1

�
�Vi(t) +

Z
T
ci(ti)pi(t)f(t)dt

�
(1.1)

5For simplicity, we have omitted the arguments of pi and xi, such that pi = pi(bti; t�i) and xi =
xi(bti; t�i), for all i.
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where ci(ti), bidder i�s marginal revenue, is de�ned as6

ci(ti) �
(

ti � (1� �j) 1
H(ti)

for i; j = 1; 2; i 6= j

t3 � 1
H(t3)

otherwise

Hence, the optimal mechanism solves the following problem:

max
pi;Vi(t)

U0

s:t:

Vi(t) � 0; for all i (1.2)

Q0i(ti) � 0 for all ti 2
�
t; t
�
and for all i. (1.3)

3X
i=1

pi(t) � 1 and pi(t) � 0, for all i and for all t 2 T (1.4)

where (1.2) is a su¢ cient condition for bidder i�s participation constraint, (1.3) is one of

the two su¢ cient conditions for the incentive compatibility constraints of the bidders

and (1.4) corresponds to the feasibility constraints. Notice that when there exist

crossholdings, the bidders�reservation utilities are no longer exogenous. The reason

for this is the fact that now what a bidder with positive crossholdings can get when

refusing to participate in the auction depends on the rule used to assign the object

among the active bidders. The seller will then take advantage of this phenomenon

by designing an alternative mechanism that induces the participation constraint that

maximizes her expected revenues. This can be attained by means of an optimal threat

that allows us to �nd the minimum reservation utility of a bidder with crossholdings

such that he prefers to participate in the auction. Given our ownership structure, this

optimal threat consists of selling for sure the object to the bidder without crossholdings

(bidder 3) whenever a bidder with crossholdings (either bidders 1 or 2) decides not

to participate in the auction.7 Notice that such a threat constitutes the maximum

punishment against the nonparticipating bidder. In fact, the execution of the threat

implies that the seller fully appropriates the nonparticipating surplus stemming from

the crossholdings and thus, all bidders exhibit the same zero reservation utility. Notice

�nally that the commitment capacity of the seller is critical to the successful of the

procedure, especially because of the materialization of the threat may not be ex post

optimal.8

6See Bulow and Roberts (1989) for an interpretation of the bidder i�s marginal revenue concept.
7This result is formally derived in the Appendix A.
8The endogenous nature of the reservation utilities and its consequences for the participation

constraints can also have other sources. For instance, Jehiel, Moldavanu and Stacchetti (1996, 1999)
indentify a similar phenomenon when there are auctions with externalities between bidders. They
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1.3.1 Optimal allocation rule

Lemma 1 The optimal mechanism sets Vi(t) = 0 and

pi(t) =

(
1 if ci(ti) > max f0;maxj 6=i cj(tj)g
0 otherwise

for all i, and for all t 2 T .

Notice that bidder i�s marginal revenue is higher than bidder j�s if and only if

ti > zij(tj) � c�1i (cj(tj)) for all i 6= j. Likewise, we de�ne t�i � c�1i (0) as the threshold

signal for which bidder i�s marginal revenue is higher than the seller�s. Then, since

ci and its inverse function are well-behaved, it is equivalent to say that the optimal

mechanism sets Vi(t) = 0 and

pi(t) =

(
1 if ti > max ft�i ;maxj 6=i zij(tj)g
0 otherwise

(1.5)

for all i, and for all t 2 T .

1.3.2 Properties of the optimal mechanism

With horizontal crossholdings, the optimal rule implies a discriminatory policy as

zij(tj) 6= tj .9 By analyzing the properties of the functions zij , one can characterize

the nature of the biases involved in the optimal mechanism and �nd out under which

circumstances it is revenue maximizing to sell the object to each bidder. This is the

content of the next lemma.

Lemma 2 The discriminatory policy functions zij have the following properties:
(i) The functions z3j(tj) and z12(t2) are strictly increasing in tj and t2, respectively.

(ii) The functions z13(t3), z23(t3) and z21(t1) are non-decreasing in t3 and t1, respec-

tively.

(iii) At t1 = t2 = t3 = t, z32(t) > z31(t) > t, z12(t) > z13(t) = t, and z21(t) = z23(t) =

t.

(iv) For all zij(tj), there exists a unique signal tj = � > t such that zij(�) = �, which

show that a revenue maximazing procedure in this context has to include an optimal threat that
induces bidders to participate in the auction by guaranting to the critical type (the lowest type in our
case) the lowest possible reservation utility. Consequently, if the externalities are negative, the seller
will threat with selling for sure to the bidder who imposes the worst damage to the nonparticipating
bidder. In contrast, if the externalities are positive, the optimal threat implies that the seller keeps
the object.

9The analysis here is analogous to McAfee and McMillan (1989). They introduce the concept of
an optimal discriminatory function in the context of an asymmetric procurement when a government
faces domestic and foreign �rms with di¤erent comparative advantages in costs.
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is � = t.

(v) z32(t) > z31(t) > t, z12(t) > t � z13(t); and z23(t) � z21(t) � t, for all t < t.

Lemma 2 describes two properties of the optimal mechanism. First, it points out

that at the optimal mechanism all bidders must experience some degree of discrim-

ination when facing another rival, either a positive or a negative one. Second, for

bidders 3 and 1 there exist a non-zero probability interval of signals with which these

bidders lose no matter the signal of their opponents. We discuss now the intuition

and implications of these properties.

Bias against the bidder with the highest crossholding. Among the bidders with

ownership links, the optimal mechanism is biased against the bidder with the highest

crossholding, because he wins the object only if his signal is su¢ ciently higher than the

signal of the other bidder with crossholding. For instance, if t1 and t2 are uniformly

distributed in the interval
�
t; t
�
, for bidder 1 to win it is needed that t1 > z12(t2) =

(1��2)t2+�2t > t2, where �2 � (�1��2)=(2��2); 0 < �2 < 1=2. The intuition of this

bias is that the bidder with the higher crossholding exhibits a larger appropriability

of his own surplus, which gives him an informational advantage over his rival with the

smaller crossholding.10 Thus, bidder 1 is the strong player that has more incentives to

under-report signals. The optimal mechanism then encourages this bidder to reveal

high signals by imposing a discriminatory policy against him.11

Bias against the bidder without crossholding. In order to compare the treatment

given by the optimal selling mechanism to bidders with and without ownership links,

assume that the three bidders receive the same signal, i.e., t1 = t2 = t3 = t. It is easy

to check that z32(t) > z31(t) > t for all t,12 which implies that the optimal mechanism

imposes a bias against the bidder without crossholding, because his probability of

winning against the bidders with crossholdings is zero when all of them receive the

same signal. The intuition behind this bias is that this bidder exhibits a complete

appropriability of his own surplus, and thus, he is the most advantaged player of this

game in terms of some informational measure. Since bidder 3 has the largest incentives

to under-report high signals, the seller has to force him to tell the truth reducing his

winning probability to the largest extent if he reports low signals. Hence, the seller will

be more demanding with bidder 3 than any of his rivals when awarding the object.13

10Formalization of this intuition in terms of stochastic dominance is provided later on.
11An alternative explanation is that the bidder with the higher crossholding enjoys the higher losing

surplus, and thus, has more incentives to under-report signals. In line with this interpretation, the
seller could extract more losing bidder�s surplus from him. Nevertheless, this interpretation no longer
holds when we consider the bias imposed against the bidder without crossholding.
12Or equivalently, c2(t) > c1(t) > c3(t):
13An alternative interpretation is that bidder 3 does not face counter-value incentives because he

does not have crossholdings at all. In consequence, he can adopt a less aggressive bidding behavior
and still defeat his rivals.
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Exclusion of su¢ ciently low signals. Notice that for su¢ ciently low signal reports,

the probability of winning for bidder 1 and bidder 3 is null: since z12 and z3j are strictly

increasing functions, if t1 < z12(t) then p1(t) = 0 and if t3 < z3j(t) then p3(t) = 0. For

instance, when the signals are uniformly distributed in the interval
�
t; t
�
, we have that

z12(t) = (1� �2)t+ �2t and z3j(t) = (1� �j)t+ �jt, where �j � �i=2, 0 < �j < 1=4,

and i; j = 1; 2; i 6= j. It is clear that these upper bounds are higher than t, which

means that the probability that some types of bidders 1 and 3 lose for sure is positive.

However, notice that these upper bounds are not larger than t, which implies that

the optimal mechanism does not exclude completely any of these two bidders; it only

ignores reported signals that are su¢ ciently low, and encourages them to reveal high

ones (and thus to pay high transfers).

Monotonicity of the bias. The optimal rule sets the following ranking of favored

bidders (in descending order): (1) the bidder with the smallest (positive) crossholding,

i.e., bidder 2, (2) the bidder with the highest crossholding, i.e., bidder 1, and (3) the

bidder without crossholdings, i.e., bidder 3. Notice that there is an apparent non-

monotonicity in the discrimination introduced by the optimal rule, as this ranking is

not monotonic with the ranking of bidders�crossholdings. The next proposition shows

however that indeed one can identify a monotonic relationship between the degree of

bias against each bidder and their level of some stochastic advantage in the game.

Proposition 3 At the optimal mechanism, it is veri�ed that:
(i) The larger the proportion of own surplus appropriated by bidder i, the higher the

stochastic advantage of this bidder in terms of hazard rate dominance.

(ii) As a consequence of (i), the larger the proportion of own surplus appropriated by

bidder i, the heavier the discriminatory policy imposed against him.

The proof of Proposition 1 points out that bidder i will be favored against bidder

j if and only if the modi�ed distribution function of his valuations is hazard rate dom-

inated by the modi�ed distribution function of his rival�s valuations. This means that

the higher the stochastic advantage of a bidder, the higher the degree of negative dis-

crimination that the optimal mechanism imposes on this bidder. This interpretation

of the problem allow us to restate the standard result that in an asymmetric auc-

tion the optimal rule is such that the stronger bidders are more discriminated against.

Since in our model, the source of this stochastic asymmetry between bidders is the pro-

portion of their own surplus that they retain, this implies that the optimal mechanism

establishes a scheme of biases that is indeed increasing with that proportion.

Extraction versus creation of value. A central property of the optimal mechanism

is that it induces a trade-o¤ for the seller between extraction and creation of value.

On the one hand, the discrimination policy encourages the stronger bidders with high
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signals to reveal the truth. This enables the seller to extract more value from these

bidders and so, increase her expected revenue. On the other hand, this incentive

devise is based on a threat with potential costs in terms of e¢ ciency (and thus in

terms of creation of value) whenever it has to be materialized. If the signals of the less

favored bidder(s) are not su¢ ciently high to meet the more demanding requirements

of the discrimination policy, the seller will have to execute this threat and to award

the object to another bidder, with the risk that his value be smaller than that of the

excluded bidder(s). In consequence, the seller revenues may decrease due to a less

ex post creation of value. The optimal mechanism must therefore balance out these

two opposite e¤ects properly in order to maximize the seller�s revenues. Notice that it

has a similar e¤ect to the reserve price practice, although here the negative e¤ect on

decreasing the creation of value is less severe. This is because the cost of the threat is

only to sell the object to a bidder with a smaller value than the excluded bidder, but

with a larger value than the seller�s one. In contrast, with a reserve price, the object

is withdrawn from the auction and kept in the seller�s hands, which in our model is

always a loss.

E¤ects on the seller�s expected revenue. The optimal mechanism internalizes the

fact that bidders with crossholdings want the object to be sold as they also get a share

of the winning surplus whenever they lose the auction and the winner is di¤erent from

the bidder without crossholdings, i.e., bidder 3. This allows the seller to extract some

of the surplus from losing bidders. Furthermore, this mechanism is also sensitive to

opportunities for strengthening the optimal discrimination policy given by changes in

the ownership structure. Two results follow from these two phenomena. First, the

seller increases her expected revenue when the intensity of a common crossholding

increases because both the losing bidder�s surplus is higher and a more severe bias can

be imposed against bidder 3 as the comparative stochastic advantage of this bidder

increases. The next proposition formalizes this result.

Proposition 4 If the degree of crossholding is symmetric (�1 = �2 = � > 0), then the

seller�s expected revenue is increasing in the common degree of ownership links.

Moreover, the seller also increases her expected revenue when the degree of asym-

metry in the crossholdings is higher because she can strengthen the discrimination

policy against the bidder who appropriates his own surplus more, improving her abil-

ity to extract surplus selectively from each bidder. This is the content of the following

proposition.

Proposition 5 Suppose that (�1 + �2) is constant. Let us de�ne the degree of asym-
metry in crossholdings as � � (�1� �2). Then the seller�s expected revenue is strictly
increasing in this degree of asymmetry.
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1.4 Bidders�participation strategies

Whereas the last two propositions stress the positive e¤ect that crossholdings have

on the seller�s expected revenues, they imply however opposite consequences from the

bidders� point of view. In fact, as the game played by the seller and the bidders

constitutes a zero-sum game in expected terms, these two properties induce indeed an

extreme aversion toward crossholdings in bidders. Thus, if bidders without crossh-

oldings had the alternative to transfer minority stakes of ownership between them in

a previous stage to that in which the optimal procedure is implemented, they would

prefer to remain with the original ownership structure. This corner solution for the

case in which values are uniformly distributed in the unitary interval is established in

the next proposition.

Proposition 6 Suppose that ti is uniformly distributed in the interval [0; 1] for all i
and consider a game with the following timing:

Stage 1. Two of the bidders (say bidders 1 and 2) can unilaterally choose a couple

(�i; �j) for i; j = 1; 2, i 6= j with �i; �j 2 [0; 1=2).
Stage 2. Each bidder observes a realization of his value ti and participates in an

auction which corresponds to the optimal mechanism described by Lemma 1.

Then the Subgame Perfect Nash equilibrium of this game is such that it is optimal for

these two bidders to choose (��i ; �
�
j ) = (0; 0).

The result of Proposition 4 means that when bidders know in advance that the

seller will design an optimal mechanism as a response to their ownership structure,

they will anticipate this behavior and will prefer to face a mechanism that provides

them with a symmetric treatment. That is, in order to avoid the biases imposed by

the optimal mechanism when two of the three bidders have crossholdings, they will

prefer to continue being symmetric players and thus, it will be optimal to transfer no

minority ownership between them.

The next proposition compares this optimal non-transference of crossholdings strat-

egy with two joint bidding strategies: an illegal bidding ring and a legal bidding

consortium.

Proposition 7 Suppose that ti is uniformly distributed in the interval [0; 1] for all
i = 1; 2; 3 and consider a game with the following timing:

Stage 1. The seller calls for bidders to participate in an auction mechanism whose

rules will be optimally designed in Stage 3.

Stage 2. Two of the bidders (say bidders 1 and 2) decide about three possible partici-

pation strategies: (i) Forming an illegal, e¢ cient and equal pro�t-sharing bidding ring
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(Sj1), (ii) Forming a legal, e¢ cient and equal pro�t-sharing bidding consortium (Sj2),

or (iii) Unilaterally choosing a couple (�j ; �k) with �j ; �k 2 [0; 1=2) (Sj3); for j; k = 1; 2,
j 6= k.

Stage 3. The seller designs and implements the optimal selling mechanism according

to the observed bidders�participation strategies.

Stage 4. Each bidder observes a realization of his value ti and participates in the

auction designed in the previous stage.

Then for bidder j = 1; 2, it is veri�ed that:

1. The bidder j�s ex-ante truthtelling payo¤s yield from each participation strategy

are ranked as follows: Vj(tj ; S
j
1) > Vj(tj ; S

j�
3 ) > Vj(tj ; S

j
2) with S

j�
3 = (��j ; �

�
k) = (0; 0).

2. The Subgame Perfect Nash equilibrium of this game is such that it is optimal for

these two bidders to choose Sj1 if the illegal collusion can not be detected. Otherwise,

the optimal decision is Sj�3 .

The illegal collusive practice dominates therefore the other strategies so long as

the ring is not discovered by the seller, as it allows its members to bene�t from an

informational advantage.14 Nevertheless, if this practice can be detected for sure

by the seller, she will internalize this asymmetry in the optimal mechanism design

stage. Notice that in that case the bidding ring becomes strategically equivalent to

the consortium as both of them generate the same informational asymmetry, but the

extra advantage given by the opacity of the �rst collusive arrangement vanishes. In

consequence, bidders prefer to remain being symmetric players in order to avoid a

discriminatory policy against the stronger one (either the ring or the consortium). As

shown in Proposition 4, the optimal strategy for bidders in that case is the absolute

non-transference of crossholdings.15

1.5 How to sell? Auctions vs. Negotiations

In this section we state two results regarding the implementation of the optimal selling

mechanism. First, we show that the optimal allocation rule can be implemented using

a sequential procedure based mainly on non-standard auctions.16 Second, as to put

this auction-based mechanism into practice may be too much complicated, we propose

a simpler procedure based on sequential negotiations, which, although suboptimal,

replicates the main properties of the optimal one.
14Speci�cally, since the relevant valuation for the e¢ cient ring is the maximum between t1 and t2,

the ring�s valuation distribution function hazard-rate dominates the one of bidder 3.
15This can also happen if the illegal nature of the ring deters the bidders�participation.
16For the sake of simplicity, to �nd such an optimal mechanism we assume that t is su¢ ciently high

such that tH(t) � 1. This implies that it will never be revenue maximinzing for the seller to set a
reserve price, and therefore, she always will assign the object to some bidder.
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1.5.1 The auction-based selling procedure

Our claim is that the properties of the optimal mechanism can be replicated by the

following sequential procedure:

Stage I. Call for strong bidders and a (possible) exclusive deal.

Seller invites the strong bidders (3 and 1) to participate in a �rst-price auction

(FPA) with personalized reserve prices b3 and b1, respectively. If both bidders reject

participating, the object is o¤ered exclusively to bidder 2 at a price b2 such that he

will never reject the deal.

Stage II. Competitive bidding process with the accepting bidders.

In this stage, we may have three cases:

II.1. If in Stage I both bidder 1 and bidder 3 are willing to participate, there

is a modi�ed FPA between all bidders such that bidder i wins if and only if bi >

maxj 6=ifzij(bj) and loses otherwise. The functions fzij correspond to price-preferences
that this modi�ed auction introduces in order to replicate the optimal discrimination

policy represented by the functions zij described in the previous section. Notice that

thanks to the revelation principle, the optimal allocation rule is expressed in terms of

signals which in practice are not observed by the seller. Thus, the price-preferences

play the role of translating the optimal discrimination policy to a procedure based on

bidders�information actually observed by the seller, which are the bids.17

II.2. If in Stage I only bidder 3 accepts participation, there is a modi�ed FPA

between bidder 3 and bidder 2 such that bidder 3 wins if and only if b3 > fz32(b2) and
bidder 2 wins otherwise.

II.3. If in Stage I only bidder 1 accepts participation, there is a modi�ed FPA

between bidder 1 and bidder 2 such that bidder 1 wins if and only if b1 > fz12(b2) and
bidder 2 wins otherwise.

We call this process a modi�ed FPA not only because of the presence of personalized

reserve prices, but also because the price-preferences fzij imply that �nally the winner
may not be the bidder who submits the highest bid.

The optimal participation and bidding strategies of each bidder and for each stage

are stated in the Appendix (see Lemma 3), where a Bayesian Nash equilibrium of this

sequential mechanism is fully characterized. The following proposition shows that the

mechanism proposed in fact implements the optimal one as it satis�es two conditions:

(i) the lowest type bidder gets his reservation payo¤, and (ii) the implicit allocation

rule coincides with the optimal one.

Proposition 8 The sequential selling procedure is optimal.
17McAfee and McMillan (1989) also analyze the implementation of the optimal discrimination policy

through price-preferences in a model of asymmetric government procurements.
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1.5.2 The negotiation-based selling procedure

Given the potential complications of putting the auction mechanism suggested into

practice, it would be interesting to analyze whether another more simple procedure,

although suboptimal, may replicate some of the properties of the optimal one. Fur-

thermore, it would be useful to compare this alternative mechanism with some of the

auction formats most used in the real world. In line with that analysis, we show

that indeed a more simple sequential negotiation procedure generates higher expected

revenue for the seller than both the FPA and the SPA. The following proposition

illustrates this result with two bidders and uniformly distributed valuations.

Proposition 9 Suppose that ti is uniformly distributed in the interval [0; 1] for all
i = 1; 2, and �1 > �2 > 0. Then, consider the following sequential procedure:

Stage I. Negotiation with bidder 1.

I.1. The seller makes a take it-or-leave it o¤er �1 to bidder 1.

I.2. Bidder 1 observes a realization of his signal t1 and accepts or rejects this o¤er.

If he accepts, the object is sold to him and the game ends.

Stage II. Negotiation with bidder 2.

II.1. If bidder 1 rejects the deal, the seller makes a new take it-or-leave it o¤er �2 to

bidder 2.

II.2. Bidder 2 observes a realization of his signal t2 and accepts or rejects this o¤er.

If he accepts, the object is sold to him. Otherwise, the object is kept by the seller.

Then,

1. The Subgame Perfect Nash equilibrium of this game is such that it is optimal for

the seller to set ��1 > ��2.

2. At the equilibrium, this mechanism yields a larger seller�s expected revenue than

both the FPA and the SPA.

The intuition behind this last �nding is straightforward. Since the procedure

proposed has a negotiation timing that gives priority to bidders according to their

own surplus appropriated, it replicates the main property of the optimal mechanism:

to impose a discriminatory policy against the stronger bidders.

From the practical point of view, the sequential procedure exhibits realistic proper-

ties, as it is frequent the use of rounds of exclusive and preferential negotiations to sell

some items. This situation is especially present in the takeover contests, in which the

target �rm (the board of directors or a special committee) negotiates sequentially and

exclusively with the possible raiders. In general, the timetable of these negotiations

favors the buyer who is considered the strongest one because of some advantage like

a better knowledge of the �rm (for instance, a management buy-out), a participation
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in the target�s ownership (a toehold), or something else. This implies that in the real

world the seller is indeed able to commit to the rules of the mechanism, even though

this may be ine¢ cient ex post. As Povel and Singh (2006) document for the takeover

battles, there exists plenty of protection devices aimed to mitigate the opportunistic

behavior from the seller and thus, to sustain the deal that had been done previously.18

1.6 Concluding Remarks

We characterize the optimal selling mechanism in the presence of horizontal crossh-

oldings, in a setting with independent private values and independently distributed

signals. In this environment, the strength of each bidder is given by a stochastic com-

parative advantage resultant from the degree in which each bidder appropriates from

his own surplus. The asymmetric cross-ownership structure here assumed is therefore,

a central element to explain the properties of the optimal allocation rule. In partic-

ular, this asymmetry is crucial to the fact that this procedure discriminates against

both the bidder with the highest crossholding and the bidder without crossholding,

with the last bias being the most severe.

Furthermore, at the optimal mechanism the seller�s expected revenue is increasing

not only in the size of a common crossholding, but also in the degree of asymmetry

of these crossholdings. These results have two di¤erent consequences for the partic-

ipants in the auction. For the seller, this implies that she will bene�t from larger

cross-ownership links as it is possible to extract more surplus from the losing bid-

ders whenever he is a bidder with crossholdings, and improve the selectivity of the

discriminatory policy as crossholdings become more asymmetric. From the bidders�

point of view, the main implication is that when we make endogenous their decision

about buying/selling crossholdings, we �nd that their best decision is to transfer no

ownership between them. One of the possible interpretations of this result is that

the crossholdings observed in practical auctions are consequence of the fact that the

mechanism used by the seller is di¤erent from the optimal one. It is likely that for

simplicity, regulation issues or from ignorance, the seller decides to apply a standard

auction, which in contrast to the optimal mechanism can bene�t (hurt) the bidders

(seller) as the cross-ownership links are higher.

18Some of these deal protection devices are termination fees, lock-up clauses and poison pills.
Recent cases include the sale of the Norwegian Tandberg Television, and the takeover battle for
the Spanish tollway operator Europistas. In both cases, the target paid a compensation for re-
voking a previous exclusive deal in favor of a subsequent buyer. The termination fees were
USD 18 million and e 131 million, respectively (see El País, Negocios, November 19, 2006,
p. 3; El Economista, August 9, 2006; Tanderberg Television Recommends Ericsson�s O¤er,
http://www.tanderbergtv.com/newsview.ink?newsid=398; Atlanta Business Chronicle, February 26,
2007, http://atlanta.bizjournals.com/atlanta/stories/2007/daily1.html).
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We show that the optimal allocation rule may be implemented by a sequential

procedure that includes a price-preferences scheme and the possibility of an exclu-

sive deal with the weakest bidder. This selling procedure counterbalances properly

two opposite e¤ects on the seller�s revenues, which arise from the trade-o¤ between

extraction and creation of value induced by the optimal mechanism. Interestingly,

it is also found that another more simple sequential negotiation procedure, although

suboptimal, replicates the main property of the optimal mechanism and dominates

the �rst-price and the second-price auctions in terms of seller�s revenues.

The analysis performed in this paper can be extended, at least, in two directions.

First, a natural issue is how the properties of the optimal mechanism could change

when more complex valuation and information environments are considered, especially

due to the extra source of less aggressive bidding behavior introduced by the winner�s

curse phenomenon. Finally, since the e¤ects induced by vertical crossholdings on

the aggressiveness of bidders are opposite those provoked by horizontal crossholdings,

�nding out what is the optimal selling mechanism in that case also seems to be a

relevant extension.

1.7 Appendix

Appendix A: The optimal mechanism problem.
The optimal mechanism solves the following problem:

max
xi2R; pi2[0;1]; 'i2[0;1]2

U0 (1.6)

s:t:

Vi(ti) � 'iui 8ti 2
�
t; t
�
; i = 1; 2; 3 (1.7)

Vi(ti) � Ui(bti=ti) 8ti; bti 2 �t; t� ; i = 1; 2; 3 (1.8)

3X
i=1

pi(t) � 1 and pi(t) � 0; i = 1; 2; 3;8t 2 T (1.9)

where (1.6) is the seller�s expected revenue, (1.7) and (1.8) represent bidders� par-

ticipation constraints and incentive compatibility constraints, respectively, and (1.9)

corresponds to the feasibility constraints. First, notice that since there exist crossh-

oldings, the original participation constraints consider endogenous reservation utilities

that depends on the allocation rule adopted by the seller in case of non-participation

of one bidder. This rule is represented by 'i = ('ij ; '
i
k), the vector of probabilities

with which the seller assigns the object to bidder j or bidder k if bidder i does not

participate in the auction. Similarly, ui = (uj i; uki) represents the vector of outside
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opportunity utilities of bidder i when bidder j or bidder k gets the object. Given the

cross-ownership structure assumed, it is clear that u21 > u3
1, u12 > u3

2 and u13 = u2
3.

Hence, it must be optimal that '1 = ('12; '
1
3) = (0; 1) and '

2 = ('21; '
2
3) = (0; 1). As

we normalize u31 = u3
2 = u1

3 = u2
3 = 0, all of this implies that the zero reservation

utility for all bidders is optimal as well.

Second, following Myerson (1981), it is possible to show that the incentive com-

patibility constraints are satis�ed if and only if

(i) @Vi(ti)
@ti

=

(
(1� �j)Qi(ti) if �j ,�i > 0

Qi(ti) if �j ,�i = 0
for i; j = 1; 2, i 6= j

(ii) @V3(t3)
@t3

= Q3(t3)

(iii) @Qi(ti)
@ti

� 0 for all i.
Using these conditions, straightforward computations allow us to rewrite the seller�s

expected payo¤ and to simplify the maximization problem as presented in Section 1.3.

Appendix B: Proofs.
Proof of Lemma 1 Clearly from (1.1), it is in the seller�s interest to make Vi(t) = 0

for all i because Vi(t) > 0 is suboptimal and setting Vi(t) < 0 violates the Participation

Constraint. On the other hand, H 0(ti) > 0 implies c0i(ti) > 0 and thus
@pi(t)
@ti

� 0 , so
that Q0i(ti) � 0 is satis�ed for all i. Finally, since t0 = 0, the optimal allocation rule is
found by comparing for a given t = (t1; t2; t3) the terms c1(t1), c2(t2) and c3(t3) when-

ever they are positive. The solution sets pi(t) = 1 i¤ ci(ti) > max f0;maxj 6=i cj(tj)g :�

Proof of Lemma 2 (i) We only show the claim for z31; the remaining cases are

similar and hence omitted. Notice that by de�nition, z31(t1) � c�13 (c1(t1)). Then,

z031(t1) = c�103 (c1(t1))c
0
1(t1) > 0 follows from the fact that both ci and its inverse are

strictly increasing functions for all i.

(iii) By de�nition, z12(t) � c�11 (c2(t)) > c�11 (c3(t)) � z13(t), where the inequality

follows from the fact that c2(t) > c3(t) and the inverse of c1 is a strictly increasing

function. Notice, however, that z13(t) � c�11 (c3(t)) < c�11 (c1(t)) = t, which is not

possible and so, we must impose a truncation such that we de�ne

z13(t3) =

(
t if t � t3 < z31(t)

c�11 (c3(t3)) otherwise
Using the same arguments, we can verify that the other cases also hold, which

includes the following de�nition for bidder 2

z2j(tj) =

(
t if t � tj < zj2(t)

c�12 (cj(tj)) otherwise
, for all j 6= 2

(ii) According to the de�nitions of the discrimination policy functions provided
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in the proof of (iii), and using the same arguments applied in (i), the desired result

follows directly.

(iv) The claim is only proved for z31. First, from (iii) we know that z31(t) > t.

Second, notice that z31(t) � c�13 (c1(t)) = t, where the last equality follows from the

fact that c1(t) = c3(t). Since z31 is a strictly increasing function, all of that implies

that z31 has a unique �xed point � = t:

(v) This is a direct consequence of results (i)-(iv).�

Proof of Proposition 1 Let us de�ne Ji(ti) � H(ti)
si
, the modi�ed hazard rate of

bidder i�s value distribution function, where si is the proportion in which bidder i

appropriates his own surplus, i.e., s1 = 1 � �2, s2 = 1 � �1 and s3 = 1. Denote

by Gi its corresponding c.d.f.. Since ci(t) is increasing with t then zij(t) T t i¤

ci(t) S ci(zij(t)) = cj(t), where the last equality follows from the implicit de�nition

of zij . It is easy to check that this inequality is equivalent to Jj(t) R Ji(t) for all t,

and for all i 6= j, which means that zij(t) < t i¤ Gj �HRD Gi (i.e., Gj hazard rate

dominates Gi). Since s3 > s1 > s2 implies that G3 �HRD G1 �HRD G2, the desired

result follows.�

Proof of Proposition 2 From (1.1), when �1 = �2 = � > 0, we obtain that @U0
@� =P2

i=1

R
T

h
1

H(ti)

i
pi(t)f(t)dt � 0 because H(ti) > 0 and pi(t) � 0 for all t and i.�

Proof of Proposition 3 Given some �1 and �2, from conditions (i)-(iii) of Appen-

dix A and Lemma 1, the seller�s expected revenue evaluated according to the optimal

mechanism is given by

V �
0 =

2X
i=1
i6=j

Z
T
[(1� �j)tipi(t) + �itjpj(t)] f(t)dt+

Z
T
t3p3(t)f(t)dt

�
2X
i=1
i6=j

(1� �j)
Z t

t

Z ti

t
Qi(si)dsif(ti)dti �

Z t

t

Z t3

t
Q3(s3)ds3f(t3)dt3

Consider an increase and a decrease of " in �1 and �2 respectively, with 0 < " < �2.

Then, the seller�s expected revenue if the ownership link parameters are e�1 = �1 + "

and e�2 = �2 � ", but she follows the optimal allocation rule for �1 and �2, can be

reduced to

V
e�
0 = V �

0 + "

Z t

t

Z u

t
[Q2(s)�Q1(s)] dsf(u)du (1.10)

where Qi(s) = Pr(tj < zji(s)) Pr(t
�
i < s) for i; j = 1; 2 i 6= j. Note that t�1 > t�2 implies

that Pr(t�2 < s) � Pr(t�1 < s), and from Lemma 2 it follows that F (z21(s)) < F (z12(s)))
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for all s 2
�
t; t
�
. All of that implies that Q1(s) � Q2(s) for a given signal s. As long

as the exclusion of both bidders is not possible for all s, the last result implies from

(1.10) that V e�0 > V �
0 . That is, the expected revenue can become larger as asymmetry

increases, without changing the allocation rule. Therefore, the seller may additionally

increase her expected revenue by switching to the optimal allocation rule.�

Proof of Proposition 4 Applying backward induction, �rstly we have to �nd the

Nash equilibrium of Stage 2. Since we know this equilibrium from Lemma 1 and

the fact that the optimal mechanism induces a truthtelling bidders�strategy via the

incentive compatibility constraint, we only concentrate on the Nash equilibrium of

the complete game. To this end, we previously need to characterize the objective

function for bidder i = 1,2 in Stage 1, using the equilibrium of Stage 2. From the

de�nition of Qi(si), conditions (i)-(iii) of Appendix A and Lemma 1, we obtain that

when ti is uniformly distributed in the unitary interval, the truthtelling payo¤ is given

by Vi(ti) = (1� �j)
R
T�i
[ti � zi(t�i)] 1fti�zi(t�i)gdt�i where

zi(t�i) = inf fsi : ci(si) � 0 and ci(si) � cj(tj) for all j 6= ig

= max

�
t�i ; (1� �j)tj + �j ;

t3
1� �i

� �i
1� �i

�
for i 6= j

is the in�mum of all winning values for i against t�i and t�i = (1� �j)=(2� �j), with

�j and �i de�ned as in Section 1.3. After integrating, we obtain the truthtelling

payo¤ of bidder i at the interim state. For the sake of presentation, we omit this

expression here, but we represent it using the generic function vi(ti; �i; �j) for the termR
T�i
[ti � zi(t�i)] dt�i as follows:

Vi(ti; �i; �j) = (1� �j)[vi(ti; �i; �j)1fti>zi(t�i)=t�i g
+ vi(ti; �i; �j)1fti>zi(t�i)=(1��j)tj+�jg

+ vi(ti; �i; �j)1fti>zi(t�i)=t3=(1��i)��i=(1��i)g]

Taking expectation with respect to ti, we get the ex-ante truthtelling payo¤ for bidder

i, which we summarize as:19

Vi(�i; �j) � EtiVi(ti; �i; �j) =

Z 1

ti=t�i

Vi(ti; �i; �j)

19The explicit expressions of Vi(ti; �i; �j) and Vi(�i; �j) are available on request.
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Hence, at Stage 1 bidder i has to solve the following program:

max
(�i;�j)

Vi(�i; �j)

s:t:

0 � �i < 1=2

0 � �j < 1=2

for i; j = 1; 2; i 6= j. Finally, we can check that @Vi(�i;�j)
@�i

< 0 and @Vi(�i;�j)
@�j

< 0 for all

�i; �j 2 [0; 1=2). This implies that this program has only a corner solution such that

��i = ��j = 0, which completes the proof.�

Proof of Proposition 5 Applying backward induction, �rstly we need to character-

ize the BNE resulting from Stage 4 for the two possible optimal selling mechanisms

that can be implemented in Stage 3. Since these mechanisms satisfy the incentive com-

patibility constraint it will be in the best interest of the bidders to follow a truthtelling

strategy. Then, we characterize the possible optimal mechanisms in Stage 3.

First, if bidders 1 and 2 decide to form an e¢ cient consortium, the seller will de-

sign a mechanism taking into account that the relevant valuation for the coalition is

tC = max ft1; t2g. Since the consortium�s value distribution hazard-rate dominates

the bidder 3�s, the seller will design an optimal auction with asymmetric bidders so

that it will impose a bias against the strongest player of the game, i.e., the consor-

tium. Following the same methodology in Proof of Proposition 4, we obtain that

the consortium�s truthtelling payo¤ is given by Vc(tc) =
R
t3
[tc � zc(t3)] 1ftc�zc(t3)gdt3

where20

zc(t3) = max

(r
1

3
;
2t3 � 1
2

+
2
p
t3(t3 � 1) + 1

3

)
After integrating, the consortium�s truthtelling payo¤ at the interim state is given by

Vc(tc) =

(
tc � 0:67601 if tc � zc(t3)

0 otherwise

and the ex-ante consortium�s truthtelling payo¤ is EtcVc(tc) = 0:08769. Under

the equal pro�t-sharing rule, each partner of the consortium gets in expected terms

Vj(tj ; S
2
j ) � 1

2EtcVc(tc) = 0:043845.

Second, if bidders 1 and 2 decide to form an e¢ cient (but illegal) bidding ring,

the seller (and also bidder 3) is not aware of the existence of this coalition when

designing the optimal mechanism. In particular, whereas the seller believes that she

20Notice that c�1c (c3(t3)) =
2t3�1
2

� 2
p
t3(t3�1)+1

3
. For the computations, we only consider the

positive root.
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faces three symmetric bidders, the ring has an informational advantage similar to the

consortium case because its relevant valuation is tR = max ft1; t2g. Thus, the seller

incorrectly designs a standard optimal mechanism with symmetric bidders (Myerson

(1981)). Assuming that this procedure is implemented by a second-price auction with

a reserve price, the ring�s truthtelling payo¤ is given by

VR(tR) =

Z
t3

[tRpR(tR; t3)� xR(tR; t3)] 1ftR�zR(t3)gdt3

where zR(t3) = max
�
1
2 ; t3

	
,

pR(tR; t3) =

(
1 if tR � zR(t3)

0 otherwise

and

xR(tR; t3) =

(
zR(t3) if pR(tR; t3) = 1

0 otherwise

The ring�s truthtelling payo¤ at the interim state is then given by

VR(tR) =

(
t2R
2 �

1
8 if tR � zR(t3)

0 otherwise

and its corresponding ex-ante truthtelling payo¤ is EtRVR(tR) = 0:140625. Each

member of the ring obtains then, in expected terms, Vj(tj ; S1j ) � 1
2EtRVR(tR) =

0:0703125.

Third, from Proposition 4 we know that both bidders optimally choose zero crossh-

oldings when deciding about the transfer of crossholdings between them, such that

Sj�3 = (��j ; �
�
k) = (0; 0) for j; k = 1; 2; j 6= k. Thus, the seller now correctly designs a

standard optimal mechanism with symmetric bidders. In that case, each bidder gets

Vi(ti) =
R
T�i
[ti � zi(t�i)] 1fti�zi(t�i)gdt�i where zi(t�i) = max f1=2;maxj 6=i tjg. The

bidder i�s truthtelling payo¤ at the interim state becomes

Vi(ti) =

(
t3i
3 �

1
24 if ti � zi(t�i)

0 otherwise

and its corresponding ex-ante truthtelling payo¤ is given by Vi(ti; Si�3 ) � EtiVi(ti) =

0:05729166. We can therefore establish the following ranking for bidders 1 and 2:

Vj(tj ; S
j
1) > Vj(tj ; S

j�
3 ) > Vj(tj ; S

j
2).

Hence, it follows directly that at the participation decision stage (Stage 2) these two

bidders prefer the strategy Sj1 whether the existence of the bidding ring is unknown by

the seller, as the coalition can take advantage of the informational asymmetry. How-

ever, if the ring can be discovered with certainty, the bidding ring�s strategy becomes,
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from a bidder�s viewpoint, similar to the consortium strategy. In that case, it is clear

from the ex-ante truthelling payo¤s that the zero crossholding strategy dominates both

joint bidding practices.�

In order to demonstrate Proposition 6, we need previously to state the next auxil-

iary result.

Lemma 10 A Bayesian Nash Equilibrium of the sequential procedure is the following

one:

Bidder 3�strategy. Accept participation in Stage II if and only if t3 � z32(t); and in

Stage II bid:

bII.13 (t3) = E [max fz32(t2); z31(t1)g jmax fz12(t2); t1g < z13(t3)]

and

bII.23 (t3) = E [z32(t2)jt2 < z23(t3)]

Bidder 1�strategy. Accept participation in Stage II if and only if t1 � z12(t); and in

Stage II bid:

bII.11 (t1) = E

�
max

�
z12(t2)��1t2

1��1
; z13(t3)

�
jmax ft2; z23(t3)g < z21(t1)

�
and

bII.31 (t1) = E

�
z12(t2)��1t2

1��1
jt2 < z21(t1)

�
Bidder 2�strategy. Accept the o¤er to pay b2 in Stage I; and in Stage II bid:21

bII.12 (t2) =
tL(t)

L(t2)
+ E

�
max

�
z21(t1)��2t1

1��2
; z23(t3)

�
jmax ft1; z13(t3)g < z12(t2)

�

bII.22 (t2) =
tF (z32(t))

F (z32(t2))
+ E [z23(t3)jt3 < z32(t2)]

bII.32 (t2) =
tL1(t)

L1(t2)
+ E

�
z21(t1)��2t1

1��2
jt1 2 [z12(t); z12(t2)]

�
where �i � �i

1��j for i; j = 1; 2; i 6= j. These are equilibrium strategies if the seller

designs a modi�ed FPA with the following characteristics:

b3 = z32(t)b1 = z12(t)

b2 such that �2(t) = 0fzij(b) = bi(zij(b
�1
j (b)))

where �i(:) represents the bidder i�s expected truthtelling payo¤ (i.e. the average across

all stages) in this sequential mechanism.

21Notice that L(t) = F 1��2(z12(t))F (z32(t)) and L1(t) = F 1��2(z12(t)):
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Proof of Lemma 10 We only demonstrate that these candidate bidding functions

constitute an equilibrium for the most general case: bidder 1. De�ne:

bk1(t1), the candidate bidding function for bidder 1 in Stage k, as follows

bk1(t1) =

8><>:
bII:11 (t1) if t1 > z12(t) and t3 > z32(t) (Stage II.1)

bII:31 (t1) if t1 > z12(t) and t3 < z32(t) (Stage II.3)

0 otherwise (Stage II.2 or Stage I)

qki (ti; t�i) as the probability that bidder i gets the object in Stage k,

�k1(bt1=t1), bidder 1�s expected payo¤ in Stage k when he observes t1, but plays the
strategy as if his signal were bt1, as followsZ

T�1

n
(1� �2)

h
t1 � bk1(bt1)i qk1 (bt1; t�1) + �1 ht2 � bk2(t2)i qk2 (bt1; t�1)o f(t�1)dt�1

�k1(t1) � �k1(t1=t1), bidder 1�s truthtelling payo¤ in Stage k, and
P k1 (t1) �

R
T�1

qk1 (t1; t�1)f(t�1)dt�1, bidder 1�s probability of winning in Stage k, con-

ditional on the realization t1.

Let us organize this proof in two steps.

Step 1. Notice that the payo¤ function �k1 corresponds to the particular case of

the truthtelling payo¤ function V1 de�ned in Section 1.3 when the optimal payment

is x1(t1; t�1) = bk1(t1) and the optimal allocation rule is p1(t1; t�1) = qk1 (t1; t�1).
22 It

follows then directly from conditions (i) and (iii) of Appendix A that the incentive

compatibility constraint �k1(t1) � �k1(bt1=t1) for all t1; bt1 2 �t; t� and k, is satis�ed if
@�k1(t1)
@t1

= (1� �2)P k1 (t1) and
@Pk1 (t1)
@t1

� 0 for all k.
Step 2. We show now that the strategy bk1(t1) satis�es these two su¢ cient condi-

tions and therefore is an equilibrium bidding strategy of this game. First, notice that

bk1(t1) is increasing for stages II.1 and II.3 and, since by construction fzji implements
the optimal allocation rule, we have that

P k1 (t1) =

8><>:
F (z21(t1))F (z31(t1)) if t1 > z12(t) and t3 > z32(t) (Stage II.1)

F (z21(t1)) if t1 > z12(t) and t3 < z32(t) (Stage II.3)

0 otherwise (Stage II.2 or Stage I)

(1.11)

Notice that @Pk1 (t1)
@t1

� 0 is satis�ed both for each stage and across stages, as by

assumption f(zi1(t1)) > 0, F (zi1(t1)) > 0 and by Lemma 2 z0i1(t1) > 0, for all

t1 > z12(t). We prove now that the second su¢ cient condition also holds. If

t1 > z12(t) and t3 > z32(t) (Stage II.1), it can be checked after some computations that

22 In particular, notice that since bki (t1) = 0 when qki (ti; t�i) = 0, we can factorize the surplus of
bidder 1 and 2 in terms of qki (ti; t�i).
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@�II:11 (t1)
@t1

= (1 � �2)F (z21(t1))F (z31(t1)) = (1 � �2)P
k
1 (t1), where the second equality

follows from (1.11). Using the same argument, a similar result holds for Stage II.3.

Finally, when t1 < z12(t), bidder 1 does not participate in the auction. Noting that

z21(t1) = t for all t1 < z12(t), we can verify that
@�k1(t1)
@t1

= 0 = (1 � �2)P
k
1 (t1), where

the second equality follows from (1.11), which completes the proof.�

We are now prepared to demonstrate Proposition 6.

Proof of Proposition 6 From Lemma 1, we know that a selling procedure is optimal if

it satis�es two conditions: (1) the bidder with the lowest possible signal realization gets

his reservation payo¤ (which in Appendix A we have showed to be optimally the same

for all bidders and normalized to zero), and (2) it uses the optimal allocation rule.

Notice that by construction, the sequential selling procedure satis�es both conditions.

First, the payo¤ for either bidder with signal t is zero: (i) bidder 3 does not participate

in Stage II (because z32(t) > t) and thus, he gets �k3(t) = 0 for all stage k; (ii) bidder 2

loses the auction for sure if some other bidder agrees to participate in Stage II and thus,

he has a positive expected payo¤. Otherwise, he pays b2 in the exclusive deal, which

by construction, guarantees that the average payo¤ across all stages in the sequential

mechanism for the lowest-type is �2(t) = 0; and (iii) bidder 1 neither participates in

Stage II (because z12(t) > t), and result (ii) also ensures that he gets in expected

terms (as average across all stages) �1(t) = 0. Second, the allocation rule is the op-

timal one as we can check that bi > fzij(bj) i¤ ti > zij(tj) using the de�nition of fzij(:).�
Proof of Proposition 7 Applying backward induction, �rstly we need to charac-

terize the NE resulting from Stage II. In this stage, bidder 2 accepts the o¤er if

(1 � �1)(t2 � �2) > 0, i.e., if t2 > �2, and rejects otherwise. The seller therefore has

to optimally choose the o¤er given by ��2 = argmax�2(1 � �2)�2. After solving, we

get that ��2 = 1=2 and the optimal seller�s expected revenue from this stage is equal to

1=4.

In Stage I, bidder 1 accepts any seller�s o¤er if his payo¤ is larger than the expected

payo¤ at the equilibrium of stage II. That is, if (1� �2)(t1��1) > Et2 [�1(t2 � ��2)] =
�1=8, which is equivalent to the condition t1 > �1 + �1=8(1 � �2). Thus, the seller�s

optimal o¤er is characterized by

��1 = argmax�1

�
(1� (�1 +

�1
8(1� �2)

))�1 + (�1 +
�1

8(1� �2)
)
1

4

�
The solution is given by ��1 = 5=8 � �1=16(1 � �2), which yields an optimal seller�s

expected revenue equal to (100� �(12� �))=256, where � � �1=(1� �2). Hence, and
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since � < 1, it is easy to verify that ��1 > ��2, which proves the �rst statement of the

proposition.

In order to show the second result, notice that in the presence of asymmetric

crossholdings it is not possible to �nd an analytical expression for the equilibrium

bidding strategy in both FPA and SPA, and thereby, it is neither possible to obtain

a closed expression for the seller�s revenue (see Section 5, Dasgupta and Tsui (2004)).

Notice however that we can perform a comparison with both FPA and SPA without

crossholdings, which yield a larger expected revenue than their versions with crossh-

oldings due to the fact that these ownership links hurt the seller (see Proposition 1

and Section 4, Chillemi (2005)). So, it is enough to show that the expected revenue

of the sequential mechanism proposed exceeds the expected revenue for both FPA

and SPA without crossholdings, which thanks to the Revenue Equivalence Theorem

is the same for both auction formats and equal to 1=3. Since � < 1, the worst case

for our sequential negotiation mechanism is when � ! 1, in which case the expected

revenue for the seller converges to 89=256 > 1=3, implying that the second part of the

proposition holds.�
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Chapter 2

Optimal Takeover Contests with
Toeholds

Abstract. This paper characterizes how a target �rm should be sold when the pos-

sible buyers (bidders) have prior stakes in its ownership (toeholds). We �nd that the

optimal mechanism needs to be implemented by a non-standard auction which imposes

a bias against bidders with high toeholds. This discriminatory procedure is so that

the target�s average sale price is increasing in both the size of the common toehold and

the degree of asymmetry in these stakes. It is also shown that a simple mechanism

of sequential negotiation replicates the main properties of the optimal procedure and

yields a higher average selling price than the standard auctions commonly used in

takeover battles.

Keywords: optimal auctions, takeovers, toeholds, asymmetric auctions

JEL Classi�cation: C72, D44, D82, G32, G34
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2.1 Introduction

Auctions in which bidders have stakes in the seller�s surplus are not rare in the real

world, as there are many examples that resemble a bidding competition with vertical

toeholds. Takeover contests provide one of the clearest illustrations, since block share-

holders compete among themselves or with an outside investor to gain the control of

a company, while the minority shareholders play the role of pure sellers.1

In order to illustrate some of the features of takeover battles, consider the next

real life example. In 2006, the Spanish tollway operator Europistas was the target of

a takeover battle between two bidders. Firstly, the group Isolux Corsán submitted an

o¤er for 100% of the ownership, consisting of 4.8 euros per share. At this stage, Cintra,

one of the principal block shareholders of the target �rm, attained an agreement with

Isolux. According to the deal, Cintra committed itself to participate in this tender

o¤er and sell irrevocably its 27.1 per cent stake for a price of 5.13 euros per share.

In less than 24 hours, a second buyer emerged: a bidding consortium formed by the

constructor conglomerate Sacyr Vallehermoso and three Basque saving banks grouped

in the society Telekutxa. While Isolux Corsán was an outside bidder, Telekutxa

held a 32.4 per cent stake in the capital of Europistas. The �nal tender o¤er of this

consortium rose to 9.15 euros per share, that is, an improvement of 78.36% with respect

to the �rst o¤er. This implied that Cintra was trapped in the pre-sale agreement

reached with Isolux, which impeded it from taking advantage of the substantially

better tender o¤er made by the consortium led by Sacyr. Finally, Cintra paid 131

million euros to Isolux as a compensation to recover its freedom to sell its stake to

the bidding consortium, which was the winner of the contest and thus, took over

Europistas.

This case highlights some interesting issues. First, unlike standard auctions, the

presence of vertical toeholds introduces countervailing incentives on bidders because

they can get a payo¤ not only when they win, but also when they lose the auction.

In fact, since the losing bidder owns a proportion of the seller�s surplus, he cares

about the payment received by the seller. In the context of a takeover battle, as the

winner bidder must buy all the shares, losing transforms a bidder with a toehold into

a minority seller. This implies that, conditional on losing, a toehold induces a more

aggressive bidding behavior. In addition, holding stakes in the target �rm also means,

by comparison with the outside bidders, lower costs of overbidding when winning, as

the amount of shares to be bought is smaller. Consequently, toeholds strengthen the

standard incentive to increase bids present in any auction, but now with the intention
1Other examples are creditors�bidding in bankruptcy auctions, or the negotiation of a partnership�s

dissolution. Also, a situation in which �rms are related vertically, e.g. if a buyer �rm hold shares in
a supplier �rm.
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of selling at a higher price.2 Second, the aforementioned Europistas case illustrates the

large costs that an incorrect choice of selling procedure may impose on the nonbidding

shareholders�wealth.3 Nonbidding shareholders of a target company - by means of

the board of directors or a special committee - should therefore pay attention to the

selling mechanism to be used.

The auction literature has studied takeovers using di¤erent valuation environments,

but assuming always that signals are independently distributed. The main conclu-

sion is that the more aggressive bidding behavior induced by toeholds leads to the

break-down of the Revenue Equivalence Theorem (Myerson 1981, Riley and Samuel-

son 1981) even when bidders possess symmetric stakes. As a result, the equivalence

between standard auctions no longer holds, as several papers have shown. In partic-

ular, Singh (1998), when analyzing a game in which a toehold bidder and an outside

bidder compete to gain control of a company in a private values framework, has shown

the superiority of the second-price auction over the �rst-price auction. The major

insight stemming from his model is what he calls the owner�s curse. According to this

phenomenon, the higher aggressiveness of the toeholder is so that in the second-price

auction he is (rationally) willing to bid more than his valuation. Since this overbidding

behavior is absent in the �rst-price auction due to the traditional trade-o¤ present in

this mechanism, the non-equivalence between both standard auctions emerges.4 Bu-

low, Huang and Klemperer (1999) also study a two-bidder takeover contest, but under

a common value set-up.5 They compare the sealed-bid �rst-price and the ascending-

price (equivalent to the second-price one) auctions in both the symmetric and the

asymmetric cases. They show that with symmetric toeholds, the ascending auction

performs better than the �rst-price auction in terms of the expected selling price per

share. In contrast, when analyzing the asymmetric case, they �nd the opposite result

whenever toeholds are very asymmetric and su¢ ciently small.6

The current paper also deals with the issue of how to run a takeover battle. But in

sharp contrast with the previous literature, our work is, to the best of our knowledge,

2 In the context of the Europistas case, it is possible to conjecture about the source of the large
price di¤erence observed between the two o¤ers. It seems plausible to argue that this gap re�ected
not only a higher valuation from the toehold bidder (the consortium headed by Sacyr), but also a more
aggressive bidding behavior than that exhibited by the outside bidder (Isolux).

3The price di¤erence of both tender o¤ers (147 millions of euros) represented about eight times the
annual net pro�ts of Cintra.

4Ettinger (2002) con�rms the dominance of the second-price auction over the �rst-price auction in
terms of the expected sale price when buyers have symmetric stakes in the seller�s surplus.

5They study takeovers among �nancial bidders for which, as the authors point out, the common
values environment seems more appropiate.

6These contrasting �ndings rest on two facts. First, the negative e¤ect of the winner�s curse on
bidders�aggressiveness is larger in asymmetric ownership structures. Second, the �rst-price auction
involves an allocation rule that is less sensitive to the distortions caused by the presence of toeholds.
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pioneering in that it adopts a normative approach rather than a positive one. That

is, instead of taking a particular auction format as given for exogenous reasons, we

analyze how the maximizing target price mechanism should be and how it could be

implemented. To this end, our methodology follows the mechanism design approach,

introduced by Myerson (1981), within an independent private values framework.

Two main features of our model are the possibility of asymmetry among bidders�

toeholds and the existence of a bidder without toeholds (outside bidder). The analysis

performed here is in close connection with Loyola (2007), a companion paper that

characterizes the optimal mechanism in the presence of horizontal crossholdings, i.e.,

toeholds in other bidders� pro�ts. In contrast with this case, we �nd that in the

presence of vertical toeholds, the optimal allocation rule imposes no bias against any

bidder as the presence of vertical toeholds only links the bidders�payments, but not the

bidders�valuations. As a consequence, a maximizing revenue seller prefers a symmetric

equilibrium even though buyers hold asymmetric stakes. It is shown however that this

optimal rule needs to be implemented by a non-standard auction. In particular, we

prove that the implementation is possible through a second-price auction augmented

with a reserve price and a scheme of asymmetric payments. The latter includes a

penalty against the winner (with respect to the non-toehold case) and a payment by

the loser whenever he is a toehold bidder. The reason for this apparent contradiction

between the allocation rule and the scheme of payments is the same as that behind the

failure of the Revenue Equivalence Principle. That is, the presence of toeholds implies

the impossibility of fully characterizing the revenues based only on the allocation rule

and the payment made by the lowest-type bidder. With toeholds, the entire system

of transfers plays a role when it becomes to characterizing revenues.

Our discriminatory policy has the following rationale. By imposing a heavier bias

against the toehold bidder, the optimal mechanism extracts more surplus from the

strongest player in the game. In the context of takeovers, this advantaged player cor-

responds to the raider who bids more aggressively due to his larger stake in the target.

As a result, the discriminatory rule pays the seller, as we show that the expected selling

price is increasing in both the common toehold (the symmetric case) and in the degree

of asymmetry in these stakes (the asymmetric case).7 In addition, we show that a

sequential negotiation procedure replicates the main properties of the optimal mech-

anism. This negotiation-based procedure sets an agenda of take-it-or-leave-it o¤ers

that gives priority to the more aggressive bidder, i.e., the toeholder, and thus yields

a higher expected sale price than both the �rst-price and the second-price auctions.8

7This revenue-increasing property of an optimal discriminatory policy has also been found in con-
tests with asymmetric informed buyers (see Povel and Singh 2004, Povel and Singh 2006).

8 In light of this �nding, the Europistas case provides then a clear example of how things should
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The last result is in line with the established superiority of sequential mechanisms

which give priority to stronger bidders. Povel and Singh (2006), for instance, analyze

takeover contests under a general value setting that allows both private and common

value environments. They characterize the optimal selling procedure that a target

company should design when it faces two outside bidders (without toeholds) who are

asymmetrically informed. Interestingly, Povel and Singh also conclude about the op-

timality of imposing a heavier bias against the strongest bidder (the better-informed

one) by means of a two-stage procedure. Similarly, Dasgupta and Tsui (2003) ex-

amine in an interdependent value setting the properties of the "matching auction", a

sequential procedure where the �rst mover is also the strong bidder. In their model,

the strong player can be either the larger-toehold bidder or the better-informed one.

As with our sequential procedure, Dasgupta and Tsui also �nd that the matching auc-

tion allows the target�s seller to obtain a higher expected transaction price than with

the standard auctions, but only when asymmetry is su¢ ciently large. An important

di¤erence between the last two papers and ours, apart from the valuation environment

adopted, lies in the mechanism itself, which implies bidders�participation strategies of

di¤erent nature. Povel and Singh (2006) propose a hybrid sequential procedure that

combines standard auctions and exclusive deals. Similarly, in the auction-based mech-

anism studied by Dasgupta and Tsui (2003), the bidder moving �rst actively follows

a bid strategy, whereas the one moving second only decides whether or not match this

bid. In contrast, our procedure is based upon a scheme of take-it or leave-it o¤ers

made by the seller so that all bidders are in some sense passive players.

This paper proceeds as follows. Section 2.2 sets up a model of takeover contests in

the presence of toeholds. In Section 2.3, the optimal selling mechanism is characterized

and its main properties are established. In Section 2.4, we propose a simple negotiation

procedure that replicates most of these properties. The next section compares this

negotiation-based mechanism with the auction formats commonly used in practice.

Finally, in Section 2.6 we conclude and stress some policy implications. All the proofs

are collected in the Appendix.

2.2 The Model

The nonbidding shareholders of a target company (the seller), represented by the

board of directors or a special committee, face a takeover threat from two possible risk-

not be done when selling a target �rm in which one of the shareholders could become a bidder. Of
course, in this case the nonbidding shareholder (Cintra) chose incorrectly to negotiate and close a
deal �rst with the outside bidder (Isolux) instead of doing it previously with the toehold bidder (the
consortium). In this paper we show that an appropriate sequential negotiation mechanism should
take the opposed order of negotiations.
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neutral buyers (the bidders). The value of the target to bidder i is ti, which is private

information, but it is common knowledge that it is independently and identically

drawn according to c.d.f. F with support
�
t; t
�
, density f and hazard rate H(ti) =

f(ti)=(1 � F (ti)).9 We denote the value that the initial shareholders assign to the

target company by t0, which is common knowledge and is here normalized to zero.10

A toehold of bidder i is de�ned as a partial participation of this bidder in the

seller�s surplus, or, equivalently, a partial participation in the ownership of the target

company. We assume that bidder 1 has a larger initial stake in the seller�s surplus

than bidder 2. The parameter �i represents the share of bidder i in the seller�s surplus.

Thus, (1� �1� �2) represents the participation of the seller in her surplus. Toeholds
are assumed common knowledge, with 1=2 > �1 � �2 � 0.11

We will also refer to the players as follows: a bidder with toehold as a bidding

shareholder (or toehold bidder), a bidder without toehold as an outside bidder (or non-

toehold bidder) and the seller as the nonbidding shareholder. Given this ownership

structure, we interpret t0 as the common value that all shareholders assign to the �rm

when they own it partially. In other words, t0 represents the value that all shareholders

assign to the �rm under the current management, i.e., either before the takeover takes

place or when this process is �nally unsuccessful. In contrast, we understand ti to

be the private value that bidder i assigns to the target when he owns it fully. In

consequence ti can be interpreted as a private synergy that bidder i can exploit when

he wins the contest and obtains absolute control of the company. It is also called the

value "to run the �rm".12 Implicit in this interpretation is the assumption that the

takeovers modeled in the present paper are not partial. That is, all shareholders must

sell their stakes to the winning contestant (and he must buy it) according to the price

stated by the contest�s rules.

2.3 The Optimal Mechanism

Due to to the revelation principle, we only need to focus on direct revelation mecha-

nisms. We denote the vector of signal realizations of all bidders by t, i.e., t = (t1; t2),

9As it is standard in auction theory, we concentrate on the regular case, that is, increasing hazard
rates.
10As we will see below, the seller may not be an exclusive initial owner.
11Notice that this formulation allows the presence of an outside bidder (non-toeholder), which is

precisely the case analyzed in Section 2.5, given its predominance in actual takeovers. Bradley et al.
(1988) �nd that 66% of the bidders in their sample of 236 successful tender o¤ers have zero toeholds,
while Betton and Eckbo (2000) �nd that 47% of initial bidders in their sample of over 1,300 tender
o¤ers (including failed ones) have zero toeholds (see Goldman and Qian 2005).
12Alternatively, since we have normalized t0 = 0, ti can be interpreted as an incremental cash �ow

generated by the new control and management under bidder i (See Singh 1998).
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and similarly, denote by t�i the vector of signal realizations of all bidders except bid-

der i. Let T and T�i be the support of t and t�i, respectively.13 Let us de�ne pi(t)

as the probability with which the optimal mechanism allocates the target company

to bidder i, conditional on the vector of reported signal realizations t, and, de�ne

xi(t) as the transfer from bidder i to the seller, conditional on the same vector. Let

Qi(ti) be bidder i�s conditional probability of winning given that his type is ti, i.e.,

Qi(ti) �
R
T�i

pi(ti; t�i)f(t�i)dt�i. Bidder i�s expected payo¤, conditional on signal ti
and announcement bti, is then given by14

Ui(bti=ti) � Z
T�i

[(tipi � (1� �i)xi) + �ixj ] f(t�i)dt�i

for all ti;bti 2 �t; t� and for i; j = 1; 2; i 6= j. We de�ne bidder i�s truthtelling payo¤ as

Vi(ti) � Ui(ti=ti) and the seller�s expected revenue when all bidders report their true

type as follows15

U0 �
2X
i=1

Z
T
(1� �1 � �2)xi(t)f(t)dt. (2.1)

Let us de�ne ci(ti), bidder i�s marginal revenue,16 as

ci(ti) � ti �
1

H(ti)
for all i:

Following Myerson (1981) (see more details in the Appendix), it can be shown that

the optimal mechanism solves the following problem:17

max
pi;Vi(t)

2X
i=1

�
�Vi(t) +

Z
T
ci(ti)pi(t)f(t)dt

�
(2.2)

s:t:

Vi(t) � 0; for all i. (2.3)

Q0i(ti) � 0 for all ti 2
�
t; t
�
and for all i. (2.4)

2X
i=1

pi(t) � 1 and pi(t) � 0, for all i and for all t 2 T , (2.5)

13 In our set-up t�i is just tj : We have opted for the notation t�i since the characterization of the
optimal mechanism can be easily extended to the case of more than two bidders. For the three-bidder
case (two asymmetric toeholders and one outside bidder) the characterization can be obtained from
the author upon request.
14For the sake of presentation, we have omitted the arguments of pi and xi, but it should be clear

that pi = pi(bti; t�i) and xi = xi(bti; t�i), for all i.
15This function is similar to that de�ned for the nonbidding shareholders by Bulow, Huang and

Klemperer (1999) in the context of a takeover contest with common values.
16Bulow and Roberts (1989) provide an interpretation of ci(ti) as the bidder i�s marginal revenue,

instead of the bidder i�s virtual valuation concept de�ned by Myerson (1981).
17Notice that this problem is identical to the optimization program in Myerson (1981), who does

not consider the presence of toeholds.
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where (2.3) is a su¢ cient condition for bidder i�s participation constraint to hold, (2.4)

is a su¢ cient condition for the incentive compatibility constraints of the bidders to

hold and (2.5) corresponds to the feasibility constraints.

2.3.1 Optimal allocation rule

Lemma 11 The optimal mechanism sets Vi(t) = 0 and

pi(t) =

(
1 if ci(ti) > max f0;maxj 6=i cj(tj)g
0 otherwise

for all i, and for all t 2 T .

Note that bidder i�s marginal revenue is larger than bidder j�s if and only if ti >

zij(tj) � c�1i (cj(tj)) for all i 6= j. In addition, let us de�ne t�i � c�1i (0) as the

threshold signal for which bidder i�s marginal revenue is larger than the seller�s. Since

ci is well-behaved, so it is its inverse function, and thus it is equivalent to say that the

optimal mechanism sets Vi(t) = 0 and

pi(t) =

(
1 if ti > max ft�i ;maxj 6=i zij(tj)g
0 otherwise

(2.6)

for all i, and for all t 2 T .
Lemma 11 establishes that, in the presence of vertical toeholds, the optimal alloca-

tion rule is not a discriminatory one as the policy function satis�es that zij(tj) = tj as

ci(:) = c(:) for all bidders.18 This implies that even though bidders possess asymmet-

ric toeholds, it is revenue maximizing for the nonbidding shareholders to o¤er them

the same chances of winning whenever they report the same signal value. This re-

sult is surprising because one would expect that, since a vertical toehold induces a

more aggressive bidding behavior, the seller should take it into account to design the

optimal rule. Our interpretation is that, as opposed to horizontal crossholdings (see

Loyola 2006), vertical toeholds only impose links between the bidders�payments, but

not between the bidders�valuations. Consequently, in the terminology of Bulow and

Roberts (1989), the marginal revenue function (which depends only on valuations) is

the same for all bidders. This implies that the seller perceives all bidders as sym-

metric players, and hence, it is optimal to impose no bias and to attain a symmetric

equilibrium.

However, as we will see in the next subsection, this optimal symmetric equilib-

rium requires the seller to introduce an asymmetry into the payment scheme. The

18 In the terminology introduced by Bulow and Roberts (1989), all bidders exhibit the same marginal
revenue function for the seller, who is interpreted as a monopolist.
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underlying rationale for this apparent contradiction between the allocation rule and

the scheme of transfers is the same as the one behind the break-down of the Revenue

Equivalence Principle. That is, when toeholds exist, revenues do depend on the en-

tire payment scheme, not only on the transfers made by the lowest type bidder. As a

result, it does not su¢ ce to examine only the allocation rule to state the properties of

the optimal mechanism. In fact, one needs to characterize the payment scheme fully

as this is crucial in order to recognize the non-standard and discriminatory nature of

the optimal selling procedure.

2.3.2 Implementation

Since all bidders provide the same marginal revenue, the implementation of the optimal

allocation rule requires a scheme of payments that induce an e¢ cient allocation, that

is, one which guarantees that the target �rm be awarded to the bidder who values it

the most. Since we have assumed that players are asymmetric in their toeholds, and

thus in their expected payo¤ functions, the only way to attain an e¢ cient allocation

is to design a scheme of �personalized� payments. This implies that we must rule

out any standard auction, as it imposes symmetric payments on the players and thus

results in an asymmetric and ine¢ cient equilibrium. This fact is formalized in the

next corollary.

Corollary 12 A standard auction cannot implement the optimal selling mechanism.

From the incentive compatible constraint, we show next that the optimal alloca-

tion rule can be implemented by a selling mechanism with an asymmetric scheme of

transfers.

Proposition 13 In the presence of toeholds, the optimal mechanism can be imple-

mented by a modi�ed second price auction with a reserve price and a scheme of pay-

ments that includes a penalty against the winner and a payment by the loser. The

scheme is the following one:

xi(t) =

8><>:
zi(t�i) + [�i � 1] zi(t�i) if pi(t) = 1

�izj(t�j) if pi(t) = 0 and pj(t) = 1

0 otherwise

for all i; j = 1; 2; i 6= j, and for all t 2 T , where

�i �
1� �j

(1� �i � �j)
, �i �

�i
(1� �i � �j)

,

and zi(t�i) = inf fsi : ci(si) � 0 and ci(si) � cj(tj)g.
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This scheme of payments has the following properties.

Discriminatory policy with winning penalties and losing payments. First, since

zi(t�i) > 0 and �i � 1, this implies that when the winner is a bidder with toeholds, his
payment has a penalty when compared to the payment he would make in case of holding

no toeholds. This penalty is given by [�i � 1] zi(t�i). Second, since zj(t�j) > 0, and

�i � 0, this means that when the loser is a bidder with an initial stake, his payment
is positive. Third, from �1 > �2, it follows that �1 > �2 and �1 > �2. Thus, it

is clear that the scheme of transfers proposed imposes a discriminatory policy with a

bias against the bidder with the largest initial stake.19

Truthtelling and e¢ cient mechanism. The discriminatory scheme of winning penal-

ties and losing payments implies that the payo¤ of bidders 1 and 2 simpli�es to

�i(ti) =

(
ti � zi(t�i) if pi(t) = 1

0 otherwise

The scheme of transfers therefore induces symmetric objective functions for all bidders,

as in the standard problem when there are no toeholds (see Myerson 1981).

Average sale price increasing with common toeholds and asymmetry. First, let

��0 be the seller�s expected revenue under the optimal mechanism, and hence, de�ne

��0 � ��0=(1� �1 � �2), the average sale price under the same procedure. From (2.1)

and Proposition 13, it follows directly that ��0, and thus �
�
0, are increasing with both

the winning penalty and the losing payment. Second, consider the symmetric toeholds

case (i.e. �1 = �2 = � > 0). In this case, both the winner�s penalty and the loser�s

payment are increasing in the common toehold, as it is easy to check that @�i=@� > 0

and @�i=@� > 0 for all i. All of this implies that, at the optimal mechanism, the seller�s

expected revenue (and thereby, the average sale price) is increasing with the size of

common toeholds. Finally, consider the asymmetric toeholds case (i.e. �1 > �2 > 0).

Let us de�ne " � �1��2 so that the parameters of the winning penalty and the losing
payment can be rewritten as

�1 =
1� �2

1� 2�2 � "
; �2 =

1� �2 � "
1� 2�2 � "

�1 =
�2 + "

1� 2�2 � "
; �2 =

�2
1� 2�2 � "

Hence, it is easy to verify that @�i=@" > 0 and @�i=@" > 0 for all i. Therefore, the

optimal mechanism is such that the seller�s expected revenue (and thus, the average

sale price) is increasing with the degree of asymmetry in toeholds. All of this implies

that a discriminatory policy pays to the seller.

19Moreover, this discriminatory policy gets exacerbated with the degree of asymmetry, as the gaps
of both winning penalties and losing payments are increasing with the di¤erence in toeholds.
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2.4 A sequential negotiation procedure

In this section we show that a simple sequential negotiation procedure replicates the

main properties of the optimal mechanism. The negotiation procedure works as fol-

lows:

Stage I
I.1. The seller makes a take-it-or-leave-it o¤er �1 to bidder 1, where the o¤er �i

is the price to be paid by bidder i for the target shares.

I.2. Bidder 1 accepts or rejects this o¤er. If he accepts, the target is sold to him
and the game is over. If bidder 1 rejects the exclusive deal, negotiation moves to the

next round.

Stage II
II.1. The seller makes a new take-it-or-leave-it o¤er �2 to bidder 2.
II.2. Bidder 2 accepts or rejects this o¤er. If he accepts, the target is sold to

him. Otherwise, the target company remains under the current ownership structure

and management.

The next proposition illustrates the discrimination policy resulting from the nego-

tiation procedure for the uniformly distributed valuations case.20

Proposition 14 Suppose that ti is uniformly distributed in the interval [0; 1] for all
i = 1; 2. At the Subgame Perfect Nash equilibrium of the game induced by the sequential

negotiation procedure, it is optimal for the seller to set ��1 > ��2 for all �1 � �2 � 0.

With sequential negotiations the sale price charged to the �rst bidder is higher than

the one charged to the second bidder. As the �rst-mover is the buyer with the highest

toehold, the sequential mechanism discriminates against him. Moreover, the degree of

this bias increases with the degree of asymmetry in the toeholds. More precisely, if

we de�ne the degree of asymmetry by " � �1��2, then the di¤erence in prices o¤ered
by the seller, i.e., ��(�2; ") � ��1 � ��2; is increasing in ": To see this note that

��(�2; ") � ��1 � ��2 =
1� 2�2 + 4"

8(1� (�2 + "))(1� �2)
so that @��(�2; ")=@" > 0:

Note also that ��(�2; ") is strictly increasing in �1 and strictly decreasing in �2; with

��(�2; ") strictly increasing in �2 for �xed and given ": Hence, the negotiation proce-

dure highlights the importance of establishing an asymmetric scheme of payments, as

the price charged to the high-toehold bidder exceeds that of the low-toehold one, and

this bias is larger when the ownership stakes become more asymmetric.

20For simplicity and wihout loss of generality, all the results in the paper are henceforth stated
assuming uniformly distributed valuations on the unitary interval.
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To analyze whether this price discrimination policy pays to the seller we must look

at the average sale price delivered by the equilibrium of the sequential procedure. Let

�SN0 be the seller�s expected revenue under the sequential procedure, and consequently,

de�ne �SN0 � �SN0 =(1� �1 � �2), the average sale price under the same mechanism.21

Rewriting �SN0 in terms of " = �1 � �2, it follows that

�SN0 =
1

16(1� �2)2

�
(5� 6�2)2
4(1� �2 � ")

+ �2 + "

�
:

It is easy to verify that @�SN0 =@" > 0 for all �2; " 2 (0; 1=2) so that the average sale
price is increasing in the degree of asymmetry. This result is displayed in Figure 1.
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Figure 1. Average sale price from the sequential negotiation mechanism with two bidders and

�1> �2� 0, for �2= 0 (solid line), �2 = :1 (dotted line) and �2 = :4 (dash line).

Furthermore, similarly to the optimal mechanism in the symmetric case, the aforede-

�ned sequential procedure yields an average sale price which is also increasing in the

common toehold. In fact, when �1 = �2 = �, it is possible to check that @�SN0 =@� > 0

for all � 2 (0; 1=2), as it is illustrated in Figure 2.
21See the Appendix (Proof of Proposition 14) for details on how this average price is computed.
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Figure 2. Average sale price from the sequential negotiation mechanism with two bidders for

�1= �2= � � 0.

Notice however, that unlike the optimal mechanism described in the previous section,

the sequential procedure always discriminates against the bidder moving �rst, even if

the toeholds are symmetric or zero. In fact, as the proof of Proposition 14 establishes,

the prices charged to both players in the symmetric case (i.e., 1=2 > �1 = �2 = � � 0)
satisfy the following inequality

��1 =
5� 6�
8(1� �)2 >

1

2(1� �) = ��2

In addition, the di¤erent priorities given by the negotiation timetable to di¤erent

buyers implies that, unlike the optimal procedure, the sequential mechanism may be

ex post ine¢ cient.

In sum, and despite these di¤erences, our sequential procedure replicates the two

most important properties of the optimal mechanism: the expected selling price is

increasing in both the common toehold and the degree of asymmetry in the initial

stakes held by bidders.

2.5 Sequential procedure vs. auctions

Although there is not a speci�c practice to sell a company, sometimes the legal frame-

work implicitely induces the board of directors to conduct an auction among the

raiders.22 The underlying rationale behind this recommendation is the idea that an

22For instance, the Delaware law in the US establishes that the board must act as "auctioneers
charged with getting the best price for the stock-holders at a sale of the company". See also Cramton
and Schwartz (1991).
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auction run with several bidders at once o¤ers a more competitive environment than

a negotiation held with a single buyer at each round. Nevertheless, and despite this

idea, the coexistence of both types of mechanisms in real world takeover processes has

been widely documented.23 In this Section we compare the sequential procedure to the

auction formats commonly used in practice from the nonbidding shareholders�point

of view. We show that the nonbidding shareholders bene�t from the discrimination

policy to the extent that the sequential procedure generates a higher expected selling

price than both the �rst-price and the second-price auctions.

We analyze here two ownership structures in which this result holds: (i) the sym-

metric case, i.e. �1 = �2 = � � 0, and (ii) a particular asymmetric case in which

there are two classes of bidders: one toeholder and one outsider, i.e., �1 > �2 = 0.
24

For both of these ownership structures, the literature provides a ranking between the

�rst and second price formats. In the second-price auction, and for both ownership

environments, the toehold bidder exhibits the owner�s curse, an overbidding behav-

ior according to which the equilibrium bid exceeds his valuation. This overbidding

phenomenon is however not present in the case of the outside raider, as bidding his

true valuation continues to be a dominant strategy for him. In contrast, given the

traditional bidding trade-o¤ present in the �rst-price auction, the owner�s curse is

absent in this selling format. Because of this, the second-price auction outperforms

the �rst-price auction in terms of revenue, in both the symmetric and asymmetric

structures.25 As a result, it su¢ ces to compare the selling price generated by the

sequential mechanism with that generated by the second-price auction.

The following auxiliary result characterizes the expected selling price in the second-

price auction.

Lemma 15 Let �SPA0 be the average sale price resulting from the second-price auc-

tion. Then,

(1) In the symmetric case, this price is given by

�SPA0 =
(1 + 2�)(1� �)
(1� 2�)(1 + �) �

2

3(1� 2�)
(2) In the asymmetric case, it corresponds to

�SPA0 =
1

1� �1

�
�1

�1 + 1
� 5
6
�1 �

1

2�1 + 2
+

2

3�1 + 3
+
1

6

�
:

23See the evidence provided by Boone and Mulherin (2003), Boone and Mulherin (2004), Povel and
Singh (2006), and Bulow and Klemperer (2007).
24As the evidence presented by Bradley et al. (1988), Betton and Eckbo (2000), and Betton Eckbo

and Thorburn (2005) suggests, the presence of an outside bidder is very common in actual takeovers.
25Ettinger (2002) performs this comparison for the symmetric case, and Ettinger (2005) does it for

the speci�c asymmetric environment analyzed here.
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Now, we establish the predominance of our sequential mechanism over the auction

formats commonly used in practice, irrespective of the degree of symmetry in toeholds.

Proposition 16 The sequential procedure generates a higher average sale price than
both the �rst-price and the second-price auctions, no matter the degree of asymmetry.

As mentioned in the previous section, the sequential procedure always discriminates

against the �rst-mover bidder. This fact implies that it yields a larger expected sale

price than both auction formats in the symmetric case, even when there are no toeholds

at all. The average sale price comparison for the symmetric case between the second-

price auction and our sequential mechanism is depicted in Figure 3. Note from the

�gure that the second-price auction induces a concave average sale price whereas the

negotiation procedure exhibits a convex one. As a result, the price gap between both

mechanisms is larger when the toehold becomes su¢ ciently low or su¢ ciently high.

The di¤erence attains its minimum for values around :25.

0.50.3750.250.1250

0.6

0.55

0.5
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0.35
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Figure 3. Average sale price from the sequential negotiation mechanism (solid line) and the

SPA (dotted line) with two bidders for �1= �2= � � 0.

Furthermore, the superiority of our sequential mechanism over auctions is exacerbated

in the asymmetric case, as the discriminatory policy involves a sequence of negotiations

with a pecking order consistent with the aggressiveness of each buyer (see Figure 4).
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Figure 4. Average sale price from the sequential negotiation mechanism (solid line) and the

SPA (dotted line) with two bidders for �1> �2= 0.

Notice that the clear advantage of the sequential mechanism becomes larger when the

degree of asymmetry (represented in this case by �1) increases. This is a consequence

of the fact that whereas �SN0 is always an increasing and convex function in �1, �
SPA
0 is

a concave function and an increasing one only for a su¢ ciently low degree of asymmetry

(for all �1 < :38).

This last result is formalized in the following statement.

Corollary 17 The larger the degree of asymmetry, the better the sequential procedure
when compared with both the �rst-price and the second-price auctions.

Finally, let us mention that our results here are in line with the well-established

supremacy of sequential mechanisms which give higher priority to stronger bidders.26

Accordingly, and in contrast with the standard auction formats, the particular or-

der of negotiations involved in our procedure allows for an exploitation of the higher

aggressiveness of raiders with larger stakes in the target.

2.6 Concluding Remarks

We have characterized how a target �rm should be sold when bidders possess prior

stakes in its ownership. This optimal mechanism corresponds to a non-standard

auction with a scheme of asymmetric payments that imposes a bias against toeholders.

The rationale of such a discriminatory policy is the fact that a standard mechanism

is unable to induce a symmetric and e¢ cient allocation rule, as it preserves the initial
26See Povel and Singh (2006) and Dasgupta and Tsui (2003).
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advantage of toehold bidders. In contrast, a scheme of asymmetric winning penalties

and losing payments allows both to take advantage of the higher aggressiveness of

toeholders and to go back to a symmetric environment.

The presence of losing payments in the optimal procedure is in line with similar

results found in the literature devoted to characterizing optimal auctions when exter-

nalities exist. For instance, Goeree et al. (2005) show that the positive externalities

present in fund-raising activities lead to discarding winner-pay auctions in favor of

all-pay formats. In a result reminiscent of ours, they establish the optimality of an

auction with a reserve price and payments by the losers - a mix between participation

fees and an all-pay auction run in a subsequent stage-, which depend on the degree

of the externality. Moreover, Goeree et al. (2005) emphasize that some characteris-

tics of this optimal procedure are present in the procedures used for raising funds in

the real world. As a consequence, the characteristics of our non-standard auction in

the takeover case are not far from those exhibited by the optimal procedure in other

contests with externalities.

We have also demonstrated that the nonbidding shareholders bene�t from the

discriminatory mechanism, as the target average sale price is increasing in both the

common toehold and the degree of asymmetry in these stakes. The latter �nding is

in sharp contrast with the properties of standard auction formats in takeover battles,

which then lead to opposite policy implications. For instance, Bulow, Huang and

Klemperer (1999) show that in general the asymmetry in toeholds lowers prices in

common-value ascending auctions. As a result, they recommend the "level the playing

�eld" practice, according to which it may be revenue increasing to sell toeholds very

cheaply to the buyer with the smaller stake in the target. On the contrary, our

normative approach suggests that the seller should follow strategies with the aim

of preserving this asymmetry. Accordingly, the board of directors should block or

discourage the entrance of new shareholders suspected of becoming competitors against

the incumbent toeholder in a future takeover battle.

As an alternative to the optimal non-standard auction-based mechanism, we have

proposed a simpler and realistic negotiation procedure that replicates the main prop-

erties of the �rst one. This mechanism contains a timetable that gives priority to the

higher-toehold bidders, but charges higher prices to them. Such a negotiation-based

procedure shares some features of other selling procedures already considered in the

literature. In particular, it balances out properly the trade-o¤ between creation and

extraction of value caused by the implicit threats involved in the sequential nature

of the negotiation process. This characteristic is also present in the posted-price

rule discussed by Campbell and Levin (2006) in an environment with interdependent

valuations. These authors �nd conditions under which a hybrid mechanism of a
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posted-price rule and a random rationing may outperform standard auctions. This

fact occurs essentially when the increase of all buyers�willingness to pay o¤sets the

losses stemming from ex post ine¢ cient allocations. Similarly, in the context of our

paper, the individual and sequential feature of the negotiation scheme imposes costs

and bene�ts on nonbidding shareholders. On the one hand, the expected target price

decreases due to both less competition and less e¢ ciency. On the other hand, the

higher priority given to the high-toehold bidder increases his willingness to pay, as the

opportunity of winning the contest emerges even though his value may be lower than

the small-toehold bidder�s one. We have proved that the last e¤ect dominates the

shortcomings, therefore keeping open the ongoing debate on auctions versus negotia-

tions in takeover wars.

2.7 Appendix

Appendix A. The optimal mechanism problem.
The optimal mechanism solves the following problem:

max
xi2R; pi2[0;1]

U0 (2.7)

s:t:

Vi(ti) � 0 8ti 2
�
t; t
�
; i = 1; 2 (2.8)

Vi(ti) � Ui(bti=ti) 8ti; bti 2 �t; t� ; i = 1; 2 (2.9)

2X
i=1

pi(t) � 1 and pi(t) � 0; i = 1; 2;8t 2 T (2.10)

where (2.7) is the seller�s expected revenue, (2.8) is bidder i�s participation constraint,

(2.9) represents the incentive compatibility constraints of the bidders and (2.10) corre-

sponds to the feasibility constraints.27 From Myerson (1981), standard substitutions

and computations lead to state the equivalence between the incentive compatibility

constraints and the following two consitions:

(i) @Vi(ti)
@ti

= Qi(ti)

(ii) @Qi(ti)
@ti

� 0
These conditions allow to replace (2.9) by (ii) and

Vi(ti) = Vi(t) +

Z ti

t
Qi(si)dsi: (2.11)

27Following Jehiel, Moldovanu and Stachetti (1996) and (1999), it is possible to show that the opti-
mal threat for the non-participating bidder is that the target remains under the current management
and control. As a result, the outside utility for the lowest-type bidder is the same for all buyers
(toeholders and outsiders), and so, it can be normalized to zero (see Loyola 2007, Section 3).
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Similarly, (2.8) is guaranteed to hold if Vi(t) � 0 for all i. Hence, straightforward

computations allow us to rewrite the seller�s expected payo¤ and to simplify the max-

imization problem as presented in Section 2.3.

Appendix B. Proofs.
Proof of Lemma 11 From (2.2), it is in the seller�s interest to make Vi(t) = 0 for

all i because Vi(t) > 0 is suboptimal and setting Vi(t) < 0 violates the Participation

Constraint. Moreover, H 0(ti) > 0 implies that c0i(ti) > 0 and thereby @pi(t)=@ti � 0,
so that Q0i(ti) � 0 is satis�ed for all i. Finally, since t0 = 0, the optimal allo-

cation rule is found by comparing for a given t = (t1; t2) the terms ci(ti), whenever

they are positive. The solution sets then pi(t) = 1 i¤ ci(ti) > max f0;maxj 6=i cj(tj)g :�

Proof of Proposition 13 For any vector t�i consider

zi(t�i) = inf fsi : ci(si) � 0 and ci(si) � cj(tj) for all j 6= ig

for all i, i.e., the in�mum of all winning values for i against t�i. Then, in equilibrium

pi(si; t�i) =

(
1 if si > zi(t�i)

0 if si < zi(t�i)
(2.12)

and Z ti

t
pi(si; t�i)dsi =

(
ti � zi(t�i) if ti � zi(t�i)

0 if ti < zi(t�i)
(2.13)

for all i. Substitute Qi(si) into (2.11), change the order of integration and substitute

Vi(ti). After rearranging, we obtain that the truthtelling payo¤ of the bidder with

the lowest signal can be written as

Vi(t) =

Z
T�i

{tipi(t)�[1� �i]xi(t)+�i
X
j 6=i

xj(t)�
Z ti

t
pi(si; t�i)dsi}f(t�i)dt�i (2.14)

for all i and ti 2
�
t; t
�
. Since it is optimal Vi(t) = 0 for all i, then su¢ cient conditions

for (2.14) to hold are:

tipi(t)� [1� �i]xi(t) + �i
X
j 6=i

xj(t) =

Z ti

t
pi(si; t�i)dsi

for all i and for all state t = (ti; t�i). If we �x a particular state t = (ti; t�i), three

cases are possible: (i) a winning bidder exists di¤erent from bidder 3, (ii) bidder 3 is

the winner, and (iii) the object is not awarded to any bidder. Applying (2.12) and

(2.13), the solution of this system of equations for the three cases yields the desired

scheme of asymmetric payments.�



2. Optimal Takeover Contests with Toeholds 49

Proof of Proposition 14 Using backward induction, we �rst characterize the Nash

equilibrium resulting from Stage II. In this stage, bidder 2 accepts the o¤er if t2 �
(1� �2)�2 > 0, i.e., if t2 > (1� �2)�2, and rejects otherwise. The seller�s problem is

hence

max
�2
[(1� �1 � �2)�2] [1� (1� �2)�2] ;

whose solution is given by ��2 = 1=2(1 � �2). The optimal seller�s expected revenue

from this stage is equal to (1� �1 � �2)=4(1� �2).
In stage I.2, bidder 1 accepts any seller�s o¤er if his expected payo¤ is larger than

the expected payo¤ at the equilibrium of stage II. That is, if t1 � (1 � �1)�1 >

Et2 [�1�
�
2)] = �1=4(1� �2), which is equivalent to the condition t1 > (�1=4(1� �2)) +

(1� �1)�1. Thus, the seller�s optimal o¤er is characterized by

��1 = argmax
�1
(1� �1 � �2)�1

�
1� �1

4(1� �2)
� (1� �1)�1

�
+
1� �1 � �2
4(1� �2)

�
�1

4(1� �2)
+ (1� �1)�1

�
:

The solution is given by ��1 = (5 � 6�2)=8(1 � �1)(1 � �2), which yields an optimal

seller�s expected revenue equal to

�SN0 =
(1� �1 � �2)
16(1� �2)2

�
(5� 6�2)2
4(1� �1)

+ �1

�
;

and an average sale price equal to

�SN0 � �SN0 =(1� �1 � �2) =
1

16(1� �2)2

�
(5� 6�2)2
4(1� �1)

+ �1

�
: (2.15)

Since 1=2 > �1 � �2 � 0, it is simple to verify that

��1 =
5� 6�2

8(1� �1)(1� �2)
� 5� 6�2
8(1� �2)2

>
1

2(1� �2)
= ��2

which proves the statement of the proposition.�

Proof of Lemma 15 Since that the asymmetric case is the most general one, we

�rst prove the second part of the proposition. In the second-price auction, bidder 2�s

payo¤ function, when his signals is t2 and he behaves as if it were bt2, is given by
�2(t2;bt2) = maxbt2

Z b�11 (b2(bt2))
0

(t2 � b1(t))dt, (2.16)

that is, the traditional payo¤ function in a second-price auction without toeholds.

Consequently, it follows that b2(t2) = t2. Given the bid strategies b1(:) and b2(t2) = t2,
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bidder 1�s optimal choice of bt1 when he observes t1 is obtained by maximizing his
expected pro�ts

�1(t1;bt1) = maxbt1
Z b1(bt1)
0

(t1 � (1� �1)t)dt+ �1
Z 1

b1(bt1) b1(bt1)dt: (2.17)

From Ettinger (2005), bidder 1�s equilibrium bid is given by

b1(t1) =
�1

1 + �1
+

t1
1 + �1

:

Now, in order to compute the seller�s revenues, let us de�ne  j(ti), the equilibrium

correspondence function, such that bi(ti) = bj( j(ti)) for all i; j = 1; 2. Applying the

de�nition of  j(:) to the equilibrium bid strategies yields

 2(t1) =
�1

1 + �1
+

t1
1 + �1

; (2.18)

 1(t2) = ��1 + t2(1 + �1): (2.19)

Appealing to the Envelope Theorem, and using the fact that  2(:) = b1(:) and  1(:) =

b�11 (b2(:)), it can be veri�ed that
d�i(t1;bti)

dti
=  j(ti); which implies

�i(ti) = �i(1)�
Z 1

ti

 j(t)dt (2.20)

for all i; j = 1; 2. Evaluating ti = 1 in (2.16) and (2.17), and using the fact that in

equilibrium  j(bti) =  j(ti) and  j(1) = 1, it can be shown that

�1(1) = 1�
1� �1
2

(2.21)

�2(1) =
1

2(1 + �1)
: (2.22)

Substituting (2.18), (2.19), and the results (2.21) and (2.22) into (2.20), bidder i�s

interim payo¤ becomes

�1(t1) = 1�
(1� �1)

2
� (1� t2i )
2(1 + �1)

� �1(1� t1)
(1 + �1)

�2(t2) =
1

2(1 + �1)
� 1 + 1 + �1

2
+
(1 + �1)t

2
2

2
� �1t2:

After taking expectations, bidder i�s ex-ante payo¤ is given by

�1 = 1� (1� �1)
2

� 1

3(1 + �1)
� �1
2(1 + �1)

�2 =
1

2(1 + �1)
+
(1 + �1)

6
� 1
2
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The nonbidding shareholders�expected revenues are then given by

�SPA0 =

"Z 1

0
t1

Z  2(t1)

0
dt2dt1 +

Z 1

0
t2

Z  1(t2)

0
dt1dt2

#
��1 ��2

=

�Z 1

0
t1 2(t1)dt1 +

Z 1

0
t2 1(t2)dt2

�
��1 ��2

=
�1

�1 + 1
� 5
6
�1 �

1

2�1 + 2
+

2

3�1 + 3
+
1

6

and the average selling price is

�SPA0 � �SPA0 =(1� �1) =
1

1� �1

�
�1

�1 + 1
� 5
6
�1 �

1

2�1 + 2
+

2

3�1 + 3
+
1

6

�
:

We now turn to demonstrate the statement for the symmetric case. From Proposition

1 in Ettinger (2002), the second-price auction equilibrium bid is given by

bi(ti) =
�

1 + �
+

ti
1 + �

for all i. Hence,  2(t) =  1(t) = t for all t. Applying the same line of reasoning used

in the asymmetric case, it can be veri�ed that the seller�s expected revenues are given

by

�SPA0 =

�Z 1

0
t21dt1 +

Z 1

0
t22dt2

�
� 2

�
2

3
� (1 + 2�)(1� �)

2(1 + �)

�
=

(1 + 2�)(1� �)
(1 + �)

� 2
3

and the corresponding average sale price becomes

�SPA0 =
(1 + 2�)(1� �)
(1� 2�)(1 + �) �

2

3(1� 2�)
which completes the proof.�

Proof of Proposition 16 Consider the symmetric case. Substituting �1 = �2 = � into

(2.15), and using Lemma 15, we can state that

�SN0 =
32�2 � 56�+ 25
64(1� �)3 > �SPA0 � �FPA0

where the second inequality is strict when � > 0, and follows from Proposition 3 in

Ettinger (2002).

Consider now the asymmetric case. Lemma 15 and the substitution of �1 > �2 = 0

into (2.15) yields

�SN0 =
1

16

�
25

4(1� �1)
+ �1

�
> �SPA0 > �FPA0

where the last inequality holds as overbidding is not present in the �rst-price auction.�
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Chapter 3

On Bidding Markets: The Role
of Competition

Abstract. This paper analyzes the e¤ects of industrial concentration on bidding

behavior and hence, on the seller�s expected proceeds. These e¤ects are studied un-

der the CIPI model, an a¢ liated value set-up that nests a variety of valuation and

information environments. We formally decompose the revenue e¤ects coming from

less competition into four types: a competition e¤ect, an inference e¤ect, a winner�s

curse e¤ect and a sampling e¤ect. The properties of these e¤ects are discussed and

conditions for (non)monotonicity of both the equilibrium bid and revenue are stated.

Our results suggest that it is more likely that the seller bene�ts from less competition

in markets with more complete valuation and information structures.

Keywords: auctions, competition, a¢ liation, inference

JEL Classi�cation: C62, D44, D82, L41
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3.1 Introduction

The typical concern about any illegal collusion practice (cartels) or legal collusion

arrangement (mergers or consortia) is that these practices reduce the number of par-

ticipants in the market and hence, lessen competition, negatively a¤ecting both the

price and the bid-taker�s revenue. Nevertheless, in the context of auctions and bidding

markets, this conventional wisdom applies only to the case of independent private value

settings, as it has been modelled theoretically and empirically supported by abundant

literature.1 The simplicity of the valuation and information environments analyzed by

this literature makes collusion practices negatively a¤ect the intensity of competition,

what has been called the competition e¤ect.2

However, under a common value and/or a¢ liated signals model, the higher con-

centration provoked by joint bidding leads to other e¤ects that may counteract the

competition e¤ect, and induce a more aggressive bidding behavior. These e¤ects can

be grouped into three classes: a winner�s curse e¤ect, an inference e¤ect and an in-

formation pooling e¤ect. First, the reduction in the number of bidders in a common

value environment permits alleviation of the winner�s curse, because now defeating

fewer bidders makes the ex post overoptimism less likely. This implies that a higher

industrial concentration increases the expected value of the item conditional on win-

ning the auction, and in consequence, bidders are less conservative.3 The inference

e¤ect may arise from some a¢ liated information structures, and can be present in both

private and common value environments.4 In this case, the reduction in the number

of participants may increase the aggressiveness of the bidding behavior. The reason

for this is that, although winning is interpreted as information that the intensity of

the competition is lower than before the auction starts, this perception is weakened

when the winner faces fewer rivals. Finally, the information pooling e¤ect improves

1For theoretical works on (legal) joint bidding under the independent private value setting, see
Waehrer [39], Waehrer and Perry [40], Froeb, Tschantz and Crooke [9], [37], and [10], and Dalkir, Logan
and Masson [6]. Theoretical analysis on bidding rings with private values are provided by Robinson
[35], Mailath and Zemsky [21], McAfee and McMillan [25], Marshall et al. [22], and Pesendorfer [18].
Finally, most empirical literature on illegal collusion derives its estimation models from a theoretical
set-up with private values as well. Some papers along these lines are Hewitt, McClave and Sibley
[14], Porter and Zona [33], Pesendorfer [18], Lanzillotti [19], Scott [36], Porter and Zona [32], Bajari
and Ye [2], and Baldwin, Marshall and Richard [3].

2Given some properties of bidding rings (e¢ ciency and the possibility of side payments), illegal
collusion and mergers have the same anticompetitive e¤ects on auction markets if values are private
(see McAfee [24]).

3Theoretical approaches that characterize the winner�s curse e¤ect include Bulow and Klemperer
[1] and Hendricks, Pinkse and Porter [5]. On the other hand, a number of recent papers provide
empirical evidence of this e¤ect in several auction markets such as Hong and Shum [8], Hendricks,
Pinkse and Porter [5], and Athias and Nuñez [1].

4The previous literature refers to this e¤ect as the a¢ liation e¤ect ; see Pinkse and Tan [19], Hong
and Shum [8], and Hendricks, Pinkse and Porter [5].
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the precision of the bidder�s value estimate because a coalition of bidders can observe

either a new signal or a larger amount of signals with better stochastic properties than

an individual bidder. This e¤ect also allows the winner�s curse correction on bids to

mitigate, leading to more aggressive bidding behavior.5

Therefore, all these e¤ects go in the same direction and encourage more aggressive

bids when an auction market becomes more concentrated because of mergers or other

joint bidding arrangements. As these e¤ects dominate the competition e¤ect plus

the statistic e¤ect produced by the overall reduction in the number of participants (a

sampling e¤ect), the possibility for increasing the bid-taker�s expected revenue remains

open. As a result, the standard viewpoint that less competition is always undesirable

can clearly become challenged.6

All of this underlines the importance of analyzing, in a valuation and information

setting which is as complete as possible, the e¤ects of (legal) joint bidding practices. As

a starting point for this general objective, this paper studies the e¤ects of a change in

the number of bidders on both the equilibrium bid strategy and the seller�s proceeds.7

Consequently, we abstract away from any information pooling type e¤ect. This implies

that one can infer the other e¤ects from the hypothetical exercise in which bidders

merger but the acquired bidder�s information is not used by the acquiring one. We

then make this exercise equivalent, from a methodological point of view, to the case

in which the number of bidders decrease because some of them do not attend some

particular auction or because they leave the industry.

From the previous literature, a good point of departure for our analysis is provided

by Pinkse and Tan [19], who examine conditions under which the equilibrium bid is

monotonic increasing with respect to the number of bidders n in a¢ liated private-value

models of �rst-price auctions. In particular, they show the existence of a large class

of such models in which the equilibrium bid function is indeed not strictly increasing

in n. Furthermore, they propose a decomposition of the bidding e¤ects into two

parts: a competition e¤ect and an a¢ liation e¤ect. This latter e¤ect is precisely

the source of the surprising �nding of Pinkse and Tan in a private value environment,

and it can also be present in a common value set-up. They illustrate their results

with the conditionally independent private value (CIPV) model, a special case of

the a¢ liated private value (APV) model in which bidders� valuations are a¢ liated

5See DeBrock and Smith [3], Hendricks and Porter [6], Krishna and Morgan [13]. Mares and Shor
[23] show that indeed this information pooling e¤ect works unambiguously for second-price auctions,
but for �rst-price auctions it induces more aggressive bids only for signals that are su¢ ciently low.

6 In addition, it has been argued that joint bidding has other pros such as facilitating entry of
wealth-constrained bidders and improving risk diversi�cation (see DeBrock and Smith [3]).

7We do not examine the welfare e¤ects of competition. For an analysis of such issues, see, for
instance, Compte and Jehiel [5].
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through a common random component, but they are independently distributed given

a realization of this common component. In this environment , the winner never regrets

its winning so that the winner curse e¤ect has no bite.

Accordingly, it is clear that in order to also examine the winner�s curse e¤ect, we

need to consider a more general framework than that provided by the APV model - and

in particular by the CIPV model -, as this e¤ect cannot emerge from the valuation

structure characterized by these settings. One way to do this is by means of the

conditionally independent private information (CIPI) model, a special class of the

general a¢ liated value (AV) model which encompasses both the CIPV and the pure

common value setups as polar cases. In the CIPI model, the bidders�signals (private

information) are a¢ liated through a common variable (which can also be the ex post

common value of the object), but they are independently distributed conditional on a

realization of this common variable. As a consequence, this framework provides an

environment rich enough to evaluate all the revenue e¤ects.

We group the e¤ects on revenue coming from more competition into two classes:

(i) those that a¤ect bidding behavior and (ii) a pure sampling e¤ect. On the one

hand, changes in the number of buyers in�uence the equilibrium bid. As discussed

above, in environments with interdependent valuations and dependent information,

bidding behavior can become more or less aggressive with more competition. The

�nal sign of these in�uences on bids, as well as on revenues, is therefore ambiguous,

and depends on the relative magnitudes of the bidding-based e¤ects considered. A

more in-depth characterization of these bidding e¤ects can then become worthwhile for

a seller interested in adopting revenue-enhancing instruments in the face of mergers or

any joint bidding practice. Consequently, we propose a decomposition of this bidding

e¤ect that allows us to isolate and formally evaluate the winner�s curse, the competition

and the inference e¤ects. The properties of all these e¤ects are established, and

conditions for the (non)monotonicity of the equilibrium bid are stated.

On the other hand, the sampling e¤ect re�ects the upward impact on the seller�s

proceeds due to the fact that more competition implies a winning signal�s distribution

with better stochastic properties. We then combine both the bidding e¤ect and

the sampling e¤ect, providing conditions for the (non)monotonicity of revenues. In

particular, the paper shows that the seller�s expected proceeds can be decreasing in

the number of buyers as a negative and su¢ ciently large bidding e¤ect dominates the

sampling e¤ect. The main implication is that in the CIPI model, in contrast to the

CIPV setting, the conditions that allow the seller to bene�t from less competition

are less stringent. The rationale of this �nding is the presence of the winner�s curse

e¤ect, absent in a¢ liated private value environments. In fact, as the winner�s curse

constitutes an additional force for bids decreasing in the number of buyers, it makes
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the conditions for nonmontonic revenue to hold more likely. In a broader sense, this

work highlights therefore the role played by the valuation and information structure

assumed to be satis�ed in a particular auction-based market. Accordingly, our results

suggest that, by analyzing a more complete auction environment, the traditional idea

that more concentration is always undesirable may no longer hold.

Our model accounts for existing empirical evidence that, in auction markets in

which the winner�s curse seems to be particularly strong, the bid-taker may be better

o¤ when the number of bidders decreases. For instance, DeBrock and Smith [3] study

o¤shore oil lease auctions under a framework with values and signals that are log-

normally distributed. They show that the joint bidding increases the total social value

of the lease o¤ering and, in some cases, increases the fraction of this value appropriated

by the seller (the government). Similarly, Hong and Shum [8] construct a model of a

low-bid procurement auction with common value and a¢ liated signals. The bidder�s

cost of completing a project is given by a log-additive formulation that includes both

a private (or idiosyncratic) and a common cost component, which are independently

log-normal distributed. They �nd that, for a large subset of construction procurement

auction contracts, the median cost rises as the number of participants increases.

It is noteworthy that while the evidence presented by these works is derived start-

ing from a framework that assumes speci�c functional forms for valuations and/or

distributions, our model yields these predictions without such restrictive assumptions.

What is even more interesting it is likely that the available evidence against the non-

monotonicity of revenue with the number of bidders is based largely on these speci�c

assumptions as well. For instance, Mares and Shor [23] develop a model with pure

common value and independent signals, where the value of the item is the average of

all bidders�signals. Their �ndings, corroborated by experimental exercises, suggest

that the seller�s expected revenue decreases with less competition mainly because of

the sampling e¤ect.8 Nevertheless, since their valuation structure depends precisely

upon the number of participants, some of the e¤ects described could be absent if other

valuation functions were assumed.

The results of this paper have a scope of applicability that goes beyond a mere aca-

demic interest, as they concern antitrust issues which are currently widely discussed.

In a recent policy-oriented article, Klemperer [12] analyzes the characteristics that

the competition policy on bidding markets should possess. His general conclusion is

that, although the markets organized as auctions do have some special features such

as common values behavior, a tendency to overemphasize the importance of these

features has erroneously lead to positions in favor of a more lenient antitrust policy.

8Since their model assumes independence and symmetry, the revenue equivalence theorem implies
that this result holds for both �rst-price and second-price auctions.
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In what concerns the role played by the winner�s curse, the arguments provided by

Klemperer rest on two examples under the pure common value environment in which

less competition would unambiguously hurt the seller.9 However, similar to Mares

and Shor�s results, the conclusion of Klemperer may strongly depend on the particular

valuation structures considered in his examples. In contrast, our main insight, derived

without such speci�c assumptions, suggests the need for an antitrust policy that scru-

tinizes mergers more carefully or other joint bidding arrangements in bidding markets

in which more sophisticated valuation and information environments are present.

This paper is organized as follows. Section 3.2 summarizes the CIPI model,

noting how the CIPV and the pure common value models can be derived from this as

a special cases. Section 3.3 studies the relationship between competition and bidding

behavior in a �rst-price auction under the CIPI setting. As a consequence, we provide

conditions for the (non)monotonicity of the equilibrium bid strategy and propose a new

three-part decomposition of the bidding-type e¤ects. In Section 3.4, we examine the

conditions that guarantee the (non)monotonicity of the seller�s revenue with respect

to n. Finally, Section 3.5 concludes. All the proofs are collected in the Appendix.

3.2 The CIPI model

Consider a seller who wants to auction o¤ a single object among n bidders, using

a �rst-price auction with a possible reserve price r � 0. Each bidder observes a

signal xi 2 [x; x], x > 0, which is private information to him. Bidder i�s utility

(valuation) is represented by the function U(v; xi), where v 2 [v; v], v > 0, denotes an
unknown random variable common to all bidders with c.d.f. Fv and p.d.f. fv. Let

z = (x1; :::xn; v) be a random vector distributed according to the c.d.f. F and the

p.d.f. f , with F a¢ liated and symmetric in its �rst n arguments. All players are

risk-neutral.

Whenever the signals xi�s are a¢ liated through the common random component

v, but they are independently and identically distributed given a realization of this

common random variable, such a model belongs to the conditionally independent pri-

vate information family (CIPI, for short). As a consequence, the signals xijv are i.i.d.
according to the c.d.f. Fxjv(tjs) = Pr(xi � tjv = s) and the p.d.f. fxjv with support

[x; x], x > 0. Notice that since this statistical structure requires xi and v to be af-

�liated, we adopt the equivalent assumption that Fxjv satis�es the (strict) MLRP. 10

The CIPI model can then be interpreted as a special case of the more general a¢ liated
9These examples are the wallet game (in which valuation corresponds to the sum of all bidders�

signals) and the maximum game (in which valuation is the maximum among all bidder�s signals).
10Assuming that the p.d.f. of the signals conditional on v, f(x1; :::xnjv), is twice continu-

ously di¤erentiable, a¢ liation among the signals is equivalent to the following two conditions: (i)
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value model (AV, for short) described above, as it can be veri�ed that the joint distri-

bution F satis�es a¢ liation and symmetry in its �rst n arguments from the following

expression:

f(x1; :::xn; v) = fv(v)f(x1; :::xnjv)

= fv(v)

nY
i=1

fxjv(xijv)

Imposing particular functional forms on bidder�s valuations (utilities), two polar cases

can be derived from the CIPI model.

The CIPV model. Consider the case in which bidder i�s utility (valuation) is

given by the function U(v; xi) = xi. Since the valuation to each bidder is given

entirely by his own information, we are in the private value setting as each bidder

fully knows his valuation ex ante. The only remaining uncertainty is hence about the

other bidders�valuations. In particular, since now each bidder�s value is equal to his

signal, the model corresponds to the conditionally independent private value (CIPV,

hereafter) model.11 An economic interpretation of this model is as follows. While the

random variable v is interpreted as the ex post value that the average bidder assigns

to the object for sale, the di¤erence between each bidder�s valuation and this average

value, i.e., (xi � v), represents a bidder�s speci�c characteristic such as productive

e¢ ciency, opportunity cost or idiosyncratic preference.12 Note that the CIPV model

is a special case of the a¢ liated private value setting, and also a polar case of the CIPI

model.

The CIPI-CV model. Consider now the case in which bidder i�s utility (val-

uation) is given by the function U(v; xi) = v. Since all bidders share the same ex

post valuation, and only observe an estimate of this value, we are in the pure common

value setting. In consequence, no preference heterogeneity is considered. A tradi-

tional economic interpretation of this setting is the so called mineral rights model. All

bidders exhibit the same ex post value for a tract given by v, derived from its exact

mineral content. Nevertheless, at the time of the auction, they only observe a noisy

signal of this content, xi. We will refer to this polar case of the CIPI family as the

CIPI-CV model. Finally, notice that this pure common value setting also constitutes

a special case of the general a¢ liated value model.

Model�s Choice. As we shall see in the next section, the impact of concentration
on bidding behavior can be decomposed into three e¤ects: the competition e¤ect, the

@2 log f(x1;:::xnjv)
@xi@xj

� 0, and (ii) @
2 log f(x1;:::xnjv)

@xi@v
� 0, for all i; j [see Topkis [38], p. 310]. As de Castro

[8] discusses, the conditional independence models only guarantee the �rst condition. To obtain the
second condition, one must assume explicitely that xi and v are a¢ liated.
11This is the one studied by Pinkse and Tan [19].
12This interpreation is taken from Li et al [20].
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inference e¤ect and the winner�s curse e¤ect. While the �rst e¤ect comes from the

competitive environment involved in an auction mechanism no matter the valuation

and information structure, the last two e¤ects arise in environments with common

value and dependence among signals, respectively.

This suggests that a good starting point for our analysis is provided by Pinkse

and Tan [19]. They examine conditions under which the equilibrium bid is strictly

increasing with respect to the number of bidders in �rst-price auctions under the

CIPV model. From this, a �rst matter of interest concerning the model�s choice is

related to the valuation and information structure to be studied. It is clear that in

order to examine the winner�s curse e¤ect as well, we need to widen our analysis to

a more general setting than that provided by a¢ liated private value environments,

and in particular by the CIPV model. We argue that the natural candidate which

could have bite is the CIPI setting. As discussed above, this family of models is

a special class of the general a¢ liated value model that encompasses the CIPV and

the pure common value (CIPI-CV) setups as polar cases.13 It is noteworthy that

for our purpose, it su¢ ces to focus only on the CIPI-CV case since it constitutes the

simplest setting with an environment that is su¢ ciently rich to evaluate all the e¤ects

aforementioned.14

A second choice concerning our modelling strategy is given by the auction format to

be examined. The bidding trade-o¤ present in the �rst-price auction implies that the

competition e¤ect is more severe in this mechanism than in the second-price auction.

Furthermore, as long as we assume any kind of dependence among the signals, the

Revenue Equivalence Theorem no longer holds. As the classical linkage principle

stated by Milgrom and Weber [17] points out, in such an environment the second-

price outperforms the �rst-price auction. All of this suggests an important reason for

preferring the latter format to study the e¤ects of concentration in bidding markets:

by analyzing the �rst-price auction, one does indeed consider the worst scenario for

the seller. Hence, if we are able to show that under this mechanism concentration may

increase revenues, we can directly extend this conclusion to the second-price auction.15

13The CIPI model was �rst studied by Li et al. [20], who tested their results in OCS wildcat
auctions.
14The results derived in this paper can be particularly relevant for wildcat lease auctions. For

instance, Hendricks, Pinkse and Porter [5] provide evidence that the bidding behavior for oil and gas
auctions is consistent with a �rst-price auction under a symmetric pure common value environment
with conditionally independent private signals, i.e., the CIPI-CV model.
15Moreover, by choosing the �rst-price sealed-bid auction, the conclusions of our work concern an

auction format that is more frequently used than the second-price auction in the real world, as stated
in Paarsch and Hong [28] (p. 22). In addition, it is likely that �rst-price sealed-bid auctions account
for the bulk of transaction by value since procurements are often conducted via low-price, sealed-bid
tenders.
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3.3 Competition and bidding

In this section, we study the relationship between competition and bidding behavior

in a �rst-price auction under the CIPI-CV model. We then provide conditions for

(non)monotonicity of the equilibrium bids with respect to the number of buyers and

propose a three-e¤ect decomposition of the impact of concentration on bidding.

3.3.1 (Non)monotonicity of the equilibrium bid

Since our main purpose is to analyze the role played by the number of bidders, in what

follows we adopt the (uncommon) notation according to which some functions of the

model (bids, distributions, reverse hazard) depend on two arguments: x and n.

De�ne y1:n�1 = maxj=1;::n; j 6=i xj , the �rst-order statistic of all bidders� signals

except bidder i�s, and denote its c.d.f. and p.d.f. conditional on xi = x by Fyjx(:jx)
and fyjx(:jx), respectively. Let �(x;n) = fyjx(xjx)=Fyjx(xjx) be its associated reverse
hazard rate when the signals of the (n� 1) bidder i �s rivals are smaller than or equal
to x, given that its signal realization is x.16

We also assume that the seller can set a reserve price r � 0. Under a symmetric
equilibrium, the expected payo¤ to bidder i when he observes xi = x and bids b in a

�rst-price auction is then given by

�(b; x) = E
�
(v � b)1fmaxfB(y1:n�1;n);rg�bgjxi = x

�
=

Z B�1(b;n)

x
[v(x; s;n)� b] fyjx(sjx)ds

where B(:;n) is the equilibrium bidding strategy followed by all bidders except i when

facing n rivals and v(x; y;n) = E(vjxi = x; y1:n�1 = y). If B forms part of a symmetric

equilibrium, then it must satisfy the following �rst-order di¤erential equation

Bx(x;n) = [v(x; x;n)�B(x;n)]�(x;n) (3.1)

where Bx(x;n) denotes @B(x;n)=@x;17 and the appropriate boundary condition given

by B(a;n) = r, where a = a(r;n) is de�ned as follows

a = finf xjE(vjxi = x; y1:n�1 � x) � rg

Solving the di¤erential equation, bidder i�s equilibrium strategy is given by

B(x;n) = rL(ajx) +
Z x

a
v(s; s;n)dL(sjx)ds (3.2)

16 In other words, �(x;n) corresponds to the reverse hazard rate of the second-order statistic condi-
tional on xi = x being the �rst-order stastistic.
17For the functions B and v, we use the subscripts x and n throughout the paper to denote their

partial derivatives w.r.t. these variables.
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for all x 2 [a; x], where L(sjx) = exp(�
R x
s �(u;n)du).

Pinkse and Tan have shown that, in the CIPV model, if the reverse hazard rate is

increasing in n then bids are strictly increasing in the number of buyers. Nevertheless,

as the following example illustrates, in the CIPI model properties for the reverse hazard

rate no longer su¢ ce for such bid monotonicity.

Example 1 (fromWilson [41]). Consider the pure common value model U(v; xi) =
v for all i. Suppose that v is distributed according to the Pareto distribution such

that Fv(v) = 1� v�� for v � 1 and � > 2. Suppose also that the signals xi�s are i.i.d
conditional on v, so that Fxjv(xjv) = (x=v)� for 0 � x � v.

It can be veri�ed that �(x;n) = (n� 1)�=x, and that the equilibrium bid is given

by

B(x;n) =

"
(n� 1)� +max fx; 1g�(n�1)��1

(n� 1)� + 1

#
v(x; x;n) (3.3)

Notice that B(x;n) is not strictly increasing in n. Figure 1 (see Appendix C) displays

the case in which � = 2:5 and � = :5, showing that the equilibrium bidding function

is indeed decreasing for signals that are su¢ ciently low when the number of bidders

increases from n = 2 to n = 3. Interestingly, this example shows therefore that a

nonmonotonicity of bids can be observed even though the reverse hazard is strictly

increasing in n, as @�(x;n)=@n = �=x > 0.

We can then conclude that the presence of an additional winner�s curse-based e¤ect

in the CIPI setting requires more demanding conditions to guarantee the monotonicity

of bids in the number of buyers. Equivalently, this also means that the set of conditions

under which bids decreasing in n can be observed becomes richer.

We begin characterizing a condition that ensures monotonic equilibrium bids with

respect to the number of buyers.

Proposition 18 Let b = maxnB(x;n). Suppose that for all x 2 (x; x),

v(x; x;n+ 1)� b
v(x; x;n)� b

>
�(x;n)

�(x;n+ 1)

Then for all r < b and x 2 (a; x), B(x;n) is strictly increasing in n.

A possible interpretation for this result is as follows. Since b constitutes the

maximum possible bid to be made in the game, let us de�ne �(x;n) � v(x; x;n) � b,

the minimum bene�ts that a bidder with signal x can get conditional on defeating

(n� 1) rivals. Thus, � can be seen as a lower bound of the winning bidder�s bene�ts
in the hypothetical case in which he were forced to participate in an auction with

a reserve price equal to b.18 As is stated in the next section, while the winner�s
18Of course, � can be negative.
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curse e¤ect ensures that �(x;n) is decreasing in n, the mixed e¤ect coming from more

competition and better inference on the degree of this competition may cause �(x;n) to

be increasing in n. Consequently, Proposition 18 establishes that in the CIPI model,

bids will be strictly increasing in the number of buyers as long as the negative e¤ects on

the minimum bene�ts stemming from the winner�s curse be overcome (proportionally)

by the (possible) positive competition-driven e¤ects.

Since in the CIPV setting we have v(x; x;n) = x for all n, the next result follows

directly from Proposition 18.

Corollary 19 In the CIPV model, a reverse hazard function strictly increasing in n
su¢ ces for Proposition 18.

Therefore, in contrast to the CIPV model, in the CIPI setting the fact that the

reverse hazard is strictly increasing in n constitutes only a necessary condition, but

not a su¢ cient condition for the equilibrium bid to be strictly increasing as well.19

The intuition behind this result is the presence of the winner�s curse e¤ect in the CIPI

model, absent in a¢ liated private value frameworks such as the CIPV setting. As a

consequence, more restrictive conditions are needed for guaranteeing the monotonicity

of bidding behavior in environments with interdependent values.

In order to establish conditions for the nonmonotonicity of the equilibrium bid, no-

tice that our assumption of strict MLRP for Fxjv guarantees that @v(x; x;n)=@n � 0
for all x 2 [x; x] (see Milgrom [27]). This property allows us to characterize the su¢ -

cient conditions for bids to be decreasing when signals are su¢ ciently low as follows.

Proposition 20 Consider the two following situations:20

(1) Suppose that for some values of n and r, it is veri�ed either (A1) or (A2) with:

�(a(n+ 1);n+ 1) < �(a(n+ 1);n) (A1 )

v(a(n+ 1); a(n+ 1);n+ 1)� r
v(a(n+ 1); a(n+ 1);n)� r <

�(a(n+ 1);n)

�(a(n+ 1);n+ 1)
: (A2 )

Then, B(x;n+ 1) < B(x;n) must hold for some x > a(n+ 1) � a(n).

(2) Suppose that there is no reserve price and, for some value of n, it is veri�ed (A3)
with:

v(x; x;n) > v(x; x;n+ 1): (A3 )

Then, B(x;n+ 1) < B(x;n) must hold for some x > x.

19This is because such a condition guarantees that �(x;n)=�(x;n+1)< 1 , which is also satis�ed by
the ratio (v(x; x;n+ 1)� b)=(v(x; x;n)� b).
20Recall that a depends on two arguments so that a = a(r;n). For the sake of presentation, we have

omitted r.
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Condition (A1) emphasizes that the existence of a winner�s curse-based e¤ect in

the CIPI model means that a reverse hazard decreasing in n for signals that are low

enough su¢ ces for the nonmonotonicity of bids. As in the a¢ liated private value

settings the winner�s curse phenomenon is absent, the same condition on the reverse

hazard also ensures the nonmonotonicity of bids in the CIPV model studied by Pinkse

and Tan [19].

At the same time however, the additional presence of the winner�s curse e¤ect in

the CIPI setting implies that other su¢ cient conditions for such a nonmonotonicity

can be stated even when the reverse hazard is strictly increasing. One of these

conditions is characterized in Proposition 20 by (A2), which constitutes a sort of reverse

of Proposition 18. An interpretation for this condition can be provided following a

similar line of reasoning as before. Accordingly, let us de�ne �(a(n + 1);n + 1) �
v(a(n+1); a(n+1);n+1)� r, the maximum bene�ts of the marginal bidder (the one

indi¤erent between participating or not) conditional on defeating n rivals. Then, �

can be thought of as an upper bound of the winning marginal bidder�s bene�ts when

participating in an auction with a reserve price r.21 Note that whereas a decrease in

the number of bidders exerts an upward in�uence on � due to a reduced winner�s curse,

it may also induce an downward e¤ect on the reverse hazard. As a result, condition

(A2) states that if the �rst e¤ect dominates (proportionally) the second one for the

marginal bidder, then, at least for signals that are su¢ ciently low, less competition

will bring more aggressive bids.

Furthermore, when there is no reserve price, condition (A3) guarantees the non-

monotonicity of the equilibrium bid irrespective of the properties exhibited by the

reverse hazard. Such a su¢ cient condition is that of v being strictly decreasing in n

for the lowest type. Note that Example 1 satis�es this condition, as can be veri�ed that

v(x; x;n) = max fx; 1g (�+n�)=(�+n��1) (see details in the Appendix). Hence, we
have that v(x; x;n) = (�+n�)=(�+n�� 1) > (�+ � (n+ 1)) = (�+ � (n+ 1)� 1) =
v(x; x;n+1) for all 0 � x � 1 and for all n. Thus, condition (A3) holds and thereby,
the nonmonotonicity of the equilibrium bid with respect to n follows.22

3.3.2 The bidding e¤ect: A multiplicative decomposition

The previous subsection characterized the circumstances under which the participation

of one more bidder can increase or decrease the bid aggressiveness. The ambiguity

of this relationship highlights the importance of studying the sources of this bidding

e¤ect. In fact, identifying what forces a¤ect positively or negatively the bidding

21Notice that � can be strictly positive as v(a(n); a(n);n) = E(vjxi = a(n); y1:n�1 = a(n)) �
E(vjxi = a(n); y1:n�1 � a(n)) � r.
22See Figure 1 in Appendix C.
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behavior would allow the seller to improve her decisions on auction formats. Accord-

ingly, in this subsection we propose a decomposition of the bidding e¤ect into three

e¤ects, a decomposition that we have named multiplicative decomposition.23

For simplicity, we assume throughout this subsection that there is no reserve price.

As a result, the equilibrium bid becomes

B(x;n) = v(x; x;n)�
Z x

x
vx(s; s;n)L(sjx)ds (3.4)

Taking derivative on (3.4) w.r.t. n, we get that

Bn(x;n) =

�
vn(x; x;n)�

Z x

x
L(sjx)vxn(s; s;n)ds

�
�
Z x

x
Ln(sjx)vx(s; s;n)ds (3.5)

where vxn(x; x;n) = @vx(x; x;n)=@n and Ln(sjx) = @L(sjx)=@n.
Let W be the event in which bidder i wins the auction, i.e., W �fx > maxj 6=i xjg.

Hence, denote �(vjW; x) as the posterior density function of v conditional on a bidder

of type x winning the auction.

Then, the reverse hazard can also be written as24

�(x;n) =

vZ
v

�(x;n; v)�(vjW; x)dv (3.6)

where �(x;n; v) � (n � 1)fxjv(xjv)=Fxjv(xjv) corresponds to the reverse hazard as-
sociated to the situation in which (n � 1) rivals of a bidder i of type x draw their

signals independently from the c.d.f. Fxjv(xjv). The reverse hazard �(x;n) can thus

be written as an average of �(x;n; v) in which the posterior density �(vjW; x) are the

weights.25 Then, taking derivative on (3.6) w.r.t. n, under the assumption that the

product inside the integral is twice continuously di¤erentiable, we obtain that

�n(x;n) =

vZ
v

�n(x;n; v)�(vjW; x)dv +

vZ
v

�(x;n; v)�n(vjW; x)dv (3.7)

23This decomposition is refered to as multiplicative as an alternative to the additive version per-
formed by Pinkse and Tan [19] in the context of the CIPV model. We argue that our decomposition,
as opposed to that of Pinkse and Tan, works even when the MLRP assumption only holds weakly (see
Appendix B for an example).
24See Pinke and Tan [19].
25We derive the name the multiplicative decomposition proposed in this subsection from the product

�(x;n; v)�(vjW; x):
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Substituting (3.7) into (3.5), we get the following decomposition

Bn(x;n) =

�
vn(x; x;n)�

Z x

x
L(sjx)vxn(s; s;n)ds

�
+Z x

x
L(sjx)vx(s; s;n)

�Z x

s

Z v

v
�n(x;n; v)�(vjW; x)dvdu

�
ds+Z x

x
L(sjx)vx(s; s;n)

�Z x

s

Z v

v
�(x;n; v)�n(vjW; x)dvdu

�
ds (3.8)

The change in the equilibrium bid strategy due to changes in the number of bidders can

then be written as a sum of three components. The �rst term of the R.H.S. of equation

(3.8) represents the e¤ect coming from the winner�s curse phenomenon associated with

the common value environment. In fact, as long as we are in the private value setting

- the CIPV model, for instance -, the fact that v(x; x;n) = x implies that this e¤ect

disappears. Consequently, we refer to this e¤ect as the winner�s curse e¤ect (WCE).26

The second term depends on �n(x;n; v). Note that by the de�nition of �(x;n; v),

its derivative w.r.t. n is related to how B(x;n) changes with n in a setting with

independence between the signals. Since under this environment one can associate

any change of this class only to the traditional bidding trade-o¤ existing in a �rst-price

auction mechanism, this e¤ect corresponds to the so-called competition e¤ect (CE).

Finally, the third term depends on the partial derivative �n(vjW; x), which under

a¢ liated information structures is negative (positive) for a large (small) enough v,

and for a given x and n.27 In consequence, this term allows an inverse relationship

between the bids and the number of buyers based on an inference-type e¤ect generated

by a positive dependency among the signals. Because of this, we will refer to this

e¤ect as the inference e¤ect (IE).

In sum, we have identi�ed three e¤ects on the equilibrium bid strategy coming

from changes in n : the winner�s curse e¤ect (WCE), the competition e¤ect (CE) and

the inference e¤ect (IE).28 As we are interested in the nature of these e¤ects, the next

proposition formally states their signs.

Proposition 21 Suppose that in a CIPI-CV model, it is veri�ed that (A1) Fxjv sat-
is�es the MLRP, and (A2) jvn(x; x;n)j � jvn(x; x;n)j for all x > x. Then, using the

Multiplicative Decomposition, for all x 2 (x; x) and n � 2, it is veri�ed that:
(i) The winner�s curse e¤ect (WCE) is negative

26Krishna and Morgan [13], and Mares and Shor [23] study a similar winner�s curse-based e¤ect in
the context of consortia, but they call it inference e¤ect and competition e¤ect, respectively. Notice
that we use these terms to name two other e¤ects of a di¤erent nature.
27See Proof of Proposition 21 in the Appendix.
28Notice that this decomposition nests indeed a variety of a¢ liated value models within the CIPI

set-up, with the CIPV and the CIPI-CV models as polar cases.
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(ii) The competition e¤ect (CE) is positive

(iii) The inference e¤ect (IE) is ambiguous.

The intuition behind the signs of these e¤ects is as follows. First, the CE comes

from the less aggressiveness that bidders exhibit when the chances of winning in-

crease because the number of rivals decreases. Thus, this e¤ect can be associated

to the traditional negative consequences attributed to the industrial concentration in

ordinary markets. Second, more concentration allows the winner�s curse to be miti-

gated because defeating fewer bidders reduces the probability of such an overbidding

phenomenon. As a consequence, bidders carry out a lower winner�s curse downward

correction in bids, and thereby, the WCE takes a negative sign. Finally, the IE stems

from the a¢ liation among signals (or valuations).29 The a¢ liation may also cause

that a larger concentration results in a lower conservatism in bids. This may occur

because, although winning is interpreted by the winner as information of a less degree

of competition, this perception is weakened when he faces fewer rivals.30

So, whereas the inference e¤ect can exacerbate the negative in�uence of the win-

ner�s curse adjustment, the competition e¤ect always goes in the opposite direction.

In consequence, as long as the combination of the �rst two e¤ects dominate the latter,

the equilibrium bid may be decreasing in n as established in the previous subsection.

The signs of these e¤ects are veri�ed for Example 1. For instance, with � = 2:5,

� = 0:5, n = 2 and x = 1:4, the Multiplicative Decomposition yields

E¤ect Magnitude

WCE �8:2408� 10�2 < 0
CE 4:0895� 10�2 > 0
IE �1:4172� 10�7 < 0

with a �nal e¤ect given by

Bn(1:4; 2) = WCE + CE +AE

= �0:041513 < 0

Note that in this example, although a negative inference exists, its magnitude is smaller

than the positive one coming from the competition e¤ect. The winner�s curse e¤ect

is therefore crucial for the equilibrium bid to be a non-monotonic function in n for

signals that are su¢ ciently low.

29Pinkse and Tan [19] also examine an inference-type e¤ect that they call the a¢ liation e¤ect.
30A more detailed analysis of the inference e¤ect is provided in the next subsection.
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3.3.3 The inference e¤ect: An illustrative example

In order to obtain a better intuition of the inference e¤ect, let us analyze, in the

context of Example 1, the source of the non-monotonicity of bids coming from the

a¢ liated structure of the signals.

Similar to �(vjW; x), de�ne p(vjx) as the posterior density function of v conditional
on a bidder of type x. From Bayes�Theorem, it is easy to check that

p(vjx) =
fxjv(xjv)fv(v)R v

v fxjv(xjv)fv(v)dv

In Example 1, these two posterior density functions are given by �(vjW; x) = (� +

n�)max f1; xgn�+� =v�+n�+1 and p(vjx) = 1=(�+�). We can therefore state that for
a given x and n, the two following properties hold:

�(vjW; x) > p(vjx) (3.9)

�n(vjW; x) > 0 (3.10)

for a small enough v, and the reverse inequality is veri�ed otherwise. For instance,

with � = 2:5, � = 0:5, n = 2 and x = 1:4, we get that �(vjW; x) = 11:364=v4:5 >

p(vjx) = 0:33 for v < 1:8201; otherwise, the reverse inequality is satis�ed (see Figure
2). Moreover, notice that

�n(vjW; x) = �
max (x; 1)(�+n�)

v�+n�+1
�
�
ln vmax (x; 1)(�+n�)

� �� + n�2
v�+n�+1

+
�
ln (max (x; 1))max (x; 1)(�+n�)

� �� + n�2
v�+n�+1

Hence, for the same parameter values considered above, we get that �n(vjW; x) =

(3:535 1=v4:5) � (5:681 8=v4:5) ln v > 0 for v < exp (0:622 19), and the opposite result

otherwise (see Figure 3).

The intuition behind these two conditions is the following. The former means that

the event of winning the auction indeed represents bad news because the probability

of small (high) realizations of v increases (decreases) for a type x bidder after knowing

that his signal is the largest one. Additionally, the second condition points out that

this bad news is reinforced by the increase in the number of bidders, as the posterior

probability of small (high) values of v increases (decreases) when n becomes larger.

These conditions then provide a clear source for the non-monotonicity of the reverse

hazard and thus, for the non-monotonicity of the equilibrium bid. For instance, in

the CIPI-CV model, condition (3.9) implies that conditional on winning, bidder i of

type x will estimate more likely that the ex post common value v is smaller. As a

result of the a¢ liation assumption on Fxjv, he will estimate more likely that his rivals�
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signals are smaller as well. Since the symmetric equilibrium bid strategy is increasing

in the signals, it will lead �nally to a perception of a less intense competition from

the bidder i�s point of view. Given that this analysis is performed �xing the event of

winning the auction, bidder i should react following a less aggressive bidding behavior,

which we call the inference phenomenon. However, as condition (3.10) means that this

perception of lower competition is counteracted when n decreases, we will eventually

observe a lower conservatism in bids when a concentration process takes place. As

a result, the inference e¤ect, i.e. a possible shade in the inference-based downward

adjustement in bids due to the reduction in the number of participants, can �nally

lead to an inverse relationship between revenue and n.

Note that, in contrast to the winner�s curse, this inference phenomenon is of a

strategic nature, as it emerges as a reaction of a rational player who, focusing only

on this phenomenon, is able to reduce his bid without decreasing his probability of

winning. That is, the winner�s curse provokes a decrease in bids because the estimation

of his/her own object�s valuation is shaved. In contrast, in the case of the inference

phenomenon, this greater conservatism is caused by a shade in the estimation of the

rivals�bidding strategies.

3.4 (Non)monotonicity of revenues

In this section, we examine the conditions that guarantee the (non)monotonicity of

the seller�s revenue with respect to n under the CIPI-CV model.

In the �rst-price auction, the expected revenue is given by31

R(n) = E(B(x1:n;n)) =

Z x

x
B(�;n)fx1(�;n)d� (3.11)

where fx1 and Fx1 are the p.d.f. and c.d.f. of the maximum signal x1:n = maxi=1;::n xi,

respectively. Denote by G(b;n) the distribution function of B(x1:n;n). From (3.11),

it is clear that a �rst (and natural) condition that guarantees R to be monotonically

increasing in n is that G(b;n+ 1) �rst-order stochastically dominate G(b;n) for all n.

In order to gain an insight into the conditions that allow this stochastic dominance to

hold, we need to invest in some additional concepts and notations. Let us de�ne both

MRSB(x;n), the marginal rate of substitution in bids, and MRSF (x;n), the marginal

rate of substitution in the winning signal distribution, as follows

MRSB(x;n) �
Bn(x;n)

Bx(x;n)

31For simplicity, we assume throughout this section that there is no reserve price.
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and

MRSF (x; n) �
Fx1n(x;n)

Fx1x(x;n)

where the subscripts x and n in B and Fx1 denote the partial derivative of these

functions w.r.t. the respective variable.32 In the context of auctions, the meaning of

these marginal rates of substitution is as follows. Suppose that a marginal increase

in the number of buyers occurs. In that case, MRSB(x;n) points out how and how

much the change in x needed to keep constant the level of the equilibrium bid is.

Similarly, MRSF (x; n) represents the characteristics of the change in x needed to

keep the accumulated probability of the winning signal constant.

On the bid side, this required change in x may be either an increase or a decrease,

depending on the sign of Bn(x;n). As discussed in previous sections, this partial

derivative can be positive or negative, according to the magnitudes of the winner�s

curse, the inference and the competition e¤ects. In contrast, the partial derivative

Bx(x;n) is always positive, as bids are strictly increasing in signals. All of this

implies that, if bids are increasing (decreasing) in n, this larger competition will indeed

require a decrease (increase) in signal values to preserve the equilibrium bid�s level.

As a consequence, the marginal rate of substitution in bids, MRSB(x;n), may take

either a positive or a negative sign.

In contrast, on the side of the winning signal�s distribution, the change in x needed

to preserve the accumulated probability of x1:n will always be an increase. This non

ambiguity follows directly from the fact that MRSF (x; n) accounts for a fourth e¤ect

arising from changes in the number of buyers, which is not present when focusing on

bids. This is the so-called sampling e¤ect : an additional bidder means an additional

draw from the signal distribution. Because of the properties of the �rst order statis-

tics, the distribution of x1:n+1 �rst-order stochastically dominates the distribution of

x1:n.33 As a result, the partial derivative Fx1n(x;n) takes a negative sign unambigu-

ously, and thus, the marginal rate of substitution in the winning signal distribution,

MRSF (x; n), is always negative. Furthermore, the �rst stochastic dominance induced

by the sampling e¤ect on Fx1 due to more competition translates eventually into higher

seller�s expected revenue. Notice that from equation (3.11), this point is very clear as

the equilibrium bid is an increasing function in signals.34

In sum, when concluding as to the �nal e¤ect of competition on revenues, we

have to examine the properties of both the bidding e¤ect and the sampling e¤ect by

32For instance, Fx1n(x;n) � @Fx1(x;n)=@n.
33 In fact, one additional draw from the signal distribution implies that the highest signal is greater

with probability 1=(n+ 1) and equal with probability n=(n+ 1).
34Alternatively, we can interpret the sampling e¤ect as an e¤ect contributing positively to inducing

a �rst stochastic dominance property in the winning bid distribution (see Proposition 22).
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means ofMRSB(x;n) andMRSF (x; n), respectively. This relationship between both

marginal rates of substitution can be summarized de�ning the following term

�(x;n) �MRSB(x;n)�MRSF (x; n) (3.12)

According to the previous analysis, three cases can emerge:

Case 1. A positive bidding e¤ect: MRSB(x;n) � 0, and hence, �(x;n) � 0.
Case 2. A negative and dominated bidding e¤ect: MRSB(x;n) � 0 and

jMRSB(x;n)j � jMRSF (x; n)j. Thus, �(x;n) � 0.
Case 3. A negative and dominant bidding e¤ect: MRSB(x;n) � 0 and

jMRSB(x;n)j � jMRSF (x; n)j. Thus, �(x;n) � 0.
Equipped with these concepts and notation, we can go back to characterize the

circumstances under which the seller may be better o¤ or worse o¤ with more com-

petition. We start with the next proposition, which provides a su¢ cient condition to

ensure revenues that are strictly increasing in the number of bidders.

Proposition 22 �(x;n) � 0 for all x if and only if Gn(b;n) � 0 for all b. Further-
more, Gn(b;n) � 0 for all b implies that R(n) is increasing in n.

This result has the following implications. First, it means that as long as the

e¤ect of an increase in n on bids is positive for all signals the �nal e¤ect on revenue

will be positive as well. In terms of our previous analysis, this means that as long as

the bidding e¤ect is positive (i.e. Case 1), the seller will bene�t from more competi-

tion. This conclusion is true because, as explained before, the sampling e¤ect always

induces an increase in proceeds. Consequently, combining the result concerning bids

(Proposition 18) with Proposition 22, we can state the next result.

Corollary 23 Suppose that for all x 2 (x; x),

�(x;n+ 1)

�(x;n)
>

�(x;n)

�(x;n+ 1)

Then for all r < b, R(n) is strictly increasing in n.

Moreover, Proposition 22 also implies that even though more concentration may

cause a more aggressive bidding behavior, it may bring a reduction of revenue if the

sampling e¤ect is su¢ ciently large. This can occur when we are in Case 2, i.e. when

a negative, but dominated bidding e¤ect exists. Nevertheless, and in contrast to the

a¢ liated private value model studied by Pinkse and Tan [19], in a CIPI-CV setting

the last property is more di¢ cult to be ful�lled. This is because the winner�s curse

e¤ect, absent in the private value environments, demands a higher sampling e¤ect to
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o¤set the inverse in�uences arising from bids. A direct consequence of this fact is that

in the CIPI-CV model, the family of exponential distributions analyzed by Pinkse and

Tan does not necessarily satisfy one of the su¢ cient conditions for monotonic revenues.

This result is formalized in the following statement.

Proposition 24 Consider the CIPI-CV model. Suppose that for some function  ,

we can write Fx=v(x=v) = exp( (x)v) for all x and v. Then, the sign of �(x;n) is

ambiguous.

Note that Pinkse and Tan [19] show that for this class of distributions, �(x;n) � 0
for all x in the CIPV model. Consequently, Proposition 22 allows us to rule out the

presence of such a polar case in the CIPI framework as long as an inverse relationship

between revenue and number of bidders is observed.

Corollary 25 Consider the CIPI model. Suppose that for some function  , we can
write Fx=v(x=v) = exp( (x)v) for all x and v. Then, if for some n, R(n+1) < R(n),

the valuation environment cannot be that of the CIPV model.

Finally, note that the reverse of the �rst part of Proposition 22 provides a necessary

and su¢ cient condition for the distribution of the winning bid with n bidders to �rst-

order stochastically dominate the distribution with n+ 1 bidders.

Proposition 26 For a given n, �(x;n) � 0 for all x if and only if G(b;n) � G(b;n+

1) for all b. Furthermore, G(b;n) � G(b;n + 1) for all b implies that R(n + 1) <

R(n).

Notice that the last result indeed constitutes a su¢ cient condition for revenue to be

non-monotonically increasing in the number of bidders. Using the analysis performed

before, note that such a property of revenues holds as long as we are in Case 3, i.e.

when there is a negative and dominant bidding e¤ect.

Hence, and based on the results stated for bids in the previous section, we can

establish the next statement on the nonmonotonicity of the seller�s proceeds.

Proposition 27 Consider the two following situations:
(1) Suppose that for some values of n and r, it is veri�ed that either (A1) or (A2)
hold with:

�(a(n+ 1);n+ 1) < �(a(n+ 1);n) (A1 )

�(a(n+ 1);n+ 1)

�(a(n+ 1);n)
<

�(a(n+ 1);n)

�(a(n+ 1);n+ 1)
: (A2 )
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If jMRSB(x;n)j > jMRSF (x;n)j then R(n+ 1) < R(n).

(2) Suppose that there is no reserve price and it is veri�ed (A3) with:

v(x; x;n) > v(x; x;n+ 1): (A3 )

for all n and x. If jMRSB(x;n)j > jMRSF (x;n)j then R(n+ 1) < R(n).

In this statement, both (A1) and (A2) constitute su¢ cient conditions for the bid-

ding e¤ect to be negative. Additionally, the superiority (in absolute value) of the

marginal rate of substitution in bids over that of the winning signal�s distribution

ensures that the bidding e¤ect dominates the sampling e¤ect.

Moreover, condition (A3) characterizes another situation allowing revenues to be

decreasing in the number of bidders, but in a framework without a reserve price. In

such a case, this revenue�s property requires v to be strictly decreasing in n.

In sum, the last proposition states that as long as bidding behavior becomes more

aggressive with concentration (i.e., a negative bidding e¤ect), the seller may indeed

bene�t from a reduction in competition. This phenomenon could occur if the mixed

in�uence exerted by the winner�s curse and the inference e¤ects more than compensates

the sampling e¤ect.

This nonmonotonicity of seller�s proceeds is illustrated by the following two ex-

amples.35 First, in the case of Example 1, the expected revenue can be analytically

computed, and is given by

R(n) =

�
1� n�

(�+ n� � �)(�+ n� � 1)

�
�

�� 1 :

Notice that

Rn(n) =

�
�� � + �� � �2 + n2�2

�
��

(�� � + n�)2 (�+ n� � 1)2 (�� 1)

where Rn � @R(n)=@n. Hence, sign(Rn(n)) = sign( � � � + �� � �2 + n2�2). In

particular, for � = 2:5 and � = 0:5, we have that

sign(Rn(n)) =

(
< 0 for all n 2 [0; 3: 464 1]
> 0 otherwise

This case is depicted in Figure 4, showing that in the presence of the winner�s curse and

the inference e¤ects, the expected revenue may be nonmonotonic with n. In particular,

this example illustrates the fact that the seller is better o¤ when a concentration

35Pinkse and Tan [30] emphasize that in the CIPV model the dominance of the bidding e¤ects over
the sampling e¤ect requires too extreme distributional assumptions. As a result, they are unable to
provide an example in which revenue is nonmonotonic with the number of buyers. In contrast, our
more general CIPI setting permits us to attain this nonmonotonicity result without these extreme
assumptions, as the next two examples show.
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process takes place in a very concentrated market than when it does so in a competitive

one.36

Second, a seller who bene�ts from less competition under the CIPI framework is

also illustrated by Example 2, which describes a mineral right model that previous

literature has showed (numerically) to yield nonmonotonic revenue in the number of

bidders.

Example 2 The lognormal model (from Reece [34] and DeBrock and Smith [3]).

Consider the auction of a single o¤shore oil tract lease. The gross value of the

petroleum reserve is given by v, a random variable distributed according to a lognormal

probability density function represented by fv(vj�v; �v), where �v and �v correspond
to the mean and standard deviation of log v, respectively. The net value of the tract

is given by V = v� c, where c is a known constant that represents the cost of postsale
exploratory drilling. Each bidder observes xi, an estimate of gross tract value that

is, conditional on v, drawn from an independent and identically distributed lognormal

distribution represented by the p.d.f. fxjv(xj�x(v); �x(v)) and c.d.f. Fxjv(xjv).37

Note that in this model it is not possible to obtain an analytical solution for the

equilibrium bid strategies starting from the �rst-order conditions of the bidder�s max-

imization problem. However, DeBrock and Smith [3] �nd numerical solutions using

speci�ed values of parameters (means, standard deviations and number of bidders)

consistent with real-world conditions of o¤shore oil leasing. Interestingly, their re-

sults suggest that the share of the social value of the tract captured by the seller (the

government) can increase when joint bidding is allowed at a moderate level.

3.5 Conclusions

This paper has examined the revenue e¤ect of having one more bidder at the auction

stage. To this end, we considered the �rst-price auction format under the CIPI model,

an environment that encompasses a wide variety of valuation and information settings.

We decomposed the revenue e¤ect coming from more competition into two general

sources: (i) the bidding e¤ect, and (ii) the sampling e¤ect.

36A result consistent with this is theoretically stated by Hendricks et al. [7], who analyze the
mineral rights model. This paper shows that bidders have more incentives to form rings when the
number of potential participants in the auction is su¢ ciently large. Interestingly, they also con�rm
this prediction empirically for the o¤shore oil and gas lease auctions run by the U.S. government.
However, we do not consider any information pooling e¤ect as Hendricks et al. do. A similar result
emerges in both papers notwithstanding, because of the presence of the winner�s curse e¤ect: whereas
in Hendricks et al. the winner�s curse a¤ects the information precision of the bidding ring, in our paper
this phenomenon in�uences directly the individual bidder�s behavior.
37Notice that Fxjv belongs to the normal distribution family, and thus, it satis�es the (strict) MLRP.

As discussed before, this property is equivalent to assuming that xi and v are a¢ liated. Although
irrelevant for �tting the CIPI framework, this class of models additionally assumes that E(xijv) = v.
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The former includes all the e¤ects on bidding behavior, which in turn, we have

grouped into three classes: the competition, the inference and the winner�s curse

e¤ects. The �rst e¤ect corresponds to the traditional positive consequences on bid

aggressiveness due to the fact that higher competition intensity reduces the bidders�

probability of winning in environments with independent signals. On the contrary,

the inference e¤ect stems from the a¢ liation among signals. In such environment,

the participation of one more bidder induces more bid conservatism as the perception

that winning conveys information of less rivalry -the inference phenomenon- becomes

exacerbated when the number of bidders increases. Finally, the winner�s curse e¤ect

arises in common value settings, and induces unambiguously less bid aggressiveness

since more competition reinforces such an overbidding phenomenon. As a conse-

quence, the sign of the bidding e¤ect on revenue is ambiguous and depends on the

relative magnitudes of their three sube¤ects.

In contrast, as the participation of one more bidder improves the stochastic prop-

erties of the winning signal, the sampling e¤ect is always revenue-increasing because

of more competition.

Our main result points out that situations exist in which the participation of an

additional buyer can lower the seller�s expected proceeds. Consequently, from the

seller�s point of view, more competition is not always desirable, as it may deteriorate

revenue. Equivalently, the industrial concentration need not be negative for bid-

takers. The results derived in this paper suggest therefore how inconvenient it can

be to advise the seller regarding a policy that always either promotes more bidder

participation or discourage mergers or any joint bidding practice.38,39

This work shows that the situations in which more competition can be revenue-

decreasing are characterized by a negative and su¢ ciently large bidding e¤ect that

dominate the sampling e¤ect. Our analysis identi�es two cases in which the last

condition is met. First, a bidding e¤ect with these features can emerge if there is a

negative and large enough inference e¤ect that overcome the traditional competition

e¤ect. This condition, represented by a reverse hazard not strictly increasing in n,

can be present in all settings nested by the CIPI environment, including the a¢ liated

private value case given by the CIPV model. Second, we state that, in the CIPI model,

38Note that if the information pooling e¤ect induces more aggressive bids, the situations in which
the seller bene�ts from less competition would constitute a lower bound of the revenue-increasing cases
caused by joint bidding arrangements.
39Policymakers have de facto adopted a more tolerant position in markets with these characteristics.

For instance, in the U.S. o¤shore oil lease auctions. Before 1976, no restrictions were imposed on joint
bidding ventures, and since 1976, these arrangements have been permitted for �rms which are small
enough. Similarly, bidding consortia in takeover battles is generally accepted as a legal practice; see,
for example, the recent bidding takeover processes won by the consortia Enel-Acciona and RBS-Banco
Santander-Fortis for the control of Endesa and ABN Amro, respectively.
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an additional condition su¢ ces for a negative and dominant bidding e¤ect, and thereby,

for revenue loss in the face of more competition. This extra condition arises from

the winner�s curse phenomenon, absent in the a¢ liated private value environments.

Accordingly, we show that the seller may also bene�t from concentration as long as

the winner�s curse e¤ect is su¢ ciently large.40

Therefore, we conclude that in the CIPI setting, and thus in the general a¢ li-

ated value model, the conditions that allow a nonmonotonic revenue in the number

of bidders are less stringent than in a¢ liated private value frameworks. As a result,

situations in which the seller is better o¤ with less competition should be more fre-

quent in environments with not only dependent information, but also interdependent

valuations. Interestingly, the available empirical evidence supports this prediction,

especially that related to bidding markets in which the winner�s curse seems to play

an important role such as wildcat auctions.

3.6 Appendix

Appendix A: Proofs.
Proof of Proposition 18 We prove this statement by contradiction. Suppose that,

for some n, r and some ex, B(ex;n) � B(ex;n + 1). From boundary condition, we

know that B(a(n);n) = B(a(n+1);n+1) = r. Substituting this into the di¤erential

equation given by (3.1), it is veri�ed at x = a(n) that

Bx(a(n);n) = [v(a(n); a(n);n)� r]�(a(n);n) (3.13)

Since by assumption

v(x; x;n+ 1)� r
v(x; x;n)� r >

v(x; x;n+ 1)� b
v(x; x;n)� b

>
�(x;n)

�(x;n+ 1)
(3.14)

it follows from (3.13) that Bx(a(n);n + 1) > Bx(a(n);n). It must therefore be true

that for some x� 2 (a(n); ex)
B(x�;n) = B(x�;n+ 1) � b� (3.15)

and

Bx(x
�;n) > Bx(x

�;n+ 1) (3.16)

40Athias and Nuñez [1] argue that a strong winner�s curse e¤ect may be weakened as the perspective
of renegotiation increases. They show evidence of that this phenomenon can be particularly relevant
in toll road concession contract auctions. Thus, our analysis concerning the role of competition in
auction markets should be extended to consider the impact of not only the ex ante, but also the ex
post conditions on bidding behavior.
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Notice however that (3.16) violates (3.1) because according to this di¤erential equation

it can be established the opposite condition

Bx(x
�;n) = [v(x�; x�;n)� b�]�(x�;n)

< [v(x�; x�;n+ 1)� b�]�(x�;n+ 1) = Bx(x
�;n+ 1) (3.17)

applying the same logic of (3.14) for b� instead of r.�

Proof of Proposition 20 (1) We prove the �rst part of this statement by construction.

First, because the boundary condition, B(a(n);n) = B(a(n+ 1);n+ 1) = r for all n.

Hence, evaluating the di¤erential equation given by (3.1) at x = a(n + 1), it follows

that

Bx(a(n+ 1);n) = [v(a(n+ 1); a(n+ 1);n)� r]�(a(n+ 1);n)

� [v(a(n+ 1); a(n+ 1);n+ 1)� r]�(a(n+ 1);n)

> [v(a(n+ 1); a(n+ 1);n+ 1)� r]�(a(n+ 1);n+ 1)

= Bx(a(n+ 1);n+ 1)

where the �rst inequality holds because vn(x; x;n) � 0 for all x 2 [x; x] as Fxjv satis�es
the (strict) MLRP (see Milgrom [27], Proposition 4 and Section 6), and the second one

does since our assumption that the reverse hazard is strictly decreasing at x = a(n+1).

All of this implies that B(x;n + 1) < B(x;n) for all x 2 (a(n + 1); a(n + 1) + �) and

� > 0.

We now show the second part of the �rst statement. Since boundary condition,

B(a(n);n) = B(a(n+ 1);n+ 1) = r for all n. Hence, and after evaluating the di¤er-

ential equation (3.1) at x = a(n + 1), it is straightforward to verify that assumption

(A2) ensures that, given some n and r, Bx(a(n+ 1);n) > Bx(a(n+ 1);n+ 1). All of

this implies �nally that the equilibrium bid satis�es the desired property.

(2) Both the boundary condition (without reserve price) and the assumptions of

the statement imply that

B(x;n) = v(x; x;n) > v(x; x;n+ 1) = B(x;n+ 1)

for some n. From this, it follows that B(x;n) > B(x;n + 1) for some x 2 (x; x + �)

and � > 0.�

Proof of Proposition 21 (i) First, our assumption of MLRP for Fxjv guarantees

that vn(x; x;n) � 0 for all x 2 [x; x] (see Milgrom [27], Proposition 4 and Section 6).

So, if we are able to show that irrespective of the sign of vxn(s; s;n), its magnitude
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is smaller (in terms of absolute value) than vn(x; x;n), the desired result is attained.

This is indeed true as

jvn(x; x;n)j � jvn(x; x;n)j � jvn(x; x;n)j

=

���� @@n [v(x; x;n)� v(x; x;n)]
����

=

���� @@n
Z x

x
vx(s; s;n)ds

����
where the �rst equality follows from assumption (A2). Moreover, since v is twice

continuously di¤erentiable, it is veri�ed that���� @@n
Z x

x
vx(s; s;n)ds

���� =

����Z x

x
vxn(s; s;n)ds

����
�

����Z x

x
L(sjx)vx(s; s;n)ds

����
for all x 2 [x; x] (with the strict inequality for all x 2 (x; x]) because of 0 � L(sjx) � 1
for all s, x 2 [x; x] as L(:j:) satis�es the properties of a c.d.f.

(ii) Note that �n(x; n; v) = fxjv(xjv)=Fxjv(xjv) > 0, as we have assumed that

Fxjv(xjv) does not depend on n. Furthermore, a¢ liation ensures that vx(s; s;n) > 0,
and L(sjx) and �(vjW; x) are positive for all s; x 2 (x; x]. As a result, the desired

property holds.

(iii) First, we need to prove the next auxiliary result.

Lemma 28 In the CIPI model, for a given x and n, it holds that

�n(vjW; x)> 0 (3.18)

for a v small enough, and the reverse inequality is veri�ed otherwise.

Proof of Lemma 28 Using the Bayes�Theorem, it is possible to verify that

�(vjW; x) =
Fn�1xjv (xjv)fxjv(xjv)fv(v)R v

v F
n�1
xjv (xjv)fxjv(xjv)fv(v)dv

Hence, it is easy to state that for a given x and n, the desired property holds.�

Then, rewrite
R v
v �(x; n; v)�n(vjW; x)dv as followsZ v

v
�(x; n; v)�n(vjW; x)dv =

Z bv
v
�(x; n; v)�n(vjW; x)dv

+

Z v

bv �(x; n; v)�n(vjW; x)dv



3. On Bidding Markets: The Role of Competition 80

The sign of the last e¤ect depends then on the magnitude of the areas delimited by the

cut-o¤ value bv, from which according to Lemma 28, the partial derivative �n(vjW; x)

can take a negative sign for a given x and n.�

Proof of Proposition 22 De�ne B�1 so that B�1(B(x;n);n) = x for all x and n.

Note that since B is increasing in x, it holds that

G(b;n) = Pr(B(x1:n;n) � b)

= Pr(x1:n � B�1(b;n))

= Fx1(B
�1(b;n);n)

For short, denote B�1(b;n) by t. Then,41

Gn(b;n) = Fx1n(t;n) + Fx1x(t;n)B
�1
n (b;n)

= Fx1n(t;n)� Fx1x(t;n)
Bn(t;n)

Bx(t;n)

= �Fx1x(t;n)�(t;n)

which yields the �rst desired result. Finally, from (3.11), it is clear that the �rst-

order stochastic dominance induced by an increase in n on G(b;n) guarantees R to be

monotonically increasing in n.�

Proof of Proposition 24 Recall from (3.5) that

Bn(x;n) =

�
vn(x; x;n)�

Z x

x
L(sjx)vxn(s; s;n)ds

�
�
Z x

x
Ln(sjx)vx(s; s;n)ds

=

�
vn(x; x;n)�

Z x

x
L(sjx)vxn(s; s;n)ds

�
+

Z x

s
�n(u;n)du

Z x

x
L(sjx)vx(s; s;n)ds

where the equality holds because L(sjx) = exp(�
R x
s �(u;n)du). Let us de�ne

A(x;n) � �(x;n)MRSF (x; n)

Pinkse and Tan [19] shows thatZ x

s
�n(u;n)du � A(x;n) (3.19)

for the CIPV model. Notice however that A(x;n), by de�nition, considers the source of

two e¤ects on revenue coming from more competition: (i) the sampling e¤ect, through

MRSF (x; n), and (ii) the bidding e¤ect, but with the exception of the winner�s curse

41Recall that the subscripts n and x denote the partial derivative of the respective function with
respect to these variables.
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e¤ect, through �(x;n). Consequently, the inequality (3.19) also holds for the CIPI

model. All of this implies therefore that

Bn(x;n) �
�
vn(x; x;n)�

Z x

x
L(sjx)vxn(s; s;n)ds

�
+A(x;n)

Z x

x
L(sjx)vx(s; s;n)ds

(3.20)

Furthermore, using the equilibrium bid function as stated in (3.2), it is easy to see

that

Bx(x;n) = �(x;n)

Z x

x
L(sjx)vx(s; s;n)ds

Hence, and by the de�nition of A(x;n), the inequality (3.20) becomes

Bn(x;n) �
�
vn(x; x;n)�

Z x

x
L(sjx)vxn(s; s;n)ds

�
+Bx(x;n)MRSF (x; n)

from which, rearranging and using the de�nition of �(x;n), it follows directly that

�(x;n) �
vn(x; x;n)�

R x
x L(sjx)vxn(s; s;n)ds
Bx(x;n)

Note that, according to (3.21), the numerator of the R.H.S. of the last inequality cor-

responds to the winner�s curse e¤ect. Since this e¤ect is always negative and B is

increasing in x, the sign ambiguity of �(x;n) holds.�

Proof of Proposition 26 It follows directly from Proposition 22 and the properties of

the �rst-order stochastic dominance.�

Proof of Proposition 27 From Proposition 20, either condition (A1) or (A2) im-

plies that B(x;n + 1) < B(x;n) for some x > a(n + 1). As a result, MRSB(x; n)

is negative, which constitutes a necessary condition for the nonmonotonicity of rev-

enue. This condition and the fact that jMRSB(x; n)j > jMRSF (x; n)j ensure then
that �(x;n) � 0, which according to Proposition 26, provides a su¢ cient condition

for R(n+ 1) < R(n).�

Appendix B. The Additive Decomposition: A counter-example.
Following Pinkse and Tan [19], the reverse hazard can be decomposed additively as

�(x;n) = �Q(x;n) +��(x;n). The �rst term corresponds to the reverse hazard con-

sistent with the case in which (n� 1) bidder i�s rivals draw their signals independently
and identically from the c.d.f. Q(xjx), where Q(tjx) = Pr(xj � tjxi = x) and q(tjx) it
is its associated p.d.f. Hence, �Q(x;n) = (n�1)q(xjx)=Q(xjx). The second term, i.e.,
��(x;n), is de�ned residually as it corresponds to the di¤erence �(x;n)� �Q(x;n).
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It is easy to verify that applying this additive decomposition to the CIPI-CV model,

we have that

Bn(x;n) =

�
vn(x; x;n)�

Z x

x
L(sjx)vxn(s; s;n)ds

�
+�Z x

x
L(sjx)vx(s; s;n)

�Z x

s
�Qn (u;n)du

�
ds

�
+�Z x

x
L(sjx)vx(s; s;n)

�Z x

s
��n(u;n)du

�
ds

�
(3.21)

By construction, it follows directly that the R.H.S. of equation (3.21) represents the

sum of three bidding-type e¤ects: the winner�s curse e¤ect (WCE), the competition

e¤ect (CE), and the a¢ liation e¤ect (AE).

Consider now the pure common value model illustrated by Example 1. First, since

vn(x; x;n) =
��max f1; xg
(�+ n� � 1)2

< 0

and

vxn(x; x;n) =

( ��
(�+n��1)2 < 0 if x > 1

0 otherwise

the winner�s curse e¤ect is then given by

WCE =
�
�
max fx; 1g� + �max fx; 1g1+n� (n� 1)

�
�

(�+ n� � 1)2 (n� � � + 1)
�
max fx; 1gn�

� < 0

which con�rms the sign attributed to this e¤ect.42 Second, we decompose the compe-

tition e¤ect and the a¢ liation e¤ect based on the Pinkse and Tan�s approach. Notice

however that given that Fxjv does not satis�es the strict MLRP assumption, this de-

composition does not work as �(x;n) = (n � 1)�=x does not depend on v and it is
strictly increasing in n.43 As a result, �Q(x;n) = (n�1)�=x and hence the competition
e¤ect is given by

CE =
�+ n�

�+ n� � 1

Z maxfx;1g

1

�
(
max fx; 1g

s
)�(n�1)�

��
ln(
max fx; 1g

s
)�
�
ds > 0

which also corroborates the expected sign. Nevertheless, since ��(x;n) = �(x;n) �
�Q(x;n) = 0, the a¢ liation e¤ect becomes null. Thus, the additive decomposition

proposed by Pinke and Tan does not capture in this case the inference-type e¤ect that

42 In particular, since vn(x; x;n) = ��max f1; xg = (�+ n� � 1)2, the negativeness of the WCE is
ensured by vn(x; x;n) < 0 and jvn(x; x;n)j � jvn(x; x;n)j for all x > x (see Proposition 21)
43That is, strict a¢ liation does not hold as Fxjv satis�es only the weak MLRP.
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arises from the statistic structure of the bidders�information assumed in this exam-

ple. This provides us with the rationale for proposing an alternative multiplicative

decomposition that identify an inference e¤ect even though the MLRP assumption be

weakly satis�ed.
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Appendix C: Figures.
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Chapter 4

On Bidding Consortia: The Role
of Information

Abstract. This draft is a �rst step to study the information e¤ects of legal joint bid-

ding practices (consortia and mergers) on bidding behavior and hence, on the seller�s

expected revenue. These e¤ects are analyzed under an additive formulation of an

interdependent values model with independent signals. We �nd that the extent to

which the information sharing inside bidding coalitions induces more aggressive bids

depends on three elements: (i) the valuation environment, (ii) the auction format,

and (ii) the degree of bidders� risk-aversion on information. Nevertheless, we con-

clude that in general the seller bene�ts from the informational e¤ects driven by joint

bidding arrangements. In particular, it is shown that the expected revenue increase

under both the �rst-price and the second-price auctions.

Keywords: auctions, joint bidding, information pooling, risk aversion on informa-

tion
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4.1 Introduction

Bidding coalitions have become commonplace in many auction markets during the last

decade. Although they are not a new phenomenon at all, especially in some wildcat

auctions, the presence of bidding consortia has remarkably increased in procurement

auctions, takeover battles, public works concessions and privatization processes.

A primary reason for such legal joint bidding arrangements to take place comes

from the bene�ts that they may derive for its members as they lessen competition.

Nevertheless, accepting this motivation as true and unique implies that bid-takers, in

the absence of e¢ ciency gains, are worse o¤when these practices are adopted. Follow-

ing this line of reasoning, it would be however paradoxical that bidding coalitions be

accepted, sometimes even encouraged, by the auctioneer and admitted as legal prac-

tices by the antitrust authorities. To sort out this apparent paradox, some additional

motivations for the consortia formation have been provided.

One of the arguments in favor of legal bidding coalitions rests on the information

sharing process carried out by their members.1 The general intuition is the fact that

this process allows the consortium to have access to more and better information.

This would be especially useful in a common value environment, in which the rivals�

signals are relevant for estimating the true object�s valuation and uncertainty about

this value is large. Thus, if better information is thought of as more precise one, this

may induce the auction participants to bid more aggressively and thereby, bene�t the

seller.

This paper explores the validity of this argument by studying the informational

e¤ects of joint bidding practices on bidding behavior, and hence, on the seller�s ex-

pected revenues. As a �rst step for this general objective, this draft focus on a model

with interdependent values and independent signals. In particular, we assume that

each bidder�s valuation for the item corresponds to an additive combination of func-

tions which depend on all bidders�signals. In this environment, independent signals

and symmetric bidding coalitions imply that: (i) more information can always be

interpreted as better one from the seller�s point of view, and (ii) the revenue equiv-

alence principle holds. As a result, information pooling increases the bid-taker�s

proceeds, and the auction format plays no role on these revenue e¤ects. However, this

simple setting provides us with a benchmark for comparing these e¤ects under more

sophisticated environments in which more information may not bene�t the seller and

the revenue equivalence breaks down. Examples of these possible extensions consider

both statistical dependence among signals and asymmetric consortia formation.
1Other arguments in favor of these coaltions are that they allow to enhance both bidders�partici-

pation (by reducing �nancial constraints) and bidder�s diversi�cation of risk (See DeBrock and Smith
[3]).
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Despite the simplicity of our framework, it is su¢ ciently general to nest a wide

range of valuation structures. In particular, it allows us to examine two polar cases

extensively studied in the auction literature: the pure common value (CV) and the

independent private values (IPV) environments. On the one side, the presence of a

common value component permits the analysis of the impact a larger informational

precision has on the winner�s curse-driven bid shaving carried out in such valuation

environment. As pointed out above, a primary intuition suggests that the information

pooling should be especially important in a framework in which a buyer�s valuation

depends not only on his own private signal but also on his rivals�information. The

access to better information should therefore improve the precision of his value estima-

tion, and hence, falling prey to the winner�s curse should be less likely. Our analysis

allows us to state that, although this intuition is correct in the second-price auction,

extra conditions are needed to guarantee that indeed unambiguously more aggressive

bids emerge in the �rst-price format. These additional conditions concern the notion

of risk aversion on information, that is, bidders�attitude towards more disperse (risky)

information structures. Accordingly, we also get a monotone comparative statics in

terms of bids in the �rst-price auction when buyers are risk averse on information.

Despite these di¤erences, the choice of one of these two auction mechanisms is irrel-

evant from the seller�s point of view, as the expected revenues increase by the same

magnitude in both of them.

On the other side, our analysis of the IPV environment reveals that bidding and

revenue e¤ects of the information pooling do not constitute an exclusive concern of the

common value set-up. In fact, we show that under certain suitable assumptions, the

informational e¤ect is also positive for the auctioneer in a private values environment.

Again, the seller remains indi¤erent with respect to both auction formats as the rev-

enue e¤ects of the information pooling are the same. However, it is demonstrated that

the auction format matters for the magnitude of the informational e¤ects on bids, but

in the exactly opposite direction to that established under the interdependent values

environment. That is, while there is no bidding e¤ects in the second-price auction,

bidders become uniformly more aggressive in the �rst-price format.

These contrasting results hinge decisively on the di¤erent informativeness criteria

adopted to evaluate the informational improvements in each valuation environment.

When considering a common value component, we focus on a criterion of informa-

tiveness based on the larger precision the consortium�s signal distribution exhibits as

compared with the solo bidder�s one. In contrast, when studyng the IPV environ-

ment, we focus on a criterion of informativeness based on a stronger notion of stochastic

improvement than that adopted in the interdependent values framework. Roughly

speaking, while joint bidding introduces an informational improvement in terms of
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less "dispersion" in the latter valuation environment, this improvement is in terms of

a higher "level" in the IPV setting.2

The main caveat on our results concerns the fact that this paper concentrates on

the informational e¤ects of joint bidding arragements, but it does not address the

consequences coming from the reduction in the number of bidders. Competition-type

e¤ects are thus not taken into account. The justi�cation for this restrictive approach

stems from the nonmonotonicity between revenues and competition theoretically char-

acterized and empirically supported by recent literature.3 Accordingly, our results may

be useful to explain why bid-takers allow the bidding consortia formation when their

competition-driven issues seem to be ambiguous or even negative.

This paper is related to at least three strands of the auction literature. First, it

extends the results obtained by Mares and Shor [15] and Krishna and Morgan [13],

who also study the information pooling e¤ect due to joint bidding practices. While

these two articles work with the average value model, we generalize the valuation

structure to admit the notion of risk aversion on information. This allows us to gain

an insight into the conditions that e¤ectively ensure a monotone result in terms of

bidding behavior and revenue, especially in the �rst-price auction. It is worthy to

note that, in contrast to all this previous literature, we also examine the private values

environment. This extension is particularly relevant since it permits to stress that in

the IPV setting the e¤ects of information sharing may become as important as in the

common value framework.

Our work can also be related to some papers on the optimal auctioneer�s incentives

to provide bidders with more precise information structures, such as Bergemann and

Pesendorfer [2] and Ganuza and Penalva [4]. In fact, since in general it is the seller

who may accept or reject bidding consortia formation, this decision can be restated as

a decision about providing better information. Nevertheless, these works di¤er from

ours in two key aspects: their informativeness criterion to order information structures

and their focus on the private values setting. Finally, this paper is in connection with

the literature that studies how changes in information according to di¤erent statistical

orderings a¤ect the auction outcomes, such as Hopkins and Kornienko [9] and [10]. For

instance, the �rst of these articles examine the e¤ects of a decrease in the dispersion

of signals, in the sense of second order stochastic dominance, on bids and revenues in

the common value environment. Interestingly, it shows that this information change

yields comparative statics results very similar to those characterized in the current

2More speci�cally, in the IPV setting the informational improvement is in a sense that constitutes
a re�nement of the �rst-order stochastic dominance. In the interdependent values environment such
improvement is, however, based on a re�nement of the second-order stochastic dominance.

3For theoretical approachs, see Bulow and Klemperer [1], Pinkse and Tan [19], and Loyola [14].
For empirical works, see Hong and Shum [8], and Hendricks, Pinkse and Porter [5].
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paper for the �rst-price and the second-price auctions.

This draft proceeds as follows. Section 4.2 describes our general additive values

model with independent signals. In Section 4.3, we study the informational e¤ects of

joint bidding practices in the �rst-price and the second-price auctions when values are

interdependent. The next section performs the same comparative statics analysis in

the context of the IPV environment. Finally, Section 4.5 discusses some directions of

the future research. All proofs are relegated to the Appendix.

4.2 The Model: Valuation and information structure

Consider a seller who wants to auction o¤ a single item among n bidders. Each bidder

i privately observes a value estimate that is independently and identically distributed

according to the c.d.f. Fx. The associated p.d.f. fx is assumed to be a log-concave

function that takes always a positive value in its support [x; x]. Let vi be the value of

the object to bidder i. Let us assume it takes the following additive formulation:4

vi =  (xi) +
X
j 6=i

'(xj) (4.1)

for all i = 1; :::n. The functions  (:) and '(:) are non-decreasing functions that play

the role of weighting functions on the information held by each bidder, with  (x) � 0
and '(x) � 0. These weighting functions ensure a symmetric treatment on di¤erent
rivals� signals when forming the valuation for the object, which is consistent with

our assumed symmetric informational structure.5 Furthermore, they will allow us

to study the notion of risk-aversion on information and its impact on bidders degree

of aggressiveness when they hold more precise signals. This concept is measured by

the degree of concavity of  and ' so that while  00 = '00 = 0 represents a bidder

risk-neutral on information,  00 < 0 and '00 < 0 is consistent with an information

risk-averse individual. As a consequence, although we assume that all players are

risk-neutral on wealth, bidders may be risk-averse in another sense.

Our choice of a model with interdependent values but independent signals is jus-

ti�ed on di¤erent grounds. First, we intend to investigate how a more precise infor-

mation may mitigate the winner�s curse, and hence, increase bidders aggressiveness.

Accordingly, we need a valuation structure that includes a common value component.6

4This form of interdependent value auction is a generalization of the one discussed in Klemperer
[11] (Appendix D).

5Note that this framework can be extended to allowe for asymmetric treatments of the information
coming from di¤erent bidders when forming the common valuation for the object. An asymmetric
weighting scheme can emerge, for instance, if the source of information of some particular bidder
is in some sense more informative or precise, which should be consistent with asymmetric signal�s
distributions.

6 It is possible to formalize this idea assuming that  (xi) = '(xi) + 
(xi) for all i.



4. On Bidding Consortia: The Role of Information 96

Second, our valuation setting is su¢ ciently general to encompass two important polar

cases: the pure common value (CV) and the independent private values (IPV) models.

The pure CV environment can be attained by assuming that  (xi) = '(xi) so that

vi = v �
Pn

j=1 '(xj) for all i.
7 Furthermore, the IPV model can be characterized by

assuming that  (xi) = xi and '(xj) = 0 for all i 6= j so that vi = xi, as we will actually

do in Section 4.4. Third, we want to isolate the interdependence between valuations

from the statistical dependence among signals. This is particularly useful as any

(positive) statistical dependence between consortium members�value estimates brings

an additional source of variability when signals are pooled. As a consequence, we here

adopt an environment with signals independently distributed, and the extension to an

a¢ liated information structure is left for future research.

4.3 Interdependent Values

In this section we examine the informational e¤ects of joint bidding practices on bid-

ding behavior and revenues when values are interdependent. To this end, we perform a

comparative statics analysis between one situation with individual bidders and another

one with bidding consortia.

4.3.1 Informativeness criterion and consortium�s signal

In this subsection we characterize the signal observed by bidding coalitions under the

interdependent values setting. The choice of this signal is directly related to the

notion of the "better" information the consortium may access when pooling the pieces

of information held by its members. To this end, we �rstly need to de�ne some

criterion of informativeness (in particular a precision notion) of the signals observed

by the participants in the auction. Since, as it will be seen below, we need to deal

with the comparison of conditional distributions (and conditional expectations), we

adopt here the notion of precision de�ned by Whitt [21].

De�nition 29 Suppose that two signals x and y are distributed according to the c.d.f.�s
F and G, respectively, with associated p.d.f.�s f and g, respectively. We say then that

x is less dispersed than y in the uniform conditional variability ordering, denoted by

x �UV y and f �UV g, if supp(f) �supp(g), the ratio of densities f=g is unimodal in
the support of g and both variables cannot be stochastically ordered.8

Notice that given that supp( f) �supp(g), two conditions are necessary and suf-
�cient for unimodality: (i) that the number of changes in sign of (f � g) be 2, and

7A particular example of this pure CV model is described in Example 1.
8That is, we cannot state that either F (s) � G(s) or F (s) � G(s) hold for all s.
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(ii) that the ratio f=g be a log-concave function.9 The second condition is particu-

larly appealing because it constitutes in general an easier condition to be checked, and

unlike the uniform conditional variability ordering, it introduces a transitive ordering.

De�nition 30 Let us de�ne rf , the index of log-concavity, as follows: rf (s1; s2; t1; t2) �
f(t2�s2)f(t1�s1)
f(t2�s1)f(t1�s2) . The density f is log-concave relative to another g, i.e. f �lc g, if the
support of f is a subset of the support of g and rf (s1; s2; t1; t2) � rg(s1; s2; t1; t2) for

all s1 < s2 and t1 < t2.

Let us now characterize the consortium�s signal that better allows to study the

precision improvement in the sense of the uniform conditional variability ordering.

We assume that there exist l symmetric bidding consortia, each of one formed by m

members which, before the constitution of the coalition, participated as individual

bidders in the auction. Thus, the information to which each bidding consortium has

access is given by the vector (x1; :::xm). We suppose that consortium i summarizes

such information through the signal zi, which is de�ned as follows

zi �
Pm

k=1 xk
m

and drawn according to the c.d.f. Gz and the density function gz. The choice of

this signal for the consortium can be justi�ed on di¤erent grounds. First, the average

of the signals constitutes a su¢ cient statistic. Second, since all members of the

coalition are symmetric ex ante (in particular because their signals are identically

distributed), it seems natural to use a statistic that assign the same weight to each

member�s signal. Third, since our analysis concentrates on additive formulations of the

object�s value, the average of the signals preserves this additive manner of combining

the information stemming from bidders. Fourth, in an interdependent values context,

the main goal regarding informational e¤ects of joint bidding practices is to analyze

the higher precision on value estimation. Thus, we want to focus on the relative

dispersion between both individual and consortium bidders. One way to do this is to

abstract from the �rst moments of the distributions, so that we cannot compare them

according to the traditional stochastic ordering, but we can state a comparison in terms

of variability. In fact, notice that the de�nition of zi means that supp(g) =supp(f)

and E(zi) = E(xi). These facts and the assumption that fx is a log-concave function

guarantee that zi �UC xi.10 Consequently, since the average is the simplest statistic

that satis�es all these properties, the choice of zi seems to us appropriate.

9Formally, let S(g � f) be the number of changes of the function g � f . Therefore, the �rst
condition requires that f be in some sense less variable than g if S(g � f) = 2 with sign sequence
+;�;+.
10See Proof of Proposition 33 and Mares and Shor [15].
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4.3.2 Individual�s and consortium�s bidding

De�ne y1:n�1 = maxj=1;::n; j 6=i xj , the �rst-order statistic of all individual bidders�

signals except bidder i�s, and denote its c.d.f. and p.d.f. conditional on xi = x by

Fyjx(:jx) and fyjx(:jx), respectively. Let �(x;n) = fyjx(xjx)=Fyjx(xjx) be its associated
reverse hazard rate when the signals of the (n�1) bidder i �s rivals are smaller or equal
than x, given that its signal realization is x.11 Moreover, de�ne v(x; x;n) � E(vijxi =
x; y1:n�1 = x).

Given that all bidders�signals are identically distributed, we here concentrate on

symmetric equilibria. Consequently, let BFPA
x (xi;n) and BSPA

x (xi;n) denote the

individual bidder�s equilibrium bids in the �rst-price and the second-price auctions,

respectively.12 Following Milgrom and Weber [17], the next lemma provides expres-

sions for these equilibrium strategies under our additive interdependent values setting

with independent signals.

Lemma 31 Consider the additive structure of values described by (4.1). Then, the

�rst-price and the second-price auction equilibrium bids individual bidder i are given

by

BFPA
x (x;n) = E( (y1:n�1)jy1:n�1 � x) + (n� 1)E('(xj)jxj � x) (4.2)

and

BSPA
x (x;n) = v(x; x;n) =  (x) + '(x) + (n� 2)E('(xj)jxj � x) (4.3)

for all x 2 [x; x] and for all i 6= j.

Similarly, for bidding consortia, de�ne w1:l�1 = maxj=1;::l; j 6=i zj . Denote its c.d.f.

and p.d.f. conditional on zi = z by Gwjz(:jz) and gwjz(:jx), respectively. Let �(z; l) =
gwjz(zjz)=Gwjz(zjz) be its associated reverse hazard when the signals of the (l � 1)
consortium i �s rivals are smaller than or equal to z, given that its signal realization is

z. Moreover, de�ne �(z; z; l) � E(vijzi = z; w1:l�1 = z).

Let BFPA
z (z; l) and BSPA

z (z; l) denote the consortium�s equilibrium bid in the

�rst-price and the second-price auction, respectively. From Lemma 31, we can directly

characterize these equilibrium functions, as the next corollary formally states.

Corollary 32 Suppose that valuations are additively separable such that vi =  (zi) +P
j 6=i '(zj) for all i = 1; :::l. Then, the �rst-price and the second-price auction equi-

librium bids of the consortium i are given by

BFPA
z (z; l) = E( (w1:l�1)jw1:l�1 � z) + (l � 1)E('(zj)jzj � z) (4.4)

11 In other words, �(x;n) corresponds to the reverse hazard rate of the second-order statistic condi-
tional on xi = x being the �rst-order stastistic.
12The subscript in the bid function indicates the signal from which bidder observes a realization.

Then, while individual bidders observe x, we shall see in the next subsection that bidding consortia
observe a di¤erent signal z.
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and

BSPA
z (z; l) = �(z; z; l) =  (z) + '(z) + (l � 2)E('(zj)jzj � z) (4.5)

for all z 2 [x; x] and for all i 6= j.

4.3.3 Comparative Statics Analysis

This subsection examines the e¤ects generated by the information pooling phenomenon

present in the consortia formation. In order to isolate these e¤ects from those provoked

by the reduction in the number of bidders, we perform an arti�cial exercise according

to which the number of participants remains constant. As a consequence, we compare

the equilibrium strategies of both the individual bidder and the bidding consortium,

while �xing the number of buyers. That is, we suppose that l = n.

The larger or smaller aggressiveness resulting from the information pooling can

be analyzed by comparing equations (4.2) and (4.4) (for the �rst-price auction) and

equations (4.3) and (4.5) (for the second-price auction) under the assumptions that:

(i) both classes of bidders observe the same realization, i.e., xi = zi = t, and (ii)

the number of individual bidders is identical to the number of bidding coalitions, i.e.,

l = n.

For the �rst-price auction, the next three propositions perform this comparison

depending on the degree of bidders�risk-aversion on information, or equivalently, the

degree of concavity of the weighting functions. We begin with the simplest case in

which these functions are linear.

Proposition 33 Suppose that  (t) = �t and '(t) = �t, with �; � � 0. Then, there

exists t1; t2 with t1 � t2 such that

(i) BFPA
z (t;n) � BFPA

x (t;n) for all t 2 [x; t1]
(ii) BFPA

z (t;n) � BFPA
x (t;n) for all t 2 [t2; x].

This result stresses that, although the larger informational precision permits to

reduce the winner�s curse-based bid shading, this is not su¢ cient for getting an un-

ambiguously higher aggressiveness. In fact, Proposition 33 points out that the rules

of the �rst-price auction counteracts the mitigation of the winner�s curse at the extent

that there exist two cut-o¤ signals.13 Below the �rst threshold, the bidding consor-

tium will be more aggressive than the individual bidder because of the information

pooling e¤ect. However, there exists also a region of signals su¢ ciently high so that

the coalition becomes indeed more conservative.

This ambiguous result comes from the fact that, in the �rst-price auction, both

equilibrium bids (the individual and the consortium) depends on the second-highest

13Of course, these cut-o¤ signals can coincide.
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signal. Although unimodality is inherited by the ratio of the order statistics�densities,

the equality of their �rst moments is not preserved.14 Consequently, it is not possible

to state a comparison between w1:n�1 and y1:n�1 in the uniform conditional variability

ordering, and so, a less aggressive behavior by a bidding consortium with a very high

signal cannot be discarded. The intuition behind this result is as follows. Because of

the less dispersion of the consortium�s signal, a very high value is perceived as less likely

than in the individual bidder case. Accordingly, the consortium estimates the event of

being defeated by other bidders as less likely than when participating as an individual

bidder. Given the natural trade-o¤ present in the �rst-price auction mechanism, this

implies that the coalition will eventually bid more conservatively as it is possible to

get a larger pro�t without decreasing substantially the chances of winning.

Notice that this non-monotone result in terms of bid aggressiveness takes place in

an environment in which risk-aversion on information plays no role, as information

risk-neutral bidders do not have a preference-based inclination for less dispersed infor-

mation structures. That is, the less conservatism exhibited by buyers with low signals

is uniquely driven by statistical considerations.

Let us turn to the case in which the weighting functions are convex.

Proposition 34 Suppose that  and ' are strictly convex functions. Then, there

exists a value t2 2 [x; x) such that BFPA
x (t;n) � BFPA

z (t;n) for all t 2 [t2; x].

This statement indicates that when the item�s valuation corresponds to the sum

of convex functions of the signals, bidders tend to be more conservative. In fact, we

are only able to ensure that for signal realizations high enough consortium�s bidding

will be less agressive than individual�s one. Nevertheless, we cannot now guarantee

the existence of a region of values su¢ ciently low in which the information pooling

phenomenon generates a larger bid aggressiveness. The intuition of this result is that

bidders risk-lover on information are worse o¤ when the signal distribution becomes

less dispersed.

Lastly, we examine the case in which the weighting functions are strictly concave.

Proposition 35 Suppose that  and ' are strictly concave functions. Then, the in-
formational e¤ect of consortia formation induces an unambiguously larger bid aggres-

siveness.

This result stresses how the role played by the less dispersion of the consortium�s

signal is magni�ed when the weighting functions in the additive formulation of the
14This is due to y1:n�1 = max(x1; :::xn�1) and w1:n�1 = max(z1; :::zn�1). Since max is a convex

function, the more variability of xi over zi in the convex ordering sense then implies that E(y1:n�1) �
E(w1:n�1) (for more details, see Proof of Proposition 33).
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value are concave. This occurs because bidders risk-averse on information are better

o¤ when signals are more precise. In this case, the information pooling implies that

the consortium�s bidding strategy shifts out so that a larger aggressiveness emerges

unambiguously.

In sum, without imposing additional conditions, even in our very special additive

valuation structure with independent signals, one cannot conclude that information

pooling results in more aggressive bids when a �rst-price auction is run. In fact, in

this auction format, bidders�attitude towards information risk can either exacerbate,

counterbalance, or even overcome the e¤ects by the less variability of the consortium�s

signal.

Let us consider now the second-price auction. From Lemma 31 and Corollary

32, it follows that the comparison between v(t; t;n) and �(t; t;n) for all t su¢ ces to

determine the nature of the informational e¤ect on bidding behavior. The following

proposition establishes a monotone result for bids based on this comparison.

Proposition 36 Suppose that  and ' are weakly concave functions. Then, in the

second-price auction, the informational e¤ect of consortia formation leads to uniformly

higher bids.

It is worthy to remark that the last result implies that in the second-price auction

the information pooling e¤ect results in a uniformly more aggressive behavior, even

when bidders observe high signals or when they are risk-neutral on information. The

strength of this monotone result is based on the fact that the trade-o¤between bene�ts

from winning and chances of winning, present in the �rst-price auction, is absent in the

second-price mechanism. This means that the larger precision has only an e¤ect on

the winner�s curse-based bid shading, leading eventually to a larger bid aggressiveness

irrespective of the signal observed by bidders.

In the second-price auction the seller�s expected revenue are equal to the expecta-

tion of the bid submitted by the bidder with the second-highest signal. Hence, and

from the monotone result established in Proposition 36, one can get easily the next

statement.

Proposition 37 In a second-price auction under the interdependent values and inde-
pendent signals setting, the larger informational precision induced by consortia forma-

tion implies higher revenues.

Note that in an environment with interdependent values and independent signals,

the revenue equivalence principle holds as long as bidders are symmetric. Since

we analyze joint bidding practices that preserve such symmetry, revenue equivalence
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remains after the consortia formation takes place. Hence, one can infer directly from

the last statement that informational e¤ects of legal joint bidding arrangements also

bene�t the auctioneer in the �rst-price mechanism.

Corollary 38 In a �rst-price auction under the interdependent values and indepen-
dent signals setting, the larger informational precision induced by consortia formation

leads to higher revenue.

As an illustration of our results, consider the following auction model that �ts well

with the environment adopted in this paper.

Example 1. The average value auction. The most natural illustration of the

results derived in this section is perhaps the average value auction model. This ex-

ample corresponds to one of the polar cases of the interdependent values environment:

the so called pure common value model. In this setting, the unknown and common

value of the object is equal to the average of the signals observed by all bidders, i.e.

vi = v �
Pn

j=1(xj=n) and vi = v �
Pn

j=1(zj=n) for all i. These signals are in-

dependently distributed according to a log-concave density function fx. By adopting

� = � = 1=n, the statement concerning bidders risk-neutral on information in the

�rst-price auction holds (Proposition 33). Furthermore, an uniformly larger bid ag-

gressiveness in the second-price auction is also satis�ed (Proposition 36). Finally, the

seller�s revenue-enhancing result due to the larger informational precision induced by

joint bidding holds in both the �rst-price auction (Proposition 37) and the second-price

format (Corollary 38).

4.4 Private values model

In this section we analyze the informational e¤ects driven by the consortia formation

when bidders�valuations are private and independently distributed. As before, we

compare the equilibrium bids of both individual bidders and bidding coalitions un-

der the assumption that the number of participants in the auction remains identical.

Finally, results on seller�s expected revenue are derived.

4.4.1 Valuation and information structure

Consider the special case of the general valuation structure described in Section 4.2 in

which  (xi) = xi and '(xj) = 0 for all i 6= j. The value of the item to bidder i is thus

vi = xi, so that we are in the simple independent private values (IPV) environment as

the only relevant information for each bidder to form his valuation is his own signal.

We also abstract from any concern about risk aversion on information, which, as we

shall see later, does not alter qualitatively our results.
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The examination of the IPV model is interesting for two reasons. First, the IPV

model allows us to isolate the informational e¤ects on the bid shading due to the �rst-

price auction rules, as in this valuation environment the bid shading driven by the

winner�s curse is absent. Our analysis on the IPV setting suggests that the rules of

the auction format do matter for the magnitude of the informational e¤ects on bids:

while a larger bid aggressiveness results in the �rst-price auction, there is no e¤ect at

all on bids in the second-price format.

Second, at �rst glance, the information sharing phenomenon taking place inside

bidding consortia should be more valuable as long as more bidders�signals are use-

ful to form the object�s valuation. Following this line of reasoning, the information

pooling should induce more bid aggressiveness in the interdependent value structure

than in the pure private values one. As a consequence, the seller should bene�t more

from informational e¤ects due to joint bidding arrangements in the former environ-

ment. Nevertheless, we show in this section that, at least for the symmetric consortia

formation, there is no such clear-cut result in terms of either more bid aggressiveness

or larger revenue in favor of structures with a common value component. This is

because the comparison of both valuation environments in terms of bidding behavior

is sensitive to the auction format analyzed. That is, in the second-price auction, the

informational e¤ects on bidding are clearly less intense in the private values framework

than the interdependent values one. However, in the �rst-price auction, a uniformly

larger aggressiveness from information risk-neutral bidders only emerges in the IPV

setting. Furthermore, we prove that the information pooling leads to a revenue in-

crease in both valuations environments, and not only when individual values depend

on their opponents�signals.

4.4.2 Consortium�s signal and informativeness criterion

We assume that in the IPV model the information observed by each consortium can

be summarized through the signal zi, which is de�ned as follows

zi � max
j=1;:::m

fxjg

for all i = 1; ::l. Hence, zi is distributed according to the c.d.f. Gz(z) = Fmx (z) and

p.d.f. gz(z) = mFm�1x (z)fx(z). The key assumption underlying this signal choice is

the fact that the consortium is an e¢ cient coalition, i.e. it selects the highest value

�rm among its members as the representative bidder.15 Accordingly, we suppose that

the consortium considers the maximum valuation among its members as its relevant

15See Pesendorfer [18] for a discussion on e¢ cient bidding coalitions in the context of procurement
auctions.
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signal, and thus, forms its joint bid based on such information.16

As discussed in previous sections, the choice of a consortium�s signal is closely

related to the choice of a criterion of informativeness, that is, a notion of the sense

in which information pooling provides the coalition with a "better" signal. In the

IPV model, the maximum signal also implies that the consortium bases its bid in a

signal with better stochastic properties than the solo bidder. However, it is worthy to

remark that the nature of such stochastic dominance is stronger than that induced by

the average signal in the interdependent value structure. To understand this point,

we previously need to state some notions of informativeness.

De�nition 39 Suppose that two signals x and y are distributed according to the c.d.f.�s
F and G, respectively, and the associated p.d.f.�s correspond to f and g, respectively.

We say then that x dominates y in the monotone likelihood ratio (MLR) ordering,

denoted by x �MLR y and F �MLR G, if supp(f) �supp(g) and the ratio of densities
f=g is strictly increasing in the support of g.

Recall that we require a criterion of informativeness that allows us to compare con-

ditional distributions of the signals observed by the individual bidder and the bidding

consortium. This is because in the IPV setting, the comparative statistics in terms of

bidding behavior in the �rst-price auction depends crucially on the stochastic ordering

stated between both signals. To this end, consider the following ratio ordering.

De�nition 40 Suppose that two signals x and y are distributed according to the c.d.f.�s
F and G, respectively. We say then that x dominates y in the monotone probability

ratio (MPR) ordering, denoted by x �MPR y and F �MPR G, if supp(f) �supp(g)
and the ratio of distributions F=G is strictly increasing in the support of g.

This de�nition means that for all s < t

F (s)

G(s)
<
F (t)

G(t)
: (4.6)

Rearranging (4.6), Bayes�Theorem implies that for all s < t

Pr(x < sjx < t) =
F (s)

F (t)
<
G(s)

G(t)
= Pr(y < sjy < t): (4.7)

From the last expression, it follows that the MPR ordering implies the concept of

"conditional stochastic dominance" (CSD), which is formalized in the next lemma.17

16We assume that if there is an opportunity for getting bene�ts from joint bidding, the coalition
will be able to design a stable mechanism to share these pro�ts. In that sense, we abstract from any
mechanism design issue inside the bidding consortium.
17Maskin and Riley [16] de�ne this class of dominance in a more general way, allowing for the

possibility of di¤erent supports and atoms at the lower bound.
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Lemma 41 F �MPR G =) F �CSD G:

The following lemma establishes that the MLR ordering is a su¢ ciently strong

notion of informativeness so that it implies the MPR ordering, and thus, the concept

of conditional stochastic dominance as well.

Lemma 42 F �MLR G =) F �MPR G =) F �CSD G:

Notice that the conditional stochastic dominance guarantees a sort of conditional

�rst-order stochastic dominance, which is crucial for getting a monotone comparative

statics for the �rst-price auction in Subsection 4.4.4. This is true because the signal

observed by the consortium (the maximum signal among its members) dominates the

individual bidder�s one in the MLR ordering, as the next result states.18

Lemma 43 Let xi and zi � maxj=1;:::m fxjg be the signals observed by the individual
bidder and the sole consortium bidder, respectively. Then, zi �MLR xi.

4.4.3 Individual�s and consortium�s bidding

As discussed above, the IPV setting is a special case of the general interdependent

values environment. Hence, the simple substitution of weighting functions  and '

into Lemma 31 allows to characterize the equilibrium bids of both the solo bidder and

the consortium. This is the content of the following corollary.

Corollary 44 Consider the IPV environment so that  (xi) = xi, '(xj) = 0 for all

i 6= j, and thus, vi = xi. Then,

(i) The equilibrium bids of the individual bidder are given by

BFPA
x (x;n) = E(y1:n�1jy1:n�1 � x) (4.8)

and

BSPA
x (x;n) = x (4.9)

for all x 2 [x; x].
(ii) The equilibrium bids of the bidding consortium are given by

BFPA
z (z; l) = E(w1:l�1jw1:l�1 � z) (4.10)

and

BSPA
z (z; l) = z (4.11)

for all z 2 [x; x].
18 In the IPV model, this class of stochastic dominance imposes no restrictions on the distribution

of the individual bidder�s signal. Notice that, in contrast, the uniform conditional variabiliy ordering
discussed in Section 4.3 for the interdependent values environment requieres the log-concavity of fx.



4. On Bidding Consortia: The Role of Information 106

4.4.4 Comparative Statics

Again, in order to isolate the pooling information e¤ect from any competition e¤ect,

we compare the individual bidder�s and the consortium�s equilibrium bids assuming

that xi = zi = t and l = n.

Let us start with the second-price auction. Given the allocation rules of this

mechanism, there not exists an auction�s rule-based bid shading as in the �rst-price

auction. In addition, in the private values setting, there neither exists a winner�s

curse-based shading as opponents�signals no matter to form the own value estimation.

Therefore, telling the truth is a (weakly) dominant strategy as long as we are in a

symmetric environment. Since we study joint bidding practices that preserve an

initial symmetric industrial structure, this implies �nally that by accessing to more

and better information has no e¤ects on bid aggressiveness. This idea is formalized

in the next proposition.

Proposition 45 Consider the IPV environment. Then, in the second-price auction,
the information pooling of consortia formation has no e¤ects on bidding behavior.

This result is diametrically di¤erent from that obtained for the second-price auction

under the interdependent values framework, in which the information pooling leads

to a uniformly larger aggressiveness from bidders.19 The reason for these contrasting

results lies in the fact in the IPV setting the equilibrium is in dominant strategies.

Let us consider now the �rst-price auction mechanism. In this case, the bidding

trade-o¤ inherent to the rules of this auction format induces a shading on bids. Equi-

librium bids are then equal to the expectation of the second order statistic conditional

on winning. This order statistic inherits the better stochastic properties of the con-

sortium�s signal zi by comparison with the individual bidder�s one xi. That is, the

second-highest consortium�s value dominates, in the conditional stochastic sense, the

second-highest individual bidder�s one. As a consequence, this induces a monotone

result in terms of bid aggressiveness in the IPV framework. This is the content of the

following proposition.

Proposition 46 Consider the IPV environment. Then, in the �rst-price auction, the
informational e¤ect of consortia formation leads to uniformly higher bids.

Thus, in the �rst-price auction under the IPV setting the larger bid aggressiveness

induced by the information pooling phenomenon is unambiguous. This result di¤ers

19This �nding holds true for bidders either risk-neutral or risk-averse on information (see Proposition
36).
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from that obtained under the interdependent values structure, in which a less conser-

vatism emerges only when either: (i) information risk-neutral bidders observe signals

su¢ ciently low, or (ii) bidders are su¢ ciently risk-averse on information. The reason

for getting a stronger comparative statics in the IPV environment is again the absence

of the winner�s curse. To clarify this point, consider the case in which bidders are

risk neutral on information. While in the interdependent values setting the winner�s

curse gets exacerbated for high signals, in the IPV environment such overoptimism

phenomenon is not present.

Finally, we analyze the revenue e¤ects of the information sharing in the IPV envi-

ronment. Since this paper studies the formation of bidding coalitions with the same

number of members, the symmetry among bidders is always preserved. This sym-

metry and the independence of signals ensures that the revenue equivalence theorem

holds. Thus, if the seller�s expected revenue increase in the second-price auction,

they do so in the �rst-price format. The next result states that the auctioneer indeed

bene�ts from informational e¤ects of consortia formation in both auction mechanisms.

Proposition 47 In the IPV environment the information pooling induced by the con-
sortia formation implies larger seller�s expected revenue in both the �rst-price and the

second-price auction.

4.5 Discussion and Future Work

This draft constructs a benchmark setting for assessing the information e¤ects of legal

joint bidding arrangements on auction outcomes. Since this framework considers

independent signals and symmetric bidding coalitions, more information can always be

interpreted as better one from the seller�s point of view. As a consequence, information

pooling increases the bid-taker�s proceeds under a wide range of valuation structures,

including the IPV environment. However, this information sharing process does not

induce the same monotone comparative statics in the bidding behavior, as this e¤ect

depends on three aspects: (i) the valuation environment, (ii) the auction format, and

(iii) the risk aversion on information structures.

Some caveats on our results need to be emphasized, which can also be seen as

avenues for future research. First, in this draft we only focus on the informational

e¤ects of joint bidding practices, but we do not consider the consequences coming

from the reduction in the number of auction participants. That is, competition-type

e¤ects are not taken into account. To this end, we perform an arti�cial compara-

tive exercise which assumes that the number of bidders remains constant after joint

bidding arragements are attained. Thus, although each consortium has access to
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more information, we suppose that the number of these bidding coalitions is equal

to the original number of individual bidders. Second, we take the consortia forma-

tion as an exogenous phenomenon, without exploring neither their motivations nor

the characteristics of the process by means of which such arrangements are material-

ized. Accordingly, we do not model, for instance, decisions related to pro�t-sharing

rules and other mechanism design issues.20 Third, our comparative statics �ndings are

conditioned for two modelling choices closely related: the consortium�s signal and the

criterion of informativeness adopted for assessing in what terms this signal exhibits

better stochastic properties than the solo bidder�s one. In our paper, these modelling

issues are crucial to contradict the primary intuition that informational improvements

generated by joint bidding practices should be a major concern only in the common

value environment. Indeed, the fact that the notion of informativeness resulting in the

IPV framework be stronger than in the interdependent values setting hinges decisively

on what information for the consortium is considered relevant: while in the former

environment it is the maximum signal, in the latter one it is given by the average

signal. Fourth, we study symmetric environments so that always all bidders (individ-

ual or collective ones) observe the same number of signals identically distributed. In

general, this implies that all bidders access to more and better information, and thus,

the existence of strong and weak players is ruled out. Consequently, there are no

additional informational rents that a¤ect negatively the seller�s expected revenue.21 ;22

At the same time, this symmetry guarantees, together with the independence among

signals, that the favorable results for the auctioneer hold across di¤erent standard

auction formats. Finally, our last caveat is precisely in connection with the total

absence of any statistical dependence among the value estimates. This is a point

particularly important as any (positive) statistical dependence between consortium

members�signals -a¢ liation or simple correlation- may bring an additional source of

variability when signals are pooled through a summary statistic. As a consequence,

two interesting questions may came about: (i) more information may no longer mean

more estimate precision, and (ii) revenue e¤ects coming from the information pooling

may become sensitive to the auction format.

20A paper which studies the informational e¤ects of legal bidding coalitions and also models formally
these mechanism design issues is that of Hendricks, Porter and Tan [7].
21Klemperer [12] discusses the formation of consortia that originates asymmetric industrial struc-

tures, and thus, hurts the bid-taker.
22From an empirical point of view, the assumption of symmetric environments seems no too far

from what occurs in several bidding markets. Some anecdotal evidence suggests that consortia tend
to compete mainly between them in wildcat auctions (Hendricks, Pinkse and Porter [5]), and takeover
battles (Loyola [14]).
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4.6 Appendix

Proof of Lemma 31 Notice that

v(x; x;n) � E(vijxi = x; y1:n�1 = x)

= E(vijxi = x; y1:n�1 = x; y2:n�1 � x; :::; yn�1:n�1 � x)

= E(vijx1 = x; x2 = x; x3 � x; :::; xn � x)

where the second equality is without of loss of generality. Let us de�ne the event

= � fx1 = x; x2 = x; x3 � x; :::; xn � xg. Since vi is additively separable, it follows
that

v(x; x;n) = E( (xi) +

nX
j=1;j 6=i

'(xj)j=)

= E( 1(x1)j=) +
nX
j=2

E('(xj)j=)

=  (x) + '(x) + (n� 2)E('(xj)jxj � x) (4.12)

where the second equality holds because the conditional expectation is a linear operator

and the last equality follows from the independence of xi. Similarly, the independence

between xi and y1:n�1 implies that Fyjx(xjx) = Fn�1x (x). Accordingly, we have that

L(sjx) � exp(�
Z x

s
�(u;n)du)

=

�
Fx(s)

Fx(x)

�n�1
Hence,

l(sjx) =
@L(sjx)
@s

=
@Fn�1x (s)

@s
=Fn�1x (x):

Following Milgrom and Weber [17], we can then rewrite BFPA
x (x;n) as follows

BFPA
x (x;n) =

Z x

x
v(s; s;n)dL(sjx)

=

Z x

x
l(sjx) [ (s) + '(s) + (n� 2)E('(xj)jxj � s)] ds

=
1

Fn�1x (x)

Z x

x
[ (s) + '(s) + (n� 2)E('(xj)jxj � s)] dFn�1x (s)
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Since

E ['(xj)jxj � s)] =

R s
x '(�)dFx(�)

Fx(s)

= '(s)�
R s
x '

0(�)Fx(�)d�

Fx(s)
(4.13)

where the last equality follows from integration by parts, then

BFPA
x (x;n) =

1

Fn�1x (x)

Z x

x
( (s) + (n� 1)'(s))dFn�1x (s)

� 1

Fn�1x (x)

Z x

x

(n� 2)
R s
x '

0(�)Fx(�)d�

Fx(s)
dFn�1x (s) (4.14)

The �rst term of the r.h.s. of equation (4.14) corresponds toR x
x ( (s) + (n� 1)'(s))dF

n�1
x (s)

Fn�1x (x)
= E( (y1:n�1)jy1:n�1 � x)+(n�1)E('(y1:n�1)jy1:n�1 � x)

(4.15)

and the second term can be written as follows

1

Fn�1x (x)

Z x

x

(n� 2)
R s
x '

0(�)Fx(�)d�

Fx(s)
(n� 1)Fn�2x (s)fx(s)ds

=
(n� 1)
Fn�1x (x)

Z x

x
(

Z s

x
'0(�)Fx(�)d�)dF

n�2
x (s)

After integrating by parts the last expression becomes

(n� 1)
Fn�1x (x)

�
Fn�2x (x)

Z x

x
'0(�)Fx(�)d��

Z x

x
'0(�)Fn�1x (s)ds

�
= (n� 1)

"R x
x '

0(�)Fx(s)ds

Fx(x)
�
R x
x '

0(�)Fn�1x (s)ds

Fn�1x (x)

#
= (n� 1) [E('(y1:n�1)jy1:n�1 � x)� E('(xj)jxj � x)] (4.16)

where the last equality holds because of (4.13). Substituting (4.15) and (4.16) into

(4.14) yields

BFPA
x (x;n) = E( (y1:n�1)jy1:n�1 � x) + (n� 1)E('(xj)jxj � x)

which proves the �rst part of the statement.

For the second-price auction, fromMilgrom andWeber [17] it holds thatBSPA
x (x;n) =

v(x; x;n). Moreover, notice that from (4.12), v(x; x;n) =  (x) + '(x) + (n �
2)E('(xj)jxj � x), which completes the proof.�
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Proof of Corollary 32 Applying a similar line of reasoning that in Lemma 31 for

the case of zi, both results follow directly.�

Proof of Proposition 33 From Mares and Shor [15], log-concavity of fx guarantees

(A1)-(A3), where

(A1) zi �UV xi,

(A2) E(xijxi � t) � E(zijzi � t) for all t, and

(A3) E(y1:n�1jy1:n�1 � t) � E(w1:n�1jw1:n�1 � t) for all t 2 [x; t0] where t0 < x:

In addition, we need to state the following auxiliary result.

Claim 48 E('(xj)jxj � t) � E('(zj)jzj � t) for all t and j.

Proof of Claim 48 By the linearity of the expectation operator and (A2), it follows

that

E('(xj)jxj � t) = E(�xj jxj � t)

= �E(xj jxj � t)

� �E(zj jzj � t)

= E(�zj jzj � t)

= E('(zj)jzj � t)

for all t and j.�

Consider (4.2) and (4.4) evaluated at  (t) = �t, '(t) = �t, x = z = t and l = n.

Rearranging the �rst term in the r.h.s. of these both equations, it holds that

�E(y1:n�1jy1:n�1 � t) � �E(w1:n�1jw1:n�1 � t) (4.17)

for all t 2 [x; t0], because � � 0 preserves the inequality stated by (A3). Then,

applying Claim 48 together with inequality (4.17) to (4.2) and (4.4), allows us to

prove the �rst part of the lemma.

In order to demonstrate the second part of this lemma, we previously need to

establish two auxiliary results.

Claim 49 E('(xj)jxj � x) = E('(zj)jzj � x) for all j.
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Proof of Claim 49 In fact,

E('(xj)jxj � x) = E('(xj))

= �E(xj)

= �E(zj)

= E('(zj)jzj � x) (4.18)

for all j.�

Claim 50 E(y1:n�1) � E(w1:n�1).

Proof of Claim 50 Condition (A1) and the fact that E(xi) = E(zi) and supp(f) =

supp (g) imply that the uniform variability ordering induces the convex order so that

zi �CX xi or, equivalently, E(�(xi)) � E(�(zi)) for any convex function � (see Shaked

and Shanthikumar [20]). Accordingly, as y1:n�1 = max(x1; :::xn�1) and w1:n�1 =

max(z1; :::zn�1) andmax(:) is a convex function, it holds that E(y1:n�1) � E(w1:n�1).�

Thus, Claim 49 and 50 mean that BFPA
x (x;n) � BFPA

z (x;n). Since the equilib-

rium bids are increasing functions, this last result and the �rst part of the proposition

guarantee the existence of t2 � t1, and so, proves the second part of the statement.�

Proof of Proposition 34 Applying the same line of reasoning of Claim 50 in Proposition

33 based on the convex order, it must be that E('(xj)) � E('(zj)) for all j. More-

over, de�ne the function m =  �max so that m(x1; :::xn�1) =  (max(x1; :::xn�1)) =

 (y1:n�1). It is easy to check that m is a non-decreasing and convex function in all of

its arguments. Thus, as before we can apply the same property of the convex order

and thereby, it holds that E( (y1:n�1)) � E( (w1:n�1)). Since BFPA
x and BFPA

z

are increasing functions, using all of this in (4.2) and (4.4) allows us to establish the

existence of t2 2 [x; x) with the desired property.�

Proof of Proposition 35 (A1) and (A2) allow us to apply Corollary 1 in Whitt [21],

as the fact that ' is a non-decreasing and concave function implies that E('(zj)jzj �
t) � E('(xj)jxj � t) for all t and j. Similarly, since concavity of  ensures that m

is also a non-decreasing and concave function, it follows that E( (w1:n�1)jw1:n�1 �
t) � E( (y1:n�1)jy1:n�1 � t) for all t. These two facts together permit from (4.2) and

(4.4) to prove the statement.�

Proof of Proposition 36 From Lemma 31 and Lemma 32, notice that

v(t; t;n) =  (t) + '(t) + (n� 2)E('(xj)jxj � t) (4.19)
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and

�(t; t;n) =  (t) + '(t) + (n� 2)E('(zj)jzj � t) (4.20)

Conditions (A1) and (A2) allow us to apply Corollary 1 in Whitt [21], as the fact that '

is a non-decreasing and concave function ensures that E('(zj)jzj � t) � E('(xj)jxj �
t) for all t and j. From (4.19) and (4.20), it follows directly that �(t; t;n) > v(t; t;n).

Since in the second-price auction the equilibrium bids are so thatBSPA
x (t;n) = v(t; t;n)

and BSPA
z (t;n) = �(t; t;n), the last inequality yields the desired result.�

Proof of Proposition 37 The expected revenue with individual bidders in the second-

price auction corresponds to the expected bid by the bidder with the second-highest

signal, i.e., RSPAx = E(BSPA
x (y1:n�1;n)). Since BSPA

x (t;n) = v(t; t;n), it follows that

RSPAx =
R x
x v(t; t;n)dFy(t). Hence, the expected revenue with bidding consortia is

given by RSPAz =
R x
x �(t; t;n)dFw(t). From Proposition 36, �(t; t;n) > v(t; t;n) for

all t 2 (x; x), which ensures that RSPAz > RSPAx .�

Proof of Corollary 38 The result constitutes a direct application of the revenue

equivalence principle.�

Proof of Lemma 39 This result is stated in the body of the paper.�

Proof of Lemma 40 Let x and y be two variables with the common support [x; x]. De-

�ne Lx;y(t) as the ratio of densities of these variables, i.e. Lx;y(t) = f(t)=g(t). Hence,

after integrating on (x; s) we get that
R s
x dF (t) =

R s
x Lx;y(t)dG(t), or equivalently,

F (s) =

Z s

x
Lx;y(t)dG(t) (4.21)

Let us assume then that x �MLR y; which is equivalent to say that

Lx;y(s2) � Lx;y(s1) (A4)

for all s2 > s1 � x. Similarly, let Px;y(t) = F (t)=G(t) be the ratio of c.d.f.�s of the

variables x and y, respectively. From (4.21), it follows that

Px;y(s) =

R s
x Lx;y(t)dG(t)

G(s)
: (4.22)

Thus, we must prove that Px;y(s2) � Px;y(s1) for all s2 > s1 � x. From (4.22), we

have that

Px;y(s2) =

R s1
x Lx;y(t)dG(t) +

R s2
s1
Lx;y(t)dG(t)

G(s2)

=
Px;y(s1)G(s1) +

R s2
s1
Lx;y(t)dG(t)

G(s2)
:
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Hence, and by assumption (A4), note that

Px;y(s2) �
Px;y(s1)G(s1) + Lx;y(s1)(G(s2)�G(s1))

G(s2)
:

From this, Px;y(s2)� Px;y(s1) � 0 if and only if

(Lx;y(s1)� Px;y(s1))
�
G(s2)�G(s1)

G(s2)

�
� 0:

Notice that the term inside the square bracket is nonnegative as s2 > s1 � x. By

(4.22), the fact that the term inside the �rst bracket be also nonnegative is equivalent

to say that

Lx;y(s1) �
R s1
x Lx;y(t)dG(t)

G(s1)
:

This is true because assumption (A4) ensures that Lx;y(s1)G(s1) =
R s1
x Lx;y(s1)dG(t) �R s1

x Lx;y(t)dG(t), which completes the proof of the �rst part of the lemma. Finally,

the second part of the statement follows immediately from Lemma 39.�

Proof of Lemma 41 Let Lz;x(t) = gz(t)=fx(t) be the ratio of densities of the sig-

nals observed by the consortium and the solo bidder, respectively. It is easy to check

that Lz;x(t) = mFm�1x (t), and hence, @Lz;x=@t = m(m � 1)Fm�2x (t)fx(t) > 0 for all

t 2 (x; x] and m > 1, which completes the proof.�

Proof of Proposition 42 It follows directly from (4.9) and (4.11) when xi = zi = t and

l = n.�

Proof of Proposition 43 We previously need to state the following auxiliary results.

Claim 51 w1:n�1 �MLR y1:n�1.

Proof of Claim 51 When l = n, independence among bidders� signals implies

that Fy(t) = Fn�1x (t) and Gw(t) = Gn�1z (t) = F
m(n�1)
x (t). Hence, fy(t) = (n �

1)Fn�2x (t)fx(t) and gw(t) = m(n � 1)F
m(n�1)�1
x (t)fx(t). Accordingly, the ratio

of densities Lw;y(t) = gw(t)=fy(t) becomes mn�2Ln�1z;x (t). Since from Lemma 5.3,

@Lz;x=@t > 0 for all t 2 (x; x], the desired result follows.�

Claim 52 w1:n�1 �CSD y1:n�1:

Proof of Claim 52 From Lemma 40, Claim 51 implies directly this result.�

Finally, applying Claim 52 to (4.8) and (4.10) when l = n and x = z = t for all
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t 2 [x; x] allows us to show the statement.�

Proof of Proposition 44 The expected revenue with individual bidders in the second-

price auction under the IPV setting corresponds to expectation of the second-highest

value, i.e., RSPAx = E(y1:n�1). Similarly, the expected revenue with bidding consor-

tia is given by RSPAz = E(w1:n�1). From Claim 52 in Proof of Proposition 43, we

know that w1:n�1 �CSD y1:n�1. Since CSD implies �rst-order stochastic dominance

(FOSD), it follows that w1:n�1 �FOSD y1:n�1 and thereby, RSPAz = E(w1:n�1) >

E(y1:n�1) = RSPAx . Lastly, the straightforward application of the revenue equivalence

theorem ensures that the same inequality holds true for the �rst-price auction, i.e.,

RFPAz > RFPAx .�
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Chapter 5

Summary (in Spanish)

Ensayos en Teoría de Subastas

Esta tesis consiste en cuatro artículos que estudian, desde una perspectiva analítica

y formal, temas de amplia discusión hoy en día en los mercados organizados como

subastas.

El primer artículo, �How to sell to buyers with crossholdings�, caracteriza el mecan-

ismo de venta óptimo ante la presencia de relaciones de propiedad entre los postores

de una subasta (crossholdings). La motivación para este ejercicio proviene del hecho

que la literatura anterior ha mostrado que un principio clásico en Teoría de Subas-

tas, como el Teorema de Equivalencia de Ingresos, no se cumple cuando existen estos

crossholdings. Por tanto, conocer cuál es el procedimiento de venta que debiese usar

un subastador en estos casos resulta ser un ejercicio interesante desde una perspectiva

teórica y aplicada.

La caracterización de este mecanismo maximizador de ingresos está basada en tres

vertientes de la literatura: el enfoque de diseño de mecanismos (Myerson 1981), el

enfoque del ingreso marginal (Bulow y Roberts 1989), y la Teoría de Subastas.

El principal resultado es que el mecanismo óptimo impone una política discrimina-

toria en contra de los postores más fuertes, de tal modo que los ingresos esperados del

subastador son crecientes en: (i) el tamaño de un crossholding común (caso simétrico),

y (ii) el grado de asimetría de estas participaciones de propiedad (caso asimétrico).

Además, establecemos que este procedimiento óptimo puede ser implementado me-

diante un mecanismo secuencial que incluye un esquema de precio-preferencia y un

posible acuerdo exclusivo con el postor más débil de la subasta. Adicionalmente,

mostramos que un procedimiento de negociación secuencial bastante simple, aunque

subóptimo, rinde ingresos esperados para el vendedor mayores que una subasta al

primer precio y una al segundo precio.
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El segundo trabajo, �Optimal takeover contests with toeholds�, caracteriza cómo

debería ser vendida una �rma que es objeto de una OPA por parte de eventuales

compradores que ya poseen participaciones de propiedad en ésta (toeholds). El ob-

jeto de este artículo tiene dos motivaciones principales: una de carácter teórica y otra

de naturaleza práctica. En primer lugar, estudios previos han establecido la falta de

indiferencia de parte del vendedor entre distintos mecanismos de venta tradicionales

en presencia de toeholds. En segundo lugar, la frecuente presencia de estas participa-

ciones de propiedad en los procesos de toma de control en el mundo real proporciona

una fuerte justi�cación práctica para la realización de este ejercicio teórico. La car-

acterización del procedimiento óptimo de venta se basa en el diseño de mecanismos.

Adicionalmente, el análisis de procedimientos alternativos (secuenciales) constituye

una aplicación de las técnicas de la Teoría de Subastas y la Teoría de Juegos, especial-

mente aquellas referidas a juegos dinámicos con información incompleta.

El artículo establece formalmente que el mecanismo que maximiza el precio de la

compañía bajo estas circunstancias debe ser implementado por una subasta no es-

tándar, que imponga un sesgo contra los postores con toeholds más grandes. Este

procedimiento discriminatorio es tal que el precio de venta promedio de las acciones

es creciente tanto en el tamaño de un toehold común (caso simétrico), como en el

grado de asimetría de esas participaciones de propiedad (caso asimétrico). Final-

mente, demostramos que un mecanismo basado en una ronda de negociaciones que

dé prioridad a los postores más fuertes (aquellos con toeholds más grandes), replica

las principales propiedades del procedimiento óptimo. Como resultado de esto último,

establecemos que este mecanismo de negociación secuencial domina, en términos de

precio de venta de las acciones, a las subastas tradicionalmente utilizadas en los pro-

cesos de toma de control corporativo.

El tercer artículo, �On bidding markets: the role of competition�, analiza los efectos

de la concentración industrial sobre las pujas de equilibrio y por ende, sobre los ingresos

esperados del subastador. Estos efectos son estudiados bajo el modelo CIPI (condi-

tionally independent private information), un marco de análisis que incluye ambientes

con diferentes valoraciones y estructuras de información. El uso de este modelo es

especialmente innovador debido a que permite extender la frontera del conocimiento

respecto a las consecuencias de la concentración en mercados de subastas con valo-

raciones comunes e información dependiente (señales a�liadas).

La aplicación de la Teoría de Subastas a este tipo de ambientes (Milgrom y Weber

1982) nos permite descomponer formalmente el impacto sobre los ingresos, debido

a menor competencia, en cuatro clases de efectos: un efecto competencia, un efecto

inferencia, un efecto maldición del ganador y un efecto tamaño de muestra. Discutimos

las propiedades de cada uno de estos efectos, y caracterizamos las condiciones que
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garantizan la (no)monotonicidad de la puja de equilibrio y los ingresos.

Nuestros resultados sugieren que es más probable que el subastador se bene�cie

de menos competencia en mercados con estructuras de valoraciones e información

más completas. Un hallazgo que es particularmente interesante es el hecho que las

condiciones bajo las cuales la mayor concentración industrial podría ser bene�ciosa

son menos exigentes que aquellas encontradas por la literatura previa (Pinkse y Tan

2005).

El último artículo, �On bidding consortia: the role of information�, constituye un

primer paso para estudiar los efectos de información de las prácticas de puja con-

junta (consorcios y fusiones) sobre las pujas de equilibrio y los ingresos esperados

del subastador. Estos efectos son analizados bajo una formulación aditiva del mod-

elo de valoraciones interdependiente y señales independientes. Este marco de análisis

permite examinar dos casos polares: el paradigma de valoraciones comunes puras y

el paradigma de valoraciones privadas puras. Asimismo, provee a futuras investiga-

ciones de un modelo de referencia para comparar ambientes más completos respecto

de valoraciones e información, y grados de simetría en la formación de consorcios.

Mediante las técnicas de la Teoría de Subastas, establecemos que el grado en el que

el proceso de intercambio de información en una coalición de postores lleva a pujas más

agresivas depende de tres elementos: (i) el ambiente de valoraciones, (ii) el formato de

la subasta, y (iii) el grado de aversión al riesgo en la información.

No obstante lo anterior, concluimos que en general el subastador se bene�cia de

los efectos de información producto de las prácticas de puja conjunta. En particular,

el trabajo demuestra que los ingresos esperados aumentan cuando, tanto una subasta

al primer precio como una al segundo precio, son utilizadas bajo un amplio rango de

ambientes de valoraciones.


