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Abstract. This paper presents a feature fusion approach to the recog-
nition of human actions from multiple cameras that avoids the computa-
tion of the 3D visual hull. Action descriptors are extracted for each one
of the camera views available and projected into a common subspace
that maximizes the correlation between each one of the components of
the projections. That common subspace is learned using Probabilistic
Canonical Correlation Analysis. The action classification is made in that
subspace using a discriminative classifier. Results of the proposed method
are shown for the classification of the IXMAS dataset.

1 Introduction

The recognition of human actions has received an increasing attention by the
computer vision community during the last years [10]. One of the current trends
in the field is how to efficiently combine the perceptions grabbed from different
viewpoints in order to create more robust action recognition systems. This way
the system can cover wider scenes, being able to deal with the possible occlusions
caused by walls and furniture that would make the recognition from a single view
very difficult if not impossible.

Although there has been different proposals of human action recognition sys-
tems at the different sensor fusion levels proposed by Dasarathy [5] as [4,15] in
the decision-in decision-out level or [22,12] at the feature-in decision-out level,
the most successful approaches have been defined at the feature-in feature-out
level. These approaches extract human silhouettes from the different cameras
using for example background subtraction [16], and then reconstruct the 3D vi-
sual hull of the human [9] as the feature to be used for the recognition. This
way, Weinland et al. [21] have proposed the Motion History Volumes (MHV) as
an extension of the popular Motion History Image (MHI) [3] to 3D. Action clas-
sification is then made using Fourier analysis of the MHV. Peng et al [13] have
performed multilinear analysis of the voxels in the visual hull. Turaga et al. [19]
have studied the visual hulls using Stiefel and Grassman manifolds, reporting
the best results for action recognition in 3D until date. The main drawback of
these methods is that 3D visual hull reconstruction has a high computational
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burden and requires accurate calibration parameters of each one of the cameras
observing the scene. Also, the computation of the 3D visual hull requires at least
the silhouettes from 2 different camera viewpoints.

This work presents a novel method for the recognition of human actions using
multiple cameras at the feature fusion level but without explicitly reconstructing
the visual hull or other 3D descriptor. Experimental results reported in the liter-
ature [19,13] have shown that visual hulls can be projected into low dimensional
manifolds where most of their variance is preserved. Moreover, a silhouette is the
projection of a visual hull into the camera plane, and different works [20] have
also reported that they can be parametrized into low dimensional manifolds. The
aim of our method is to find a set of projection functions, one for each camera,
that project the corresponding silhouettes into a common low dimensional man-
ifold. We think that the representation of the silhouettes into that common low
dimensional manifold would be equivalent to the low dimensional representation
fo the visual hull, so similar results can be achieved in human action recognition.

Probabilistic continuous latent variable models provide a framework for man-
ifold learning where low and high dimensional representations are related via
the factorization of their joint probability distribution. We test the usage of
the Probabilistic Canonical Correlation Analysis (PCCA) model [2] to learn the
projections of the features observed at the different cameras into a subspace
that maximizes the correlation between their components. The representation
of the observed features into that subspace is then used for action sequence
classification.

Paper is organized as follows: section 2 presents how the proposed system
is structured; 3 reviews the Canonical Correlation Analysis model; section 4
describes the sequence classifier that is going to be used to test the system;
section 5 shows some experimental validation of the method; finally, section 4
discusses the conclusions and future lines of the work.

2 System Overview

The architecture of the proposed system is shown on figure 1. The images
grabbed by the C different cameras observing the scene are independently pro-
cessed to extract a sequence of action descriptors Xc = x1c, . . . , xTc, 1 ≤ c ≤ C,
and T is the total number of frames grabbed. The C sequences of actions de-
scriptors extracted are fused projecting them into a common subspace to give
a sequence of common action descriptors Z = z1, . . . , zT , zt = F (xt1, . . . , xtC).
Finally each sequence is introduced into an action classifier to make the decision
on the action being performed in the sequence.

3 Canonical Correlation Analysis

Canonical Correlation Analysis is the method we use for the fusion of action
descriptors. In the next paragraphs we give an overview of the classical and the
probabilistic formulation.
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Fig. 1. Overview of the proposed system. Features are extracted for each available
view. They are projected into a common subspace by Canonical Correlation Analysis.
This projection is the used for action classification.

3.1 Classical Definition

Canonical Correlation Analysis [6] allows measuring the linear relationship be-
tween a pair of multidimensional variables. Given two random variables x1 and
x2 of dimension d1 and d2 and zero mean, CCA finds a pair of linear transforma-
tions w1, w2, such that one component within each set of transformed variables
is correlated with a single component in the other set. The correlation between
the corresponding components is called canonical correlation, and there can be
at most d = min (d1, d2) canonical correlations. The first canonical correlation
is defined as:
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of a set of training data x = (x1, x2). The rest of canonical correlation directions
are orthogonal to w1 and w2 respectively. They can be computed as the solutions
of the generalized eigenvalue problem:

(
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) (
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The classical CCA model is defined for only two random variables x1 and
x2. Bach and Jordan [1] generalize it to m random variables. The generalized
eigenvalue problem to solve is then defined as:
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3.2 Probabilistic Interpretation

Bach and Jordan [2] made a probabilistic interpretation of CCA extending the
probabilistic interpretation of PCA proposed by Tipping and Bishop [17]. They
define the following generative model, also shown on figure 2:

Fig. 2. Graphical model of the probabilistic interpretation of CCA made by Bach and
Jordan [2] for two variables

zn ∼N (0, Iq)
xn1 ∼N (W1zn + μ1, Ψ1)
xn2 ∼N (W2zn + μ2, Ψ2)

They also show that the maximum likelihood estimates of the model parameters
are given by:

Ŵ1 = Σ̃11U1M1 (1)

Ŵ2 = Σ̃22U2M2 (2)

Ψ̂1 = Σ11 − Ŵ1Ŵ
T
1 (3)
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Ψ̂2 = Σ22 − Ŵ2Ŵ
T
2 (4)

μ̂1 = μ̃1 (5)
μ̂2 = μ̃2 (6)

where M1 and M2 are arbitrary matrices such that M1M
T
2 = Pq, being Pq a

matrix with the canonical correlations on its diagonal. U1q and U2q are the first
q canonical directions.

Fig. 3. Generalization of PCCA to C different data sources used in this paper

This model is easily generalizable to C different sources of data. The graphical
model in that case corresponds to the shown on figure 3. Given a set of C different
sources, each source c is generated as:

zn ∼N (0, Iq)
xnc ∼N (Wczn + μc, Ψc)

The maximum likelihood estimates of the parameters are then given by:

Ŵc = Σ̃ccUcdMc (7)

Ψ̂c = Σcc − ŴcŴ
T
c (8)

μ̂c = μ̃c (9)

This probabilistic generalization of the CCA model is employed in our system
to combine the feature descriptors extracted from the different views. We choose
the probabilistic interpretation as it would allow us to easily integrate the model
as a part of larger graphical models for action recognition.

4 Hidden Conditional Random Fields

Hidden Conditional Random Fields (HCRF) [14] extend Conditional Random
Fields [8] introducing hidden state variables into the model. A HCRF is an
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undirected graphical model composed of three different set of nodes, as figure 4
shows. The node y represents the labelling of the input sequence. X = x1, . . . , xt

is the set of nodes corresponding to the sequence observations H = h1, . . . , ht is
the set of hidden variables modelling the relationship between the observations
xi and the class label y and the temporal evolution of the sequence

Fig. 4. Graphical model representation of the Hidden Conditional Random Field

The conditional probability of a sequence label y and a set of hidden part as-
signments h given a sequence of observations X is defined using the Hammersley-
Clifford theorem of Markov Random Fields:

P (y,h | x, θ) =
eΨ(y,h,x;θ)

∑
y′

∑
h eΨ(y,h,x;θ)

(10)

where θ is the vector of model parameters. The conditional probability of the
class label y given the observation sequence X is obtained marginalizing over all
the possible assignments of hidden parts h:

P (y | x, θ) =
∑

h eΨ(y,h,x;θ)

∑
y′

∑
h eΨ(y′,h,x;θ)

(11)

The potential function Ψ (y,h,x; θ) is a linear function of the input:

Ψ (y,h,x; θ) =
∑

i

φ (xi) · θ(hi) +
∑

i

θ (y, hi)

+
∑

(j,k)∈E

θ (y, hj, hk)
(12)

The first term, parametrized by θ (hi) measures the compatibility of each obser-
vation xi with the hidden variable hi. The second term measures the compati-
bility of the hidden part hi with the class label and is parametrized by θ((y, hi).
Finally, the third term models sequence dynamics, measuring the compatibility
of adjacent hidden parts hi and hj with the class y.
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(a) Camera 1 (b) Camera 2 (c) Camera 3

(d) Camera 4 (e) Camera 5

Fig. 5. The kick action in the IXMAS dataset from the five available views

Given a set of training samples {xi, yi}, model parameters are adjusted max-
imizing the L2 regularized conditional likelihood function of the model:

L (θ) =
n∑

i=1

log P (yi | xi, θ) +
||θ||2
2σ

(13)

The optimal parameters θ∗ maximizing the conditional likelihood function are
found using Quasi-Newton gradient based methods. Both the computation of
the posterior probability on equation 11 and the auxiliary distributions that
appear on the gradient of 13 can be efficiently made using belief propagation,as
proposed in [14].

5 Experiments

5.1 Experimental Setup

The proposed algorithms are going to be tested in the classification of IXMAS
dataset [21]. This dataset contains 11 actions performed by 10 different actors
at least 3 times each. The actions are recorded from 5 different viewpoints. The
algorithms are going to be tested using Leave-One-Actor-Out Cross Validation
(LOAO-CV): The algorithms are trained with all the actors unless one, used for
validation.

The system is going to be tested using the action descriptor proposed by Tran
et al. [18], combining optical flow and appearance information. It is used in the
system because it has shown a high experimental performance. The bounding
box of a human being is normalized to a square box, from which human shape
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and optical flow are computed. Vertical and horizontal planes of the optical flow
are split and blurred. A radial histogram is computed over each of the optical
flow planes and the shape. The three histograms are concatenated into 216-
d vector. Lastly, PCA reduction of the surrounding past and future vectors is
appended to finally generate a descriptor of DTRAN = 286 dimensions. Readers
are referred to [18] for more details.

In order to sped-up the CCA computation, PCA analysis of the descriptors
is performed, retaining only the 100 principal components. CCA is going to be
trained for latent dimensionality values of q = 10, 12, 14, 16, 18, 205. The number
of hidden states of the HCRF is going to be fixed to |H | = 11, 22.

5.2 Results and Discussion

Table 1 shows the results obtained by the proposed method. It can be seen that
the maximum accuracy is obtained for q = 20 dimensions and 22 hidden states.
There accuracy starts growing with the number of dimensions, to then decrease
and again increase to achieve teh best results. These phenomena gives an idea
of how difficult is to manually parametrize the proposed methods

Table 1. Results obtained for different sizes of latent dimensionality

�������|H |
# dims

10 12 14 16 18 20

11 80.78 81.69 81.38 81.08 78.68 81.38
22 80.78 81.19 83.78 83.18 82.58 85.59

Finally, table 2 compares the results of our method to others. While it im-
proves the results achieved by other methods, it is still far from the results
obtained by the methods based on 3D visual hulls.

Table 2. Comparison of the accuracy of our method to others

Method Accuracy Type

Srivastava et al. [15] 81.4 Decision-in Decision-out
Our 85.59 Feature-in Feature-out

Weinland et al. [21] 93.33 2D Feature-in 3D Feature-out
Peng et al. [13] 94.59 2D Feature-in 3D Feature-out

6 Conclusions

This work has shown a preliminary approach to the fusion of features for human
action recognition using a subspace learning technique. Feature descriptors ex-
tracted from different camera views have been projected into a common subspace
learned using Canonical Correlation Analysis. The action classification has been
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made in that subspace. Although the results achieved have been inferior to the
obtained by state of the art 3D methods, we belief a non linear extension of the
method using a mixture of Canonical Correlation Analyzers would reduce the
gap [7].

Other strategy to test in the future would be to integrate the PCCA model
into a sequence manifold learning method such the introduced in [11], in order to
use the temporal evolution of the features for subspace regularization. Finally,
other strategy to try would be to integrate the action classification with the
resulting model, to perform the learning of the dimensionality reduction and the
action classes at the same time.
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