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Abstract

In this paper, we apply independent component analysis (ICA) for prediction and signal

extraction in multivariate time series data. We compare the performance of three differ-

ent ICA procedures, JADE, SOBI, and FOTBI that estimate the components exploiting

either the non-Gaussianity, or the temporal structure of the data, or combining both, non-

Gaussianity as well as temporal dependence. Some Monte Carlo simulation experiments

are carried out to investigate the performance of these algorithms in order to extract com-

ponents such as trend, cycle, and seasonal components. Moreover, we empirically test the

performance of those three ICA procedures on capturing the dynamic relationships among

the industrial production index (IPI) time series of four European countries. We also com-

pare the accuracy of the IPI time series forecasts using a few JADE, SOBI, and FOTBI

components, at different time horizons. According to the results, FOTBI seems to be a good

starting point for automatic time series signal extraction procedures, and it also provides

quite accurate forecasts for the IPIs.

Keywords: ICA, Multivariate Time Series, Signal Extraction, Time Series Forecasting.

1 Introduction

In many applications of empirical sciences such as Medicine, Engineering, and Economics, when

the data are observed with a high level of noise, extracting the relevant patterns from the ob-

servations becomes an important task. The problem of estimating those underlying components

(components of interest) from the observations is known as signal extraction or feature extraction

problem. Thus, considering the additive decomposition,

xt = χt + νt, (1)
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where xt is the observed data, χt is the set of interesting components (signal), and νt is the

noise process (not necessarily white) which is assumed to be independent of χt, the aim of signal

extraction is to isolate the signal from the noise. The estimates of the signal will be obtained by

filtering the observations, �χt = Fxt, in such a way that the signal estimates satisfy the minimum

mean square error (MMSE) criterion.

If xt is a univariate time series process, model (1) might represent the decomposition of xt as

the sum of some underlying components of interest, which are usually interpreted in terms of

trend, seasonality, and cycle, among others. Then, some economic applications such as seasonal

adjustment, detrending, and analysis of the business cycles, can be seen as particular cases

of signal extraction problems, where the interesting signals (χt) are, respectively, seasonally

adjusted components, trends, and cycles.

Several approaches have been developed for solving the signal extraction problem in the

univariate framework. The first one, called ‘ad-hoc’ filter design approach, includes methods

that use moving-average smoothing filters to estimate the signal. These methods are supported

by the main central statistical agencies for trend extraction and seasonal adjustment in time

series. The X-11 filter (Shiskin et al. (1967)) for seasonal adjustment and the Beveridge-Nelson

(Beveridge and Nelson (1981)), the Baxter and King (Baxter and King (1995)), and the Hodrick-

Prescott (Hodrick and Prescott (1997)) filters, which were used to estimate the trend-cycle

components, are some well-known examples of the ‘ad-hoc’ filter design approach. The main

disadvantage of these filters is that they do not take into account the structure of the time series

process and they could produce spurious results and over/under-estimated components. Trying

to solve this important limitation, it has been developed the so-called model-based procedures,

where the filter is derived from statistical models and it is adapted to the particular structure

of the time series processes. Two directions emerge within the model-based procedures: the

ARIMA-model-based approach and the structural modelling approach.

On the one hand, the ARIMA-model-based procedures (Box et al. (1978), Burman (1980),

Bell and Hillmer (1984), Hillmer and Tiao (1982), among others) directly identify a parsimonious

ARIMA model for the observations. Then, univariate models for the components are derived

with the restriction that the aggregation of those models yields the ARIMA model identified

for the data. Because there is not a unique admissible decomposition, these methods apply the

‘canonical decomposition’ (see Box et al. (1978)) to solve identifiability problems. Within this

approach, the most popular algorithm is the SEATS/TRAMO software (Gómez and Maravall

(1996), Maravall (1993)) that is based on the filter developed by Burman (1980).

On the other hand, the structural modelling approach (Harvey (1989), Young et al. (1999),

Bujosa et al. (2007), among others), instead of using a-priori information to specify a model for

the observations, directly assumes different stochastic linear models for the unobserved compo-

nents. These models are formulated within an stochastic state space setting, and the Kalman

filter is used to estimate the parameters. STAMP (Koopman et al. (1995)) is a well known soft-

ware that directly specifies structural models for the components of interest in the time domain

framework. Another implementations of this approach, such as the CAPTAIN MatLab Toolbox

program (Young and Pedregal (1999), Taylor et al. (2007)) and the linear dynamic harmonic

regression algorithm (Bujosa et al. (2007)), are developed in the spectral framework assuming
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that the data are periodic time series.

When we move to the multivariate framework, where the issue of information redundancy in

the observed data set is usually arising, capturing the most ‘interesting’ features of the data

might be as important as (or even more than) it was in the univariate case. In particular, when

we observe multiple time series data where dynamic relationships are involved, the components

of interest might be common to different time series. Thus, extracting those underlying com-

mon components, which probably may have a useful interpretation in terms of common trends or

common seasonality, becomes an important task in multivariate time series analysis. Dynamic

factor models (see Forni et al. (2000) and Peña and Poncela (2006), among others) and multi-

variate structural time series models (Harvey (1989)) have traditionally dealt with this topic.

However, it is hard to develop ‘automatic’ (or quasi-automatic) procedures for signal extraction

in the multivariate framework, and STAMP (Koopman et al. (1995)) is the only model-based

procedure that can handle this problem.

As an alternative to model-based procedures, principal component analysis (PCA) is usually

applied to multivariate data sets with the aim of noise and/or dimension reduction, and signal

extraction. PCA can be seen as an ‘automatic’ procedure for signal extraction, where the

relevant information is given by those components that explain the largest amount of variance

in the data. PCA is quite successful in multivariate linear data but, when the data are non-

Gaussian (non-linear), PCA has difficulty in separating the underlying components. Empirical

applications show that, under non-Gaussianity assumption, the components extracted by PCA

are quite far away from the real ones (see for example, Oja (1982) and Särelä and Valpola (2005),

among others). Moreover, these empirical results reveal that independent component analysis

(ICA) estimates the underlying components better than PCA does.

In this chapter, we explore the performance of ICA in multivariate time series signal extraction,

and analyze how the ICA components could be useful to predict the observations. ICA seems

to be appropriate when we observed several economic time series data, where some components

of interest, such as trend or seasonal variations, can be assumed to be fairly independent.

This paper is organized as follows. Section 2 reviews the main approaches that have been

presented in the literature for signal extraction. Then, we introduce the procedure to forecast

the data using a set of ICA components. In Section 4, we carry out some simulation experiments

to support the idea that ICA could be seen as the first step for automatic signal extraction pro-

cedures. Next, we apply ICA to extract the components of interest in the industrial production

indexes of several European countries. In addition, we analyze how these data are forecasted

using a few ICA components. Finally, Section 6 gives some concluding remarks.

2 Model-based methods for signal extraction

Most of the latest signal extraction algorithms are model-based procedures where the obser-

vations are decomposed as the sum of some components of interest, such as trend, cycle, and

seasonal components. For example, for time series data, estimating the trend and the season-

ality is important to analyze the main movements of the time series, and to obtain seasonal
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adjusted data, respectively. In general, since an infinite number of decompositions is possible,

the identification of the components is not unique, and additional assumptions should be made.

An attractive feature of model based-approaches is that, since they are based on specific

statistical models for the observations and/or the components, model-based approaches could

facilitate analysis and inference. Next, we review the ARIMA-model based and the structural

modelling approaches, paying attention to some of their well-known implementations.

2.1 ARIMA-model based methods

The ARIMA-model based methodology (Box et al. (1978), Hillmer and Tiao (1982), Burman

(1980), Maravall and Pierce (1987), amongst others) came up as an alternative procedure for

seasonal adjustment of time series data. The ARIMA-model based approach starts by applying

the Box and Jenkins methodology to specify an ARIMA model that describes the behavior of

the time series data. Then, univariate models for the components are derived so that their

aggregation should be consistent with the original ARIMA model. Two assumption are made to

guarantee the unique identification of the components: first, it is assumed that the components of

interest are mutually uncorrelated; second, it is applied the canonical principle (Box et al. (1978))

which maximizes the variance of the noise component and leads the ‘interesting’ components to

be as stable as possible (Hillmer and Tiao (1982)). The underlying components are computed

by the Wiener-Kolmogorov filter (Box et al. (1978)) that provides the MMSE estimators of the

components, even for non-stationary time series (Bell (1984)).

Popular procedures that take the ARIMA-model based approach are the X-11-ARIMA (Dagum

(1980)), the X-12-ARIMA (Findley et al. (1998)) and the SEATS/TRAMO software (Gómez

and Maravall (1996), Maravall (1993)). These methods are commonly used by official statisti-

cal agencies to get seasonally adjusted data (for example, Statistics Canada, US Bureau of the

Census, and Bank of Spain are well-known examples of official agencies that apply, respectively,

X-11-ARIMA, X-12-ARIMA, and SEATS/TRAMO programs, to seasonal adjustment).

The first two procedures, the X-11-ARIMA and X-12-ARIMA, are based on moving averages

filters and then, they are not ARIMA-model based procedures themselves. However, since at the

first stage the two procedures identify an ARIMA model for the observations and the definitions

of the signals are ‘implicit’, the X-11- and the X-12-ARIMA are considered as ARIMA-model

based procedures. Both X-11- and X-12-ARIMA uses the X-11 filter (Cleveland and Tiao

(1976)), that applies a set of centered moving averages to estimate the seasonal components. The

problem is that when moving averages filters are used, many observations of the beginning and

the end of the series are lost and the seasonal effect could be underestimated. The X-11-ARIMA,

trying to avoid the loss of observations, uses the ARIMA model fitted to the original series for

extending the length of the data set (forecasting and backcasting). The X-12-ARIMA follows

the same idea that the X-11-ARIMA but introduces a pre-adjustment program, REGARIMA,

that is applied to the original time series data (before the identification of the ARIMA model)

to detect outliers and to estimate some deterministic effects (for example, the calendar effect).

The SEATS/TRAMO programs (Gómez and Maravall (1996), Maravall (1993)) are efficient

and automatic procedures which are mainly applied for seasonal adjustment and trend-cycle
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estimation. First, TRAMO (Time series Regression with ARIMA noise, Missing values and

Outliers) is a pre-adjustment program that is applied to the univariate time series data to pre-test

for the log-level specification, to detect and correct outliers (additive outliers, transitory changes,

and level shifts), to interpolate missing values, and to correct other deterministic effects such as

Trading Day, Leap Year, and Easter effects. Then, TRAMO specifies a set of possible models

for the pre-adjusted data, estimates them by maximum likelihood, and selects the ‘optimal’ one

based on AIC and BIC criteria. Finally, according to the selected model, TRAMO forecasts the

data to extend the time series and thus, it reduces the bias when a new observation enters to

the model. Next, SEATS (Signal Extraction in ARIMA Time Series) derives univariate ARIMA

models for the stochastic components so that they reflect the usual structures associated to

trend, cyclical (or trend-cycle), and seasonal components. SEATS uses the canonical principle

(Box et al. (1978)) to avoid identifiability problems and applies the Burman-Wilson algorithm

(Burman (1980)) to estimate the components (MMSE estimators). The final estimates for the

unobserved components are obtained by the aggregation of the deterministic effects (computed

by TRAMO) of each individual component to the stochastic components given by SEATS.

ARIMA-model based procedures have two important drawbacks: first, since the models for

the components are not directly specified (they are derived from the original ARIMA model

for the observations and should be consistent with it) those components could not be easily

interpretable, a-posteriori, in terms of trend or seasonality; second, since the ARIMA-model

based procedures consider a common noise for all the components, the components’ estimates

could be correlated, and therefore, the assumption of uncorrelated components would not be

satisfied. In structural modelling procedures, this problem is solved considering independent

noises for each component.

2.2 Structural modelling approach

The structural modelling approach is an alternative model-based methodology for signal extrac-

tion that is based on unobserved components models. Contrary to the ARIMA-model based

methodology the structural modelling procedures directly specify univariate stochastic models

for the underlying components and then, their interpretability in terms of trends, seasonalities

and cycles is guaranteed.

We distinguish two structural modelling specifications: the structural time series approach

(Harvey (1989)) that is implemented in the STAMP software (Koopman et al. (1995)), and

the dynamic harmonic regression approach (Young et al. (1999)), that is implemented in the

CAPTAIN Toolbox for Matlab (Young and Pedregal (1999), Taylor et al. (2007)) as well as

in the new linear dynamic harmonic regression algorithm (Bujosa et al. (2007)). The main

differences between the dynamic harmonic regression model (Young et al. (1999)) and Harvey’s

structural model (Harvey (1989)) rely on the model specification for the periodic components

and the optimization method used to estimate the parameters. In the following, we discuss these

two approaches.
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2.2.1 Structural time series approach

Structural time series models (Harvey (1989)) are formulated in terms of unobserved components

which have a direct interpretation. According to Harvey (1989), the structural time series models

‘are not more than regression models in which explanatory variables are a function of time and

the parameters change with time’. These explanatory variables represent dynamic features of

the data (such as stochastic trends, cycles, and/or seasonalities). The starting point in structural

time series models is to identify those features and model them in such a way that we can obtain

useful predictions for the time series data. Structural time series models are usually formulated

as state space models and the parameters of the unobserved components models are estimated

using the Kalman filter and related algorithms (see Harvey (1989) for a detailed description of

the state space and the Kalman filter methodologies).

STAMP (Structural Time Series Analyzer, Modeler and Predictor) (Koopman et al. (1995))

is a standard signal extraction procedure that is implemented according to structural time series

models (as they are defined in Harvey (1989)). STAMP, contrary to alternative signal extraction

procedures that are only developed in the univariate framework (e.g. SEATS/TRAMO), can

be applied to extract the components of interest in both univariate as well as multivariate time

series data.

The basic structural time series model assumes that univariate time series can be decomposed

into additive stochastic components as

yt = µt + ψt + γt + �t. (2)

where µt represents the trend, ψt the cycle, γt the seasonality, and �t the irregular component (a

structural time series model should not be necessarily defined in terms of these four UCs; it may

be defined only by some of them). There are different specifications to formulate the stochastic

process for each component. By default, for univariate time series data, STAMP considers a

basic structural time series model which chooses the local linear trend (LLT) model for the

trend, a stochastic cyclical component, a stochastic trigonometric model for the seasonality, and

a white noise process for the irregular term, �t ∼ NID(0, σ2
� ).

According to the LLT model, the stochastic trend is given by

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2
η),

βt = βt−1 + ξt, ξt ∼ NID(0, σ2

ξ
),

(3)

where βt is the stochastic slope of the trend. Here, the two noises, ηt and ξt, and the irregular

component in (2), �t, are assumed to be mutually uncorrelated. Different specifications for

the trend are possible: either the level (µt) or the slope (βt) could be deterministic instead of

stochastic, and the slope might not be included in the model (see Harvey (1989) for a complete

revision of different specifications).

The stochastic cyclical component is given by

�
ψt

ψ∗
t

�
= ρψ

�
cosλc sinλc

−sinλc cosλc

��
ψt−1

ψ∗
t−1

�
+

�
κt

κ∗t

�
(4)
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where ρψ and λc represent, respectively, the damping factor and the cyclical frequency (measured

in radians) which take values 0 < ρψ ≤ 1 and 0 ≤ λc ≤ π, respectively. The period of the cycle is

given by 2π/λc. The cyclical disturbances, κt ∼ NID(0, σ2
κ) and κ∗t ∼ NID(0, σ2

κ), are assumed

to have the same variance and to be mutually uncorrelated.

The trigonometric formulation for the seasonal component is

γt =

[s/2]�

j=1

γj,t, (5)

where [s/2] =

�
s/2, if s is even

(s− 1)/2, if s is odd
(s is the number of seasonal frequencies in a period),

and γj,t is defined as a non-stationary stochastic cycle, for each j = 1, 2, ..., [s/2]. That is, it

is given by (4) where ρψ = 1, and the frequency for γj,t, in radians, is λc ≡ λj = 2jπ/s. As

an alternative to the trigonometric form, the seasonality may be formulated using the dummy

variable form (see Harvey (1989) for more details).

When we have more than one time series, dynamic interactions usually appear among most

(or all) of them and capturing those relationships requires the joint estimation of the multiple

time series within a multivariate framework. Multivariate structural time series models are

straightforward generalized from the univariate ones as follows: the data, that is now a vector

of time series, yt, decompose as in (2), but considering vector components instead of scalars.

The models that are specified for each vectorial component generalize the ones formulated in the

univariate case (for instance, models (3), (4), and (5) for the trend, the cycle, and the seasonal

components, respectively), replacing the scalar components with vectors. In the particular, for

multivariate cycles, the damping factor, ρψ, and the cyclical frequency, λc, are assumed to take

the same value for all the series. This kind of models, called SUTSE (Seemingly Unrelated

Time Series Equations), assumes that the disturbances of different components are multivariate

normally distributed and mutually uncorrelated in all time periods.

In SUTSE models, the disturbance covariance matrices, in particular their ranks, play an

important role to determine the presence of common factors. On the one hand, if the disturbance

covariance matrices are of full-rank, then each individual time series of yt will have its own

components (trend, and/or cycle, and/or seasonality, and/or irregular components), and the

interactions among the different time series are reflected as non-zero off-diagonal elements in

the covariances matrices of the disturbances. On the other hand, if there is any disturbance

covariance matrix with reduced rank, then the component associated to this disturbance term

will be common to more than one series. Thus, multivariate structural time series models

consider the possibility of dealing with cointegrated time series. The cointegration restrictions,

that are interpreted as a lower rank of the disturbance covariance matrix, can be imposed a-

priori, but it may also be given by the result of the model estimation. The general multivariate

unobserved components model nests more specific models with a restricted number of common

components. For instance, the non-stationary dynamic factor models (Peña and Poncela (2006)),

where the common factors can be formulated in terms of UC with a useful interpretation.

STAMP solves the signal extraction problem in both cases: general multivariate structural

time series models (SUTSE) and multivariate structural time series models with common factors
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and cointegration. STAMP deals with common factor models writing them in terms of SUTSE

models with reduced rank disturbance covariance matrices.

The problem of structural time series models (either univariate or multivariate) the a-priori

structure imposed to the components (which makes easier their interpretation) may not be

appropriate for the particular series at hand, and wrong specifications could produce serious

misleading errors.

2.2.2 Dynamic harmonic regression approach

As in Harvey’s structural time series approach, the dynamic harmonic regression approach

(Young et al. (1999)) directly specifies unobserved components models for the components within

an stochastic state space setting. However, whereas structural time series models formulate the

unobserved components models in the time domain (see previous section for more details), the

whole process of identification and estimation for the dynamic harmonic regression model is

formulated in the frequency domain.

The dynamic harmonic regression model assumes that the univariate time series, yt, can be

decomposed as in (2). According the dynamic harmonic regression approach, these additive

unobserved components (trend, cycle, seasonal and irregular components) have a so-called dy-

namic harmonic representation. That is, each component is defined by a linear combination of

sines and cosines with time varying coefficients, which are modelled as generalized random walk

(GRW) stochastic processes (Young et al. (1999)). More formally, the general definition of the

dynamic harmonic regression components is given by

s
pj

t = ajtcos(wjt) + bjtsin(wjt) (6)

where pj and wj = 1/pj are, respectively, the period and the frequency associated with the jth

dynamic harmonic regression component, and {ajt, bjt} follow generalized random walk (GRW)

processes, that include the random walk (RW), integrated random walk (IRW), and smoothed

random walk (SRW) processes as special examples. The trend component corresponds to the

zero frequency component, s∞t , that is described by a GRW process of the form:
�

µt

βt

�
=

�
α β

0 γ

��
µt−1

βt−1

�
+

�
δ 0

0 1

��
ηt

ξt

�
, where

�
ηt

ξt

�
∼ WN

��
0

0

�
,

�
σ2
η 0

0 σ2
ξ

��
(7)

where µt and βt are, respectively, the changing level and the slope of the trend component.

The periodic components (cycle, ψt, and seasonality, γt) are given by

ψt ≡ γt =
R�

j=1

s
pj

t , (8)

where j = 1, 2, ..., R are the associated periodic frequencies and s
pj

t are defined as in (6). The

time varying coefficients, {ajt, bjt}, that define the seasonal component, are usually assumed to

be random walk (RW) processes,

ajt = ajt−1 + ηa
jt
, where ηa

jt
∼ N(0, σ2

ηa
),

bjt = bjt−1 + ηb
jt
, where ηb

jt
∼ N(0, σ2

ηb
).

(9)
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From the state space formulation of the dynamic harmonic regression model, Young et al.

(1999) derive an algorithm that combines the Kalman filter and the fixed interval smooth-

ing to estimate the structural parameters (usually called hyper-parameters) of the unobserved

components models. The dynamic harmonic regression algorithm estimates the autoregressive

spectrum of the observed time series, and computes the hyper-parameters as the minimum

non-linear least squares estimates of the difference between the logarithmic pseudo-spectrum

of the dynamic harmonic regression model and the logarithmic autoregressive spectrum of the

data (see Young et al. (1999) for more details). The dynamic harmonic regression algorithm

is implemented in the CAPTAIN Toolbox for Matlab (see Young and Pedregal (1999), Taylor

et al. (2007), among others). An alternative algorithm for the identification and estimation of

dynamic harmonic regression models is the linear dynamic harmonic regression (Bujosa et al.

(2007)) that simplifies and reduces the computational complexity of the basic dynamic harmonic

regression algorithm by using an alternative cost function. The advantages of the linear dynamic

harmonic regression algorithm are twofold: first, it eliminates the poles in the objective function

of the dynamic harmonic regression algorithm by considering a quadratic cost function (that it is

obtained by a linear algebraic transformation, using the ARIMA reduced-form representation of

the components). Second, it requires less input information than other existing alternatives. In

fact, the linear dynamic harmonic regression only needs the time series data (in a row) and the

nature of its periodicity to extract the dynamic harmonic regression components (for a detailed

description of the linear dynamic harmonic regression algorithm see Bujosa et al. (2007)).

3 ICA for prediction and signal extraction

In the literature, we can find many applications which use ICA to separate the components

of interest in multivariate data sets (see, for example, Bingham (2001), Funaro et al. (2001)

Hyvärinen (1999), and Vigàrio et al. (1998), among others). However, ICA has never been

applied to extract the basic components in time series data. In this chapter, we explore the

performance of ICA for decomposing multivariate time series data in terms of trend, cycle, and

seasonal components. Moreover, we present an alternative procedure to forecast multivariate

time series data using a small number of independent components (ICs).

3.1 Definition and estimation procedures

Let xt = (x1t, . . . , xmt)� be an m-dimensional vector of time series processes. It is assumed that

there are some underlying components, st = (s1t, . . . , srt)�, with r ≤ m, which are statistically

independent, that affect approximately linearly to the m observed time series, but with different

impact from one series to another. That is:

xt = Ast, for t = 1, . . . , T (10)

where A is a full rank m × r matrix whose elements, {aij}j=1,...,r

i=1,...,m
, represent the effect of each

independent component (IC), sjt, on the observations, xit. If A is known, the unobserved com-

ponents, st, can be easily obtained just by (pseudo)inverting the matrix A. If the loading matrix
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is unknown, the basic idea of ICA is that both, A and st, can be estimated only from the ob-

servations, assuming statistical independence of the underlying components. Thus, the solution

to the ICA problem computes the estimates of the components as those linear combinations of

the data that are maximally independent. That is,

�st = Wxt (11)

where W is an r × m matrix that maximizes the statistical independence of �st. To avoid

identifiability problems, additional assumptions such as that the ICs have unit variance and

that no more than one IC can be Gaussian distributed, should be made (Comon (1994)).

Different approaches such as using higher-order statistics, temporal structure, or mutual infor-

mation criteria, among others, have been used in the literature to develop algorithms for solving

the ICA problem. Although those ICA algorithms are based on different optimization criteria,

all of them often begin by a pre-processing step that standardizes the data and transforms them

into a set of uncorrelated components. This transformation, that is always possible, is usually

performed by PCA. After applying PCA, the dimension of the data may be reduced and the

new loading matrix will be orthogonal.

Here, we will use three different ICA algorithms to estimate the underlying components: JADE

(Cardoso and Souloumiac (1993)), SOBI (Belouchrani et al. (1997)), and FOTBI (Garćıa-Ferrer

et al. (2011)). JADE and SOBI are well-known algorithms which obtain the ICs estimates

by utilizing information of higher-order statistics and time structure of the data, respectively.

On the one hand, JADE looks for the independence of the components by maximizing their

non-Gaussianity. Since second-order information is not enough to achieve independence under

non-Gaussianity assumption, JADE introduces higher-order statistics in terms of fourth-order

cumulants. Cardoso and Souloumiac (1993) define the fourth-order cumulant matrices, whose

off-diagonal elements are given by linear combinations of several fourth-order cross-cumulants,

and they propose to estimate the ICs by the simultaneous diagonalization of several cumulant

matrices. Then, since the independence of a set of variables is achieved when their cross-

cumulants, of order higher than two, are equal to zero, it is clear that the JADE ICs will be as

independent as possible (see Cardoso and Souloumiac (1993) for more details).

On the other hand, SOBI seeks the solution to the ICA problem exploiting the temporal struc-

ture of the data. It can be seen as a de-correlation method (then, it is based on second-order

moments) that obtain the ICs as in (11), where the separation matrix, W, is the joint diagonal-

izer of a set of time-delayed covariance matrices. Thus, the underlying components estimated

by SOBI will be instantaneous and temporally uncorrelated, but under non-Gaussianity, they

will be not statistically independent (see Belouchrani et al. (1997) a complete explanation of the

SOBI algorithm).

The third algorithm, FOTBI (Garćıa-Ferrer et al. (2011)), combines both, higher-order infor-

mation as well as temporal structure, to obtain the ICs estimates. FOTBI can be seen as an

extension of JADE that incorporates temporal dependence. FOTBI introduces the time-delayed

fourth-order cumulant matrices and proposes to estimate the ICs by the joint diagonalization

of some of them. Then, according to that estimation principle, if the data are non-linear and

have significant autocorrelation structure (like multivariate time series data are), FOTBI may
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provide good estimates for the underlying components in the sense that they will be maximally

temporally independent under non-Gaussianity assumption.

3.2 Signal extraction with ICA

The ICA model given by (10) is quite realistic for being applied in many practical situations. In

particular, the classical problem of time series signal extraction, where the time series data are

given by the sum of some basic unobserved components, such as trend, cycle, and seasonality,

fits to the ICA model formulation. The motivation for applying ICA to multivariate time series

signal extraction is twofold: we are looking for the trend, the cycle, and the seasonal components

that should be non-Gaussian and statistically independent

The main advantage of ICA with respect to existing signal extraction procedures is that it is

‘automatic’ in the sense that it is able to extract the components without assuming any a-priori

structure either in the components nor in the loading matrix. ICA identifies the signal compo-

nents as those linear combinations of the data that are maximally independent. In addition, it

requires that each of the components explains the largest amount of variance in the data. Thus,

if we apply ICA to extract the basic components in multivariate time series data, the estimates

for the trend, cycle and seasonal components will be mutually independent. Then, ICA can

be seen as an ‘automatic’ procedure for time series decomposition where the ICA components

do not share common information and each of them represent different features of the data.

Throughout this chapter, we will explore the idea of presenting ICA as an automatic method

for multivariate time signal extraction.

Previous empirical applications proposed in the ICA literature assume that the ICs are sta-

tionary stochastic processes. However, our proposal applies ICA to extract the trend, cycle,

and seasonal component in multivariate economic time series and some of the components could

be non-stationary. Therefore, we propose applying ICA to perform the separation of possible

non-stationary components but, does it make sense to think about non-stationary ICA? This is

an open question that we will try to explore next.

One of the first approaches to deal with non-stationary unobserved components was proposed

by Peña and Poncela (2006). They present the non-stationary dynamic factor model (DFM) that

extends the stationary factor model introduced by Peña and Box (1987) to the non-stationary

case. The non-stationary DFM assumes that the dynamic structure of a vector of time series can

be explained by a small number of stationary and/or non-stationary latent factors. Peña and

Poncela (2006) define the generalized covariance matrices, Cx(k), that converges to a random

matrix which can be diagonalized. Moreover, since ICA can be seen as dynamic factor model

(DFM) with non-linear latent factors (see Section 2.2.3), it may have sense to think about non-

stationary ICA. That is, ICA could be seen as a dynamic factor model with non-linear ICs that

may be non-stationary. In the simulation experiments of the previous chapter (in particular,

in the third experiment) we explore how ICA could deal with non-stationary components, and

it seems that it performs quite well. However, from a theoretical point of view, non-stationary

ICA is an open question that should be studied deeply.
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3.3 Forecasting with ICA

In this section, we present the procedure that we will use to forecast multivariate time series

data with some components of interest, that are estimated by ICA. This approach was firstly

applied by Malaroiu et al. (2000) to forecast financial time series data. The idea is to make

the forecasts in the space of the unobserved components, and then transforming back to the

observed dataset. The main advantage of this methodology, in comparison to other procedures

that also used a small number of factors to forecast large dataset, is that here the components

are statistically independent. Then, they can be forecasted separately, fitting different univariate

models for each one of them. In the following, we summarize this three-steps procedure:

1. We apply any ICA algorithm to the observations (it is convenient to choose the algorithm

which, a-priori, fits better to the features of the data), and we obtain estimates for both

the ICs, �st, and the loading matrix, �A.

2. In this step, we make the ICs forecasts. Since the ICs are statistically independent, they

can be modelled separately. Then, we fit a univariate ARIMA(p, d, q)× (P,D,Q)s model

for each �sjt, for j = 1, ..., r,

(1− φ(j)

1
B − . . .− φ(j)

p Bp)∆d∆D
s �sjt = (1− θ(j)

1
B − . . .− θ(j)q Bq)ajt, t = 1, ..., T. (12)

For each ARIMA model, we estimate the parameters and, according to (12), the h-step-

ahead forecasts for each IC are given by,

�sjT (h) = E[�sj(T+h)|IT ].

3. The forecasts of the observed data set, �xT (h), are obtained by weighting the ICs forecasts,

�sT (h), with the loading matrix. That is, according to model (10),

�xT (h) = �A�sT (h), (13)

or equivalently,

�xit(h) =
r�

j=1

a2ij�sjt(h). (14)

4 Simulation Study

In this section we present some simulation experiments to illustrate the performance of ICA as an

automatic procedure in multivariate time series signal extraction. Since PCA is commonly used

to estimate the components of interest in large data set, we will also apply PCA to the simulations

in order to compare the performance of the two methodologies. We design four simulation

experiments where the components are generated by the two different unobserved components

formulations: whereas in two experiments the components are defined according to Harvey’s

structural model (Harvey (1989)), in the other two, they follow the dynamic harmonic regression

specifications (Young et al. (1999)). For each experiment, we generate R = 1000 realizations,

and the components are generated with three different sample sizes, T = 150, 300, 500.
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The procedure to design the Monte Carlo experiments is summarized as follows: once the

m components are generated, they are mixed according to basic ICA model, given by (10), to

obtain the observations, xt. Then, the unobserved components are estimated using PCA and

the three ICA procedures considered in this paper: JADE (Cardoso and Souloumiac (1993)),

SOBI (Belouchrani et al. (1997)), and FOTBI(Garćıa-Ferrer et al. (2011)). The performance of

each procedure is analyzed by computing the correlation coefficient and the MSE between the

original and the estimated components.

First, we consider the two Monte Carlo experiments where the components follow the Harvey’s

structural time series approach. Experiments 1 and 2 are defined in Table 1. After mixing the

m component of each experiment (see the loading matrices in Table 10 in the appendix), PCA,

JADE, FOTBI, and SOBI, are applied to extract the unobserved components from the observa-

tions. Table 2 presents the average results (measured over the m components) for the correlation

coefficients and the MSE between the original and the corresponding estimated component by

each procedure (Table 11 in the appendix shows the results for each individual component). We

see that the results for the two experiments are quite similar: independently of the sample size,

PCA has the worst signal extraction performance overall the procedures. It is specially signifi-

cant the value of the MSE of PCA (around 0.52 and 0.73 in Experiments 1 and 2, respectively)

that doubles, and sometimes triples, the values of the MSEs of the ICA procedures. Moving

on the ICA procedures, independently of the sample size, FOTBI provides better unobserved

components estimates than JADE and SOBI do (see Table 2). The performance of JADE and

SOBI depends on T . Whereas SOBI performs better (or quite similar) than JADE for small

sample sizes (T = 150), when the sample size increases (T = 300, 500) JADE estimates the

components more accurately than SOBI. This is because higher-order methods (as JADE and

FOTBI), in order to reduce the variance associated to their estimates, requires longer data sets

than the second-order methods (as SOBI and PCA). Supporting this argument, whereas the

values of correlation coefficients and the MSE for SOBI and PCA are quite similar for all T , the

performance of JADE and FOTBI improves when the sample size increases (see Table 2).

Next, we focus on the two Monte Carlo experiments where the components of interest are gen-

erated as dynamic harmonic regression components. These experiments are defined in Table 3.

For the first dynamic harmonic regression experiment (Experiment 3), we generate the four

basic components In Experiment 4, we would like to investigate how PCA and ICA procedures

separate two periodic components with weekly and monthly periodicity. The loading matrices

of each experiment are in the appendix (see Table 10). Table 4 presents the average results for

both measures, the correlation coefficients and the MSEs. The conclusions from the dynamic

harmonic regression experiments are similar to those obtained from Experiments 1 and 2: PCA

and FOTBI have, respectively, the worst and the best performance to extract the components of

interest. Comparing Tables 2 and 4, we see that the three ICA procedures provide more accurate

estimates for the dynamic harmonic regression components than for the structural time series

Harvey’s components.

According to the results, any of the three ICA procedures which have been considered here,

provides better estimates of the trend, cycle and seasonal components than PCA does. Moreover,

within the ICA procedures, we conclude that FOTBI outperforms JADE and SOBI algorithms.
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Table 1: Definition of the unobserved components-structural time series components

(Harvey (1989)) in the Monte Carlo simulation experiments. The components are

defined according to models 3, 5, and 4 for the trend, seasonal, and cyclical components,

respectively.

Experiment 1: m=6 monthly time series

s1t ∼ LLT trend σ2
η = 7.49× 10−4 , σ2

ξ
= 2.75× 10−6

s2t ∼ seasonal component s=12 (monthly seasonality), ρψ = 1 , σ2
κ = 0.0109

s3t ∼ cyclical component λc = 2π

72
(7-years cycle), ρψ = 0.9 , σ2

κ = 0.0278

s4t ∼ AR(1) φ1 = 0.7 , n4t ∼ t9

s5t ∼ AR(2) φ1 = 0.6 , φ2 = −0.2 , n5t ∼ U(0, 1)

s6t ∼ irregular component s6t ∼ t5

Experiment 2: m=7 quarterly time series

s1t ∼ RW trend σ2
η = 0.0515 , σ2

ξ
= 0

s2t ∼ seasonal component s=4 (quarterly seasonality), ρψ = 1 , σ2
κ = 0.8

s3t ∼ I(1)4 s3t = s3t−4 + n3t, n3t ∼ N(0, 1)

s4t ∼ cyclical component λc = 2π

16
(4-years cycle), ρψ = 0.75 , σ2

κ = 0.25

s5t ∼ AR(2) φ1 = 0.5 , φ2 = 0.35 , n5t ∼ t9

s6t ∼ irregular component s6t ∼ U(0, 1)

s7t ∼ irregular component s7t ∼ N(0, 1)

(*) s is the number of seasonal frequencies in a period.
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Table 2: Unobserved components-Harvey’s simulation experiments: comparison of

the mean average of the correlation coefficients and the MSE between the original and

the estimated components by PCA, JADE, FOTBI, and SOBI, measured over the m

components. Corr(·) = 1

m

�
m

i=1

1

R

�
R

r=1
Corr(s(·)

it
,
�
s(·)
it
)

MSE(·) = 1

m

�
m

i=1

1

R

�
R

r=1
MSE(s(·)

it
,
�
s(·)
it
)

Experiment 1

T=150 T=300 T=500

Corr MSE Corr MSE Corr MSE

PCA 0.7264 0.5436 0.7407 0.5169 0.7492 0.5006

JADE 0.7798 0.4390 0.8433 0.3128 0.8681 0.2634

FOTBI 0.8761 0.2471 0.9231 0.1535 0.9375 0.1248

SOBI 0.8204 0.3579 0.8241 0.3513 0.8266 0.3465

Experiment 2

T=150 T=300 T=500

Corr MSE Corr MSE Corr MSE

PCA 0.6290 0.7371 0.6304 0.7367 0.6308 0.7370

JADE 0.7918 0.4151 0.8458 0.3080 0.8692 0.2612

FOTBI 0.8537 0.2917 0.8903 0.2190 0.9105 0.1787

SOBI 0.7818 0.4349 0.7895 0.4204 0.7970 0.4056
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Table 3: Definition of the dynamic harmonic regression components in the Monte

Carlo simulation experiments. The components are defined according to models 7 for

the trend, and 8 for the periodic components.

Experiment 3: m=4 monthly time series

s1t ∼ SRW trend 0 < α < 1 randomly generated, β = γ = 1, δ = 0, σ2

ξ
= 0.0015

s2t ∼ periodic component p=12 at, bt ∼ RW, σ2
ηa

= 0.01, σ2
ηb

= 0.0005

s3t ∼ periodic component p=60 at, bt ∼ RW, σ2
ηa

= 3, σ2
ηb

= 12

s4t ∼ irregular component s4t ∼ U(0, 1)

Experiment 4: m=5 daily time series

s1t ∼ IRW trend α = β = γ = 1, δ = 0, σ2

ξ
= 0.00035

s2t ∼ periodic component p=7 ajt, bjt ∼ RW, σ2
ηa

= 0.1, σ2
ηb

= 0.05

s3t ∼ periodic component p=30 at, bt ∼ RW, σ2
ηa

= 3, σ2
ηb

= 12

s4t ∼ AR(5) φ1 = 0.2, φ2 = 0.5, φ3 = −0.11, φ4 = 0.01, φ5 = 0.005

s5t ∼ irregular component s5t ∼ U(0, 1)

(*) p denotes the periodicity

These results are as we expected. On the one hand, since PCA estimates the components by

maximizing the total variance of the observations, the first PC will increase its percentage of

explained variability by mixing the trend and the peaks of seasonality. Then, PCA cannot

separate the trend, seasonal, and cyclical components from a vector of time series. On the other

hand, since the signals in previous experiments are clearly non-linear and have a significant

autocorrelation structure, FOTBI will provide more reliable component estimates than the other

two ICA procedures do. In addition, as in previous experiments, the performance of PCA and

SOBI does not depend on the sample size, whereas the performance of JADE and FOTBI

improves when T increases.

5 Empirical application

In this section we apply the ICA methodology to extract the signal in a set of economic time

series. First, we introduce the data and describe the estimates of the components obtained

by different ICA algorithms. Then, we evaluate the forecasting performance of those different

estimation procedures to predict the industrial production index of each country.

5.1 Data and components estimates

We consider the industrial production indexes (IPI) in four European countries: France, Ger-

many, Spain, and Italy. They represent the four main economies of the Euro Area, and in all

of them, the IPI is a highly quality indicator of their industrial activity. The data are monthly
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Table 4: Unobserved components-dynamic harmonic regression simulation experi-

ments: comparison of the mean average of the correlation coefficients and the MSE

between the original and the estimated components by PCA, JADE, FOTBI, and

SOBI, measured over the m components. Corr(·) = 1

m

�
m

i=1

1

R

�
R

r=1
Corr(s(·)

it
,
�
s(·)
it
)

MSE(·) = 1

m

�
m

i=1

1

R

�
R

r=1
MSE(s(·)

it
,
�
s(·)
it
)

Experiment 3

T=150 T=300 T=500

Corr MSE Corr MSE Corr MSE

PCA 0.6477 0.7000 0.6591 0.6795 0.6598 0.6791

JADE 0.9299 0.1397 0.9555 0.0889 0.9609 0.0782

FOTBI 0.9721 0.0555 0.9859 0.0281 0.9879 0.0242

SOBI 0.9083 0.1828 0.9139 0.1718 0.9167 0.1663

Experiment 4

T=150 T=300 T=500

Corr MSE Corr MSE Corr MSE

PCA 0.7355 0.5254 0.7286 0.5410 0.7231 0.5527

JADE 0.9470 0.1058 0.9661 0.0678 0.9716 0.0568

FOTBI 0.9573 0.0851 0.9789 0.0422 0.9831 0.0338

SOBI 0.8521 0.2948 0.8590 0.2816 0.8612 0.2773
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Figure 1: Series of 4 monthly IPI time series from 1975:01 to 2010:10 (France, Ger-

many, Spain, and Italy)

Table 5: Jarque-Bera skewness-kurtosis statistic of the IPI (in logs)

France Germany Italy Spain

Jarque-Bera 191.3013 7.9463 416.5863 53.9601

p-value (0.0001) (0.0233) (0.0001) (0.0001)

time series from the period January 1975 to October 2010 (430 monthly observations). Then,

we have a 4×430 vector of time series, which is denoted by yt. We transform the dataset taking

logs and subtracting the mean from the observations:

xt = log(yt)− log(yt).

The IPI time series (in logs) are shown in Figure 1. They are clearly non-stationary time series

which are characterized by strong trend and seasonality patterns. Our aim is to extract those

relevant features and isolate the less interesting ones. For this purpose, we will apply PCA and

ICA, which extract the underlying signals directly from the observations, without assuming any

a-priori model for the components of interest. Thus, we could compare the PCs and the ICs

components estimates.

To motivate the use of ICA in our data, we compute the Jarque-Bera skewness-kurtosis

statistics of xt to test for normality on each individual series. The results, which are displayed

in the Table 5, show that the null hypothesis of normality is rejected at the 1% significance level

for each time series. Therefore, since the dataset is non-Gaussian distributed, it is reasonable

applying ICA to extract the interesting features from the data.

We apply JADE, SOBI and FOTBI to extract the unobserved signal from the observations.

These three ICA procedures decompose the multivariate time series data into a set of approxi-
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Table 6: Individual and accumulate percentage of variability explained by the PCs

�sPCA
1t

�sPCA
2t

�sPCA
3t

�sPCA
4t

% Variability 89.21 8.57 1.26 0.96

% Accumulate Variability 89.21 97.78 99.04 100

mately independent components, but none of them provide a formal criterion to sort the ICs and

to identify the more relevant ones. In this empirical application, the interest is to separate the

trend (or trend-cycle) and the seasonal component of the IPIs time series. Since these patterns

explain most of the variance of the observations and PCA sorts the components in terms of the

total explained variability, we will use PCA as an intermediate step in the ICA signal extraction

procedures. Thus, our proposal can be summarized by the following steps:

1. Applying PCA to the data and choose the optimal number of PCs, r, that depends on the

percentage of the total variance that we would like to be explained. In time series signal

extraction, usually no more that two or three components are selected.

2. Applying any ICA algorithm to the data to extract the m ICs.

3. Computing the correlation between the PCs and the ICs, and sorting the ICs according

to the maximum correlation criterion. That is, for each i = 1, ...,m, the i-th IC satisfies:

max
1≤j≤m

corr(�sPCA
it , �sICA

jt ). (15)

Thus, the first IC will be the component that is maximally correlated to the first PC, the

second IC will have maximum correlation to the second PC, and so on. Once the ICs are

sorted, we could select the r ICs that provides the estimates for the underlying signals.

Applying previous procedure for our data, xt, we firstly estimate the four PCs that are sorted

in terms of the total explained variability. From Table 6 we have that the two first PCs explain

almost the 98% of total variability, so we can fix r equal to two. Second, we estimate the four ICs

using JADE, FOTBI, and SOBI. Then, we compute the correlation between the PCs and the

different ICA components, and sort them according to the criterion (15). In Table 7 we report

the value of the correlation coefficients between the two first PCs and the corresponding ICs. In

this particular example, the two SOBI and FOTBI ICs that have been selected, correspond to

the two first ICs which were given automatically by those ICA algorithms (for the JADE ICs the

order is not preserved). However, this fact cannot be generalized to any empirical application.

The PCs and the ICs that represent the relevant patterns of the IPI time series data are

shown on Figure 2. The desirable results would provide estimates for the trend in the first

component of interest, and estimates for the seasonal component in the second one. However,

as we can see in Figure 2, the results are not very convincing, specially those corresponding to

the first component estimates. Just by graphical inspection of the estimated components, it is

clear that PCA is not able to separate the trend and the seasonal component. The first PC is
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Table 7: Correlation coefficients between the two first PCs and the corresponding

ICs which are maximally correlated to each of them.

�sJADE
jt

�sFOTBI
jt

�sSOBI
jt

�sPCA
1t

0.4690 0.7346 0.7034

�sPCA
2t

0.6774 0.7398 0.5937

a mixture of the trend and seasonality patterns; the second one is dominated by accentuated

seasonality but some evidences of the trend component still remain. According to the PCA

optimization criterion, that looks for the components that maximize the total variability, those

are the expected results.

Although the results of the three ICA algorithms for our data are quite different, it seems that

ICA provide more encouraging results than PCA for signal extraction purposes. The differences

among the ICs extracted by JADE, FOTBI, and SOBI are due to the different estimation

principle used by each procedure. On the one hand, JADE does not take into account the

time structure of the data and it have the worse performance for the IPIs signal extraction:

JADE cannot separate the trend and the seasonal patterns, and the two components are mixed

in the first JADE IC (see Figure 2(b)). On the other hand, FOTBI and SOBI exploit the

autocorrelation structure of the observations, and they would provide, a-priori, better estimates

for the trend and the seasonal components than JADE and PCA do. In addition, since economic

time series are usually non-Gaussian and the trend and seasonality are non-linear components,

FOTBI seems to be more appropriate than SOBI for the IPI time series signal extraction.

Figures 2(c)-2(d) confirm this fact: the first FOTBI IC seems to provide the most reliable

estimate for the trend component overall the estimated ICs. The second best performance is

given by SOBI, where the first SOBI IC still exhibits some evidence of seasonality, although it

is less accentuated than in the first component given by JADE and PC. Then, FOTBI can be

seen as a first step for an automatic multivariate signal extraction procedure.

In the following subsection, we will analyze how the IPIs of four European countries can be

forecasted using the underlying signals extracted by the previous procedures.

5.2 Forecasting results

The IPI is usually published with some significant delay, and this fact motivates the interest

in providing accurate forecasts. Here, we analyze the forecasting performance of PCA, JADE,

FOTBI, and SOBI, to predict the IPI of the four main European countries, using the first two

components estimated by each procedure. We use simple univariate ARIMA models for the

IPI of each country as benchmark models. We compute the forecasts at different time horizons,

h = 1, 3, 6, 12 steps ahead. We apply a three-step iterative forecasting procedure: estimating the

components of interest using the whole sample (as it is explained in previous section), making

forecasts in the space of the components, and transforming back to the original data set.
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(a) PCs (b) JADE

(c) FOTBI (d) SOBI

Figure 2: The two estimated components that have been selected for each procedure.

We have the PCs in Figure 2(a), the JADE componentes in Figure 2(b), the FOTBI

components in Figure 2(c), and the SOBI ones in Figure 2(d).

Since the ICs are statistically independent, they can be forecasted separately fitting a different

model for each IC. Then, to compute the forecasts for the components, we first apply the

automatic procedure of TRAMO/SEATS program to fit univariate ARIMA(p, d, q)× (P,D,Q)s

models to the components (since ICA and PCA are automatic procedures, we decide to use

the automatic specification given by the TRAMO/SEATS program). For each component, we

estimate the univariate ARIMA model using observations from 1975:01 to 2007:10 (see Table 13

in the appendix for a detailed description of the models), and compute the h = 1, 3, 6, 12 steps

ahead forecasts. This procedure is repeated following a rolling window approach. That is,

after getting the first set of h-steps ahead forecasts (h = 1, 3, 6, 12) for each component, the

estimation sample is extended by one further observation, the parameters of the corresponding

ARIMA model are re-estimated each time (keeping constant the automatic specification for the

ARIMA models thought the procedure), and the new 1−, 3−, 6−, and 12-monthly steps ahead

forecasts are built recursively until the end of the sample.

Then, we have computed the forecasts for the components of interest and we will use them

to predict the IPIs time series. By (13), the h-steps ahead forecasts for the IPI of each country

can be obtained just weighting the univariate forecasts of the components by the corresponding

loading matrix coefficients. That is, for the IPIs, a sequence of h-steps ahead forecasts for

h = 1, 3, 6, 12 is performed by:

�xt0(h) = �A�st0(h), h = 1, 3, 6, 12, t0 = 2007 : 10, . . . , 2010 : 10− h,

or equivalently, �xit0(h) =
�

2

j=1
a2
ij
�sjt0(h), for i = 1, . . . , 4.

In order to evaluate the accuracy of each procedure to forecast the IPIs time series, we compare
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the h− step− ahead prediction error associated to each method, given by:

eit0 = xit0+h − �xit0(h), i = 1, . . . , 4, h = 1, 3, 6, 12, t0 = 2007 : 10, . . . , 2010 : 10− h,

to the one associated to some benchmark model. Here, the benchmark models will be the

univariate ARIMA models fitted to each IPI time series using the automatic TRAMO/SEATS

identification procedure. To compute the h-steps ahead forecasts and prediction errors associated

to the benchmark models, we apply the same recursive procedure that we used to obtain the

forecasts of the components.

To analyze the forecasting performance of PCA and ICA procedures with respect to the

benchmark model, we propose to measure the forecasting accuracy of each procedure by the

following criteria (see Hyndman and Koehler (2006) for a complete revision of measures of

forecast accuracy). For each i = 1, . . . , 4, and h = 1, 3, 6, 12,

1. Root Mean Squared Error: RMSEih =
��

36−h+1

t=1
e2
it
.

2. Mean Absolute Percentage Error: MAPEih =
��

36−h+1

t=1
|pit|, where pit =

eit
xit

.

3. Mean Absolute Scale Error: MASEih =
��

36−h+1

t=1
|qit|, where qit =

eit
1

t−1

�
t−1
l=2 |xil−xil−1|

.

4. Geometric Mean Absolute Error: GMAEih = geomean(|eit|).

We consider the relative values of the four criteria: RelRMSE, RelMAPE, RelMASE, and Rel-

GMAE. That is, we use the ratios of the corresponding criterion for PCA, JADE, FOTBI,

and SOBI, with respect to the corresponding one for the benchmark model (the value of each

criterion for the univariate ARIMA models):

RelRMSE(·) =
RMSE(·)

RMSEbenchmark
; RelMAPE(·) =

MAPE(·)
MAPEbenchmark

RelMASE(·) =
MASE(·)

MASEbenchmark
; RelGMAE(·) =

GMAE(·)
GMAEbenchmark

Table 8 shows the average results for the relative criteria, measured overall the IPIs of the

four European countries, at different time horizons, h = 1, 3, 6, 12. We obtain similar results,

independently of the criterion used to evaluate the forecasting performance of the different

procedures. The forecasting performance of the PCA and ICA procedures, with respect to the

univariate one, depends on the time horizon, h. It is known that the univariate models produce

quite accurate short-term forecasts (h = 1, 3), but not in the medium- and long-term. This fact

is pointed out in our results, where the forecasting performance of the PCA and ICA procedures,

relative to the univariate models, improves when h increases (Table 8).

Within the ICA procedures, FOTBI performs better than JADE and SOBI at any time

horizon, h = 1, 3, 6, 12. However, the forecasting performance of FOTBI in comparison to the

univariate ARIMA models (benchmark models) depends on h. In the short-term (h = 1, 3), both

procedures, FOTBI and univariate models, have similar forecasting performance. They provide

more accurate short-term forecasts than PCA, JADE, and SOBI do. In addition, note that, for
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Table 8: Relative values of the different criteria for each of the procedures (Univari-

ate=1). The results represent the average values measured over the IPIs of the four

main European countries: France, Germany, Italy, and Spain.

RelRMSE RelMAPE RelMASE RelGMAE

h=1 PCA 1.7982 1.1469 2.0040 1.7410

JADE 3.7799 1.8392 4.6462 4.5830

FOTBI 1.0439 0.9561 1.0462 0.9934

SOBI 2.6876 2.0061 2.4041 2.5748

UNIV 1.0000 1.0000 1.0000 1.0000

h=3 PCA 1.1509 0.9665 1.2660 1.1772

JADE 2.1590 0.8465 2.5701 2.5803

FOTBI 0.9827 0.8261 1.0176 0.9834

SOBI 1.7867 1.3246 1.6353 1.8116

UNIV 1.0000 1.0000 1.0000 1.0000

h=6 PCA 0.9992 0.9034 1.0033 0.9456

JADE 1.2020 0.7009 1.3301 1.1830

FOTBI 0.8817 0.5039 0.8895 0.7982

SOBI 1.3271 1.0703 1.1608 1.0937

UNIV 1.0000 1.0000 1.0000 1.0000

h=12 PCA 1.0924 1.0362 1.0628 1.0191

JADE 0.7922 0.7209 0.7657 0.6155

FOTBI 0.7897 0.4502 0.7335 0.6145

SOBI 1.0757 0.9474 0.8759 0.6713

UNIV 1.0000 1.0000 1.0000 1.0000

h = 1, 3, PCA performs better than SOBI, and SOBI performs better than JADE (Table 8).

In the medium-, and long- term, the results are slightly different. On the one hand, for h = 6,

FOTBI has the best forecasting performance followed by PCA and the univariate models, which

have similar performance and outperform JADE and SOBI. On the other hand, any of the ICA

procedures (although the smallest values of the different criteria correspond to FOTBI) provide

more accurate long-term forecasts (h = 12) than PCA and the benchmark models do.

The results for each individual IPI time series are provided in the appendix (see Table 14).

The conclusions are analogous to the ones explained above for the average results.

According to previous results, our main interest is to compare the forecasting performance

of FOTBI and the univariate models. It seems that both procedures have similar forecasting

performance in the short-term (h = 1, 3), but FOTBI outperforms the univariate models in

medium- and long-term forecasting (h = 6, 12) (Table 8). However, we would like to investigate
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whether or not these differences are statistically significant applying the Diebold-Mariano test

(Diebold and Mariano (1995)), that is used to compare the forecast accuracy of two competing

models. Under the ‘equal accuracy’ null hypothesis of the Diebold-Mariano test, there are no-

differences in the predictive accuracy of the two models. In this paper, we carry out the Diebold-

Mariano test taking into account two different, squared and absolute error, loss functions. The

outputs of the Diebold-Mariano test applied to the average results given in Table 8 are presented

in Table 9. We applied the Diebold-Mariano test to all procedures, two by two, and we report the

value of the Diebold-Mariano test statistic, the p-value (between brackets), and the procedure

that produces better forecasts in each comparison (= means that the two procedures have equal

predictive accuracy).

The results of the Diebold-Mariano test to compare the forecast accuracy of the different

procedures for each individual IPI time series are in the appendix (Tables 15 and 16 present

the results of the Diebold-Mariano test considering the squared error and the absolute error loss

functions, respectively). These results are consistent to the previous ones.

Summarizing the results given by Tables 8 and 9, we cannot conclude that there is a procedure

which outperforms the others for any time horizons. However, the FOTBI procedure seems to

have quite promising performance: it provides similar forecasts than the univariate models do

in the short-term (h = 1, 3), the best medium-term forecasts (h = 6) overall the procedures, and

more accurate 12-steps ahead forecasts than PCA and the univariate models (the other ICA

procedures, JADE and SOBI, perform equal than FOTBI in the long-run).

6 Concluding remarks

In this study we have explored how ICA performs for prediction and signal extraction in multiple

non-stationary time series data.

ICA assumes that the observations are linearly generated by a set of underlying components

which are statistically independent. It has been traditionally used in different areas of research,

such as medical, biological, and engineering applications, where the data are observed with high

level of noise. ICA is a powerful technique that is able to extract the underlying components

only from the observations, and just by making the assumption of statistically independence on

the components.

Here we have applied ICA to multivariate time series data in which the underlying compo-

nents can be interpreted in terms of trends and seasonality patterns. Most of the procedures

(e.g. TRAMO/SEATS, STAMP, and linear dynamic harmonic regression) found in the signal

extraction literature, are model-based procedures, developed in the univariate case, that specify

directly stochastic linear models either on the observations or on the underlying components.

Despite that those procedures are, in general, quite successful, modelling the components a-priori

could produce specification problems that culminate in crucial estimation errors.

We present ICA as an alternative methodology for multivariate time series signal extraction.

The advantage of ICA with respect to the so called model-based signal extraction procedures

relies on the fact that ICA is an automatic procedure that does not specify any a-priori struc-
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Table 9: Results of the Diebold-Mariano test carried out to evaluate the forecast

accuracy (measured as an average over the four IPIs time series) of the different pro-

cedures

Squared Error Loss Function Absolute Error Loss Function

MET A vs MET B h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

PCA vs UNIV 2.4316 0.3024 -0.0021 0.0440 2.1510 0.5897 -0.0013 0.1115

(0.0075) (0.3812) (0.4992) (0.4824) (0.0157) (0.2777) (0.4995) (0.4556)

UNIV = = = UNIV = = =

JADE vs UNIV 5.8395 4.0193 1.1808 -2.0155 7.5484 4.2871 1.0567 -1.9712

(0.0000) (0.0000) (0.1188) (0.0347) (0.0000) (0.0000) (0.1453) (0.0244)

UNIV UNIV = JADE UNIV UNIV = JADE

FOTBI vs UNIV -0.0023 -0.0032 -2.1340 -4.4494 -0.0284 -0.0214 -1.9594 -3.9709

(0.4991) (0.4987) (0.0164) (0.0000) (0.4887) (0.4915) (0.0485) (0.0000)

= = FOTBI FOTBI = = FOTBI FOTBI

SOBI vs UNIV 3.1194 2.7339 1.7258 0.4367 4.0058 2.7723 1.1120 -0.9176

(0.0009) (0.0031) (0.0522) (0.3312) (0.0000) (0.0028) (0.1331) (0.1794)

UNIV UNIV = = UNIV UNIV = =

PCA vs SOBI -2.2202 -2.4832 -1.8237 0.3216 -2.3833 -2.2104 -1.1275 1.2683

(0.0132) (0.0065) (0.0541) (0.3739) (0.0086) (0.0135) (0.1298) (0.1023)

PCA PCA = = PCA PCA = =

JADE vs SOBI 2.6451 1.5609 -0.2912 -1.3380 3.1134 1.9802 0.1126 -0.8315

(0.0041) (0.0593) (0.3854) (0.0904) (0.0009) (0.0375) (0.4552) (0.2029)

SOBI = = = SOBI SOBI = =

FOTBI vs SOBI -3.2780 -3.1143 -2.5614 -1.9808 -4.4839 -3.3646 -2.0629 -1.2128

(0.0005) (0.0009) (0.0052) (0.0238) (0.0000) (0.0004) (0.0196) (0.1126)

FOTBI FOTBI FOTBI FOTBI FOTBI FOTBI FOTBI =

PCA vs FOTBI 2.9578 1.2520 2.2474 4.1526 2.8958 1.3144 1.9822 4.5209

(0.0015) (0.1053) (0.0123) (0.0000) (0.0019) (0.0944) (0.0299) (0.0000)

FOTBI = FOTBI FOTBI FOTBI = FOTBI FOTBI

JADE vs FOTBI 5.9747 4.3287 2.7698 0.0540 8.0409 4.6709 2.4767 -0.1718

(0.0000) (0.0000) (0.0028) (0.4785) (0.0000) (0.0000) (0.0066) (0.4318)

FOTBI FOTBI FOTBI = FOTBI FOTBI FOTBI =

PCA vs JADE -6.0001 -4.7388 -1.4072 2.4965 -7.9074 -5.3897 -1.1535 2.4902

(0.0000) (0.0000) (0.0797) (0.0063) (0.0000) (0.0000) (0.1243) (0.0064)

PCA PCA = JADE PCA PCA = JADE
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ture either in the data nor in the components. ICA looks for the trend, cycle, and seasonal

components by assuming only their statistical independence.

As different ICA algorithms provide different components estimates, we have implemented

three different ICA algorithms, JADE, FOTBI, and SOBI, to analyze their performance as

automatic signal extraction procedures. We have tested the three ICA procedures on four

Monte Carlo simulation experiments, and the results show that FOTBI performs quite well.

Then, it seems that the FOTBI procedure could be considered as a first-step for an automatic

procedure in multivariate time series signal extraction.

We have empirically assess the ability of PCA and the three different ICA procedures to

extract the dynamic relationships among the IPIs of the four main European countries. In this

analysis, the contribution of the paper are two fold. On the one hand, as it was expected, since

these data were non-Gaussian and they had a pronounced autocorrelation structure, FOTBI

provided the best estimates for the trend and the seasonal components. On the other hand, we

have analyzed the forecasting performance of PCA and ICA, using the univariate ARIMAmodels

for the IPIs as benchmark models. We have computed h = 1, 3, 6, 12 steps-ahead forecasts for

the IPIs and the results are very promising. When we forecast the IPIs using the FOTBI ICs, we

have: (i) short-term forecasts (h = 1, 3) given by the FOTBI components are similar to the ones

obtained by the univariate models (we know that univariate models perform well in short-term

forecasting); (ii) in medium-forecasting (h = 6), FOTBI outperforms overall the procedures; and

(iii) any of the ICA procures (JADE, FOTBI, and SOBI have equally predictive power according

to the Diebold-Mariano test) provide more accurate long-term forecasts of the IPIs (h = 12)

than the benchmark models does.

Then, FOTBI seems to perform quite well for prediction and signal extraction in multivariate

time series data, which may be non-stationary.
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Garćıa-Ferrer, A., E. González-Prieto, and D. Peña (2011). Blind source separation for non-

gaussian time series using higher-order statistics. Unpublished document .
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Garćıa-Ferrer, González-Prieto & Peña 29

A Appendix

Table 10: Mixing matrices using in the simulation experiments.

Experiment 1 Experiment 2

A





2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2









−4 3 −1 1 −1

2 −1 1 0 1

3 1 −2 1 0

−1 −1 1 1 0

−2 −4 3 0 −1





Experiment 3 Experiment 4

A





2 1 −1 1 0 0

3 2 2 1 0 1

−2 1 −1 0 0 −1

1 −1 1 −1 0 1

2 −1 −1 0 −1 0

1 1 1 1 1 1









4 3 −2 1 1 0 −1

−2 1 1 1 −1 0 0

−1 1 −1 1 −1 0 1

−3 −2 4 1 −1 −1 1

1 −1 1 −1 1 0 0

2 3 4 0 −2 1 −1

0 1 2 3 −1 0 2




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Table 11: Unobserved components-Harvey’s simulation experiments: comparison of

the correlation coefficients and the MSE between the original and the estimated com-

ponents by PCA, JADE, FOTBI, and SOBI. For each component, these values corre-

sponds to the mean average values measured over the R realizations.

Corr(·) = 1

R

�
R

r=1
Corr(s(·)

it
,
�
s(·)
it
); MSE(·) = 1

R

�
R

r=1
MSE(s(·)

it
,
�
s(·)
it
)

Experiment 1

Correlation Coefficient MSE

T st PCA JADE FOTBI SOBI PCA JADE FOTBI SOBI

T=150 s1t 0.8839 0.8614 0.9504 0.8374 0.2307 0.2762 0.0989 0.3240

s2t 0.7689 0.8366 0.9161 0.8419 0.4592 0.3257 0.1672 0.3151

s3t 0.7068 0.7212 0.8295 0.8150 0.5825 0.5558 0.3398 0.3687

s4t 0.6822 0.7110 0.8245 0.7940 0.6313 0.5760 0.3499 0.4106

s5t 0.6343 0.7026 0.8301 0.8009 0.7266 0.5928 0.3388 0.3969

s6t 0.6823 0.8457 0.9058 0.8334 0.6312 0.3077 0.1879 0.3321

T=300 s1t 0.8813 0.9165 0.9627 0.8337 0.2366 0.1667 0.0745 0.3320

s2t 0.7785 0.8992 0.9769 0.8457 0.4416 0.2013 0.0462 0.3082

s3t 0.7391 0.7862 0.8743 0.8240 0.5201 0.4270 0.2509 0.3514

s4t 0.6937 0.7649 0.8708 0.7928 0.6106 0.4695 0.2580 0.4138

s5t 0.6361 0.7671 0.8988 0.8076 0.7253 0.4651 0.2021 0.3842

s6t 0.7154 0.9262 0.9554 0.8406 0.5673 0.1473 0.0891 0.3183

T=500 s1t 0.8817 0.9407 0.9651 0.8405 0.2362 0.1185 0.0698 0.3187

s2t 0.7870 0.9217 0.9887 0.8498 0.4252 0.1565 0.0226 0.3002

s3t 0.7534 0.8075 0.8895 0.8221 0.4923 0.3847 0.2208 0.3554

s4t 0.6975 0.7878 0.8907 0.7985 0.6038 0.4241 0.2185 0.4027

s5t 0.6377 0.7932 0.9215 0.8087 0.7231 0.4131 0.1568 0.3822

s6t 0.7380 0.9581 0.9698 0.8398 0.5229 0.0837 0.0604 0.3200

Experiment 2

Correlation Coefficient MSE

T st PCA JADE FOTBI SOBI PCA JADE FOTBI SOBI

T=150 s1t 0.6670 0.8043 0.9112 0.8517 0.6615 0.3900 0.1770 0.2956

s2t 0.6651 0.8591 0.9026 0.7820 0.6653 0.2808 0.1941 0.4345

s3t 0.5047 0.6967 0.7735 0.7301 0.9841 0.6045 0.4514 0.5380

s4t 0.5431 0.7732 0.8462 0.8329 0.9077 0.4521 0.3066 0.3332

s5t 0.5718 0.7166 0.8153 0.7786 0.8508 0.5650 0.3682 0.4412

s6t 0.8290 0.8832 0.8411 0.7317 0.3398 0.2329 0.3168 0.5349

s7t 0.6222 0.8092 0.8857 0.7658 0.7506 0.3803 0.2279 0.4669

T=300 s1t 0.6545 0.8432 0.9298 0.8502 0.6888 0.3130 0.1401 0.2991

s2t 0.6607 0.8786 0.9097 0.7889 0.6764 0.2423 0.1802 0.4215

s3t 0.4950 0.7192 0.7802 0.7410 1.0066 0.5607 0.4390 0.5172

s4t 0.5381 0.8373 0.8982 0.8320 0.9206 0.3248 0.2032 0.3355

s5t 0.5802 0.7772 0.8708 0.7852 0.8369 0.4448 0.2579 0.4289

s6t 0.8419 0.9700 0.9067 0.7498 0.3151 0.0599 0.1862 0.4995

s7t 0.6424 0.8947 0.9368 0.7792 0.7127 0.2103 0.1262 0.4408

T=500 s1t 0.6448 0.8619 0.9443 0.8570 0.7089 0.2759 0.1113 0.2858

s2t 0.6513 0.8804 0.9115 0.7994 0.6959 0.2390 0.1768 0.4008

s3t 0.4896 0.7257 0.7886 0.7368 1.0188 0.5481 0.4224 0.5258

s4t 0.5353 0.8674 0.9292 0.8418 0.9274 0.2649 0.1414 0.3162

s5t 0.5878 0.8262 0.9015 0.7955 0.8227 0.3472 0.1968 0.4087

s6t 0.8572 0.9869 0.9395 0.7602 0.2850 0.0262 0.1210 0.4791

s7t 0.6493 0.9363 0.9593 0.7884 0.7000 0.1273 0.0814 0.4227
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Table 12: Unobserved components-dynamic harmonic regression simulation experi-

ments: comparison of the correlation coefficients and the MSE between the original and

the estimated components by PCA, JADE, FOTBI, and SOBI. For each component,

these values corresponds to the mean average values measured over the R realizations.

Corr(·) = 1

R

�
R

r=1
Corr(s(·)

it
,
�
s(·)
it
); MSE(·) = 1

R

�
R

r=1
MSE(s(·)

it
,
�
s(·)
it
)

Experiment 3

Correlation Coefficient MSE

T st PCA JADE FOTBI SOBI PCA JADE FOTBI SOBI

T=150 s1t 0.7129 0.9250 0.9602 0.9061 0.5703 0.1496 0.0794 0.1871

s2t 0.7235 0.9362 0.9807 0.9285 0.5493 0.1271 0.0385 0.1425

s3t 0.5923 0.9586 0.9766 0.8842 0.8100 0.0825 0.0467 0.2309

s4t 0.5620 0.8998 0.9711 0.9144 0.8702 0.1997 0.0576 0.1705

T=300 s1t 0.6998 0.9517 0.9777 0.9112 0.5983 0.0965 0.0446 0.1774

s2t 0.7044 0.9558 0.9938 0.9289 0.5893 0.0882 0.0125 0.1420

s3t 0.6252 0.9768 0.9847 0.8970 0.7470 0.0464 0.0306 0.2056

s4t 0.6070 0.9375 0.9876 0.9187 0.7834 0.1247 0.0248 0.1623

T=500 s1t 0.7065 0.9583 0.9807 0.9104 0.5859 0.0833 0.0385 0.1789

s2t 0.6711 0.9552 0.9937 0.9282 0.6565 0.0894 0.0127 0.1435

s3t 0.6547 0.9815 0.9854 0.9067 0.6891 0.0369 0.0292 0.1864

s4t 0.6067 0.9484 0.9917 0.9216 0.7850 0.1030 0.0165 0.1566

Experiment 4

Correlation Coefficient MSE

T st PCA JADE FOTBI SOBI PCA JADE FOTBI SOBI

T=150 s1t 0.7848 0.9568 0.9814 0.8814 0.4276 0.0861 0.0370 0.2365

s2t 0.6322 0.9423 0.9704 0.8691 0.7307 0.1151 0.0590 0.2609

s3t 0.5904 0.9786 0.9854 0.8457 0.8138 0.0426 0.0292 0.3075

s4t 0.9696 0.8818 0.9176 0.8317 0.0603 0.2356 0.1643 0.3356

s5t 0.7007 0.9753 0.9318 0.8327 0.5945 0.0493 0.1359 0.3335

T=300 s1t 0.7656 0.9666 0.9862 0.8814 0.4672 0.0667 0.0276 0.2369

s2t 0.6173 0.9576 0.9873 0.8714 0.7629 0.0847 0.0254 0.2567

s3t 0.5919 0.9816 0.9899 0.8557 0.8134 0.0367 0.0202 0.2881

s4t 0.9810 0.9308 0.9554 0.8390 0.0378 0.1382 0.0890 0.3214

s5t 0.6871 0.9937 0.9756 0.8473 0.6236 0.0126 0.0486 0.3050

T=500 s1t 0.7634 0.9680 0.9857 0.8746 0.4723 0.0639 0.0285 0.2505

s2t 0.6048 0.9605 0.9843 0.8701 0.7889 0.0790 0.0314 0.2596

s3t 0.5936 0.9820 0.9881 0.8710 0.8111 0.0359 0.0237 0.2578

s4t 0.9865 0.9504 0.9705 0.8391 0.0270 0.0991 0.0590 0.3214

s5t 0.6671 0.9969 0.9867 0.8513 0.6645 0.0062 0.0265 0.2971
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