Universidad Carlos 111 de Madrid

PhD Thesis

Automated Planning Through
Abstractions in Dynamic and
Stochastic Environments

Author:

Moisés Martinez Munoz

Thesis advisors:

Dr. D. Daniel Borrajo Millan and
Dr. D. Fernando Fernandez Rebollo

Computer Science Department

Leganés, September, 2016

PhD Thesis

Automated Planning Through
Abstractions in Dynamic and Stochastic Environments

Author: Moizsés Martinez Mufioz

Advisors: Dr. D. Daniel Borrajo Millan
and Dr. D. Fernando Fernandez Rebollo

Selection Board Signature

e 1 =

The thesiz= defense was on Leganés,cccvciiciiiiiiinnns , 2016 at the
Universidad Carlos III de Madrid.

In the computer field, the moment of truth is a running

program; all elee ie prophecy

Herbert Simon

ACKNOWLEDGEMENTS

These pages could not exist without the presence and help of many people with
whom I shared these years at Carlos III de Madrid University.

First of all I want to thank my PhD advisors Daniel Borrajo and Fernando
Fernandez, because they gave me the opportunity of doing this thesis in the first
place. They followed me in all these yvears, always encouraging, with patience and
understanding. Daniel iz one of those persons that leaves his mark, for his knowledge,
kindness and insight. I learned a lot about Artificial Intelligence from him, he made
me improve in many aspects of life, eventually making me a better researcher.
Fernando has tried to focus my crazy mind in this work during these amazing
four years. I learned a lot about Machine Learning from him, he made me more
self-confident and a better researcher too.

Also, I want to thank the other people that I have collaborated with during this time.
I am grateful to Yago Saez, he introduced my first stepe in Artificial Intelligence
with kindness and passion. My vigit to Orebro, where I met Franzizka Kliigl. She
introduced me to multi-agent simulated environments that helped me to improve
some aspects of this thesis. Javier Garcia Polo because it has been amazing to
work with him at any crazy idea related to Automated Planning, Machine Learning
and/or Robotics. I am deeply grateful to Nerea Luis because we shared =0 much
together, from the days in the office spent running for dead-lines, supervising
bachelor thesis, coding for StarCraft, bothering about Artificial intelligence or
Robotics and /or looking for sponzors to T3F.

I also want to thank Carlos Linares, Frederic Py and Francisco Melo for their
valuable comments that helped me out to improve this work. I am truly grateful of
all the effort they did into their reviews.

Thanks to the people of the Planning and Learning Group (PLG) at Carlos
III de Madrid University. Especially with my "labo" mates: Eloy Florez, Javier
Garcia, Daniel Pérez, Javier Ortiz, Emilio Martin, Ezequiel Quintero, Vidal Alcazar,
Alvaro Torralba, Jesis Virseda, Sergio Nuifiez and Jose Carlos Gonzalez. Because,
it iz amazing to work with people like them. Thanks to Neli for solving each
administrative stuff making my life a bit easy during these vears. Also I want

i

to include in these acknowledgements all the institutions that provided me with
funding for my activities, without their generous contributions I could not finish
this work.

To my friends, the old and the new: Nacho, Jaime, Ignacio, Victor, Carloz, Marga,
Ana, Edu, Eloy, Javi, Alvaro, Ricardo, Jesus, Sergio, Nerea ... to be there in the
good and bad times during this path. I would like to thank all the people that
feed my curiosity about maths, physics and computer sciences. My father, my high
school teachers and my teachers, mates and students in the university. They all
made possible this worl.

A final thanks goes to my family, that has been always supportive, despite myszelf.
I am deeply grateful to my Father, Susana and David who always are there for
everything. I would not be the person that I am without them.

Thank you all so much.

iv

ABSTRACT

Generating sequences of actions — plans — for an automatic system, like a robot,
ueing Automated Planning is particularly difficult in stochastic and/or dynamic
environments. These plans are composed of actions whose execution, in certain
scenarios, might fail, which in turn prevents the execution of the rest of the actions in
the plan. Also, in some environments, plans must be generated fast, both at the start
of the execution and after every execution failure. These problems have contributed
to generate new Automated Planning models (Planning under Uncertainty) to
tackle these situations. These models include changes in the representation of
the information to manage the dynamics of the environment (action outcomes,
observability of the environment, etc). In spite of the initial advantages of these
models, there are some important disadvantages that increase the cost of generating
a plan. These models require an accurate definition of the environment’s dynamics.
Frequently, it is extremely difficult to define such accurate models, and in some
environments the amount of information needed is huge. The most common solution
to avoid these problems consists on repairing or re-planning when a failure in
execution is detected due to the lack of information. Therefore, at each planning
(re-planning) step, a new plan of actions is generated including the possible changes
in the environment.

The main objective of this thesiz consists on developing a new planning-execution
approach that reduces the computational effort of the planning task in dynamic
and stochastic scenarios. These scenarioe present some challenges that increase
the complexity of the planning-execution process: (i) new information about the
environment can be discovered during action execution, modifying the structure
of the planning task; (ii) actions’ execution can fail which in turn prevents the
execution of the rest of the plan; (iii) the execution of the actions in the plan can
generate states from which there is no solution (dead-ends); (iv) plans may need to
be generated quickly to offer a real time interaction between the antomated planning
system and the environment; and (v) planning tasks present scalability problems.
For these reasons, the process of generating and executing a plan of actions can be
prohibitively expensive in real world environments.

In the first part of thi= thesis, we detail novel methods for generating predicate
abstractions from planning tasks. We then propose a way of using these predicate

abstractions during search to genmerate partial abstract plans, while considering
the far future information with a different level of detail, by selectively removing
predicates of the planning task. Thizs approach generates partial abstract solution
plans where the k-first actions in the plan are guaranteed to be applicable as long as
the information about the environment does not change or the actions’ execution is
correct. Meanwhile, the rest of the plan might not necezzarily be applicable due to
the level of the details of the predicate abstraction. In the second part of this thesis,
we focus on improving the technique developed on the first part to implement a
method to generate predicate abstraction automatically using different extraction
methods (Landmark based and Relaxed Plan bazed). Finally in the third part of
this thesis, we compare the performance of both extraction methods conducting a
detailed study about the generation time and the type of predicate chosen in order
to analyze their effect in the planning-execution process.

Finally, we provide an outlook on possible extensions of our work in different
directions: (1) investigating more complex ways to deploy abstractions during search
using different level of abstractions; (2) deploying predicate abetractions to generate
partial plans which can be used to guide the search; and (3) modifying the value
of k dynamically in order to improve the quality of the partial plans generated for
our approach.

RESUMEN

Generar secuencias de acciones — planes — para un sistema automatico, como
un robot, mediante la utilizacion de Planificacion Automatica es particularmente
dificil en entornos estocasticos v/o dinamicos. Estos planes estan compuestos por
acciones cuya ejecucion puede fallar en algunas ocasiones, evitando que se puedan
ejecutar el resto de acciones que componen el plan. Ademas, en algunos entornos,
los planes deben ser generados rapidamente, tanto al comienzo de la ejecucion,
como cuando un fallo es detectado durante ésta. Estos problemas han contribuido
a que aparezcan nuevoe modelos de Planificacion Automatica (Planificacion con
Incertidumbre) capaces de manejar estoz problemas. Estos modelos incluyen
cambios en la representacion de la informacion para gestionar las dinamicas del
entorno (resultados de las acciones, observabilidad del entorno, ete). A pesar de
la ventajas iniciales de estos modelos, existen algunas importantes desventajas que
producen un incremento en el coste de generaciom de los planes de acciones. Esto
es debido a que es necesario tener una represemtacion preciza de la dinamica del
entorno v frecuentemente es extremadamente complicado obtenerla o es demasiado
grande para manejarla. La solucion mas comiin para evitar estos problemas consiste
en reparar o re-planificar cuando se detecta un fallo durante la ejecucion debido a la
falta de informacion. Por lo tanto, en cada proceso de planificacion (re-planificacion),
se genera un nuevo plan de acciones incluyvendo los posibles cambios detectados en
el entorno.

El ohjetivo principal de esta tesis consiste en definir un muevo enfoque de
planificacion-ejecucion basado en abstracciones que permita reducir el coste
computacional de la tarea de planificacion en escenarios dinamicos y estocasticos.
Estos escenarios presentan algunce desafice que aumentan la complejidad del
proceso de planificacion-ejecucion: (i) nueva informacion sobre el entorno puede
ser descubierta durante la ejecucion de las acciones, modificando la estructura de
la tarea de planificacion; (ii) la ejecucion de las acciones puede fallar impidiendo
la ejecucion del resto del plan; (iii) la ejecucion de las acciones puede generar
estados a partir de los cuales no hay solucion (caminos sin salida); (iv) los planes de
acciones pueden necesitar ser generados rapidamente para ofrecer una interaccion
mas realista entre el sistema de planificacion automatica y el entorno; y (v) este tipo
de entornos presentan problemas de escalabilidad debido a la explosion combinatoria
implicita por la cantidad de informacion y la complejidad del modelo de acciones.

Por estas razones, el proceso de generar v ejecutar un plan de acciones puede ser
prohibitivamente costoso en entornos del mundo real.

En la primera parte de esta tesis, vamos a describir de forma detallada el
método desarrollados para generar abstracciones basadas en predicados para
tareas de planificacion. A continuacion, proponemos una forma de utilizar
abstracciones basadas en predicados durante la blisqueda para generar planes
parciales, considerando la informacion futura con diferentes niveles de detalle,
mediante la eliminacion de forma selectiva de predicados de la tarea de planificacion.
Ezte enfoque generara planes parciales abstractos, donde las k-primeras acciones
del plan (horizonte) podran ser ejecutadas siempre y cuando la informacion sobre
el entorno sea completa y no varie, mientras que el resto del plan podria no ser
necesariamente aplicable. En la sepunda parte de esta tesis, nos centramos en
la mejora de la técnica descrita en la primera parte mediante la implementacion
de diferentes técnicas para generar abstractiones basadas en predicados de forma
automatica utilizando distintos métodos de extraceion (Landmarks y Plan relajado).
Finalmente en la tercera parte de la tesis, comparamos el comportamiento de
ambos métodos mediante la realizacidm de un estudio detallado sobre el tiempo
de generacion y los predicate extraidos con el fin de analizar su efecto sobre el
proceso de planificacion vy ejecucion.

Por ultimo, ofrecemos una perspectiva sobre las posibles extensiones de nuestro
trabajo en diferentes direcciones: (1) investigando formas mas complejas de
desplegar las abstracciones durante la busqueda utilizando diferentes niveles de
abstracciones; (2) desplegando abstraciones basadas en predicados para general
planes parciales que puedan ser utilizados con el fin de guiar el proceso de biisqueda;
¥ (3) modificando el valor de k de forma dinamica con el fin de mejorar la calidad

de los planes parciales generados por nuestra técnica.

CONTENTS

List of Figures xi
List of Tables xiv
List of Algorithme xvi
1 INTRODUCTION 1
1.1 Objectives of the thesis oo o000 oL o oL 4
1.2 Thesie Outline0 0 o e e e 5
i STATE OF THE ART]
2 AUTOMATED PLANNING 11
2.1 Imtroduction 0 e e e e e e 12
2.2 Classical Planning Task00 0 oo oo 14
2.3 Probahilietic Planning Task0 .. .0 000000 28
2.4 Conformant Planning Task0 ... 00000000, ar
2.5 Contingent Planning Task0 .. . o o000, 41
206 Discussion L e e e e e e e e e e e e e e 45
3 ABETRACTIONS IN AUTOMATED PLANNING 47
3.1 Imtroduction 0 .. . L e 47
3.2 Abstractions over the stateepace. o000 49
3.2 Abetractions over the heuristic function00 52
3.4 Diecussion L e e e e e e e e e e e e e e e 54
4 REAL-TIME SEARCH 55
4.1 Imtroduction 0 0 e e e 55
4.2 Incremental Heurietic Search o 0oL 56

4.3 Real-time Heuristic Search i i i i i ¥

4.4 Diecussion L e e e e e e e e e e e e 58
ii PREDICATE ABSTRACTIONS OVER AUTOMATED PLANNING 61
5 PLANNING AND EXECUTION 63
5.1 Imtroduction 0 e e e e e 63
5.2 Architectures L e e 70
5.3 Planning, Execution and LEarning Architecture T6
B4 Diecussion L e e e e e e e e e e e e e e e &4
6 VARIABLE RESOLUTION PLANNING 85
6.1 Imtroduction 0 e e e 26
6.2 Formalization of Predicate Abstractione a7
6.3 Properties of Predicate Abstractioneo 92
6.4 VRP Algorithm o0 L e 04
6.5 Empirical Evaluation 0L oo 0oL 102
6.6 Discussion L e e e e e e e e 123
7 GENERATING PREDICATE 8ETS AUTOMATICALLY 127
7.1 Imtroduction @ i e e 127
7.2 Data extraction techniques 000 0oL 128
7.3 VRP Algorithm 0 o0 e 133
7.4 Empirical Evaluation 138
TH Bummary Ll e e e e e e e e e e e 143
iii CONCLUSIONS AND FUTURE WORK 147
& CONCLUSIONS 149
8.1 Contributions e e 149
9 FUTURE WORK 153

iv

9.1 Improving the predicate set generation mechanism
0.2 Automatically Changing the predicate set during execution
0.3 Automatically Changing the horizon during execution
9.4 Heurietic functione based on Variable Resolution Planning

9.5 Variable Resolution Planning in real-world scenarios

APPENDIX

THE ABETRACT K FAST DOWNWARD PLANNER

HOW TO DEPLOY THE LIGHT PELEA ARCHITECTURE

B.l Imstallation guide o .. L L
B.2 Configuring and rumning LPELEA 000000
B.3 Howtorun LPELEA0 .. 0 o
DETAILED RESULTE FROM CHAPTER 6

C.1 Detailed results for Rovere domain 0.0 o000
0.2 Detailed results for other domains 0 .0 00000000000
DETAILED RESULTS FROM CHAPTER 7

0.1 The Rovers Domain0 .0 000 0o e
0.2 The Depote Robots domain 0 .. . 00000 0oL
0.3 The TidyBot domain0 L0 L
D.d The Port domain 00 L Lo e

0.5 The Satellite domain L e e e e e e e e e

BIBLIOGRAPHY

157

159

161

161

162

163

165

165

172

177

177

179

181

183

185

187

LIST OF FIGURES

T

10

11

12

13

14

15

16

17

18

19

20

n

22

Classical planning task of the Rovers domain. 0000000000 oL 15
Initial state of the planning task shown in Figure 1.00 0 o000 o000 L 18
Transition graph for the propositional encoding of the planning task shown in Figure 1. 18
Partial S4 54 encoding of the planning task of Figure 1.0 000000 L. 20
Multi-valued conceptual model corresponding to the planning task defined in Figure 1 21

Partial problem description encoded in STRIPS of the planning task shown in Figure 1. 22

PPDL definition for action nawvigate from Rovers domain.0 o0 L . 25
PPDDL definition for action nawigate from Rovers domain., o0 0. .. 30
PPDDL definition for probabilistic literals in the initial state for the Rovers task

shown in Figure 1. o 0 0 0 0 0 0 00 0 e e e e e e e e e 1
RDDL codification of the Rovers domain, . .. 0. 00000 oo oo oo 0oL 32
Example of an abstraction applied over a simple planning task. 48
Hierarchical representation of the state space. oo o0 00000 o000 51
Shakey: the first general-purpose mobile robot. 0000000000 L. 66
Example of a basic planning and execution control system L. 67
Task Control Architecture for Ambler Walking System. o000 00 L. 71
LAAS Architecture for Autonomons Systems. oo oL 73
T-REX architecture.. o0 00 00 e e T4
PELA architecture 0. 0 i i it i it i i e e e T
The PELEA architecture. . .. 0. .00 00 00 o0 o e i s i 7T
Error Simulator structure . .0 0L L0 L 00 o s e e e e 82
PPDDL definition for action nawigate from Rovers domain o000 ... 83
VEP's architecture. . . .0 o000 0L 87

23

25

26

7

28

20

30

31

32

33

35

36

a7

38

30

Simple planning task of the Rovers domain. 000000000
Solution plan for a Hover task 0 o0 0 0 Lo e
Multi-valued abstract state variable representation 0000
Light PELEA Architecture used to evaluate VRP.0 o o0 o0 oo oL

Evolution of four metrics during the whole cycle of planning and execution depending
on the value of k for five problems from the Rovers domain. L.

Average planning time for the first 60 iterations of planning and execution for Rovers
problem 400 L 0 oL L e e e e e e e e e e

Average Elﬂﬂﬂiﬂg time for the whole cycle of planning and execution for Rovers
problem 400 L o oL L e e e e e e e e

Evolution of the full planning time depending on the value of k for problem 40 . . .
VEP's architecture. . . .0 o000 0L

Deterministic planning task of the Logistics domain: the goal consists on fransporting
package pq from location Bto D L 00 oL Lo

Partial landmark graph for the example task shown in Figure 1. Bold arcs represent
natural orderings, dashed arcs represent necessary orderings.

Relaxed plan of the planning task depicted in Figure 32, 000 o000 0L
Relaxed plan of the planning task depicted in Figure 32, 000 o000 0L

Light PELEA Architecture used to evaluate VRP with automatic predicate set
EEMETATION. . . v L L o e i e e e e e e e e e e e e e e e e e e

Average time of the first planning time in five different domains
Execution sequence of the different version of VRP. . . 00 0 00 0000000 L

LPELEA configuration file example 00 o0 000000 oo oo oo

88

120

120

121

129

131

132

133

137

160

LIST OF TABLES

T

10

11

12

13

14

15

16

17

18

Antomated planning paradigms. . . .0 .0 L0 L s e
STRIPS definition of the Rovers domain.0 o000 oo oo oo .
Predicate categorization for the Rovers domain. 0o 000 o000 L.

Comparing AKFD to LAMAF, FF-Replan and mGPT over five problems from the Rovers
domain. AKFD has been tuned removing the predicate at and using a horizon value
of Wactions. 0 0 00 L0 L e e e e

Clomparing AKFD to LAMAF over five problems from the Rovers domain. AKFD has
been tuned removing one predicate manually with and horizon of 10 actions.

Clomparing the size of the first plan generated by AKFD and LAMAF for five problems
from the Rovers domain. . . .0 00 0000 0 0o s e e

Clomparing AKFD to LAMAF over five problems from the Rovers domain removing
different predicate sets.0 L L L L L e e

Clomparing the size of the action set generated by AKFD and LAMAF for five problems
of the Rovers domain. 0 00 0000 o s e e

Clomparing AKFD using different horizons to LAMAF over five problems from the Rovers
domain where predicate at has been removed manually o000 L L.

Clomparing AKFD to LAMAF on five difficult problems from the Rovers domain
Results of planning and execution on six different planning domains.
Results of planning and execution on five different planning domains.
Average number of occurrences of each grounded predicate in the predicate set. . . .
Global properties of the LPELEA architecture0 000000000 L .

Clomparing AKFD using different horizons to LAMAF over five problems from the Rovers
domain removing predicate have image manually. 000000 L.

Clomparing AKFD using different horizons to LAMAF over five problems from the Rovers
domain removing predicate have rock amnalysis manually. 000

Clomparing AKFD using different horizons to LAMAF over five problems from the Rovers
domain removing predicate have soil _analysis manually. 0000 0L

Clomparing AKFD using different horizons to LAMAF over five problems from the Rovers
domain removing predicate calibrated manually.0 0 o000 o000 L

166

16T

19

20

n

22

23

25

26

7

28

20

30

31

32

33

35

Clomparing AKFD using different horizons to LAMAF over five problems from the Rovers
domain removing 2 predicates chosen manually.o 0oL

Clomparing AKFD using different horizons to LAMAF over five problems from the Rovers
domain removing 3 predicates chosen manually.00 0000000

Clomparing AKFD using different horizons to LAMAF over five problems from the Rovers
domain removing 4 predicates chosen manually.0 000000000

Clomparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Depots-robots domain manually removing predicate at-robot

Clomparing AKFD using different horizons to LAMAF and mGPT over five problems
from the TidyBot domain manually removing predicate base-pos 0. .. L.

Comparing AKFD using different horizons to FD and mGPT over five problems from
the Port domain removing predicate at. o0 0000000000 oo L

Comparing AKFD using different horizons to FD and mGPT over five problems from
the 5Satellite domain removing predicate power-om. ool

Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the ers dOmMAall .. L 0 v e e e e e e e e e e e e e e e

Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the S L1 1

Clomparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Depots-Robots domain0 0000 o0 oo o oo oo

Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Depots-Robots domain0 000 0 o0 oo o0 o oo o

Clomparing AKFD using different horizons to LAMAF and mGPT over five problems
from the TidyBot domain0 00 0 00 00 i e e

Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the TidyBot domain0 000 00 0 i e e

Clomparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Port domain 0000 000

Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Port domain 0000 000

Clomparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Satellite domain . . . 0 o0 000

Clomparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Satellite domain . . . 0 o0 000

160

170

171

LIST OF ALGORITHMS

51

5.2

6.1

6.2

6.3

6.4

Tl

7.2

Pseudo-code of the main loop of the Monitoring Module for High Level L. 79
Pseudo-code of the handler function for action navigate 0 ... 82
Pseudo-code of the marking process0 o0 00 000 o o d e n e a7
Pseudo-code of the generation process of the abstract action space 98

Pseudo-code of the generation functions which generate the prevail-conditions, the

pre-conditions and the post-conditions of the abstract actions. 99
Pseudo-code of the k-bounded Best First Search algorithm o000 0. L. 103
Pseudo-code of the generation process based on Landmarks o000 0. L . 136
Pseudo-code of the generation process based on Relaxed Plan 138

xvii

INTRODUCTION

In the last decade, there was a growing need to build control systems with the
ability to interact in complex stochastic and dynamic environments. This kind
of environments generates significant challenges related to the tasks of sensing,
control and deliberation. In particular, it is critical to design control algorithms that
determine an appropriate action to take based on the current state of the world.
But the process to choose these actions could be a difficult task depending on the
information known about the environment or the time used to make decisions.

A solution could be to get some inspiration from human reasoning processes when
solving problems from the real world. Within the field of Artificial Intelligence
(Al), Automated Planning (AP) iz the branch of Al that studies the generation
of an ordered set of actions — plan — that allows a system to transit from a given
initial state to a state where a set of goals have been achieved. AP has been
successfully used to solve real world problems such as planning Mars exploration
missions (Ai-Chang et al., 2004}, managing fire extinetions (Asuncion et al., 2005) or
controlling underwater vehicles (Rajan et al., 2007). Despite of these examples, the
application of AP systems to stochastic and dynamic environments still presents
some challenges, mainly because these scemarios increase the complexity of the
planning-execution process: (i) new information about the environment can be
discovered during action execution, modifving the structure of the planning task;
(ii) actions’ execution can fail which in turn prevents the execution of the rest of the
plan; (iii) the execution of the actions in the plan can generate states from which
the rest of the plan cannot be successfully executed (dead-ends); (iv) plans may
need to be generated quickly to offer a real time interaction between the AP system
and the environment; and (v) planning tasks prezent scalability problems according
to the combinatorial explosion. For these reasons, the process of generating and
executing a plan of actions can be prohibitively expensive for this kind of scenarios.

There are two main (extreme) approaches to =olve problems in stochastic
and dynamic environment: deliberative and reactive. At one extreme, we find
deliberative systems which are based on interleaving planning and execution with
full or partial obeervahbility. Depending on what information about the environment

INTRODUCTION

iz known to build the plan of actions, when this information is collected and how
thiz information is used to build the plan, we can group deliberative systems into
three perspectives: (1) Off-line planning; (2) Situated planning; and (3) On-line
planning.

Off-line planning systems are based on generating a unique plan of actions which
is computed using an accurate domain model in order to handle the contingencies
(failures, new information, sensing, ete) which can appear during execution. In order
to generate such plan, the planning system needs to have full knowledge about the
dynamics of the environment (failurez in the actuatorz of a robot, the structure
of the terrain, accuracy of sensors) to define an accurate action model. There
are different alternatives based on off-line planning which consist on: (1) building
conditional plans (Peot and Smith, 1992) where plans take into account all possible
outcomes; (2) generating a set of policiee by =olving the problem as a Markov
Decizion Process (MDP) (Bonet and Geffner, 2005; Yoon et al., 2008; Kolobov
et al., 2010); or (3) translating the planning task into another representation to
apply algorithms which can solve the task in the new representation (Palacios and
Geffner, 2005). But, unfortunately, the dynamics of the environment are not usually
known or cannot be easily modeled. As alternative, we can try to learn the dynamics
of the environment and then apply one of the previous approaches. However, the
learning effort i= huge except for small tasks (Zettlemoyer et al., 2005).

The most common solution consists on using Situated planning. Situated
planning systems are based on generating a plan using a deterministic action model
and replans and/or repairs the previous plan when a failure iz detected during
execution (the robot iz not in the expected location, the robot hands do not hold
the object, ...). When re-planning (Yoon et al., 2007), the planner generates an
initial applicable plan and executes it, one action at the time. If an unexpected state
iz detected, the system generates a new plan from scratch. This process is repeated
until the system reaches the problem goals. Therefore, at each planning (re-planning)
step, including the initial one, the system is devoting a huge computational effort
on generating a valid plan (an applicable plan that achieves the goals), when
moet of it will not be used. When repairing a running plan (Krogt and Weerdt,
2005; Fox et al., 2006; Borrajo and Veloso, 2012), the planner generates an initial
applicable plan from scratch and executes it. If an unexpected state i= detected,
the system generates a new plan by reusing the plan generated previously adding
and/or removing some actions. In general, deliberative systems require a huge
computational effort to generate a complete and sound plan. Depending upon the
dynamics of the environment, most probably the plan will not be fully executed.

INTRODUCTION

On-line planning systems are based on executing actions continuously until goals
are reached. These planning svstems generate partial solutions of the planning
tack which do not guarantee that the plan will actually reach the goals. Partial
plans are commonly generated using two alternatives: (1) Sub-goaling planning
which generates a solution plan using a subset of goals (Champandard et al., 2009)
chosen manually or antomatically. These subsets can be generated using the different
predicates which are part of the goals of the problem or computing an ordered set
of landmarks choosing them as subgoals (Sebastia et al., 2006). (2) Limited-horizon
planning searches for a solution plan until the planner reaches the goals or reaches
a user-supplied bound (time, number of actions, etc), and then it returns the best
solution found (Korf, 1990).

On the other extreme, there are several approaches that solve problems in stochastic
and dynamic scenarios using reactive systems. These systems are based on greedily
selecting the next action to be applied according to some knowledge which has
been programmed or learned previously. If the knowledge about the environment is
only uzed to zelect the next action, we can consider a pure reactive system without
any deliberation, where the system perceives and generates the next action in a
continuous cycle. Systems based on the Subsumption architecture (Brooks, 1986;
Amir and Maynard-reid, 1999; Butler et al., 2001) are built using a control layer
set, where different layers are interconnected with signals. During each execution
step, one layer is chosen depending on the information perceived. Then, this layer
execute a set of action in the environment. Other reactive approaches are baszed on
building reactive behavioural navigation controllers using neural networks (Zalama
et al., 2002; Yang and Meng, 2003) or fuzzy logic (Aguirre and Gonzalez, 2003; Zhu
and Yang, 2010). In general, reactive systems require much less computational effort
and are “moetly” blind with respect to the future; they usually ignore the impact
of the selected action on the next actions and states. Thus, they often get trapped
in local minima or dead-ends.

The main idea of this thesis consists on extending some works on abstractions to the
field of planning under uncertainty, by generating plans that provide detailed actions
in the first steps of the plan. Meanwhile in later steps of the plan, our approach will
only provide limited details, since the actions that are planned to be executed in
the future are very unlikely to be used, given the uncertainty during execution. Our
research has been inspired by the work of Zickler and Veloso (Zickler and Veloso,
2010}, where a motion planning technique is presented. This technique generates a
collision-free trajectory from an initial state to a goal state in dynamic environments.
They introduced the concept of Variable Level-Of-Detail (VLOD), which focuses
search on obtaining accurate short-term motion planning, while considering the
far future with a different level of detail, by selectively ignoring the physical

INTRODUCTION

interactions with dynamic objects. Thiz technique decreases the computational
effort of the motion planning process, so that information about different elements
of the environment is not used to search a path to reach all goals. This approach
only works for motion planning, so we have generalized it for task planning.

1.1 OBJECTIVES OF THE THESIS

Current Automated Planning models (classical planning and planning under
uncertainty) based on heuristic search, decision making and/or dynamic
programming, only obtain robust plans when they have complete and accurate
action models. But unfortunately obtaining an accurate action model from the
real world is not always poesible or the cost to get it i= huge. Besides, if the
information used to represent the environment is huge, the time required to generate
a plan could be prohibitively large. Planning in real-world environments present
some important drawbacks: (1) the complexity of solving a real-world planning
task that encodes full information about the contingencies of the environment is
EXPSPACE-complete (Littman et al., 1998); (2) it iz extremely difficult to build
an accurate action model of the real-world which encodes full knowledge about
the contingencies of the enviromment and the learning effort to generate it is
huge (Zettlemoyer et al., 2005); and (3) real-world scenarios imply quick interactions
with the environment which cannot be performed if the time required to generate
a plan is prohibitively large according to the complexity of the real-world scenario.
According to this, the main objective of this thesis consists in proving our initial
hypothesis:

It is possible to solve planning tasks in dynamic and stochastic
(real-world) environments using deterministic planning by generating
k-bounded plans by means of abstractions which are built removing
some predicates that represent future information about the
environment.

This hypothesiz is based on two main ideas: it is not always possible to collect all
the information about the dynamics of a real world environment, or if it is possible
to get it, the amount of information that describes the environment can not be
managed by current planners; and in dynamic and stochastic environments it is not
useful to spend a long time generating a detailed long plan, when most of it will
not be applied due to the dynamic behavior of the environment (changes in the
information known, unexpected states, new information, etc). The main objective
has been divided into several sub-objectives, which are described in detail next:

1.2 THESIS OUTLINE

« Analyzing the existing literature related with this thesis (Objective
1): the first objective of this thesis iz to perform an exhaustive review
of the existing literature in classical planning, planning under uncertainty,
abstractions on AP and planning and execution. It requires a deep study
about the advantages and limitations of the existing paradigms and how they
can be improved to solve similar planning tasks in the dynamic and stochastic
environments.

+ Decreasing the computational effort of the planning task (Objective
2): eolving probleme in dynamic and stochastic environments is challenging
in Automated Planning. A second objective of this thesiz i= to propose
a new planning approach to decrease the time of the planning task that
applies abstractions over the information known about the environment. The
abstractions will be created over information about the future, which could
change during the planning and execution processes.

« Designing an automatic way to generate abstractions (Objective 3):
it is very important to identify what information can be used to generate the
abstractions. This objective consists on designing a technique that generates
abstractions auntomatically. This technique must analyze the information used
to represent the environment and generate a set of abstractions, which can
be used by the technique designed to solve the objective 2. The rules used to
select the information to be abstracted must be based on the importance of
the information for the planning process.

+ Building a set of test benchmarks (Objective 4): The current test
benchmarks for Automated Planning have been designed to analyze the
capability of planners to find a solution, but these solutions are not usually
executed in an environment. For this reason, we are going to generate a set
of test benchmarks which will be composed of both domains from previous
works and domains designed for this thesizs. Besides, we are going to define
a way to evaluate the features of the different techniques developed in this
Thesis.

1.2 THEsIE OUTLINE

This introductory chapter has briefly summarized the research background,
motivation, and the main ideas of this thesis. The remainder of this thesiz is
organized as follows:

INTRODUCTION

Part I: State of the Art

» Chapter 2 provides background on the state of the art in Automated Planning.
Specifically, it reviews the literature about deterministic, probabilistic,
contingent and conformant planning approaches.

» Chapter 3 introduces the concept of abstraction and how abstractions have
been deployed over deterministic planning.

» Chapter 4 introduces the concept of Real Time Search, the different
techniques developed and the concept of lookahead in Heuristic Search.

Part II: Predicate Abstractions over Automated Planning

Chapter 5 introduces the concept of Planning and Execution describing in
detail the planning and execution architecture developed to conduct the
empirical evaluation. Besides, this chapter also describes the method of
empirical evaluation used to test the thesis.

» Chapter 6 introduces Variable Resolution Planning (VRP). Next, it describes
the concept of predicate abstraction introducing a theoretical definition, a set
of propertiez based on previous works (Knoblock et al., 1990; Yang et al.,
1991) and a method to deploy predicate abstractions in Automated Planning
choosing the predicate used to build the predicate abstraction and the horizon
wvalue that defines when the predicate abstraction is applied manually.

#» Chapter 7 introduces the different methods developed to generate the
predicate set which can be used to generate the predicate abstraction.

Part I1I: Concluzions and Future Work

» Chapter 8 summarizes the contributions of this thesis.

» Chapter 9 points out some directions for future research.

Part IV: Appendixes

» Appendix A describes the execution sequence of the modules that compose
the different versions of the planner implemented in this thesis.

1.2 THESIS OUTLINE

» Appendix B describes how to deploy and configure the LPELEA architecture
implemented to conduct the empirical evaluation of this thesiz.

» Appendix C includes the detailed results for the experiments conducted in
Chapter 6.

» Appendix D includes the detailed results for the experiments conducted in
Chapter 7.

Part 1

STATE OF THE ART

AUTOMATED PLANNING

One of the aims of Artificial Intelligence consists on generating autonomous systems
able to produce intelligent behaviours related to the abilities of the human brain.
One of the distinct abilities of the human brain relates to its capability of long-term
reasoning which consists on generating solutions to complex tasks. The general
problem of finding a solution to a complex task has been tackled following three
main trends: (1) programming-based approaches where a program encodes a specific
method that solve a specific task; (2) model-based approaches where a general solver
infers antomatically a solution using an action model, the information about the
problem and the objectives (goals); and (3) learning-based approaches where an
automatic system improves itself by learning the adequate solution according to
the information provided by an instructor or the environment.

Auntomated Planning iz a model-based approach to autonomous behaviour which
generates a plan of actions (behaviours) that solve a specific task according to
the awvailable information about the environment. In other words, a planning
task can be defined such as a long-term reasoning process in which a set of
agents must achieve a set of goal: by executing a sequence of actionz (Nau
et al., 2004). The ability of long-term reasoning about the actions to perform,
before acting, is certainly an important point to generate behaviours in
real-world environments. Despite the complexity of long-term reasoning, Automated
planning has proved to be effective to =olve diverse real-world problems such
as managing fire extinctions (Asuncion et al., 2005), controlling underwater
vehicles (Rajan et al., 2007), natural-language generation (Koller and Hoffmann,
2010}, intermodal transportation problems (Garcia et al., 2013) and controlling
quadcopters (Bernardini et al., 2014).

This chapter is a review of Automated Planning which i= the main topic addressed

in this thesis. We introduce the relevant concepts in Automated Planning based on
deterministic, probabilistic and non-deterministic approaches.

11

12

AUTOMATED PLANNING

2.1 INTRODUCTION

Antomated Planning is a field of Artificial Intelligence based on the Problem
Space framework created by Herbert Simon and Allen Newell (Newell and Simon,
1972). A problem epace is defined by a =et of states and a set of operators that
configure the domain model. The domain model can be represented as a directed
graph whose nodes represent the states, and whose edges represent the operators.
Formally, a planning task consists of an action model, an initial state and a goal state
where a solution plan is a path from the node in the graph that represents the initial
state to a goal node that represent a state identified as a goal state. This framework
is extremely general to represent tasks in a large variety of domains, ranging from
simple tasks to move a robot from one point to another to more complex planning
tasks. A set of planning tasks can be defined within a Problem Space where each
tagk iz composed of an initial state and a set of goals. An Automated Planning
system iz based on a set of three common features:

+» A Conceptual Model. A formal definition of the task to be solved and the
structure of the solution

» A Modeling Langnage. A formal language that describes the problem solving
tack and the environment

+ An Algorithm. The technique uzed to find a solution

At start, some assumptions were made to simplify problem solving. They are
related to the representation of the environment, the actions or the states of the
environment:

» Finite world: the environment is represented as a finite set of states
» Static world: the environment only changes when an action is executed

» Determini=sm: the execution of the same action in the same state always vields
the same new state

» Total observability: there is complete knowledge about the state of the
environment

» Implicit time: the execution of an action has no duration. Then, the state
transitions are instantaneous

» Reachability goals: the objective of the planning task is to find a set of actions
that transform a given initial state into another state satisfying the goals

21 INTRODUCTION

Depending on which of these assumptions are relaxed we can define different types
of planning paradigms. In this thesis, we are interested in the use of AP in dynamic
and stochastic environments. This implies that it iz not possible to have complete
knowledge about both the environment and the action outcomes. Besides the actions
have different durations. In more detail:

» Non-determinizm: determinizm is an unrealistic assumption because, when
an action is executed in a real environment, predicting the effects iz often
difficult. We can differentiate three kinds of ocutcomes: (1) deterministic; (2)
disjunctive, when different actions outcomes are possible (actions do not follow
a probabilistic model); and (3) stochastic, when the effects of the actions follow
a probabilistic model.

» Environment observahbility: in several systems, the state of the environment
cannot be observed completely. Depending on the amount of information that
iz known, three levels of obzervability can be defined: (1) total observability,
when full information about the environment can be captured or sensed; (2)
partial obeervability, when the state cannot be fully observed and (3) no
observahility, when no information about the environment can be captured or
sensed, except for the initial state.

According to these concepts (Non-deterministic and Environment Observability),
different planning models (and thus, techniques) can be used to generate plans of
actions. Table 1 shows some AP models that can be defined depending on these
dimensions.

Planning Paradigms

Observability Action Model
Deterministic Stochastic
Total Deterministic Probabilistic
Partial Contingent Probabilistic-Contingent
None Conformant Probabilistic-Conformant

Table 1: Automated planning paradigms.

According to Table 1, four different planning paradigms can be defined. Classical or
Deterministic Planning iz the sub-field of AP that studies the full relaxation of both
dimensions. This sub-field works in a fully observable environment where action

14

AUTOMATED PLANNING

outcomes are deterministic. Meanwhile, Planning under uncertainty is the sub-field
of AP that studies the relaxation of the total observability and/or deterministic
world assumptions. This sub-field can be divided into three fields depending on
how the different dimensions are defined. Probabilistic planning works in a fully
observable environment where action outcomes are stochastic. Conformant planning
worke in environments where no information about the environment can be observed
except for the initial state. And finally, Contingent planning works in determinizstic
environments where the information known about the world is partially observable.
Next, each paradigm is explained in more detail.

2.2 Crassical Pranning TAsK

Classical Planning can be defined as the process of generating a set of actions, which
sequentially executed into the environment transform the initial state into another
state where the goals are reached. This generation process can be considered as a
path-finding process in a directed graph whose nodes represent the states of the
environment, and whose edges represent the state transitions resulting from an
action execution.

An example of a planning task of the Rovers domain (Medermott, 2000) is presented
in Figure 1!. The environment is represented as a grid of 16 cells, called waypoints.
Each one iz denoted with a bi-dimenzional coordinate (x,y), starting on the left
bottom cell of the grid. White cells represent waypoints in which the rover can stay
(free); and black cellz represent obstacles. Two types of samples can be collected:
rocks and soil. Rocks are denoted with a small black circle. Soil is denoted with a
small black square. Rovers are located at waypoints and can move between any two
free waypoints which are adjacent. Besides, rovers can take samples of rocks and
soil and analyze them. Finally, there is a lander base which is used by the rovers
to send information to the Earth about the analysis made over the samples. The
tyvpical goal of a Rovers tazk iz to take some soil and rock samples, analyze them and
send the result to the lander base. In the example, the dashed red line represents
the deterministic plan to solve the planning task. We are going to use this example
to explain some concepts about deterministic planning.

2.2.1 THE CoNciEPTUAL MoODEL

The conceptual model for a classical planning task defines the formalization of
the environment, the actions that can be used to modify the environment, and how

1 This domain is a simplified version of the one used to provide plans for the actual Mars rovers.

2.2 CLASBICAL PLANNING TASK

Figure 1: Claesical planning task of the Rovers domain. Rover vy must talke soil sample vy
from location (2, 2] and rock sample s from location (1,0].

actions are applied in the environment to achieve the goals. Classical planning tasks
are frequently encoded as transition graphs whose nodes represent the states of the
environment, and whose edges represent the state transitions resulting from action
execution (DUDA). This graph representation is the search space of the planning
tack which is commonly used for graph search algorithms to find a path (plan of
actionz) between the initial state and a goal state that zolve the task.

Definition 1. (Deterministic Planning Model) A Deterministic Planning task can
be defined as a 5-tuple TT = (5, A, T, 5p, G), where:

S is a finite set of states, where each state is a non-empty zet of grounded
literals (alzo known az facts or atoms).

A iz a finite set of grounded actions derived from the action schemes of the
domain. Each action a; € A can be defined as a tuple a; = (Pre, Add, Del),
where Pre(a;) are the preconditions of the action, Add(a;) are its add effects,
and Del{a;) are the delete effects. Eff{a;)= Add(a;) U Del{a;) are the effects
of the action. Besides, each action a; has an associated non-negative integer
coet, cost(a) (the default cost is one).

15

16

AUTOMATED PLANNING

+ T is a state transition function T: 5 x A = 5:(s,a) — T(s,a) = s’, where s’
iz the state resulting from applying the action a in a given state s.

¢« 50 £ 5 is a finite set of literals which encode the initial state.

« G C5 iz a finite set of goal states.

An action a € A is applicable in a state s; € S when a target state s;; exists
such that T(s;, a) = si, 4. A solution plan 7 for a planning task IT is an ordered
set of actions (commonly, a sequence) m = (a1, ..., an), Va; € A, that transforms
the initial state sp into a state s, where G C s,,. This plan 7 can be executed if
the preconditions of each action are satisfied in the state in which it is applied; i.e.
Ya; € m, Pre(a;) C si—1 such that state s; results from executing the action a; in
the state s;_1. sp is the initial ztate.

The plan length corresponds with the cost of the plan when all actions have
unitary costs. In a conceptual model with non—unitary costs, plans with lower
cost are preferred to plans with higher cost. A satisficing planning task consists in
finding a plan of actions or showing that no such plan exists. An optimal planning
tagk consists in finding a plan of actions that minimizes the value computed by
Definition 2 or showing that no such plan exists.

Definition 2. (Plan Cost) The cost of a plan m = (ay, ..., an), Ya; € A is given
by a function

coet(m) = g Clay)

There are two main ways of formalizing the conceptual model of a clazsical planning
tagk in the literature: Propositional and Multi-Valued.

2.2.1.1 ProrosrTioNAL FORMALIZATION

Classical planning tasks are formalized in Propositional Logic (Mendelzon, 1987)
ueing propoeitions that describe the state of the world in terms of objects (robote,
locations, rocks, ete), predicates which describe static or dynamic features of these
objects or relations among them (e.g. locations are connected by roads) and actions
that manipulate those relations (a robot can move from one location to another,

2.2 CLASBICAL PLANNING TASK

a package can be grasped by a robot) and describe what propositions are added
or deleted when the action is applied. Each proposition iz Boolean, so each such
variable indicates whether a proposition about the world iz true or false in a given
state.

Definition 3. (Propositional Formalization of Clagzical Planning) A determiniztic
planning task using a propositional formalization is defined as a 4-tuple T =
(F, A, 1L G), where:

« Fis a finite set of grounded literals (also known as facts or atoms).

A iz a finite set of grounded actions derived from the action schemes of the
domain. Each action a; € A can be defined as a tuple a; = [Pre, Add, Del),
where Pre(a;) € F are the preconditions of the action, Add(a;) C F are
its add effects, and Del{a;) C F are the delete effectz. Eff{a;)= Add(a;) U
Del(a;) are the effects of the action. Besides, each action a; has an associated
non-negative integer coet, cost(a) (the defanlt cost is one). Any state s iz a
subset of facts that are true at a given time step. An action a is applicable
in si, if Pre(a) € si. Then, the result of applying an action a in state s;
generateg a new state that can be defined as: s; ; = s; % Del(a) U Add(a).

#« 1 CFis a finite set of grounded literals that are true in the initial state.

« G CFis a finite set of grounded literals which must be true in the goal state.

The example shown in Figure 1 depicts a simple task of the Rovers domain

which consists on taking some images and analyzing some =oil and rock samples.

This information must be communicated to the lander base using the awvailable
rovers. The initial state iz shown on Figure 1 and the goal consists on taking
and analyzing one soil sample from waypoint w22 and one rock sample from
waypoint w01. States are composed of propositions of the type (at r w),
(can_traverse r x y), ..., (at_soil_sample w). Each proposition is composed
of a sequence of parameters where the first parameter corresponds to the
identifier of the action and the rest correspond to particular objects. For instance,

the action (at r w) is identified The initial state sp i= shown in Figure 2.

The actions are navigate, sample-soil, sample-rock, drop, calibrate, take-image,
communicate-goil-data, communicate-rock-data and communicate-image-data.

Figure 3 shows the structure of the partial transition graph that represents the
conceptual model (action/state) for the planning task shown on Figure 1. This

17

18 AUTOMATED PLANNING

(visible w10 w20) ... (visible w33 w23)
(at_soil sample w22)

(at_rock sample w10)

(at_lander general w30)

(channel free general)

(at rl wO3) (available rl)

(etore_of rsl rl)

(empty rsl)

(equipped_for_soil analysis r1)
(equipped_for rock analysis rl)

(can_ traverse rl w10 w20) ... (can_traverze rl w33 w23)

Figure 2: Initial state of the planning task shown in Figure 1.

Figure 3: Transition graph for the propositional encoding of the planning task shown in
Figure 1. The initial state is the blue one and the goal state is the red one.

graph represents the state space and the different actions which can be executed to
transit between the different states that describe the planning task.

2.2 CLASBICAL PLANNING TASK

2.2.1.2 MurLtTI-VALUED FORMALIZATION

Planning tasks are formalized using multi-valued state variables that describe the
state of the world and actions that describe how the wvalues of the state variables
change when the action iz applied. There are two multi-valued formalizations:
SAS™ (Béckstrdm and Nebel, 1993) and Finite-Domain Representation (Helmert,
2006) which iz based on SAS™T.

Definition 4. (Multi-valued Formalization of Classical Planning) A planning task
using a multi-valued formalization is defined as a 4-tuple 1T = (V, A, 50, 54+), where:

« V is a finite set of state variables, where each state variable v € V has an
aszsociated extended domain D} = D, U{u}. The domain of a state variable
iz composed of a set of values), and the undefined value u which is used
to denote when the value is unknown. A value of a state variables v € V in
a given state s, also known as fluent, is defined as s[v] € DJ. These state
variables define the planning space 5™ = Dt x...x D . A partial variable
assignment or partial state iz a state in which at least a fluent s[v] = wu.

« A is a finite set of actions over V. Each action a € A i a 3-tuple a =
(pre(a), post(a), prev(a)) where pre(a) represents the preconditions, post(a)
the post-conditions and prev(a) the prevail-conditions. The preconditions of
a € A are fluents which must be true prior to the application of the action a
and become not true after its application. The post-conditions of a € A are
Huents which are not true prior to the application of the action a and become
not true after its applications. The prevail-conditions of a € A are fluents
which must be true before and after the application of the action a.

« sp is the initial state which iz defined over V such that sp[vi] Zu¥vi e V.

s s, i= a partial state over V such that s,[vi] € D Vv € V.

Any state s iz a complete assignment to all the variables in V. This means that
each wvariable iz represented by a fluent. Therefore an action a € A is applicable
in the state s if ¥ vy € V : (prev(a)[vi] = uV previa)[vi] = slvi]) A (pre(a)[vi] =
uw prela)v;] = s[w]). Then, the result of applying an action a in state s; generates
a new state that is equal to s; except that ¥V v; € Vpost(a][vi] # w:si vl =
post{a)[vi]. An action sequence m = (aj,...,an),Va; € A is a solution plan if
54 C s, where s, is the final state generated after the sequential execution of the
plan 7.

19

AUTOMATED PLANNING

V = {vr;, Va1, Vsys Vrsqs Vagr Vaal

D,,, = {at-rl-w0l, at-rl-w02, ..., at-rl-w33}

D.,, = {communicated-rock-data-w10, ~communicated-rock-data-w10}
D.,, = {communicated-soil-data-w22, —communicated-soil-data-w22}
I:.L.,,.“1 = {empty-rsl, full-rel}

Dv,, = {have-rock-analysis-rl-w10, —have-rock-analysis-r1-w10}

D.,. = {have-zoil-analysis-r1-w22, —have-soil-analyzis-r1-w22}

2
A ={ay,az,..., 037}

S50 = {vr, — at-rl-w03, v,, — — communicated-rock-data-w10,
Vs, — — communicated-soil-data-w22, v,;, — empty-rsl,

Vg, —+ — have-rock-analysis-r1-w10, v,, — — have-scil-analysis-r1-w22}

S¢ = {Vr, — communicated-rock-data-wl0, v, — communicated-soil-data-w22}

Figure 4: Partial 5454 encoding of the planning task of Figure 1.

Figure 4 shows part of a SAS™ encoding of the planning task depicted in Figure 1.
The planning task is composed of six state variables: (1) a variable that describes
where the rover is, v;,; (2) a variable that describes the state of the rover store,
Vs, i (3) a variable that describes if the rock sample from waypoint (1,0) haz been
communicated, v, ; (4) a variable that describes if the =oil sample from waypoint
(2,2) has been communicated, v.,; (5) a variable that describes if the rock sample
from waypoint (1,0) haz been analyzed, vq,; and (6) a variable that describez if the
soil sample from waypoint (2,2) has been analyzed, v,,. For instance, the variable
v;, € V iz defined to represent the location of rover vy such that [I!,,,.r1 = {at-rl-w01,
at-rl-w02, ..., at-rl-w33}. qu describes the different values which can be assigned
to variable v, . Figure 5 shows the structure of the domain transition graph for the
variables v, and v.g,.

2.2.2 THE MopELING LANGUAGE

The modeling language is a notation that describes the semantic representation of
the planning task. The most representative languages used to describe planning
tacks are based on a variation of First Order Logic (FOL) where each atom of
information is defined using predicates. Different languages have been defined in
Antomated Planning to represent the conceptual model deseribed previously, and
some of them are summarized next.

2.2 CLASBICAL PLANNING TASK

at-r1-wa

at-rl-wil empty-ral

at-rl-w10

at-rl-

I w2 I at-r

(a) (P)

Figure 5: Multi-valued conceptual model corresponding to the planning task defined in
Figure 1. {a) Domain transition graph for rover r1. (b) Domain transition graph for rover
store 157.

2.2.2.1 STRIPS

The STanford Research Institute Problem Solver (STRIPS) (Fikes and Nils=on,
1971) language is the base of most modern planning reprezentation languages. This
language is based on two important logic assumptions: (1) the Closed World
Assumption (Reiter, 1987) which assumes that all facts that are not known
to be true, are false; and (2) the STRIPS Assumption to handle the Frame
Problem (MeCarthy and Hayes, 1969) which consistz on representing only the
propositions that change after applying an action and assuming that the rest of
propositions do not change their values. In other words, STRIPS assumes that only

actions can change a specific part of the world state according to their own effects.

Commonly, the planning task is provided in two input files: a problem and a domain.

The problem file defines a set of objects (instantiations of types in the domain), an
initial state (I), and a =et of goalz (G). Figure 6 shows the problem description
encoded using STRIPS of the planning task shown in Figure 1.

21

22

AUTOMATED PLANNING

{(define (problem roverl) (:domain rover)
{(:objects
general - Lander
colour high _res low_res - Mode
rl - Rover
rsl - Btore
wo0 w0l w02 wl2 wil0 wil wi2 wild w20 w2l w22 w23 w0 w3l wa2
w33 - Waypoint
cameral - Camera
J
{(:init
(can_traverse rl wll w02)
(can_traverse rl wll wii)
(can_traverse rl wl2 w03)

(can_traverse rl wl2 wi2)

(at_soil_sample wi0)
{at_rock_sample w22))

{:goal (and

(communicated secil_data wi0)
(communicated rock_data w22)))

Figure 6: Partial problem description encoded in STRIPS of the planning task shown in
Figure 1.

The domain file contains the definition of a set of generalized actions (whose
instantiations with problem objects will lead to actions in A) and a set of
ungrounded predicates (whose instantiations will generate literals in F). Table 2
shows actions of the Rovers domain in STRIPS language.

2222 ADL

The Action Description Language (ADL) (Pednault, 1994) is one of the first
extensions of STRIPS. This language increases the expressivity of the STRIPS
language. This language iz based on the Open World Assumption which means
that any proposition which is not asserted by the effects of the actions in the state
of the world or defined in the initial state is taken to be unknown. The main
contributions of this language are:

2.2 CLASBICAL PLANNING TASK

Action

Freconditions

Added

Deleted

navigate

can-traverse(r, ¥, ¥)
availablair)

atfr, x)

wigibla(x, ¥)

atfr, ¥)

atir, x)

sample-godl

atfr, x)
at-soil-eampla|x)

equipped-for-soil-analysis(r)

stora-of{r, &)
empiy(e)

full(s)
hawve-goil-analysa(r, %)

empty(e)
at-goil-sample(x)

sample-rock

atfr, x)

at-rock-sample(x)

equipped-for-rock-analy eis(r)

stora-of{r, &)
empiy(e)

full(s)
have-rock-analyeie(r, x)

empty(e)
at-goil-sample(x)

deop

stora-of{r, &)
full(s)

empty(s)

full{g)

calibrate

atfr, x)
equipped-for-imaging(r)
calibration-target|c, o)
wigibla-from(o, x)
on-board(c, £)

calibrated(z, r)

take-image

on-board(c, £)
calibrated(z, £)
equipped-for-imaging(r)
at(a, x)

supportalc m)
wigible-from{o, x)

have-image(r, o, m)

calibratad(c, r)

communicate-godl-data

atfr, x)

at(l, ¥)
have-goil-analysis(r, p)
wigibla(x, ¥)
availablair)
channel-frea(l)

availablair)
channel-fres(l)

commiinicated-soil-datalp)

availablair)
channel-frea(l)

communicate-rock-data

atfr, x)

at(l, ¥)
have-rock-analyeie(r, p)
wigibla(x, ¥)
availablair)
channel-fres(l)

availablair)
channel-fres(l)

commiinicated-rock-dataip)

availablair)
channel-frea(l)

communicate-image-data

atfr, x)

at(l, ¥)
have-image(r, o, m)
wigibla(x, ¥)
availablair)
channel-fres(l)

availablair)
channel-fres(l)

commiinicated-image-data(p)

availablair)
channel-frea(l)

Table 2: STRIFS definition of the Rovers domain.

23

AUTOMATED PLANNING

#» The preconditions of the actions and the goals can be expressed using
negations, disjunctions and quantified formulas.

» The effects of the actions can be expressed using conditional effects. This
allows actions to have different outcomes according to the current state.

The problem goals can be expressed as conjunctions and disjunctions.

2.2.2.3 PDDL

The Planning Domain Definition Language (PDDL) (Medermott, 2000) waz created
in order to define a standard planning language and to allow comparative analysis
of the different planning systems. PDDL was also developed as the planning input
language of the First International Planning Competition (IPC), whose objective
was to compare the state-of-the-art planning systems. During the following wvears
different versions of PDDL have been developed, each adding new features.

« PDDL 1.2 (IPC1 and IPC2) is the first verzion of the language and contains
STRIPS and ADL features. Besides, it includes the use of tvped variables.

« PDDL 2.1 (IPC3) increazes the features of PDDL 1.2 adding numeric values
which can be modified in the effects of the actions. Besides, it includes a new
type of actions: durative actions. Durative actions introduce the concept of
time in PDDL and allow discrete and continuous effects.

« PDDL 2.2 (IPC4) increases the featurez of PDDL 2.1 adding derived
predicates (alzo known as axioms). Additionally, it added timed initial literals,
which are propositions that become true after a given amount of time
independent of the planning actions which have been selected previously.

« PDDL 3.0 (IPCS5) allows the use of soft goals. A =oft goal does not need to be
achieved by the plan, but a cost is paid if it is not achieved at the end of the
plan (Smith, 2004).

« PDDL 3.1 (IPC86) introduces functional STRIPS (Geffner, 2000). Functional
STRIPS offers a different way to encode planning tasks mapping the objects of
the planning task to their properties. This encoding provides a more natural
modeling for some domains and makes the extraction of information from
some heuristic functions easier (Edelkamp, 2002; Francés and Geffner, 2013).

Although PDDL 3.1 offers an extensive set of features and functionalities most the
current planners do not support it. Actually, most planning systems only support

2.2 CLASBICAL PLANNING TASK

the propoeitional fragment of PDDL 2.2 that approximately corresponds to what
was supported by STRIPS, typing (definition of types), the use of the equality
predicate and numeric values. Figure T shows an example of a PDDL action. In this
cage, the action corresponds to the action navigate from the Rovers domain.

{:action navigate
:parameters (?x - rover Ty - waypoint Tz - waypoint)
:precondition (and (can_traverse ?x Ty 7=z)
{available Fx)
(at Tx Py)
(visible Ty 7z)
reffect (and (not (at 7x Ty)) (at 7x T=)))

Figure T: PPDL definition for action navigafe from Rovers domain.

2.2.3 THE ALCORITHM=E

As commented above, solving a classical planning task can be considered as a
path-finding process in a directed graph where graph search algorithms can be
conducted in different ways: (1) forward search (also called progression), if the
graph search algorithm starts searching at the initial state and goes towards
the goal state; (2) backward search (also called regression), if the graph zearch
algorithm starts searching at the goal state and goes towards the initial state;
and (3) bidirectional search, when two graph search algorithms are performed
simultaneously, one starting from the initial state and another one starting from
the goals.

In general, graph search in Automated Planning is a extremely difficult task because
the zize of the search space may be exponential. STRIPS planning system was
developed as a deliberative module of the software that controls the autonomous
robot Shakey. This planning system implements a Depth-First Search (DFS)
algorithm which expands the states of the problem space until a goal state iz found
without any type of guidance. This planning syvstem tries to satisfy iteratively each
goal independently of the others. In the next years, similar planning systems were

developed adding domain-independent heuristice and Machine Learning techniques.

Other approaches tried to explore the problem space by other graph representations
like Planning Graph. A Planning Graph iz composed of the levels obtained
by alternating propositions and actions layers. The first layer includes all the
propositions defined in the initial situation, then the second layer i= composed

25

AUTOMATED PLANNING

of all the actions which can be applied in the previous layer. The third layer is
composed of the propositions generated from applying the actions of the second
layer. GRAPHPLAN (Blum and Furst, 1997) was the first planning system that
performed search in a Planning Graph. This planner starts with an initial graph
that only contains the proposition layer which is composed of literals of the initial
state. Then, the graph is built expanding sequentially action and proposition layers
until a proposition layer that satisfies the goals is reached. Then, the planner tries
to extract a plan or determines that the goals are not achievable by a plan of length
M. If no plan is found, it extends the graph one time step (the next action layer
and the next propositional layer), and then it searches again for a solution plan.
This graph i= composed of all potential plans up to a certain length N, where N iz
the number of action layers. Different planning systems (Kambhampati et al., 1997;
Smith and Weld, 1998) have applied thiz kind of representation.

Domain-independent heuristice have shown to be effective improving graph search
algorithms to guide or prune the search towards the goal states. Planning as
Heuristic Search (Bonet and Geffner, 2001; Hoffmann and Nebel, 2001) is based
on the definition of an evaluation function, f(n), that scores all states in the search
graph according to how close they are to a goal state. Heuristic functions are nsually
obtained by solving a relaxed version of the original task, which iz simpler than the
original one (DUDA) relaxing some elements of the task description (Pearl, 1984).

In the last years, researchers are analyzing other ways to define heuristic functions,
like abstractions.

The Best First Search (BFS) algorithms used for heuristic search expand the state
with lowest heuristic value according to the function f(s) = g(s)+h(s), where g(s) iz
the coet of the current path from the initial state to s and h(s) is the heuristic value
of 5. The most common algorithms used for heuristic search are Greedy Best-First
Search (GBFS) (Pearl, 1984) and A* (Hart et al., 1968). A* can be modified to
speed up the search by weighting the heuristic function with a factor w = 1 (Pohl,
1970}, thus using the selection function f(s) = g(s)+w# h(s). This new algorithm,
called weighted A*, searches more greedily the larger w is.

One of the first planning svstems which used domain-independent heuristics was the
Heuristic Search Planner (HSP) (Bonet and Geffner, 2001). This planning system
uses a weighted A* guided by the heuristic function h@94 which approximates the
distance between two states by summing the distance between the propositions in
the states. Thiz function is based on a delete-relaxation of the original problem
(a version of the original planning task in which all the delete effectz of all the
actions a € A are ignored). Fast Forward (FF) (Hoffmann and Nebel, 2001)
iz a forward-chaining planning system which implements a domain-independent

2.2 CLASBICAL PLANNING TASK

heuristic similar to HSP but in thizs case an explicit solution of the relaxed task
iz used to compute the distance between two states by means of a Planning
Graph. Besides, FF introduces some new techniques: (1) the Enforced Hill
Climbing algorithm (EHC), a local search algorithm that performs a variation of
a Breadth-First Search algorithm (BFS) which searches exhaustively until a node
with better heuristic value than the last best found node is discovered; (2) helpful
actions, which are actions extracted from the relaxed plan used to compute the
heuristic function that increase the greediness of the search algorithm. FF starts
searching for a plan using EHC and helpful actions. If EHC fails, FF automatically
switches to a weighted best-firet search algorithm.

Finally, Fast Downward (FD) (Helmert, 2006) is a forward-chaining heuristic
planning system similar to HSP and FF, but thiz planner uses a multi-valued
representation of the planning task (Helmert, 2009). FD implements different
domain-independent heuristic functions which can be combined during search such
as: (1) Landmark counting heuristic (Richter and Westphal, 2010) which conzistz in
counting unachieved propositions that must be true in every solution of a planning
tack (Porteous et al., 2001); or (2) Merge and Shrink (M&S) (Helmert et al., 2007)
which generates abstractions about the structure of the planning task.

2.2.4 OTHER ALCORITHMS

As described in the previous section, classical planning tasks are commonly
formalized as a directed graph. This graph describes the search space which can be
huge depending on the information used to encoding the planning task increasing
the complexity of finding a solution. Simultaneously to the evolution of search
graph algorithms, other types of algorithms were developed using different ways
of formalization.

2.2.4.1 PLANNING AS SATISFIABILITY

Planning as satisfiability iz one of the most powerful approaches to Automated
Planning (Kautz and Selman, 1992). The different approaches based on Boolean
Satisfiability Task (SAT) translate a planning task into SAT. A SAT task is an
NP-Complete problem which consists on determining whether a set of truth values
can be assigned to the variables of a boolean formula =o that is it satisfied.

The first SAT solvers translate a STRIPS task and a horizon in a propositional
logical formula whose satisfiability is checked sequentially one at a time for horizon
lengths (1,2, 3,...,n) until a plan iz found (Kautz and Selman, 1992). These

27

28

AUTOMATED PLANNING

approaches try to solve the SAT task using a solver that checks the boolean formula
with horizon length n starting with n = 1. If the formula is found =atisfiable, the
solver returns a solution and terminates. If the formula is found unsatisfiable, a
new solving process is starting with a higher horizon value. In the next years, SAT
algorithms were extended by using different encoding schemes (Rintanen et al.,
2006; Tompkins et al., 2011; Cai et al., 2015) in order to improve the performance
of SAT solvers.

2.3 PrOBABILIETIC PLANNING TASK

In the previous section we described clazsical planning where full information about
the environment is available and actions are deterministic. These assumptions
are extremely useful to decrease the complexity of the planning tasks but
they prevent to model more realistic domains. Probabilistic planning is an
extension of non-deterministic planning with information on the probabilities
of non-deterministic events. This planning paradigm triez to find a plan that
transforms the initial state into a goal state with full or partial information about
the state of the environment and actions with probabilistic effects. In stochastic
environments, actions can generate different outcomes, so it is not possible to find a
plan of actions that assure reaching the goals. For this reason, probabilistic planning
systems must reason about the likelihood of the actions’ outcomes. This fact
increases the complexity of the planning process, so planners must generate plans
which maximize the probability to reach the goals and minimize the probability
to generate unexpected states. The most common way of solving probabilistic
planning tasks (Bonet and Geffner, 2005) consists in representing the planning task
as an optimization problem using a Markov Decision Process (MDP) (Puterman,
1994}, Partially Observable MDPs (POMDPs) (Cassandra et al., 1994) and factored
MDPs (Boutilier et al., 2001). Probabiliztic planning is based on the following three
ideas:

» A planning domain is modeled as a stochastic system, where action outcomes
are modeled as a probability distribution function.

» (Goals are represented as an utility function, numeric function or a set of goals.

» Solutions are represented as policies that specify the action to execute in each
state or as conditional sequences of actions.

2.3 PROBABILISTIC PLANNING TASK

2.3.1 THE CoNcEPTUAL MoODEL

The conceptual model for a planning task defines the formalization of the
environment, the actions that can be used to change the environment, and how
actions are applied in the environment to achieve the goals. Probabilistic Planning
tagks are frequently encoded as probahbilistic transition graphs.

The conceptual model for a Probabilistic Planning task iz a stochastic, finite and
fully observable state-transition model, where each transition has associated a
probability.

Definition 5. (Probabiliztic Planning Model) A Probabilistic Planning task can
be defined as a 6-tuple TT = (S5, A, T, sp, G), where:

A is a set of actions whose effects follow a probabilistic model.

« T(s'|s, a), is the probability that the action a € A executed in state s € S
results in a state s’ € §. This means that for each state s € S, if there
exists an action a € A and a state s' € S such that T(s’|s,a) # 0, then

Zir T[sils.r {1] = I
s 55 €5 is a finite set of literals which encode the initial state.

« G C5 iz a finite set of goal states.

The solution plan of a probabilistic planning task 7 is a sequence of actions m =
{ag,ay,...,a,_1}¥ a; € A or a policy p : S — A such as p(s’) = a where the best
action is chosen according to the current state.

2.3.2 THE MopELING LANGUAGE

The modeling language is a notation that allows a syntactic representation of the
planning task. Different languages have been defined in Automated Planning to
represent the conceptual model of a probabilistic planning task, and some of then
are summarized next.

S iz a finite set of states, which is composed of all states that can be reached.

29

AUTOMATED PLANNING

2.3.2.1 PPDDL

The Probabilistic Planning Domain Definition Language (PPDDL) (Younes and
Littman, 2004) is a modeling language that extends PDDL 2.1 allowing to describe
planning tasks in stochastic environments. This language was created for the first
IPC with a non-deterministic track (Younes et al., 2005) and supports actions with
probahilistic effects, probabilistic literals in the initial state and markovian rewards.

Probabilistic effects allow us to define a =et of possible outcomes of an action.
Equation 1 shows the structure of probabilistic effects, where Ye; 3 p;, this means
that effect ey oceurs with a probability p;.

(probabilistic py e1 p2 €2 ... Pn—1 €n—1 Pn €n)

This means that for each action, it is mandatory that 0 < p; < land J 7 p; < 1.If
the sum of the probabilities is lower than 1, it is assumed that there is a probability P
=1— 2 ' 5 pi that the action (DUDA). This representation of the actions increases
the capabilities of PDDL allowing probabilistic effects on the actions, but it also
increases the complexity of the actions. According to the rezults of Littman (Littman
et al., 1998), PPDDL, after grounding, is equivalent to Dynamic Bayesian Networks
(DBN) (Dean and Kanazawa, 1989), which is also another common representation of
the probabilistic planning tasks. Figure 8 shows an example of a probabilistic action
in the Rovers domain. In this action, the rover ¥r will navigate to waypoint #z from
waypoint Py with 0.8 probability and it will not navigate with a 0.2 probability.

{:action navigate
:parameters (?x - rover Ty - waypoint Tz - waypoint)
:precondition (and (can_traverse ?x Ty 7=z)
{available Fx)
(at Tx Py)
(visible Ty Tz))
:effect (probabilistic 0.8 (and (not (at 7x 7y)) (at 7x T=))))

Figure & PPDDL definition for action navigate from Rovers domain.

Probabilistic literals allow us to generate different initial states for a similar planning
task. A set of literals can be defined using a probabilistic relation in the initial state.

Markovian rewards are encoded using fluents (numerical variables in PDDL) and are
associated with actions. PPDDL reserves a special Huent called reward to represent

2.3 PROBABILISTIC PLANNING TASK

(:init
{probabilistic 0.5 (at rl wil)
0.4 (at rl wi2)
0.1 (at r1 wi0)))

Figure 9: PPDDL definition for probabilistic literale in the initial state for the Rovere task
shown in Figure 1.

the total accumulated reward of the planning task. This special fluent is initialized

to zero and cannot be used as part of the preconditions or the effects of actions.

These restrictions on the use of the reward Huent allow a probabilistic planner to
handle domains with rewards, without implementing full support for fuents.

2.3.2.2 RDDL

RDDL (Relational Dynamic influence Diagram Language) (Sanner, 2011) iz the
representation language of the uncertainty tracks of the IPC 7 (Coles et al.,
2012). This language was created in order to introduce some features which
are difficult to formalize using PPDDL. RDDL can be defined as a Dynamic
Baye= Network (DBN) (with potentially many intermediate layers) extended
with an influence diagram (Howard and Matheson, 1984). This allows for the
efficient description of Markov Decizion Processes (MDPs) and Partially Observable
Markov Decizsion Processes (POMDPz) by representing everything (state-fluents,
observations, actions) with variables. A probabilistic planning tazk using the RDDL
language can be defined as a 7-tuple TT = (C, 5, A, P, R, [, O) where:

C is a finite set of constant variables.

S is a finite set of state variables.

A is a finite set of action variables.

P iz a finite set of functions. Each one defines the conditional probability
function for each next state variable in terms of the previous state variable
and action.

+« R iz a reward function.
« [C 5 isa finite set of state variables which are initialized with a value.

« O i= a finite set of objectives (goals).

31

32

AUTOMATED PLANNING

domain rovers
types {rock-sample: object;}

pvariables {
//Constants fluents
ROCK_XPOS(rock-sample): {non-fluent, real, default = 0.0 };
ROCK_YPO2(rock-sample): {non-fluent, real, default = 0.0 };
ROCK_VALUE(rock-sample): {non-fluent, real, defanlt = 1.0 };
//5tate fluents
robot-at(xpos, ypos) : {state-fluent, bool, defamlt = falss};
//hction fluents
movek: {action-fluent, real, default = 0.0 };
move¥: {action-fluent, real, default = 0.0 };
takeRock: {action-fluent, bool, default = falsal}

¥
cpfe {
xPos’ = xPos + xMove + Normal (0.0, MOVES_VARIANCE' MULT#xMowval;
yFos® = yPos + yMove + Normal (0.0, MOVEM_VARIANCE% MULT*yMove);
iy

reward = if (takeRock) then 1.0 else 0.0;

state—action-constraints {

takeRock =» ((xMove == 0.0} ~ (yMove == 0.0));
};
};

Figure 10: RDDL codification of the Rovere domain.

Figure 10 shows a simplified example of the Rovers domain on RDDL. In this
example variables and actions are encoded in the parameterized variable section
(pvariables). In thiz case three types of fluents have been defined: (1) non-fluents
which are static variables of the environment; (2) state-fluents which are dynamie
variablez of the environment and (3) action-fluents that describe the actions
which can be executed. More types of Huents can be defined in this section.
Next, the conditional probability function for each state variable is defined in the
corresponding section (cpfs). In this example, conditional probability functions are
encoded to variables xpos and ypos which are used to define the location of the
rover. Finally, the reward function is defined, as well as the constraints that are
applied to actions. In this case, a constraint over the action takeRock is defined,
such that the rover cannot execute action xMove and yMove while action takeRock

2.3 PROBABILISTIC PLANNING TASK

iz executing. We refer the reader to the Langnage Description document (Sanner,
2011) for further details on the RDDL syntax.

2.3.3 THE ALCORITHM=

There are several techniques used to generate a plan in Probabilistic Planning:
(1) extending claseic planners to handle probabilistic effects; (2) finding policies
(mappings between world states and the preferred action to be executed to achieve
the goals) that optimize a utility function, which gives preference to the different
states and transitions of the MDP; and (3) compiling the planning task into another
representation for which there are effective algorithms.

2.3.3.1 APPROACHES BASED ON EXTENDING CLASSICAL PLANNING

The first approaches tried to solve probahbilistic planning tasks extending some
techniques developed to solve deterministic planning tasks by including probabilistic
effects. The BURIDAN planning system (Kushmerick et al., 1995) is considered the
first probabilistic planning system. Thiz planner uses a probability distribution over
some possible world states to model imperfect information about the initial state
and actions. This planning system generates a sequential plan where the probability
of the plan achieving the goals is greater than a user-supplied probability threshold.
Other approaches modified the Planning Graph structure introducing probabilizstic
outcomet in the actions. Paragraph (Little and Thiébaux, 2006) is a probabiliztic
planning system based on Graphplan. This planning system modifies the structure
of the Planning Graph introducing a new layer composed to the action’s outcomes.

Handling probabilistic effects increases the complexity of the directed graph which
iz used to represent the search space. Besides, the planning system must have full
knowledge about the dynamics of the environment which is not commonly possible
in real world scenariose. Some approaches try to solve probabilistic planning tasks
generating sequential plans which can be modified during execution according to
the information which is available about the environment.

On one hand, plan repair consists on adapting the previous plan to the new context.
LPG-ADAPT (Fox et al., 2006) iz a stochastic planning system which conducts a
local search algorithm into a search space which iz represented as an action graph
of partial plans. This planning system can be used to generate a new plan from
scratch or repair a previous one. The repairing process uses the previous plan to

build the initial graph structure and introduces some modifications according to
the information obtained from the environment. ERRT-PLAN (Borrajo and Veloso,

AUTOMATED PLANNING

2012) iz a stochastic planning system which guides the search by using a previous
plan. On the other hand, replanning approaches generate a new plan from scratch
according to the new information obtained from the environment. FF-Replan (Yoon
et al., 2007) translates the probabilistic domain into a deterministic domain. There
are two ways of performing the translation: (1) generating a new deterministic
domain where action effects are composed of the outcome with the higher probability
of the probabilistic version of the action or (2) generating a new deterministic
domain splitting each probabilistic action on a set of them, one per outcome.
Next, the planning system generates a plan using FF and executes the actions
in the environment. During execution, if an unexpected state is reached the planner
FF generates a new plan from scratch using the deterministic domain generated
previously and the current state of the environment.

2.3.3.2 APPROACHES BASED ON FINDING POLICIES

The most common technique congists on generating a set of policies by =olving a task
which is modeled as a MDP which describes the environment with full information
and stochastic actions. A MDP can be characterized by a state space 5, an action
space A, a state transition function T(siy1|si, a) which defines the probability to
move from state s; € 5 to s;47 € 5 executing the action a € A, and a reward
function r(s) which specify the immediate utility of being in state s. The goal
consists on finding an optimal policy that solves the task maximizing the expected
reward.

This representation model presentz some important disadvantages: (1) they need
accurate action models for non-deterministic environments which is extremely
complex and sometimes impossible to generate (Bresina et al., 2005); and (2) the
complexity of these models grow polynomially according to the size of the state
space. This state space explosion problem limits the use of the approaches based on
fully observable MDP models. Commonly, MDPs are solved by means of dynamic
programming algorithm such as policy iteration or value iteration, but in the last
vears heuristic search algorithms have shown to be effective to solve MDPs.

The first approaches used value iteration algorithms (Bellman, 1957), which are also
called backward induction algorithms. These algorithms define a randomly selected
cost for each state ¢, [s,,) on the MDP and refine the value of each state finding an
action that minimizes the expected cost. Value iteration algorithms are composed
of two phages: (1) a value determination phase, in which the expected cost of each
state iz calculated and (2) a value refinement phase, in which the algorithm finds an
action that minimizes the cost of a state and stores it in the policy. These algorithms

2.3 PROBABILISTIC PLANNING TASK

require enumeration of the state space which increases the computational overhead
according to the size of the task to solve.

Boutilier (Boutilier et al., 2001} developed an algorithm that transforms a
probabilistic planning task into a First-Order MDP (FOMDP) performing a value
iteration algorithm without explicit enumeration of either the state or action
spaces of the MDP. First-order approximate linear programming (FOALP) (Sanner
and Boutilier, 2005) translates a probabilistic planning task into a FOMDP
and approximates its value function using First-Order Approximate Linear
Programming. This algorithm approximates value functions by representing them as
a linear combination of first-order basic functions using a first-order generalization
of approximate linear programming techniques for propositional MDPs.

Wang (Wang et al., 2007) transforms the probabiliztic planning task into First Order
BDDs and applies a variation of the algorithm developed by Boutilier. Stochastic
Enforced Hill-climbing (SEH) (Wu et al., 2011) generalizes the enforced hill-climbing
algorithm to stochastic domains. This planner builds a breadth-first local MDP
around the current state and searches a policy that expects to solve this MDP with
a better valued state. When a policy is found, the method executes the policy until
the local MDP exits. The policy is computed using the value iteration algorithm
over the local MDP, where the rewards are defined as the heuristic value assigned
when execution finishes.

Other approaches use policy iteration algorithms (Howard, 1960) which generate a
randomly selected initial policy and refines it repeatedly. Commonly, the algorithm
alternates between two phases: (1) an evaluation phase, in which the cost of the
actual policy iz computed and (2) a policy refinement phase, in which the actual
policy is refined to a new policy with a emaller expected cost. This kind of algorithms
has been rarely extended to solve planning tasks.

Finally, domain-independent heuristice have shown to be effective =olving
deterministic planning tasks. Other works have extended search algorithme from
heuristic search to solve MDPs. The first probabilistic planning system which uses
a heuristic search algorithm to solve MDPs ie LAO* (Hansen and Zilberstein,
2001) which iz an extension of AO* algorithm. LAO* generates an optimal policy
performing a graph search over the MDPs without evaluating the entire state
space. mGPT (Bonet and Geffner, 2005) is a probabilistic planning system based
on heuristic search algorithms for solving MDP models. This planning system
combines heuristic search algorithms with methods for obtaining lower bounds
from deterministic relaxations. Learning Depth-First Search (LDFS) (Bonet and
Geffner, 2006) combines dynamic programming and heuristic search. LDFS searches

AUTOMATED PLANNING

for solutions by combining iterative, bounded depth-first searches, with learning.
RFF (Teichteil-kénigebuch et al., 2008) generatez an off-line policy combining
classical planning and simulation. This planner compiles the probabilistic problem
into a deterministic one solving it by means of the deterministic planner FF. Next,
EFF uses Monte-Carlo simulation to estimate the probability of failure of the action
step. If this probability exceeds a threshold at a given step, RFF computes a new
plan for overcoming the failures of this step and starts a new Monte-Carlo simulation
for the new plan.

2.3.3.3 APPROACHES BASED ON TRANSLATING TO ANOTHER REPRESENTATION

Some approaches compile the probabilistic planning task into another
representation to apply algorithms which can solve the task in the new
representation. The most common compilations of the probabilistic planning task
are:

» Deterministic Planning Task compilation: The simplest solution consists on
compiling the probabilistic planning task into a deterministic planning task.
These approaches transform actions from the probabilistic representation to a
deterministic representation and solve the planning task using a deterministic
algorithm. This compilation generates a deterministic action for each outcome
of each probabilistic action, where the cost of the deterministic action is
defined by the probability associated with the outcome used to generate
them (Jimenez et al., 2006; Kalyanam and Givan, 2008).

« Planning as boolean satisfiability (SAT): MAXSAT (Majercik and Littman,
1998) i= the first planner that transforms a planning task into an E-MAJSAT
problem which is a probabilistic version of a SAT problem. E-MAJSAT
compilation is similar to a traditional SAT compilation except for the actions’
encoding. Each action effect is encoded with a clause consisting of random
propoeitions which are true with a given probability value. After compilation,
the solver determines all possible satisfying assignments of the wvariables.
For each satisfving assignment, it is computed the product of probabilities
associated to the satisfied clanse. The planner finds the assignment of truth
wvalues that produces the highest product of the probabilities of satisfied
clauses.

« Constraint Satizfaction Problem (CSP) compilation: CSPs are mathematical
problems which are defined by a set of variables and a set of constraints.
Each variable iz defined by a set of possible values. Each constraint involves
a subzet of variables specifying the allowable combinations of values for that

24 CONFORMANT PLANNING TASK

subset. A solution of a CSP consists of a complete assignment of all variables
that satisfies all the constraints. The Probabilistic Planning Task is compiled
into a state-variable representation. This representation is solved using a
CSP algorithm and the result generated by the algorithm i=s encoded to
PDDL (Hyafil and Bacchus, 2004).

2.3.4 OTHER ALCORITHMS

As described in the previous section, probabilistic planning tasks are commonly
formalized as a MDP or a POMDP in order to generate a policy that solves the
planning task. These techniques represent the state space as a directed graph where
the transitions between the states follow a probability distribution which describes
the dynamic of the environment. This means that the size of the state space can
be huge depending of the information used to encode the planning task and the
dynamics of the environment must be known a priori. In the last years, other types
of algorithms have heen developed to solve problems in stochastic domains without
information about the dynamics of the environment.

2.3.4.1 MonTE CarRLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a domain independent search
approach (Briigmann, 1993) which consists on finding decizions in a full or
partial observable environment by taking random samples in the search space
building a search tree according to the most promising results. The main idea
of this algorithm i= to use the first iterations in order to create statistice that
guiding the next iterations to the most promising parts of the search space. There
are two main algorithms for node selection used to implement MCTS: (1) Upper
Confidence Bound (UCB) algorithm (Auer et al., 2002); and (2) Upper Confidence
Bound for Treez (UCT) algorithm (Kocsiz and Szepesvari, 2006). MTCS haz been
used in probabilistic planning (Keller and Eyerich, 2012).

2.4 CoNFORMANT PLANNING TASK

Conformant Planning tries to find a plan that transforms the initial state
into a goal state in a non-deterministic environment and without any sensing
capabilitiee during plan execution. Thi= means that actions’ effects may be
non-deterministic {Goldman and Boddy, 1996), exogenous events are possible and
the initial state can be partly known. Conformant Planning can be modeled as belief

state-transition system where a belief state is the set of all states that are possible.

a7

38

AUTOMATED PLANNING

For this reason, a conformant planning task can be formulated as a path-finding
problem in belief space BS where a sequence of actions that map a given initial
belief state into a goal belief state (Bonet and Geffner, 2000a). The use of this
representation increases the complexity of conformant planning generating two main
problems: the representation of belief states in a compact way; and the generation
of effective heuristic functions over the belief space state.

2.4.1 THE CoNciEPTUAL MoODEL

The conceptual model for a Conformant Planning task is a stochastic, finite and
partial observable belief state-transition model.

Definition 6. (Conformant Planning Model) A Conformant Planning tazk can be
defined as a S-tuple TT = (5, A, F, bp, G), where:

« S is a finite set of states. S is used to build the belief state set BS.

#« A iz a finite set of grounded deterministic actions derived from the action
schemes of the domain. Each action a; € A can be defined az a tuple a; =
[Pre, Eff). Pre(a;) are the preconditions of the actions, and Eff(a;) is a list
of non-deterministic effects.

« [iz the state transition function for non deterministic actions T : 5 x A —

25:(s,a) — (s1,...,5n), where n is the number of non-deterministic effects.
bp C BS is the initial non empty belief state.

« G C BS iz a finite set of belief states that contains the goal states.

According to this conceptual model, an action a iz applicable in the belief state
b= (s0,....5m)¥si € S if T(si, a) gives at least one target state for any s; € b.
Therefore, applying an action a in a given belief state b; results in the successor
belief state b; |y defined when a iz applicable in every state s € b.

A solution plan 7 for a conformant planning task TT is an ordered set of actions
(commeonly, a sequence) m = (agp, ..., a4,), Ya; € A corresponding to a sequence of
belief-states (by, by, ..., bn), ¥b; € BS such that b; 4 is the result of executing
the action a; in the belief state bi. Finally, the complexity of Conformant Planning
iz increased when action outcomes are probabilistic. In this case, it is called
Conformant Probabilistic Planning.

24 CONFORMANT PLANNING TASK

2.4.2 THE REPRESENTATION LANGUAGE

Conformant planning tasks can be described using an extension of PDDL 2.1 which
has been introduced in the first IPC with a non-deterministic track {Younes et al.,
2005). This extended language supports non-deterministic effects, probabilistic
literals in the initial state, literal dizjunctions in the initial state and markovian
rewards:

» Disjunctions in the initial state by using the oneof statement for expressing
different initial states in the same planning task.

(oneof 1y, 13, ..., 1)

The oneof statement describes a zet of literals which cannot be true in
the same state. This statement iz used to define different initial states for
Contingent planning tasks.

s Mutual exclusion for literals by means of the or statement for expressing the
mutual exclusion between two literals.

{or (not 1) (not 13))

The or statement describes the mutual exclusion of literals in the initial state.
This means that only one of the two literals defined in the expression must
be true in each possible initial state.

2.4.3 THE ALCORITHMSE

There are several techniques used to generate a plan in Conformant Planning: (1)
extending deterministic planning to handle representations based in belief states;
(2) generating search algorithms for belief-states space; and (3) compiling the
conformant planning task into other representations.

2.4.3.1 APPROACHES BASED ON EXTENDING DETERMINISTIC PLANNING

The first approach attempts to solve Conformant Planning tasks extending
the ideaz applied over classical planners allowing multiple initial states.
Conformant-Graphplan (CGP) (Smith and Weld, 1998) iz a planning system based
on Graphplan-based planner that generatez sound (non-contingent) plans. This

AUTOMATED PLANNING

planning system builds one different plan graph for each possible initial state
and searches a solution in all graphs simultaneously. This process i= composed
of two phages: a graph expansion phase in which separate plan graphs (worlds)
are generated for each possible state of the environment and one for each possible
non-deterministic outcome; and a solution extraction phase in which a valid plan in
all poseible worlds is generated considering the mutual exclusion relations between
the different graphs.

2.4.3.2 APPROACHES BASED ON SEARCHING IN THE BELIEF-STATES SPACE

These approaches search a solution plan explicitly searching in the belief-state space.
The firet approach was introduced by Bonet and Geffer (Bonet and Geffner, 2000b)
which solves a Contingent Planning task as a problem of heuristic search in a
belief-states space using standard search algorithms such as A*. However, the size of
the space of belief-states could be extremely large depending of the complexity of the
tack and this approach usually fails to scale up. (CPA) (Son et al., 2005) implements
a depth-first search algorithm in the spaces of partial states instead of the space of
belief states. Partial states are a set of fluent literals. Conformant-FF (Hoffmann
and Brafman, 2006) extends the FF planner into Conformant Planning performing
a forward search into the belief-states space. Belief states are defined by the sets
of known and negatively known propositions by using a Conjunctive Normal Form
(CNF). The heuriztic function is a variation of the relaxed planning method of FF
with an approximate linear-time reasoning about known propositions using a 2-CNF
projection of the formula that captures the true belief state semantics.

2.4.3.3 APPROACHES BASED ON COMPILING TO ANOTHER REPRESENTATION

The most common approaches consist on compiling the Conformant Planning task
into another representation in which there are efficient algorithms to zolve the task.

» Conformant Planning task can be translated into a Deterministic Planning
tazk using the compilation K(P) (Palacios and Geffner, 2006). The tranzlation
kip) generates a non-deterministic, fully observable planning task by including
new literals. After, the K;(P) (Palacioz and Geffner, 2007) extends the
theoretical and practical limitations of K([P).

» Conformant Planning tasks can be compiled into SAT following two different
approaches:

25 CONTINGENT PLANNING TASK

— Generate and Test Strategy: This technique consiste on checking the
existence of plans of length n with incomplete information about the
initial state. SAT tasks can be described using different languages: (1)
Quantified Boolean Formulas (()BFs) i= a propositional representation
that extends propoeitional logic where variables can be quantified over
either existentially, or universally. This representation has been used by
the QBFPLAN planner (Rintanen, 1999); and (2) Action language C iz
based on the causal theories (MecCain and Turner, 1997). This language iz
an extension of propositional logic for expressing causal knowledge which
is represented by inference rules. This representation has been used by
the -PLAN solver (Castellini et al., 2003).

— Transformed Task Strategy: The technique consists on generate and
test the existence of conformant plans using a single SAT call over a
transformed task. This transformed task is generated by projecting the
original theory over the action variables. This strategy has been used by
the COMPILE-PROJECT-SAT (Palacios and Geffner, 2005)

« Symbolic Model checking (SMC) (Burch et al., 1990) is a formal verification
technique which permits the automatic verification of systems modeled in
a specific language for describing finite state systems by means of Binary
Decizion Diagrams (BDDs) (Bryant, 1992). A BDD is a directed acyclic
graph representing a boolean function. Terminal nodes are either True or
Falze and non-terminal nodes are associated with a boolean wvariable, and
two BDDs, called left and right branches. Conformant Model Based Planner
(CMEP) (Cimatti and Roveri, 2000) is a conformant planner implementing
SMC.

2.5 CoNTINGENT PLANNING TASK

Contingent Planning i= an extension to Conformant Planning including sensing
actions. When a planning system is solving a real-world task, it iz not possible to
have complete knowledge about the state of the environment, but it is possible to
sense some information relevant to solve the task. Contingent Planning tries to find
a conditional plan of actions that transforms the initial state on a goal state in a
deterministic or stochastic and partial-observable environment. This means that the
state of the environment is not fully known, but it is possible to collect information
about the state of the environment during the execution. These features imply an
important change in the structure of the solution plan regarding the other planning
paradigms. In the other paradigms, plans are given by a sequence of actions, while
in Contingent Planning plans are trees of actions branching on observations.

41

42

2.5.1

AUTOMATED PLANNING

THE CownceEprTUAL MoODEL

The conceptual model for a Contingent Planning task is a stochastic, finite and full
or partial observable belief state-transition model. Thiz model is similar to Classical
or Probabilistic models including two new features: (1) sensing actions to capture
information about the environment after action execution; and (2) disjunctive effects

to model sensing actions.

Definition 7. (Contingent Planning Model) A contingent planning task can be
defined as a T-tuple 1T = (5, A, 8§, 0, g, bp, G), where:

S is a finite set of states which are used to build the belief state set BS.

A is a finite set of grounded deterministic or probahbilistic actions derived
from the action schemes of the domain. Each action a; € A can be defined
as tuple a; = [Pre, Eff). Pre(a;) are the preconditions of the action, and
Eff(a;) iz a set of conditional effects. A conditional effect e(a;) i= a triple
ela;) = (conle), add(e), del(e)) corresponding to the effect’s condition, add,
and delete lists respectively.

T iz the state transition function for a non-deterministic action, and it is
amap I : SxA —+ 5 : (s,a) = (e1,...,en), where n iz the number of
non-deterministic effects.

O is a finite set of grounded sensing actions (observationz) which generate
the possible observed states after applying the sensing action o in the state b.
Sensing actions can generate different outcomes. But in this case, each effect
iz not defined by a probability. They are defined by conditions that depend of
the obeervations of the state. This kind of actions introduces a fork into the

plan when theyv are applied assuming binary observations, one branch marked
with obs(o;) and another branch marked with —obs(o4].

o iz an observation function o : § — O which aszociatez to each state a
poesible observation.

bp € SB i= a finite set of states which define the different initial states.

G C 5B is a finite set of goal states.

In Contingent Planning the information known about the initial state might not be
complete and the action effects might not be predictable. But, the system has the

25 CONTINGENT PLANNING TASK

ability to observe some aspects of the current state using observation actions. This
means that a solution plan is composed to two different tvpes of actions which are
interleaved: (1) actions; and (2) observations.

#» An action a € A is applicable in the belief state b = (sg,...,5m)%¥s; € 5 if
T(s;, a) gives at least one target state for any s; € b. Therefore, applying an
action a in a given belief state b; results in the successor belief-state biyq
when a iz applicable in at least one state s € b;.

¢« An observation o € A can be applied in every belief state. Observations
are performed to remove or add states to the belief-state. The application
of an observation o in a belief-state b; generates a belief-state bi 1 =
s' €8s’ =ofs),seb.

A solution plan 7 for a contingent planning task IT iz an action-observation tree
where the nodes of the tree correspond to observations and actions of the current
state of the environment and the leafs of the tree correspond to the possible belief
goal states. Finally, the complexity of Contingent Planning is increased when action
outcomes are probabilistic. In this case is called Contingent Probabilistic Planning.

2.5.2 THE REPRESENTATION LANGUAGE

There i= not a standard representation language for Contingent Planning.
Commonly, each contingent planner defines its own representation language, so
different languages have been defined to represent the conceptual model of
Contingent Planning.

2.5.2.1 PDDL

An extension of PDDL 2.1 was proposed (Bonet and Geffner, 2000b) which includes
sensing actions. Sensing actions are planning actions with effects which generate
some information observed from the current state. Besides, this language supports
non-deterministic effects, probabilistic literals in the initial state, literal disjunctions
in the initial state and markovian rewards.

2.5.2.2 NPDDL

The Non-deterministic Planning Domain Definition Language (NPDDL) (Bertoli
et al., 2003) is a representation language that extends PDDL 2.1 allowing users to

43

AUTOMATED PLANNING

describe planning tasks in non-determinism environments. This language supports
some features:

Incomplete information in the initial states is characterized by describing
the set of possible initial states using the wnknown and the oneof
statements (Younes et al., 2005).

» Non-deterministic actions. These actions are characterized by introducing
several possible outcomes using the unknown and the oneof statements.

» Partial Observability i= expressed by introducing observable variables and
observations. An observable variable is a variable whose value is observed
continuously during planning. An observation iz a sensing action over a
wvariable v which is characterized by a boolean formula over v and the domain
of values of v.

2.5.3 THE ALCORITHMS

There are different techniques used to generate a plan in Contingent Planning: (1)
extending determiniztic planning for dealing with contingencies; and (2) compiling
the contingent planning task into another representation.

2.5.3.1 APPROACHES BASED ON EXTENDING DETERMINISTIC PLANNING

The first approach attempts to solve contingent planning tasks extending the ideas
applied over classical planning allowing sensing actions. The Conditional Non-Linear
Planner (CNLP) (Peot and Smith, 1992) is a conditional version of the Systematic
Nonlinear Planner (SNLP) (McAllester and Rosenblitt, 1991) that includes sensing
actions. This planning syvstem represents uncertain information about some literals
using the special predicate unknown. Sensing actions are used to know if unknown
literals are true or false during execution when the lack of information can prevent
it to achieve the goals.

Other approaches like Senzory GRAPHPLAN (SGP) (Weld et al., 1998) extends
the planning graph structure to handle sensing actions. Thiz planning system builds
an individual planning graph for each possible state of the environment maintaining
the original structure based on propositions and actions layers . Observation actions
are represented as actions without preconditions and sensing effects. This kind of
actions corresponds to primitive observations that return information about one
literal defining if the literal is true or false after the execution of the observation
action.

26 DISCUSEION

2.5.3.2 APPROACHES BASED ON TRANSLATING TO ANOTHER REPRESENTATION

Another way to solve a contingent planning task consists on compiling the task into
another form of problem solving. The most common method translates a contingent
planning task into a fully-observable non-deterministic planning task transforming
the sensing actions into a set of non-deterministic actions (Albore et al., 2007).

2.6 DiscussionN

A planning task can be modeled as a search problem in a directed graph, where
nodes represent the different states of the search space and edges represent
the actions which define the transitions between the different states. States
are represented as a set of variables (logic or numerical), and actions are
represented as operations that change the variables’ value, in terms of pre-conditions
and post-conditions. Different planning paradigms (classical, probabilistic and
non-deterministic) can be defined depending on how this information is modeled

and extracted from the environment.

On one hand, classical planning systems are deterministic and full information on
the initial state is assumed. This means that the state of the environment is always
perfectly known (full observability) and the action execution always yields to the
expected state (determinizm). These unrealistic assumptions were defined in order
to decrease the complexity of finding a solution of a planning task. The first planning
systeme such as STRIPS (Fikes and Nileson, 1971) performed an exhaustive
depth-firet search algorithm with any guidance which just allow them to solve simple
linear tasks. In the next vears, some important contributions such as the planning
graph framework (Blum and Furst, 1995), heuristic search (Bonet and Geffner, 2001;
Hoffmann and Nebel, 2001) and the different heuristic functions (Helmert et al.,
2007; Richter and Westphal, 2008) increased the powerful of classical planning
systems. However, these assumption do not hold anymore in an dynamic and
stochastic environment where the syetem has to deal with incomplete information,
because the world is partially observable and non-deterministic.

On the other hand, probabilistic, conformant and contigent planning systems
are non-deterministic and partial information about the environment, including
the initial state, is assumed. Thiz means that the state of the environment is
partially known and the effects of the actions are not deterministic generating
different outcomes. Several approaches have been developed including sensing
actions (Albore et al., 2007) and non-deterministic effectz with incomplete
information about the initial state (Palacios and Geffner, 2007; Wu et al., 2011).

45

AUTOMATED PLANNING

However, these approaches require full information about the dynamics of the
environment which is commonly unknown or cannot be easily modeled.

In general, if we are trying to solve a planning task in a stochastic and dynamic
environment (real-world environment) it is not possible to capture full information
about the environment to generate a perfect plan of actions. There are a huge
number of contingences which are unknown a priori and might be detected during
the execution of the plan. Thiz implies changes in the actions model and/or the
information about the environment which in turn prevents the execution of the rest
of the plan.

ABSTRACTIONS IN AUTOMATED PLANNING

The ability of abstraction is one of the most important features of the human brain
related to the capabilities of perception, conceptualization and reasoning. Human
reasoning processes performs simplifications about the environment in order to solve
complex tasks which arise from the interaction with the environment. The different
approaches to abstraction, developed in Al, commonly consider an abstraction as a
relation between a complex task, which is represented in a specific formalism, and
a simple task and its own representation. This simpler task i= generated using a
bidirectional mapping function that maps the complex task from the original space
of representation to an abstract space which is smaller than the original. In this
thesis, we focus in deploying abstractions over AP in order to simplify the structure
of the planning task decreasing the complexity of the search process.

In thiz chapter, we review the state of the art in abstractions for
domain-independent planning from two perspectives. The first one is based on
building abstractions which change the structure of the planning task; and the
second one is based on building abstraction heuristics to guide search algorithms.
In both cases, we explain the different theoretical definitions of abstraction and the
different methods developed to build them.

3.1 INTRODUCTION

The first planning systems (Newell and Simon, 1972) performed goal regression in
the state-space without any understanding about what parts of the state-space were
more promising to find a solution plan that reaches the goals. But, the process of
finding a path in a directed graph can be huge in terms of time and computation
resources depending on both the structure and the size of the graph.

A technique which has shown to be effective diminishing the complexity of planning
tasks iz to use abstractions in order to help focus the search in the most promising
parts of the search-space. In this context, an abstraction can be defined as a
surjective function that transforms a planning task into another simpler one,
where some details about the structure of the state-space of the task are ignored

47

48

ABSTRACTIONE IN AUTOMATED PLANNING

or removed. As described below, the state-space of a planning task is represented
as a directed graph whose nodes represent the states, and whose edges represent
the transitions made possible by each action. This representation offers some
opportunities to deploy abetractions in order to simplify the structure of the
state-space: (1) joining some states; and/or (2) simplifying the structure of the
actions. Then, if an abstraction is applied over the state-space of a planning task, a
new search-space iz generated. This new search-space is commonly called abstract
space and iz a simplification of the original state-space.

abstract-space

gtate-space

Figure 11: Example of an abetraction applied over a simple planning task.

Figure 11 shows the state-space of a simple planning task and the abstract space
generated after an abstraction over the structure of the states has been applied. In
this example the original state-space is composed to 8 states and 10 actions, which
are reduced to 4 states and 3 actions. In this example, the states sp and s1 are
joined to create a new abstract state called sj. In this case, the abstraction not
only reduces the number of states of the state-space, it also decreases the number
of original actions which can be applied over the new abstract states. Then, it is
poesible to build two types of abstractions over Automated Planning:

» Abstractions over the states: This kind of abstraction builds a new state-space
compoeed of abstract etates. The new states are built by compositions of the
states of the original state-space.

» Abstractions over the actions: This kind of abstraction includes some changes
in the original state-space. These changes consists on new abstract actions
which modify the structure of the graph by changing the connections between
the states.

Abetractions on Automated Planning are usually done by first solving a planning
tacgk defined in an abstract space and then using the abstract solution to guide the

3.2 ABSTRACTIONS OVER THE STATE-SPACE

search process solving the original task. In order for an abstraction to be useful,
the abstract task should be easier to solve and the total time spent should be lezs
than without using the abstraction. This could be considered the most important
requirement to build good abstractions, nevertheless it has turned out very difficuls
to achieve in practice.

Multiple abetraction-based algorithms have been defined depending on two
important aspects: (1) what kind of transformations must be applied to the original
planning task and (2) how we can use the abstract planning tazk or the abstract
solution to solve the original task. These algorithms have been used succesefully in
two different ways: (1) decreasing the complexity of the search process modifying
the structure of the state-space of the planning task to solve it incrementally; or
(2) generating domain-independent heuristics which are used to guide the search
process in the original state-space.

3.2 ABSTRACTIONS OVER THE STATE-SPACE

As described below, the state-space of a planning tazk is represented as a directed
graph. In this context, an abstraction over the state-space applies a transformation

function that generates a simpler version of the original state-space (abstract space).

Commonly, the abstract space iz built using abstractions over the actions where
some aspects about actions’ structure is relaxed. Then, the set of actions used to

built the abstract space iz composed of both original actions and abetract actions.

This kind of abstraction changes the structure and the size of the state space:
(1) including new transitions between states which are generated by new abstract
actiong; and (2) pruning some parts of the state-space which are not achieved using
the new set of actions and /or combining some states generating new ones.

The most common techniques based on applying abstractions over the state-space
generates a hierarchical representation of different state-spaces where the ground
level corresponds to the original state-space and the rest of the levels of the
hierarchy correspond to abstract spaces which commonly are sorted in descending
order of size or complexity. This representation is used to solve the planning task
starting with the most abstract space in the hierarchy and solving it, and then the
abstract solution is refined through successively more detailed abstract levels until
the original task i= solved. This technique has been successfully used in different
planning systems, some of them are described next.

40

ABSTRACTIONE IN AUTOMATED PLANNING

3.2.1 GENERAL PROEBLEM SOLVING

General Problem Solver (GPS) (Newell and Simon, 1972) iz considered one of the
first planning systems. This planner implements a hierarchical algorithm to solve
planning tasks using an abetractions of the state-space. This planner receives as
input a planning task and an abstraction of the state-space. Then, GPS maps the
original task into the abstract space generating an abstract planning task which
iz solved. The solution of the abstract task is used to guide the search process
in the original state-space to generate a solution. This planner provided the first
automated use of abstraction over the state-space, but the abstraction was buils
manually by an expert.

3.2.2 ApsTRACTIONS FOR STRIPS

ABstraction for STRIPS (ABSTRIPS) (Sacerdoti, 1972) was a planning system
that uses abstractions modifying the structure of the search space. This approach
extended the work of Newell and Simon on GPS (Simon and Newell, 1969)
combining abetractions with STRIPS (Fikes and Nilezon, 1971) to generate a
hierarchy of abstractions decreasing the complexity of solving the planning task.

ABSTRIPS introduced the concept of abstraction spaces, which are generated by
removing predicates of the preconditions from the actions of the original planning
task. An abstraction space is a reduced version space of the original tazk space in
which a single abstract state corresponds to one or more states in the original task
space. Several levels of abstractions (abstraction spaces) are generated forming an
abstraction hierarchy. Abetractions levels are defined by assigning criticalities to
predicates. Criticalities are natural numbers that indicate how difficult is to achieve
a specific literal and are used to define the order in which literals are removed to
build the different abstraction spaces.

This approach iz composed of two phases: the first phase defines the structure of
the hierarchy of abstractions and how they are built. A predetermined (partial)
ordering of all the predicates that describe the domain is defined manually. This
set of predicates determine the order in which the literals of the preconditions are
analyzed by the algorithm that determines the criticalities of each predicate. This
algorithm i= composed of two steps: (1) the first step assigns a criticality of two plus
the maximum value in the partial order to each literal which cannot be changed by
any operator. Thiz means that the operator i= static. (2) the second step analyzes
each literal according to the partial ordering defined initially. If a short plan could be
computed to achieve the literal from a state in which all previously analyzed literals
were assumed to be true, then the criticality of the literal is assigned equal to its rank

3.2 ABSTRACTIONS OVER THE STATE-SPACE

in the partial ordering. But, if no short plan is found, the criticality of the literal is
assigned greater than the highest rank in the partial order. The second phase uses
the abstractions hierarchy to generate a solution. First, an abstract plan is found
that satisfiezs only the preconditions of the operators with the highest criticality
values. The abstract plan is then refined by considering the preconditions at the
next level of criticality and inserting steps into the hierarchical problem solving
using abstract spaces until the original problem is solved in the ground level.

Figure 12: Hierarchical representation of the state space.

Figure 12 shows an example of a planning task where the abstraction spaces are
arranged in a hierarchy. The ground level corresponds to the structure of the original
task and the rest levels correspond with different level of abstraction where the last
level represents the most abstract state space. In thiz example, the state-space is
reduced in each level of the hierarchy. The states of the state-space are indirectly
combined between them generating abstract states according to the predicates
removed from the preconditions of the actions of the previous level. For instance,
states 57 and s3 are combined generating the abstract state s} in the Level 1. This
state iz combined again with the state si generating a the abstract state s% in the
Level 2.

3.2.3 ALPINE

Alpine (Knoblock et al., 1991) is a system that builds automatically abstractions
based on the interactions between literals, which are part of the preconditions of the
operators. The generation process uses the operators and, optionally, the goals of
the planning task and it produces an ordered abstraction hierarchy. The generation
process partitions the literals of the domain in different classes and orders them
according to the interactions among them. Literals which are defined in one level

51

52

ABSTRACTIONE IN AUTOMATED PLANNING

cannot interact with the literals in higher abstract levels. This order set is used to
generate an ordered set of abstraction spaces, where the highest level in the hierarchy
iz the most abstract one and the lowest level is the most detailed one. This hierarchy
iz used in the hierarchical version of Prodigy (Carbonell et al., 1991).

There are some important differences between the abstractions generated by Alpine
and ABSTRIPS: (1) Alpine generates abetractions hierarchies using only the initial
tagk definition, while ABSTRIPS requires an initial order of all predicates to form
the abstractions; (2) Alpine generates abstractions for a specific problem, and
ABSTRIPS builds a single abstractions hierarchy for an entire domain; and (3)
Alpine generates an abstraction of the original task space for each level, while
ABSTRIPS generates a global relaxed model.

3.3 ABSTRACTIONS OVER THE HEURISTIC FUNCTION

Heuristics functions are a way of ranking a set of nodes in order of define their quality
and choose what the best successor is to explore the state-space of a planning task.
They are modeled as a function h that returns a number for each node of the
state-space, which i= used to estimate the distance from a state s to a goal state g.
Heuristic functions are usually obtained by solving a relaxed or abstract version of
the original task, which iz a simpler than the original one relaxing some elements
of the task description (Pearl, 1984).

3.3.1 DELETE RELAXATION

The FF heuristic (Hoffmann and Nebel, 2001), hff, is a domain independent
heuristic function derived as the cost of the plan of a relaxed problem. The planning
problem relaxation consists on ignoring the delete list of all actions and extracting
a solution using a Graphplan-style algorithm (Blum and Furst, 1995). The number
of actions in the relaxed solution is used as a goal distance estimate. The relaxation
can be considered as an abstraction. The process of creating a graph of the search
space where delete lists are ignored for each action iz a simplification of the original
problem decreasing the complexity of the plan generation process.

3.3.2 PATTERN DATABASES
A Pattern Databaze (PDB) is a set of patterns, where each pattern iz a pair. The

first component iz a partial (abstract) specification of a state of the problem and
the second component is the cost of solving the abstract problem derived from the

3.3 ABSTRACTIONS OVER THE HEURISTIC FUNCTION

original one using as initial state the partial state. These were originally defined to
improve the search efficiency of the A* algorithm decreasing the number of expanded
nodes in the sliding-tiles puzzle (Culberzon and Schaeffer, 1998). After, PDBs were
used in AP (Edelkamp, 2001) to store the cost of solving abstract tasks derived
from the original planning task. In this caze, patterns are composed of abstract
state and the cost of solving an abstract task starting from the abstract state. This
cost iz a lower bound on the corresponding cost in the state space of the original
planning task.

PDBs are formally defined in AP using a Multi-Valued Formalization (Definition 4)
where abstractions are built by means of a projection of the original planning task
over a subset of variables.

Definition 8. (Projection (Helmert et al., 2007)) A projection of the planning task
IT over a set of variablee v € V iz defined by restricting the initial state, goals
and preconditions /effects of the operators to v. In other words, a projection is an
abstraction «, so that two states s; and s, are equivalent if and only if they are
agree on the value of variables in v, i. e. sy ~% s2 if and only if s1[v] = s2[v]¥v € v.

3.3.3 MERCE-AND-SHRINK

The Merge-and-Shrink (M&:S) iz a technique that generates abstraction spaces that
are directly associated with the variables of the planning task. M&S was originally
proposed in the context of Model Checking (Driiger et al., 2008; Driger et al., 2009)
and it was adapted to AP (Helmert et al., 2007). The definition of the variables
iz bazed on the Multi-Valued Formalization (Béckstrom and Nebel, 1993), where
each variable is defined as a multi-valued state variable. The abstract state space
iz built incrementally, starting with a =set of atomic abstractions associated with
each individual variable and merging two abstractions (replacing them with their
synchronized product) and shrinking them (aggregating pairs of states in one). M&S
iz a generalization of PDBe, since for any PDB is possible to build an equivalent
M&:S abetraction by merging the projections that correspond to variables in the
pattern. Variables which are not in the pattern are shrunk to a zingle abstract
state, so that the abstraction does not distinguish their value, just as PDBs. This
heuristic function has been successfully used in different planning systems (Reyna
et al., 2013; Helmert et al., 2014).

53

ABSTRACTIONE IN AUTOMATED PLANNING

3.4 DiscussionN

In this chapter, we have reviewed state-of-the-art abstraction heuristics for
domain-independent planning from two different perspectives. The first one is
related with approaches that manipulate the structure of the search space in
order to speed up search. Some of these approaches, like ABstraction for STRIPS
(ABSTRIPS) and Alpine, show that iz possible to solve planning tasks decomposing
them in different abstract levels of details where each level is more detailed than
the previous one. The complexity of solving an abstract planning task is commonly
less than the original one if the abstraction i= consistent with a set of properties
discovered by Knoblock (Knoblock et al., 1991). Then, it iz possible to build
detailed plans incrementally by including new partial plan between the actions of
the previous abstract plan. But, it is important to analyze what information can be
abstracted. Choosing an incorrect abstraction selection can increase the complexity
of the planning process.

The second perspective iz related with approaches that use abstractions to build
more effective heuristic functions which are used to guide search in order to decrease
the computational overhead. Merge-and-shrink (M&S), which is a generalization
of PDBs, shown that iz possible to generate Hexible heuristic functions by means
of abstractions. These heuristic functions have shown their capacity to guide the
search in order to solve planning task optimally, but the time needed to build the
abstraction iz prohibitively large according to the complexity of the task.

In gemeral, abetractions offer a real opportunity to decrease the complexity of
planning which iz an important issue in real-world environments when the planning
time to generate a solution is emall and the environment can change due to external
agents. In the following chapters we will make use of abstractions in combination
with classical planning to decrease the computational effort of solving planning task
for dynamic and stochastic environments.

REAL-TIME SEARCH

The process of building effective autonomous systems that interact with the
real-world is a cornerstone of Al. Autonomous systems must consider a range of
irsues including: (1) what information can be obtained about the environment; (2)
how the system deliberates about what action to perform; (3) how the system goes
about executing its strategy; and (4) how much time iz allowed to deliberate. All of
these key izsues must be considered to build interactive autonomous systems which
must adapt to unexpected changes in the environment, and to be flexible enough
to react nimbly and modify the previous actions when it must.

Commonly, autonomous systems do not have time enough to compute a complete
solution before performing an action in real-world scenarios due to the complexity
of the problem. Real-world environments are characterized for needing quick
responges to offer a real time interaction between the antonomous system and the
environment. These time restrictions are an important drawback for Automated
Planning where the complexity of solving a real-world problem using planning
that encodes full information about the contingencies of the environment is
EXPSPACE-complete (Littman et al., 1998). In the last years, several approaches
based on heuristic search have been developed to generate plans of actions using
upper-bounds (time, expanded nodes, depth, etc) which limit search and act in
real-world scenarics.

In this chapter, we review the state of the art in Real-Time Search from two
perspectives. The first one is based on Incremental Search Heuristic techniques
which conduct incremental local search increasing the complexity of the search space
explored; and the second one is based on Real-Time Heuristic Search which conducts
local search where the heuristic function is updated according to the information
obtained in previous searches.

4.1 INTRODUCTION

The ability of generating a solution plan in a reasonable time in real-world scenarios
iz one of the most important facets that an autonomous system must display.

REAL-TIME SEARCH

Autonomous systems have to adapt their actions (i.e. plans) continuously according
to changes in the world or changes of their action models of the world. In these cazes,
the original set of actions might no longer apply or might no longer be good for
the new state. Then, a new set of actions must be generated. But, in these cases,
the autonomous system has to choose ite actions in a limited amount of time using
partial information which is related to the current state of the environment. For
instance, an autonomous system (i.e. a robot) cannot spend much time generating
a plan when is interacting with a human that is looking for information about his
Hight which iz close to taking off. Different approaches have been developed to speed
up the cost of generating a plan using Incremental Heuristic Search (Pemberton
and Korf, 1994) or Real-Time Heuristic Search (Korf, 1990; Ishida and Korf, 1991).
These approaches are commonly called Agent-Centered Search algorithmz (Koenig,
1996), because an agent conductz a local search over a emall part of the search space
which is close to the current state of the agent.

As we described in the Chapter 1 of this dissertation, two deliberative perspectives
based on search can be defined to solve real-world problems. On one hand, off-line
planning systems focus on defining methods that solve a one-time search problem.
These systems generate a full plan of actions from scratch using algorithms like
A* (Hart et al., 1968) and IDA* (Korf, 1985) and then actions in the plan
are executed into the environment. But, if the environment changes, the plan
cannot be executed. On the other hand, on line planning systems interleaves
search and action execution in order to adapt actions to the contingencies of the
environment which cannot be expected previously. Furthermore, generating effective
plans according to the restrictions of real-time environments implies that search
must be restricted to the areas of the search space around the current state by
limiting the exploration time.

These algorithms have been used to solve real-time problems from the real-world
because they can compute a partial set of actions before an entire solution is found
adapting it to new information from the environment. Many of these algorithms
have been used in Real-Time Strategy games (Buro, 2003; Bulitko and Lee,
2006}, navigation systems (Stentz and Hebert, 1995), control in robotics (Koenig,
1996; Gutmann et al., 2005) and tactical mobile robot prototypes for urban
reconnaissance (Matthies et al., 2002).

4.2 INCREMENTAL HEURISTIC SEARCH

Incremental Heuristic Search methods are based on reusing information from
previous searches to solve more complex search tasks potentially faster than solving
each search task from scratch. Commonly, this kind of algorithms i= used to

4.3 REAL-TIME HEURISTIC SEARCH

solve robot navigation problems in unknown environments where the search time
iz bounded to offer quick responses. Dynamic A* (D*) (Stentz, 1995a) was an
evolution of the A* algorithm for Real-Time Search. This algorithm computes an
initial solution from the goal state to the initial state. Then, the solution is efficiently
repaired according to the changes in the cost of the arcs during execution. The
repairing phase is only executed when new information is found that changes the
structure of the problem. The algorithm computes an optimal solution assuming
that all information captured at each execution step is correct. Besides, these
approaches offer the option of distributing the computational effort between the
on-line and off-line phazes.

Dynamic A* introduced the concept of incremental heuristic search =solving
navigation problems whose complexity iz increased by changes in the structure of the
graph. However, Dynamic SWSF-FP (Ramalingam and Reps, 1996) is considered
the first real algorithm for Incremental Heuristic Search. This algorithm computes
shortest paths from a set of nodes to the goal node recomputing the paths which
have only changed during execution. Lifelong Planning A* (LPA*) (Koenig et al.,
2004) combines Dynamic A* and Dynamic SWSF-FP to repeatedly find shortest
pathe in a graph, while the edge cost or the structure of the graph change (vertices
are added or deleted). Thiz algorithm starts searching in the same way az A*. But,
the subsequent searches are potentially faster, because they reuse some parts of
the previous search tree which are similar to the new search tree. This algorithm
interleaves search and action execution updating the previous solution according to
the new information discovered during execution.

Other approaches introduced the concept of anytime search to improve the features
of Incremental Heuristic Search. Anytime A* (Likhachev et al., 2004) (ARA¥*)
computes a firet solution using A* with inflated heuristice and then continues
to improve the solution reusing search efforte from previous executions in such a
way that the sub-optimality bounds are still satisfied. The bounds are changed

progressively as time allows to compute an optimal solution for the problem.

Anytime Dynamic A* (Likhachev et al., 2005) is a planning and replanning
algorithm which computes bounded suboptimal solutions in a anytime fashion
reusing previous search efforts. When new information about the environment is
received, the algorithm incrementally repairs ite previous solution. This algorithm

tunes the quality of the solution based on the available search time (bound).

4.3 REeEaL-TiME HEURISTIC SEARCH

Real-time Search (RTS) methods are a special type of agent-centered search where
search is limited by a horizon. These methods are characterized for two properties:

a7

58

REAL-TIME SEARCH

(i) the search time per action can be upper-bounded by a user-supplied constant
(hence real-time); (ii) they associate a heuristic function with each state (hence
heuristic) which iz updated (or learned) in order to avoid local minima and/or
dead-ends. Most of the RTS algorithms are improvements over the Real-time A*
algorithm.

Real-time A* (Korf, 1990) (RTA*) is considered the first RTS algorithm. This
algorithm combines A* and MiniMax algorithms where a solution is computed
searching from the current state to a fixed depth determined by computational
resources and/or the information available about the environment. Bezides, this
algorithm adapts the heuristic function to evaluate the nodes inside to perimeter
defined to the search frontier. This algorithm interleaves two search phases: (1)
a simulation phase which consists on a partial tree expansion (lookahead) zearch
in a eimulated environment where actions are not actually executed; and (2) an
execution phase in which the best action found is executed in the real-world. After
each execution phase a new simulation phase i= performed using the new current
state.

Learning Heal-time A* (Korf, 1990) (LRTA*) was an evolution of the previous
algorithm. This algorithm performs an iterative execution of the RTA* search with
an updating rule to enable the algorithm to learn from previous runs. The update
rule is based on changing the heuristic value of the current state only with respect
to itz immediate neighborhoods. A variation of the LRTA* algorithm (Ishida and
Korf, 1991) was developed to avoid the local minima of the heuristic function used
(heuristic depressions). This variation ran a limited A* search when a heuristic
depression was detected and then used the results of the A* search to correct the
depression at once.

In the following years, Shimbo and Ishida (Shimbo and Ishida, 2003) introduced
variations on LRTA* for bounding the amount of state space exploration.
LRTA*(k) (Hernandez and Meseguer, 2005) is an algorithm based on LRTA* with
a different updating strategy. This algorithm updates the heuristic value of k
states per iteration following a bounded propagation strategy. Bulitko (Bulitko and
Lee, 2006) developed a three-parameter framework (named LRTS) which deploys
different Learning BTS algorithms tunning three parameters.

4.4 Discussion

In thi= chapter, we have reviewed the state-of-the-art in real-time search from
two different perspectives. The first one is related with approaches that conduct
an incremental heuristic local search reusing information from previous searches.

44 DISCUSEION

These algorithms are commonly used to solve navigation problems in real-time

environments where the structure of the search space changes during execution.

These algorithms have shown to be effective in real-time environments decreasing
the search time, but they cannot guarantee a constant time bound on search time
per action execution. Depending on the changes in the environment, this time can
be huge. This is an important drawback in real-world environments with partial
information where some changes can modify the complexity of the problems avoiding
to generate a solution or increasing the time needed to compute one.

The second one is related with approaches that conduct a heuristic search with
partial information where the search time is limited by a lookahead commonly called
horizon. The horizon guarantees a constant time bound on search time per action
execution. However, the quality of the solution depends of the time bound which
iz chosen manually. Besides some RTS approaches discover pathological cases of
deeper lookahead which increaze both execution and planning costs (Bulitko et al.,
2003). This means that choosing a good lookahead in RTS is really important in
order to obtain a balance between search time and execution cost.

In general, time or computational bounds allow RTS algorithmes to handle real-world
problems. This iz an important feature in real-world environments where the
available time to generate a solution is often short. In the following chapters, we
will use lookahead in classical planning in order to generate partial plans to act in
dynamic and stochastic environments.

50

Part II

PREDICATE ABSTRACTIONS OVER AUTOMATED
PLANNING

PLANNING AND EXECUTION

In previous chapters, we focused mainly on the problem of plan generation
describing the different planning paradigms. However, the main objective of this
thesiz consists of using planning as reasoning system in real-world applications
like robotics, industrial applications, aerospace or video-games. These applications
require control systems with situated planning capabilities, systems that interleaves
planning and execution, monitoring control, updating state strategies, failure
recovery, plan supervision and replanning or repairing mechanisme.

When a plan that theoretically solves a planning task is executed in the environment,
some discrepancies between predicted and observed states of the environment
may occur. These discrepancies can be caused by: (1) new information about the
environment can be discovered during action execution modifying the structure of
the planning task; (2) unanticipated exogenous actions can change the environment;
(3) actions’ execution which can fail generating unexpected states which in turn
prevents the execution of the rest of the plan; and (4) the execution of the
actions in the plan can generate states from which no plan can be successfully
executed (dead-ends). Regardless of the cause, when a discrepancy is detected
during execution, it brings into question whether the plan being executed remains
valid or must be changed.

This chapter describes the concept of Planning and Execution, the different
techniques for plan generation and wvalidation and some of the most important
architectures based on Automated Planning. Next, it presents a detailed description
of the Light Planning, Execution, LEarning Architecture (LPELEA) which has been
developed to perform the empirical evaluation of this thesis. Finally, it shows the
different methods used to conduct the empirical evaluation of this thesis describing
the domains, the metrics and the different planners.

5.1 INTRODUCTION

Planning and execution consists of generating a plan and executing it in a real-world
environment. This means that the planning and execution system must handle the

FLANNING AND EXECUTION

complexity of the real-world to solve the planning task. First planning systems
were not able to handle the complexity that implies executing a plan of actions in a
real-world environment. In order to handle this kind of problems some assumptions
were made to simplify the complexity of the planning process omitting the execution
process. These assumptions are related to the representation of the environment, the
actions and the goals.

+ Assumptions about the environment. There are two assumptions related
to the representation of the environment and how the information about
it iz observed. The most common and unrealistic simplification consists of
assuming that the planning system has full knowledge about the state of
the world. This means that the planning system has full information about
the environment. However, real-world environments are complex and difficult
to model. In these cases, the planning system must generate a plan using
partial information which is unknown a priori or must be obtained using
the awvailable semsors. The second one consiste of considering the world as
static. A world iz considered static when only the action execution can
change the environment (Veloso et al., 1998a). But, there is a wide number
of exogenous events (uncontrolled agents, people, environmental events, etc)
which can change the environment when a plan iz executed in a real-world
environment (Nareyek and Sandholm, 2003). These unpredictable changes
must be detected using monitoring mechanisms and included in the planning
model to generate a new plan which conziders the new information about the
environment. These monitoring mechanisms are described in section 5.1.2.

» Assumptions about the action execution. These assumptions are related
to the structure of the actions and how they are executed in the environment.
The first one consiste of considering that actions are deterministic. This means
that the effecte of the actions are always known and predictable and the
execution of the action only depends on the current state. However, this is an
unrealistic simplification in real-world scenarios when action execution may
generate different outcomes which cannot be predicted for the planning system.
This signifies that action’s execution must be controlled using monitoring
mechanizm which can analyze the result of the action execution (Blythe, 1994).
The second one considers that the execution of the action is immediate. But,
this simplification can be a problem in situations where some resources are
only available in certain time intervalz (Coddington et al., 2001; Mauzam and
Weld, 2008) or the resource-usage impacts on the feasibility of the plan (Coles
and Coles, 2012). In real-world scenarios the action execution time depends on
different factors related to the environment which must be controlled. Actions
execution must be monitored to detect failures during execution or excessive

5.1 INTRODUCTION

execution time generating a new solution according to the new information
sensed from the environment.

+ Assumptions about the goals. The objective of a planning task iz defined
as a set of goals which must be achieved. However, planning systems do
not have considerations about what happens if any of these goals cannot
be achieved or if more information iz needed about the environment to reach
the planning task. Planning systems assume that the objectives are static
and can change during the execution process. On many occasions goals can
change during execution or new goals can be discovered according to the
unpredictable changes of the environment (Haigh and Velozo, 1996).

Most of these assumptions have been relaxed by new planning paradigms
(probabilistic, contingent, conformant, temporal, etc) which try to handle zome
aspects of the real-world environments. But, these paradigms increase the
complexity of the planning process and alzo include new assumptions related to the
knowledge about the environment which must be used to model realistic planning
tasks. For instance, Probabilistic planning introduces stochastic effects which imply
an accurate knowledge about the dynamics of the environment which in real-world
domains is impoesible to acquire except for small tasks (Zettlemoyer et al., 2005).

In general, many practical approaches of planning and execution are based on
using classical planning combined with monitoring and execution mechanisms which
remove partially some of these assumptions without increasing the complexity of
the planning model. In fact, the first work that combined planning and execution
in a real-world environment was bazed in classical planning. Thiz approach (Fikes
et al., 1972) was developed to control the robot Shakey (see Figure 13). This robot
iz considered the first general-purpose mobile robot to be able to reason about its
own actions. It was composed of a television camera, a group of contact sensors and
sonar range finders to obtain information about the environment and a drive motor
to move around different rooms. The reasoning system was a basic planning and
execution architecture which used STRIPS (Fikes and Nilsson, 1971) to generate a
plan and PLANEX (Fikes, 1971) to validate the plan according to the information
of the environment which is obtained by the sensors.

This first approach was the starting point for new control systems bazed on planning.

These control syetems can be divided in two trends (off-line and situated or on-line
planning) depending of what information iz known about the environment and how
this information is used to generate a solution plan.

65

FLANNING AND EXECUTION

Figure 13: Shakey: the first general-purpoee mobile robot (This image is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported (wikipedia)).

On one hand, if we have full information about the dynamics of the environment
(accurate model of the actuators of a robot, failure probabilities of actions, accuracy
models of sensors, contingencies of the environment, ...), we can define a domain
model with probabilistic information (such as in PPDDL or RDDL) and for with
non-deterministic information (such as in PDDL+contingenciez or NPDDL). In
this case, we can proceed in different ways: (1) generating a conditional plan {Peot
and Smith, 1992; Draper et al., 1994) that takes into account all poszible states;
(2) building a policy by solving an MDP (Hansen and Zilberstein, 2001; Bonet
and Geffner, 2003); or computing a conformant plan (Bryce and Kambhampati,
2004). These planning system have been used to build control systems which are
often composed of two modules: (1) a planning module which generates only one
solution plan from scratch before the execution (Washington, 1995) by using a
non-deterministic planning system (probabiliztic, conformant, contingent, ...); and
(2) an execution module which executes the solution plan in the environment.
These control systems are called off-line planning systems, because they generate
only one plan before the execution without taking into account the changes in
the environment. This i= an important drawback, becanse they need accurate
information about the dynamics of the environment which is not possible in
real-world scenarics.

5.1 INTRODUCTION

On the other hand, if we do not have full information about the dynamics of
the environment, we can define a bazic domain model with deterministic actions
which can include action cost and/or temporal constraints. In this case, we can
generate a deterministic solution plan which i= executed in the environment until
an unexpected state i= detected. Then, a new plan is computed including the
information obtained from the environment. The control systems which follow this
scheme are called on line planning systems, because they adapt to the contingencies
of the environment generating a new solution. Most of the control systems based
on this trend deploy a control architecture that include planning, monitoring, and
execution. The simplest control system that can be defined to interleave planning
and execution (see Figure 14) is composed of three main modules:

Control system

1
1
: i
' Planning Execution !
1
I i &
I tazl atate 55 : E
1
1 state =]
1 1 E
1 . 1
i plan action a;] o
1 : E'_
' "
! Monitoring :
i i
1 1
D e mmmemmm { __________________________ !

Problem

Domain

Figure 14: Example of a basic planning and execution control system

¢ The planning module generates a plan that solves a specific planning task.

The simplest solution consists of using a planning system with a deterministic
action model that is simple and incomplete. Different monitoring mechanisms
are described in section 5.1.1.

» The execution module which is a sensor-actuator system. This module receives
information from the environment using the sensors and executes the actions
of the plan using the actuators.

#» The monitoring module controle the execution process sending actions to
the execution module and observing the result of each one, analyzing if an

67

68

FLANNING AND EXECUTION

unexpected state has been obeerved and deciding whether execution should
proceed, or it should generate a new plan of actions. The most common
monitoring mechanisms are described in section 5.1.2.

5.1.1 PLAN GENERATION STRATEGIES

In thi=s thesis, we focus on on-line planning systems which interleave planning a
execution in order to use the information obtained from the environment to adapt
to the contingencies that appear during execution. This process can be performed
ueing a plan generation mechanism (replanning, repairing, computation or plan
reuse and case-base reazoning). All of these mechanisms proceed by trying to adapt
the previous plan to the contingencies detected with the hope that such adaptation
will decrease search time holding the plan quality. However, given an unexpected
state which generates a similar problem to the previous one, the adaptation process
does not guarantee neither to save planning effort or to hold plan quality (Nebel
and Koehler, 1993). In spite of this, several plan generation strategies have shown
to be effective decreasing planning effort in many situations:

» Replanning: This strategy generates a new plan from scratch using the new
information obtained from the environment during execution (Yoon et al.,
2007).

» Repairing: This strategy consists of modifying the previous plan by removing
obstructing actions from the plan and/or adding actionz to achieve the goals.
One of the first approaches was developed in the System for Interactive
Planning and Execution (SIPE-2) (Wilkins, 1990) where some sub-plans are
removed from the original plan to replace them by better ones. More recently,
the repairing system LS-ADJUST-PLAN (Gerevini and Serina, 2000) uses
two local search algorithme: (1) the first one to analyze the inconsistencies of
the plan; and (2) the second one to search on a sub-graph of the planning task
to repair the plan according to the new state of the world. Another approach
for plan repair was included in SimPlanner (Onaindia et al., 2001) which uses
heuristic search to find what part of the previous plan iz valid and can be used
to build a new plan. In general, repairing techniques are faster that replanning
techniques, but they depend on the planning system that is used to generate
the first plan from scratch. If this first plan cannot be generated, the repairing
system cannot be used to repair the plan during execution.

» Computation reuse: This strategy consists of using data structures computed
during the firet planning process. The SHERPA system (Koenig et al., 2002)
can be combined with different planning systems to generate plans keeping

5.1 INTRODUCTION

the quality and decreasing the planning time. This approach retains the search
tree built during the previous planning episodes to determine how changes in
the environment may affect the current plan.

» Plan reuse: This strategy consists of using past solutions to guide the search
or to build a new plan (Borrajo and Veloso, 2012).

» Cage-base Reasoning (CBR): This strategy consists of storing information

about particular solutions (cases) in which problems are successfully solved.

These solutions are stored in a case-base where each solution is composed

of a plan, the initial state and the goals which are reached using that plan.

Commonly, approaches based on CBR proceed by generating a plan using

a traditional planning syvstem and executes each action into the environment.

During execution, if an unexpected state is reached a past solution is retrieved
from the case-base and it iz used to =olve the problem or to build a more
complex solution according to the information about the environment. There
are many approaches that used mechanism based on CBR (Velozo, 1993; Thrig
and Kambhampati, 1997; Britanik and Marefat, 2004; Borrajo et al., 2014).

5.1.2 MoONITORING STRATEGIES

A plan monitoring mechanism consists of finding differences between the real state
of the environment and the expected state of the control system (Giacomo et al.,
1998). There are different types of contingencies which can be detected during the
execution.

» Execution failures: These contingencies are produced when action execution
faile due to hardware or software failures. For instance, a failure in the
actuators of a robot that make it move to a wrong location.

» Exogeneous events: These contingencies are produced when some information
about the environment changes due to actions produced by external agents
or new information is dizcovered.

» Opportunities: Changes in the environment might be produced during
execution such that they do not prevent the action execution, but they can
be used to improve the solution.

Different monitoring mechanisms have been developed to control the execution
in dynamic and stochastic environments. On one hand, Plan Meonitoring (PM)
mechanisms consist on checking whether a remaining sub-plan is still executable. A

60

FLANNING AND EXECUTION

sub-plan is considered executable when the preconditions of the sub-plan actions
that were not established by actions of the sub-plan, are holding in the environment.
If the sub-plan cannot be executed, the monitoring module has to request a new plan
from the planning module. The PLANEX system (Fikes, 1971) is considered the
first monitoring mechanism. This system was developed to monitor the execution
of the robot Shakey. Rational-Based monitoring (Velozo et al., 1998b) captures
information both about the plan currently under execution and the alternative
choices that were found but they did not purposed. This information is used to
introduce changes into the execution plan according to the information which is
captured. Other PM mechanisms monitor plan validity using algorithms that exploit
knowledge about the environment and the different discrepancies which are detected
during execution. These algorithms introduce annotations on the plan which can
be exploited by the plan validation algorithm to quickly discern conditions that
are relevant to a situation trying to avoid replanning episodes (Fritz and Mellraith,
2007).

On the other hand, Action Monitoring (AM) mechanisms consist on analyzing if the
next action can be executed. An action is considered executable if the preconditions
of the action are true when it is going to be executed. If the preconditions of the
actions are not true, the plan cannot be executed and a new plan has to be generated
from the current state. The Livingston system (Williams and Nayak, 1996) was
developed to monitor the execution of a reactive control system. This system uses
AM mechanism where the expected state is compared with the observed state. If
some discrepancies are detected the system analyzes the state by searching the
information of the expected state which are consistent with the observed state.
Then, a new set of actions iz generated using the HSTS planning and scheduling
system (Muscettola, 1994). Another way to implement AM consists of building a
probahilistic representation of the action model using a Partial-Observable MDP
(POMDP) where some preconditions are monitored (Boutilier, 2000). But, this AM
mechanism needs full information about the dynamics of the preconditions which
are monitored.

Finally, there are some approaches which modify

5.2 ARCHITECTURES

This section describes some previous control architectures that have influenced the
implementation of the control architecture used in this thesizs for the empirical
evaluation.

5.2 ARCHITECTURES

5.2.1 Task CoNTROL ARCHITECTURE

The Task Control Architecture (TCA) is one of the first deliberative architectures
developed to control antonomous robots that must work in dynamic and uncertain
environments (Simmone, 1992). TCA was developed to control both the Ambler
six-legged walker robot designed for planetary exploration by NASA and the Xavier
robot (Simmons et al., 1997). This architecture supports: (i) distributed processing
of the sensors; (ii) hierarchical task decompoeition; (iii) temporal synchronization
of subtasks; (iv) execution and monitoring; and (v) resources management. TCA is
based on a hierarchical representation of task execution called task trees. Task trees
describe the hierarchical relationships between the different tasks and the temporal
constraints among them.

Figure 15 shows the structure of the task control architecture for the Ambler
Walking Svstem. This architecture consists of a set of task modules and a general
purpose Control Central Module (CCM). Task modules communicate among
them by message passing. CCM controls the communication between modules by
scheduling and executing the messages. The CCM coordinates the execution of the
meszages taking into account the available resources (sensors and actuators) and
the temporal constraints of the tasks. Besides, thi= module monitors the meszages
and the task execution to prevent failures.

AMEBLER
» Real- Time Controller Laser Scanner
Robot
Gait CCM Scanner
Planner \j Interface
1 Message Routing Table
1
Footfall i Image Queue

Manager

Planner

T
1
! .
Leg /’:E- ____________________ Local Terrain
]]

b
:/
1
1
1
1

Resource Scheduler :H——i-
1
1
1
™~
1
4

Recovery Mapper
Planner Error User
Recovery Interface
Module Module

Figure 15: Task Control Architecture for Ambler Walking System.

Tl

FLANNING AND EXECUTION

5.2.2 LAAS ARCHITECTURE FOR AUTONOMOUS SYSTEM

LAAS Architecture for Autonomous System iz a threelayered (3T)
architecture (Gat, 1998) that generatez tasks plans (each task is composed
of a =et of actions) taking into account temporal constraintz (Alami et al., 1998)
which are common in real-world environments. Besides, this architecture includes

software tools to programming each layer. The architecture iz composed of three
layers:

1. The lowest layer, called function layer consists of a hierarchy of interconnected

modules which implement act and perception capabilities. Module: are
software entities which implement a control loop related to a given resource.

Resources may be physical or logical sensors or actuators. Modules are written
in GenoM language, which generates standardized templates that simplify the
development of modules. Besides, this design makes each module hardware
independent which means that the architecture is portable from one robot to
another.

. The intermediate layer, called executive layer, controls and coordinates the
execution of the functions distributed in the modules according to the
tagk requirements. This module is considered as a communication interface
between the decision and the functional layers which selects, parameterizes
and synchronizes dynamically the modules of the functional layer related to
the tasks received from the decision layer. This layer is written in the Kheops
language which antomatically generate an automata which can be formally
wverified in order to check the logical and temporal properties of the tasks.

. The highest layer, called decision layer, consists of two modules: (1) a
temporal planner; (2) a supervisor based on Procedural Reasoning System
(PRS) (Ingrand et al.,, 1996). The first verzion of the architecture started
using the IxTeT temporal planner (Ghallab and Laruelle, 1994), but this
planner was replaced by the Fape temporal planner (Dvorak et al., 2014). The
PRS decomposes tasks, chooses alternative methods for achieving tasks, and
monitors execution. Besides, LAAS architecture allows for multiple decision
layers, such as a high-level “global mission” layer and a lower-level “task”
layer.

Figure 16 shows the structure of the LAAS Architecture. This iz composed of three
layers and an interface to connect with sensors and actuators of the robot controlled
by the architecture.

5.2 ARCHITECTURES 73

Decission Level

request reports

Functional Level

Sensors and Actuators

Figure 16: LAAS Architecture for Autonomous Systems.

5.2.3 TEeELEC-REACTIVE EXECUTIVE

T-REX (Teleo-Reactive Executive) (McGann et al.,, 2008a) is an architecture
based on the IDEA architecture (Finzi et al., 2004) developed to control
Autonomous Underwater Vehiclee (AUV) in real oceanographic scientist missions.
This architecture is composed of different modules or Tele-Reactors (McGann
et al., 2008b) organized in a hierarchical structure, where each reactor solves a
specific tagk. Tele-reactors receive goals to generate their behaviour, send goals
to lower level reactors, and receive observations from lower level reactors. Besides,
tele-reactors can use different planning systems: (1) Europa which iz a temporal
constraint satisfaction based planner that encodes the planning task in NDDL;
or (2) APSI-TRF which is a temporal planner that encodes the planning task in
DDL (Borgo et al., 2014).

Figure 17 shows an example of the structure of the T-REX architecture. Az it can
be seen, in this case the architecture is composed of three modules: two reactors
(mission manager and navigator) and a functional layer (vehicle control subsystem

T4

PLANNING AND EXECUTION

(VCS)). In this case, VCS works as a functional layer that connects with the
autonomous underwater vehicle. This architecture divides the planning task among
the different reactors.

| Vehicule Control Subsystem (VCS) |

Figure 17: T-REX architecture..

5.2.4 PrLanNING, EXECUTION AND LEARNING ARCHITECTURE

The Planning, Execution and Learning Architecture (PELA) (Jiménez et al., 2008)
is an architecture that integrates planning, execution and learning techniques.
This architecture generates a plan using a planner, which can be deterministic or
probabilistic; executes the plan storing the result as suceess, failure or dead-end; and
learns the patterns for predicting these outcomes. Figure 18 shows the structure of
the architecture along with the integration of the modules. As it can be seen, PELA
has three components: (1) a planning module which generates a solution plan;
(2) an execution module which executes the actions in a simulated environment;
and (3) a learning module which stores the results of the executed actions. The
planning and learning components can be exchanged for others that provide the
same functionality with the same inputs and outputs.

5.2 ARCHITECTURES

Domain plan

1 1
1 1
1 ! .
E Planning Execution : o
! domain !
1 1
1 1 =3
1 1 =]
1 ! =]
: : k
1
Inew domain observation ! -
! Learning :
: ;
1 1
. a

PELA

Figure 18: PELA architecture

5.2.5 SUMMARY

In the previous sections of this chapter, we hawve partially reviewed the
state-of-the-art of planning and execution. First, we have described the most
important components of a planning and execution system which includes reactive
and deliberative components. Besides, we have emphasized in the different plan
generation and monitoring strategies, which in our opinion are extremely important
in planning and execution. Next, we have described some of the most relevant
architectures for planning and execution.

Mozt of the architectures described in this section are focus on the execution process
offering different functionalities related to the execution of concurrent actions

or tasks, task synchronization between different robots and temporal execution.

Besides many of these architecturez have not been developed to used planners
based on PDDL. However in this dissertation, we are focus on using planning
systems which use PDDL to model the environment and the action model. More

precisely, we use deterministic planning systems due to three important factors:

(1) the complexity of describing a dynamic and stochastic environment using other
modeling languages like PPDDL and RDDL; (2) the complexity of generating a
solution using a more complex representation which includes probabilistic and/or
non-deterministic effects, sensing action, ete; and (3) PDDL has become a standard
for current planning system.

75

FLANNING AND EXECUTION

According to these reasons, we have chosen the theoretical PELEA
architecture ((QQuintero et al.,, 2011) which usez PDDL as the main language
to model the inputs of the planning svstems, the global and partial states of the
environment and the execution plans. In this thesis, we have implemented a new
version of the PELEA architecture, called Ligth PELEA (LPELEA) which deploye
some of the modules of the architecture introducing new algorithms and data
structures which are described in the next section.

5.3 PrLanniNG, EXEcUTION AND LEARNING ARCHITECTURE

Planning, Execution and LEarning Architecture (PELEA) (Quintero et al., 2011) is
a theoretical architecture that includes different modules which integrate planning,
execution, monitoring, re-planning and learning techniques to solve planning tasks
in dynamic and stochastic environments. This architecture has been designed in
order to create a hybrid architecture which combines two of the most extended
control paradigms: Deliberative and Reactive.

» The Deliberative paradigm, commonly called high-level, is the oldest control
paradigms used in Artificial Intelligence (Fikes et al., 1972; Keiji Nagatani
and Thrun, 1998). This paradigm is characterized by using a global world
model which iz provided by user information or semsory information. This
information is used by long-term reasoning algorithms which generate a
sequence of actions to reach a set of goals.

#» The Reactive paradigm, commonly called low-level, it was first developed
by Brooks (Brooks, 1986; Amir and Maynard-reid, 1999). Thiz paradigm
iz characterized by using a local world model which is provided by sensory
information. This information is used by simple algorithms which solve one
specific task. Commonly, those algorithms are distributed in a hierarchy of
interconnected modules.

The PELEA architecture has been designed to use both levels in order to combine
the advantages of each one. The division in two levels allows control systems to
recover from execution failures at either level. For instance, if a reactive failure is
detected, it can be solved in the low-level and generating a new high level plan is
not needed. Besides, the structure of the architecture can be easily adapted to the
requirements of the control system. Although, the architecture must be composed
of at least three modules: a monitoring module, a execution module and decision
support module. Figure 19 shows the structure of the PELEA architecture along

5.3 PLANNING, EXECUTION AND LEARNING ARCHITECTURE

with the integration of the modules. As it can be seen, the theoretical definition
of PELEA is composed of eight modules that exchange a set of Knowledge Items
(in XML) during the reazoning and execution steps. The knowledge used by the
architecture is composed of the information about the environment (Action model,
world model) in different levelz of detail (High and Low). In this thesis, we have
implemented a new version of PELEA called Light PELEA (LPELEA) which is
compoeed by only six of the modules presented in Figure 19 (Execution, Monitoring,
Decizion Support, LowToHigh, Low Level Planner and Goals and Metrics), but we
have only used four of them for the empirical evaluation (Execution, Monitoring,
Decizion Support and Goals and Metries) 1

I ettt ittt o

: : 1 1

' : Sensors N Execution N Actuators N | | E

: : : !

S »

' E Sensors 1 Execution 1 Actuators 1 | E
s Do

L e e e e e i m e e e '

S I
= : '
= ! Goals & i
o * 1
A " Metric :
: |

i Monitoring !

! \ Low Level | |

E Info Planner !

i |
e T

1 1

: Decision :
Planners]

! Support '

: :

Figure 19: The PELEA architecture.

1 The source code of the LPELEA architecture is available at https:/ /bitbucket.org/ momartin/pelea

FLANNING AND EXECUTION

5.3.1 MowniTORING

The Monitoring module is the main component of the PELEA architecture. This
module deploys the control algorithm that synchronizes communications among the
other modules, supervises the execution of the actions and dispatch the actions to
the corresponding execution modules. The Light PELEA architecture developed in
this thesis offers two different control algorithms for monitoring:

« A control algorithm for monitoring an architecture composed of three
types of modules (Monitoring, Execution and Decision support). This
configuration has been defined to control systems where there iz an one-to-one
correspondence between the actions of high and low level.

» A control algorithm for monitoring an architecture composed of four types of
modules (Monitoring, Execution, Decision support and Goals and Metrics).
This configuration has been defined to control systems where there iz a
one-to-one correspondence between the actions of high and low level and the
information obtained from the environment is used to change the planning
strategy.

This module stores the global state of the world which is built using both the initial
information of the environment and the sensory information obtained from the
different execution modules. Besides, it analyzes the current state of the world in
order to detect some discrepancies between the current state and the expected state.
The expected state is generated using the previous state and the action executed.

Algorithm 5.1 shows the monitoring algorithm for control svstems composzed of three
tvpes of modules. This algorithm obzerves and analyzes action execution, splitting
the parallel action set EA among the different execution modules (line 11), sending
the next action to the correzponding Execution Module (line 14), and asking for a
new plan to the Decision support module (line 19) if an execution failure is detected
(line 6). Besides, it iz responsible for checking differences between the expected state
and the observed state of the environment sent by the Execution module (line 15).
If an observed state i= not valid (detailed on 5.3.1.1), this module starts another
planning episode to generate a new plan according to the observed state (line 19).
This algorithm has been defined to control the execution of different devices.

5.3 PLANNING, EXECUTION AND LEARNING ARCHITECTURE

Algorithm 5.1: Pseudo-code of the main loop of the Monitoring Module for
High Level

input: Planning task: 1= (5, A, L G)

input : Horizon value: k

Data: Execution modules : E

1 begin
2 Set s« I;
a Set plan « @;
F plan + send getPlan(s, A, k) to DecisionSupport;
3 repeat
a if walidState(s) then
T if goalReached(s, G) then
8 return Succeseful Execution;
9 else
10 if plan # @ then
11 EA + getMNextAction(plan];
12 for each action a in EA do
13 e + getExecutionModule(a, E);
14 send ExecuteAction(a) To g
18 s + send getState() To Execution;
18 else
17 I_ Return No solution;
18 else
10 |_ plan + send getPlan(s, A, k) to DecisionSupport;
20 until problemSolved|);

5.3.1.1 STATE COMPARISON TECHNIQUES

As we described in the previous section, after every execution of an action, the
monitoring module compares the current state of the environment and the expected
state to determine if the current state is valid according to the deterministic version
of the domain. The expected state is generated after each action execution using
the awailable information about the environment and the action which has been
executed in the environment. The comparison process can be performed in three
different ways depending on the level of similarity among the states: (1) analyzing
if the expected state and the current state are equal according to definition 9;
(2) analyzing if the expected state and the current state are similar according to
definition 10; or (3) analyzing if the next action of the plan can be executed in the
current state according to definition 11.

FLANNING AND EXECUTION

Definition 9. (Valid full state). Let TT = (S, A, I, G) be a planning task, s € S is
the expected state of the system and s € 5 is the current state of the environment.
s. is a full valid state if s = s,.

Definition 10. (Valid partial state). Let TT = (5, A, [, G) be a planning task,
s € S is the expected state of the system and s, € S is the current state of the
environment. s¢ is a valid partial state if ¥ p; € s¢ pi € s.

Definition 11. (Valid state based on next action). Let TT = (5,A,L G) be
a planning task, a € A is the next action to be executed in the current plan and
s; £ 5 the current state of the environment. s, £ S iz a valid =tate for the execution
of action a if ¥p; € Pre(a), pi € sc.

5.3.2 EXECUTION

The execution modules are the communication interfaces between the architecture
and the environment. These modules execute actions in the environment (real or
simulated) and obtain information about the environment after execution which
iz sent to Monitoring in order to update the global state of the environment.
Depending of how the LPELEA architecture is configured, execution modules can
be implemented in two different ways:

» Simulator interface: The execution module is implemented as an interface
between the architecture and a simulator (MDPSim). In this case, there iz
only one execution module which executes all actions in the simulator.

» Robotic interface: The execution module is implemented as an interface
between the architecture and the robot which must be controlled. In this
case, the architecture can deploy different execution modules (1 ... NJ, one

for each robot unit. Each execution module can be developed as a native
module of the LPELEA architecture or a rogjava module (Luizs et al., 2016).

5.3.3 DeEecisioN SUPPORT

The Decision Support module handles a set of planning systems which are used to
generate a plan of actions. Thiz node can be configured to use different types of
planning systems, but the most common configuration consists of two planners: one
for planning from scratch and another one to perform replanning or plan repair.
The first planner receives as input the initial state and the domain and the second

5.3 PLANNING, EXECUTION AND LEARNING ARCHITECTURE

planner receives as input the current state, the domain and the previous plan.

However, it is possible to send more parameters to the planner |{metrics, achieved
goals, identifier of the planner etc).

5.3.4 THE SIMULATED ENVIRONMENT

In this section, we describe the structure of the simulator used to simulate dynamic
and stochastic environments. The simulator environment is composed of two
components: (1) A MDP simulator which simulates the execution of the action in the
environment generating different outcomes for the actions based on a probability
distribution; and (2) an Error Simulator which generates additional information
which is introduced to the probabilistic action as parameters in order to generate
events which cannot be produced by the simulator.

5.3.4.1 MDP SmiuLATOR

The MDP Simulator (MDPSim) was developed during the first IPC probabilistic
track (Younes et al., 2005). This simulator, based on an MDP, waz developed
to simulate the execution of PDDL actions in stochastic environments. MDPSim
executes each action according to a given probabilistic action model described in
PPDDL and sends back the resulting state. The PPDDL model generates execution
failures, such as actions that generate effects that were not present in the original
deterministic PDDL model used by the planner.

5.3.4.2 ERROR SIMULATOR

MDPSim can simulate a probabilistic model to generate different outcomes for
each action using PPDDL, but it is extremely difficult to generate outcomes that
change some details of the environment. For instance, in the Rovers domain, in the
real world a rover could move to another waypoint different to the expected one
depending on the ground properties (roughness, slippery) or the lack of precizion
of the actuators. But, this iz difficult to encode using PPDDL. Therefore, we
have developed an Error Simulator that introduces additional information in the
environment. This additional information is encoded as parameters into the action
and used in the effects to generate different outcomes, which cannot be defined by
the grammar accepted by the MDPSIM parser.

Figure 20 shows the structure of the Error Simulator module. This node is composed
of two processes: (1) an action handler which chooses the error function according

81

FLANNING AND EXECUTION

Error Simulator

action a;

state s; Action Handler ————————*

Figure 20: Error Simulator structure

to the name of the action received as input; and (2) an error function which
generates some additional parameters for a specific action. If an action is received,
the action handler chooses the error function associated with the action and executes
it generating a new action with other parameters as output. If there is not an error
function associated with the action, the Error Simulator generates the same action
as output.

Algorithm 5.2: Pseudo-code of the handler function for action navigate
input : Current state of the environment: s
input: Action: a
Qutput: error parameters: p = [p1, P2l

1 begin
2 rover + getParameter(a,0]);
3 currentlLoc + getParameter|a, 1);
4 futureloc + getParameter(a,2]);
B preMovements +— getPredicates(s, "can_traverse”, [rover, currentLoc]);
8 postMovements « getPredicates(s, "can_ traverse”, [rover, futurelLoc]);
T preMovements.remove([rover, futureLoc]);
8 postMovements.remove([rover, currentLoc]);
9 while p # 0 do
10 lel « preMovements. getRandom(]);
11 le? + postMovements. getRandoml();
12 if lel < le2 then
12 I_ P+« [lel, led];
14 return ;

5.3 PLANNING, EXECUTION AND LEARNING ARCHITECTURE

Algorithm 5.2 shows the pseudo-code of the error function for action navigate of
the Rovers domain. This error function receives two parameters as input: (1) the
current state s defined as a set of predicates; and (2) the action a defined as
a tuple composed of the name of the action and an ordered set of parameters
according to the PDDL definition of the action. The error function generates two
error locations for a rover trying to simulate actuators failures. In order to obtain the
values of the parameters of the action, the function getParameter iz applied (lines
2, 3 and 4). Then, two predicates set composed of available waypoint locations
are generated: (1) the firet one is composed of all waypoint locations which are
accessible using the current location of the rover as start point (line 5); and (2) the
second one is composed of all waypoint locations using the expected position of the
rover as start point (line 6). Both sets are modified removing the expected location

from postMovements and the current location from preMovements (line, 7 and 8).

Finally, the loop (line 9) chooses two different locations which are included as new
parameters of the actions.

{raction navigate
:parameters (?x - rover Ty - waypoint 7z - waypoint
Twel - waypoint Twe2 - waypoint)
:precondition (and (can_traverse ?x Ty 7=z)
{available Fx)
(at Tx Py)
(visible Ty 7z)
{can_traverse Tz Ty Twel)
(can_traverse Tr Tz Twel)
(not (equal Tz Twel))
(not (equal Ty Twe2))
(not (equal Twel Twe2)))
:effect (probabilistic 0.80 (and (not (at Tx Ty)) (at Tx T=))
0.06 (and (not (at Tx ?y)) (at Tx Pwel))
0.06 (and (not (at %x ?y)) (at Tx Fwe2))))

Figure 21: PPDDL definition for action navigete from Rovere domain. Thie action include
new information which ie computed for the Error Simulator module

Figure 21 shows a navigate action from Rovers domain encoded in PPDDL. It
represents the possible outcome of an action with stochastic effects, where the Rover
will move to the desired waypoint (denoted by variable ?z) with a 0.8 probability,
and two different accessible waypoints (denoted by variables Twel and Twe2) with a
0.05 probability. Since probabilities do not sum one, with the remaining probability
(0.1), there will be no changes in the state (the rover will remain in the current
waypoint, 7y). In this case, the action navigate includes two new parameters which

83

FLANNING AND EXECUTION

represent two waypoint locations which have been computed using the algorithm 5.2.
These parameters are incorporated to the action model by the Error simulator.

5.4 Discussion

In this Chapter, we have presented the Light PELEA architecture, a new
implementation of the theoretical PELEA architecture which has been implemented
in order to conduct the empirical evaluation of this thesis. Most of the functionalities
of the Light PELEA architecture have not been described in this dissertation,
because they are not relevant to the objectives. However, this new version includes
some advantages over the theoretical architecture in order to make it easier and
more portable to other scenarios.

On one hand, the LPELEA architecture offers some advantages about the
architecture, the communications between the different modules and the
configuration of each one. Modules have been implemented as independent entities
which can been replaced by other modules. New modules can be implemented
extending the generic classes and coding the methods that process the generic
messages which receive the modules. LPELEA allows two communications modes:
(1) one based in Java Remote Method Invocation (RMI) to allow communication
between the LPELEA modules; and (2) another one based in the message passing
interface implemented by the Robot Operating System (ROS) in order to control
different types of robots. Finally, LPELEA offers a configuration system based in
XML files which allows LPELEA to introduce new properties to the modules. The
basic structure of the XML files iz described in Appendix B.

On the other hand, the LPELEA architecture implements a system to simulate
dynamic and stochastic environments composed of two system: (1) the MDPSim
simulator; and (2) the Error simulator which allows LPELEA to introduce more
complex errors in the simulated environment by generating action handlers which
introduce new parameters which are difficult or impossible to compute using PDDL.
Besides, LPELEA introduces different monitoring algorithms, a set of different state
comparizon techniques and different wrappers to use different planning system.

VARIABLE RESOLUTION PLANNING

Humans have the ability of solving hard problems from the real world by
forming abstract mental constructions (Trope and Liberman, 2010). Humans cannot
experience what is not present, but our cognitive models can make predictions
or speculate about the future according to the information which i= available. A
prediction is an abstract mental construction composed of a set of behaviours
(actionz) which can be conducted to solve the problem. However, behaviours of the
abstract mental construction become more abetract according to a psychological
distance (horizon) is increased. Prychological distance iz a subjective experience
that something is close or far away from the self, here, and now. Human reasoning
processes construct abstract mental constructions with different levels of abstraction
based of the psychological distance which is based on different metrics. For instance,
an arbitrary number of basic behaviours, a maximum time, the level of veracity of
the information, etc.

For an automatic system to operate effectively in a dynamic and stochastic
environment, its behaviour must be flexible in the face of unexpected changesz. In
the context of AP, some important drawbacks can appear when a planning task
must be zolved in dynamic and stochastic environments: (i) new information about
the environment can be discovered during action execution; (ii) actions’ execution
can fail; (iif) the execution of the actions can generate unexpected states from which
no plan can be successfully executed (dead-ends); and (iv) plans may need to be
generated quickly to offer a real time interaction between the planning systems
and the environment. Planning under these conditions is an extremely hard task,
and often plans that guarantee reaching the goals in spite of incomplete run-time
information cannot be generated. One option in such cases is to find contingent
plans or policies, but both require accurate information about the dynamics of the
environment. But, getting accurate information about the dynamics of this kind of
scenarios iz hugely difficult. Then, the most viable option consists of interleaving
planning and execution in order to handle these contingencies.

In this chapter, we present a novel approach that generates a Sequential Abstract
Plan (SAP) which can be used to solve planning tasks in dynamic and stochastic

85

VARIABLE REEOLUTION PLANNING

environments which are close to real-world. Unlike a sequential plan, which specifies
a set of detailed actions, a SAP specifies a set of actions that provide detailed
actions in the firet steps of the plan. But, in later steps of the plan, it will only
provide abstract actions which are computed using limited details, since the actions
that are planned to be executed in the future are very unlikely to be used due
to the uncertainty in plan execution. Our first approach for computing a SAP
uses abstractions based on removing some predicates which are chosen manually
by an expert. We also present a new planner, called AKFD, which implements
vRP. We empirically compare our approach to other approaches and find that
our technique decreases the complexity of solving planning tasks in dynamic and
stochastic environments.

6.1 INTRODUCTION

Dynamic and stochastic environments are characterized by the presence of
uncertainty in the actions and partial information about the real state of the
environment. This means that the actions’ execution can fail which in turn prevents
the execution of the rest of the solution due to the uncertainty of the environment.
This lack of information increases the complexity of building accurate action models
in order to generate detailed plans. Besides, the time needed to generate a detailed
plan in these complex scenarios can be prohibitively huge freezing the planning
system during the execution process. In order to face these important drawbacks,
we propose Variable Resolution Planning (vRP) which is a novel technique for
interleaving planning and execution in stochastic and dynamic environments.

The key idea in VRP is to generate a Sequential Abstract Plan (SAP) quicker
than traditional planning approaches relaxing information about the environment
which is changing continuously. This idea is based on three important assumptions
according to the characteristice of dynamic and stochastic environments: (1) it is
not poesible to obtain enough information about the uncertainty of the environment
to build an accurate action model; (2) it iz not useful to spend a lot of time
generating a detailed plan, because the plan might not be executed fully; and (3) the
process of interacting in these scenarios must be quick in order to produce a real
interaction with the environment. With the purpose of facing these assumptions,
the VvRP technique combines predicate abstractions and lookaheads to decrease the
search time in classical planning. Abstractions are used to build a relaxed version
of the action model and lookaheads are used to define when this relaxed version is
deployed during search.

To offer the reader an overview of the vRpP's architecture, Figure 22 shows the vRp
architecture main phases and how these are connected. The vRP planning system is

6.2 FORMALIZATION OF PREDICATE ABSTRACTIONS

composed of two different phazes. The first phase, called Abstraction Generation,
builds a set of abstract actions and variables (abstract states). The second phaze,
called Search Algorithm, executes a heuristic search algorithm to compute a SAP
using two sets of actions: regular actions and abetract actions. Regular actions are
the set of standard actions defined in the original planning task. Abstract actions
are the set of actions generated in the previous phase. The search algorithm uses the
regular actions set until it reaches horizon k; then, the algorithm uses the abstract
actions set until it reaches the goals. Upon termination, the search algorithm either
outputs a SAP or no solution. This means that the most search effort of the planning
tack iz devoted to compute a valid plan head of length k; and the rest of the plan is

only generated by checking for potential reachability by relaxing the actions’ model.

Planning task Predicate set

Abstractions Generation

Abstract

£ £
i i

Search Algorithm —_—

State &
Goals

Horizon(k)

Figure 22: VvrP's architecture.

6.2 FoRMALIZATION OF PREDICATE ABSTRACTIONS

As we describe below, VRP is based on removing some future details about the
planning task to speed up search on hard problems, which are executed in a dynamic
and /or etochastic environment. From a planning perspective, the information about
the environment is represented using predicates in FOL that describe the features
or the state of the different objects or agents. For instance, in order to describe

the current location of a robot, we define the predicate (at robot; locationg).

Predicate at describes that the robot; is located in the position locationi. This
information can be selectively ignored in order to simplify the state space generating
an abstract representation of the planning task. This abstract representation is buils
by removing some predicates from the structure of propositional representation
described in definition 3. This process is called Predicate Abstraction and

87

28

VARIABLE REEOLUTION PLANNING

consists of removing literals from F, I and G and from the preconditions and effects
of the grounded actions in A.

Figure 23: Simple planning task of the Rovers domain

To illustrate the concept of predicate abstraction used in our approach, a task of
the Rovers domain is shown in Figure 23. The environment is represented as a grid
of 16 cells, called waypoints. Each one iz denoted with a bi-dimensional coordinate
(%,y), etarting on the left bottom cell of the grid. White cells reprezsent waypoints
in which the rover can stay (free); and black cells represent obstacles. Two types of
Mars samples can be collected: rocks and soil. Rocks are denoted with a small black
circle. Soils are denoted with a small black square. Rovers are located at waypoints
and can move between any two free waypoints which are adjacent. Besides, rovers
can take samples of rocks and =oil or take images and analyze them. Finally, there
iz a lander base which is used by the rovers to send information about the analysis
made over the samples. The typical goals of a Rovers task are to take images and
soil and rock samples, analyze them and send the result to the lander base. We
are going to use this example to explain different concepts related to predicate
abstractions.

First, we are going to describe the concept of Grounding mapping which generates

a mapping between the ungrounded (PDDL) definition of a predicate p and a set
of grounded facts F.

6.2 FORMALIZATION OF PREDICATE ABSTRACTIONS

Definition 12. {Grounding mapping) Let L be a set of facts, and p an
ungrounded predicate. The grounding mapping g(p,L) is the set of grounded
propositions (facts) of predicate p in L.

Figure 23 describes a planning task where a rover, denoted as r1, can move between
different waypoints (w00, ..., w33). For instance, the ungrounded (lifted) predicate
p = (at ?x ?y)! ie defined to represent the current location in which the rover r1 is
located. Then, the grounding mapping of predicate p in F is composed of only the
groundings of predicate at:

glp,F) = {(at r1 w00, (at r1 w01),...,(at r1 w33]}

As we describe below, VRP performs an abstraction over some predicates. Then, we
first need to define a projection over some predicates that will be the basis for the
abstraction.

Definition 13. (Projection of a set of facts over a predicate or a predicate
set). Let L be a set of grounded propositions (facts) and p a predicate. A projection
of L over p is a function defined as:

Projp(L) = {x|xe L xeglp, L)}

If P is a set of ungrounded predicates, we also define the projection over L as:

Projp(L) ={x [xe L peP,xeglp L)}

We can generalize definition 13 to any first-order logic formula by recursively
applving the previous definition.

Definition 14. (Projection of a formula over a set of predicates) Let ¢
be a formula, let ¢z be a formula and P be a set of ungrounded predicates. A
projection of ¢, and ¢, over P can be recursively defined as:

1In PDDL any symbaol preceeded by a question mark denotes a variable that can be grounded with
particular objects. Also, in PDDL, variables in predicates are further denoted with the appropriate
object types that can substitute the variable. In this case, we would have (at 7x - robot Ty -
waypolnt).

20

VARIABLE REEOLUTION PLANNING

Projpldy Adz) = Projpldq] /A Projp(d;]
Proje(d1 V ¢2]) = Proje(d1])V Proje(d2]
Projp(—¢1] = —Projp(d4]

where ¢ and ¢ are first-order logic formulas.

A projection of some planning task IT over some predicate p removes the information
of the rest of predicates in all the components of TT.

Definition 15. (Projection of a planning task over a predicate set) Let
IT=(F,A,L G) be a planning task and let P be a set of predicates. A projection
of the planning task TT over P is defined as:

Projp(IT) = (Projp(F), Projp(A], Projp(I), Projp(G])

where Projp(A) ={a’| a € A, a= [Pre, Add, Del), a’ = (Projp(Pre), Projp(Add),
Projp(Del))} and Projp(F), Projp(l), Projp(G), Projp(Pre), Projp(Add) and
Projp(Del) are computed according to Definitions 13 and 14.

In the case of vRP, instead of projecting over a set of predicates, we will generate
abstractions by projecting over the complement of a set of predicates. That is, we
will remove from the planning task evervthing related to that set of predicates.

Definition 16. (Abstraction of a planning task over a predicate set) Let
M= (FA,LG) be a planning task, P the original set of predicates of TT and P
a subset of predicates P; € P. An abstraction of the planning task TT over P,
can be defined as: TT§"* = Projpp, (T1). Also, TIgP* = (FgPs, AgP®, 1P, GgP*)
where FBP* = Projpp, (F), ARP® = Projpp, (A), IfP* = Projp\p, (1) and GB** =
Projpyp, [G).

Let us see an example of abstracting an action from a planning tazk. Given the
planning task TT shown in Figure 23, if P = {(at ?x ?y)} and a is the grounded
action navigate(rl, w03, w13)?2, where:

2Moving the rover from one waypoint to another.

6.2 FORMALIZATION OF PREDICATE ABSTRACTIONS

Pre(a) ={(can_traverse r1 w03 wl3), (visible w03 wi13),
(available r1), (at r1 w03)}

Add(a) ={(at 1 wi3)}

Del{a) ={(at r1 wi3)}

The abstraction of action a over P is a®?® = [Pre(a®P®), Add(a®?®), Del{a®P*))
where:

Pre(a®Ps) ={(can_traverse v1 w03 wi13), (visible w03 wi3),
(available r1)}

Add(a®®*) =0

Del(a2bs) =0

If we build the abstraction using the predicate at (at is removed from IT), rovers
are not required to be at any location to perform any task, and therefore to move
between locations. Thus, a predicate abstraction over the predicate at modifies the
structure of the planning task changing the connections between the states of the
state space. According to the previous example, if the abstraction process is applied
over the navigate action, the effects (adds and deletes) of the action become empty
sets and then navigate actions are pruned from the abstract action set decreasing its
size. This fact also changes the structure of the state space decreasing the number
of states used to built the abstract state space, because removing the predicate that
defines the location of the robot merges some states of the state space.

Corollary 1. If a predicate abstraction removes all effects of an action. The action
iz pruned from the abstract action set.

Finally, we have to define how the abstraction affects plans.

Definition 17. (Sequential Abstract Plan (SAP)) Let IT = (FLA, L G) be a
planning tazk, let Py be a set of predicates, let l’lg:’s = [Fg:’ 5,&51”,1;}“, G;}”] be
a sequential abstract planning task and let k be a number k = 0. A Sequential
Abstract Plan ﬂﬂ}” is an action sequence ﬂﬂ}” = {0g, .+, Qp_1, Ofpnvn, Q1)

o1

02

VARIABLE REEOLUTION PLANNING

divided into two sub-plans: the first one is a sound plan composed of the k first
actions ¥i = 0...k—1,a; € A; and the second one is composed of n — k abstract
actione ¥i=k...n—1,a; € Aabs,

Sequential Abstract Plans are computed in order to decrease the complexity of
problem solving in Automated Planning. Actions before the horizon k are actions
in the original state space, so the head of the plan iz a valid one and hence, sound.
After the horizon, VRP only uses abstract actions, which allows for a much faster
pace of problem solving. In many cases, these abstract actions will not be executed
in the environment, because some required preconditions have been removed from
the definition of the action. Assuming the world is stochastic, in some cases the
plan will eventually fail before even attempting to execute abstract actions. So, it
iz not that important from the point of view of planning and execution that the
actions are not completely valid, because they will most probably not be used in the
current run. When (if) the plan fails, a new plan will be computed with horizon k
again, go the first abstract actions of the previous plan will be replaced by original
valid actions.

Figure 24 compares the abstract plan generated from the example abstract planning
tazk with k = 4 to the plan generated from the example planning tazk (Figure 23).
Since predicate at is removed from horizon k = 4, no more navigation actions
appear in the abstract plan, because they are not included in the abstract action
set. According to this, the abstract plan is easier to compute than the standard plan,
but it is composed of abstract actions which cannot be executed in the environment.

6.3 PrOPERTIES OF PREDICATE ABSTRACTIONS

In this section, we study the different properties which can be drawn from predicate
abstractions and if these properties can be uzed to build good abstractions detecting
what predicates are good candidates to build them. A good abetraction is one that
separates out some parts of the problem which can be solved first and then held
invariant while other parts of the problem are solved. Most of these properties have
been discovered by previous works based on generating abstractions by removing
predicates.

Property 1. (Monotonicity Property (Knoblock et al., 1990)) The existence
of a ground-level solution implies the existence of an abstract solution that can be
refined into a ground solution while leaving the literals established in the abstract

plan unchanged.

6.3 PROPERTIES OF PREDICATE ABSTRACTIONS

navigate(rl w10 w11)
navigate(rl w11 wi1)
sample_soil(rl ral wil)
navigate(rl w01 w02)

communicate_soil _data(rl g w0l w02 w02)

drop(rl ral)

navigate(rl w12 w22)

navigate(rl w10 w11)

navigate(rl w1l wi1)

sample_soil(rl ral w01)

navigate(rl wil w02

communicate_soil _data(rl g w1 w02 w02)
drop(rl ral)

sample_rock(rl a1 w22)
communicate_roclk_data(rl g w22 w13 wid)

&
]
T navigate(rl w02 w12)
&
9

sample_rockirl a1 wi2)
10 navigate(rl w22 w12)
11 navigate(rl w12 w02)

12 communicate_rock data(rl g w22 w13 wid)

Figure 24: Plane generated for the Rovers taek described in Figure 23. Left: sequential plan
generated by a traditional claseical planner. Right: sequential abetract plan generated by
removing predicate at with horizon k = 4.

The property 1 defines that an abstract plan can be refined in a non-abstract plan
if the grounded predicates added and deleted from the actions in the abstract plan
are unchanged in the non-abstract plan. In other words, the predicates added to
or removed from the abstract state space must be added to and removed from
the original state space too. However, this property does not ensure the order in
which the predicates are added or removed or if they are added or removed by the
same actions in both the abstract plan and the non-abstract plan. Then, sometimes
the refinement process can be more complex than generating a plan without using
abstractions. In order to simplify the refinement process, Knoblock introduces a
stronger version of the previous property.

Property 2. (Ordered Monotonicity Property (Knoblock, 1994)) The
refinement of an abstract plan leaves all the literals that comprise the abstract
space unchanged.

This property was defined in order to build abstraction hierarchies. But, it can be
very useful for our approach in order to define which predicates can be combined in
order to build good abstractions. In the previous section, we defined how to build a
predicate abstraction using a set of ungrounded predicates. This means that if the
predicate abstraction is built using too many predicates, the abetract solution may
not be able to be refined because the actions of the abstract plan may not be used
in the non-abstract plan.

o3

VARIABLE REEOLUTION PLANNING

6.4 VRP ALcorIiTHM

As we have discussed previously, predicates can be removed from the original
planning task to decrease the size of the search space and generate a new smaller
abstract search space. But first, we need to show how the predicates manually
choszen are used to build predicate abstractions (dizcussed in Section 6.4.1) and
when these abstractions are deployed during search (discussed in Section 6.4.3).

G.4.1 PREDICATE SELECTION

Previously to the first phase of vRP, it is mandatory to choose a set of predicates
to abstract over. The relevance of each predicate depend: of different factors: (i)
the type of predicate — whether the predicate iz added or deleted during search —;
(ii) whether the information that describes the predicate is relevant to achieve the
goals; and (iii) whether the information about a predicate is relevant to select other
predicates. During thi= phase, some predicates are selected according to some of
these factors, and will form the predicate set of a planning task ps(TT). We have
defined four categories of predicates:

» Static: they are predicates which do not appear in the effects of any action of
the planning task, so no action can remove them.

» Dynamic: they are predicates which are part of the effects of at least one
action of the planning tazk.

» (Goal: they are predicates that represent some of the goals of the planning
tazl.

» PFunction: they are predicates that describe a property of the world that is
represented using numeric values.

According to this categorization, it is easy to identify the relevance of the different
tvpes of predicates in relation to selecting them for abstraction. Static predicates
are invariant, so they do not change during the planning process. For this reason,
eliminating them does not offer any real opportunity to decrease the complexity of
the search task. Goal predicates cannot be removed, since the planning task would
be transformed into unsolvable planning task. Our objective consists in relaxing
some parts of the planning task while keeping the same task. Functions can be
good candidates but, initially, we are going to focus in predicates. Finally, dynamic
predicates change during search. Clearly, these are the best option to simplify the

64 VRP ALCORITHM

planning task by abstracting them without losing goals reachability. As an example,
Table 3 shows the predicate categorization for the Rovers domain.

Static Dynamic Goals

at_ lander at communicated_ soil _data
can__traverso empty communicated_rock data
equipped_for_soil analysis have rock analysis communicated_image_data

equipped for rock analysis have soil analysis

equipped_for imaging full

available calibrated

supports have image

visihle channel free

visible from at_=oil sample

store_of at_rock sample
calibration_ target communicated soil data
on__board communicated rock data

communicated rock data

Table 3: Predicate categorization for the Rovers domain.

There can be potentially many different ways to choose what predicates can be used
to generate abetractions. The first approach to select the predicates to remove is
to rely on human expert knowledge. We have explored this alternative in previous
studies over the FF planner (Martinez et al., 2012; Martinez et al., 2013). In the
Rovers domain, the best candidate from the standpoint of an expert is the predicate
at. This predicate describes the current location of a robot which is continuously
moving between locations that are connected by different paths. The robots need
to move to complete other tasks. Since there are different paths to move from one
location to any another location, removing predicate at is a good choice to decrease
the complexity of the search process, while not introducing dead-ends. Thus, it
decreases the number of actions which can be applied during search, so the planner
does not have to reason about the position of the rover. The planner will deal with
those computations when the next action fails, ignoring again movement actions
in the far future. For each domain, we will provide in the experimental section a
rationale for choosing some predicates over others. The advantage of this approach
iz that it works quite well if the domains at hand are well-known in advance. The
disadvantage is that it might require some manual trial and error.

05

VARIABLE REEOLUTION PLANNING

6.4.2 ABSTRACTIONS (GENERATION

The next phase generates abstractions using the information of the predicate set
computed in the previous phase. According to the definitions in section 6.2, VvRP
builds an abstraction over the propositional representation (Martinez et al., 2013).
But, currently, most planners use a multi-valued state variable representation, which
iz an extension of the SAS+ formalism (Béckstrém and Nebel, 1993). The complete
abstraction generation process is composed of two stepe (encoding abstractions on
SAS+ and generating abetract actions).

6.4.2.1 EwncoDpiNc ABSTRACTIONS ON SAS+

Planners that use SAS4 transform a planning task expressed in PDDL into SAS+
uging multi-valued state variablez. Each variable value (a fluent in SAS+) is
equivalent to a grounded predicate. According to the example depicted in Figure 23,
a SAS+ planner would generate a state variable r1 to define the position of the rover
rq. It will be composed of 16 Huents, one for each position in which the rover can
be:

rl = {at-w00, ..., at-w33}U{u}

In this case, if in a state s s[r1] =at-w00, it would represent the same information
as the grounded predicate at-r1-w00. However, in many domains, variables’ values
can come from groundings of different predicates. For instance, if rovers could hold
rocks and move rocks to other locations, the variable that represents the location
of the rock rcl can have as values all waypoints in the planning task (at-w00 to
at-w33), as well a= all robotz that can hold it (holds-r1 to holds-rn in the case of
a planning tazk with n robots). Thus, in order to apply the abstraction mechanism
described before, we cannot just remove variables from the planning task, but values
of variables that correspond to predicates in the predicate set.

Therefore, the first stage of the process of the generation of abstractions consists
of marking Auents from SAS+ variables. A new property must be defined for each
Huent. Property a(v;) indicates whether a Huent must be removed when abstractions
are deploved. The marking process consists of identifyving which fluent must be
removed. In order to determine if a Huent iz part of the predicate set, a function
get_fact_mname(v;) iz defined. This function extractz the name of the predicate
that represents the Huent v;. The name of the predicate of each Huent i= compared
with each element from the predicate set. If the fact name of the fluent i= part of

64 VRP ALCORITHM

the predicates =et, the fuent is marked as abetract. The result of this stage iz a
variation of the state variable set, where some Hluents are marked as abstract.

Algorithm 6.1 details the marking process for a state variable set and a predicate
set. The algorithm iterates over all state variables of the state space (line 2). Then,
all available fluentz of each state variable v are analyzed (line 3) in order to check
if they can be abstracted or not. The corresponding fact name of each fluent f is
extracted using the function get_fact_name(f) (line 4) which is compared to each
predicate in the predicate set P. If the fact name is a member of the predicate set
(line 6), the fluent is marked as abstract fluent changing the value of the property
a(f) to true (line 7).

Algorithm 6.1: Pseudo-code of the marking process
input: ordered state variable set V'
input: predicate set P
begin
foreach v € V do
foreach f £ v do
name + get_fact_name(f)
foreachp € P do
if p = name then

L a(f) + true

o =1 @& ;& B R

break

6.4.2.2 (GENERATING ABSTRACT ACTIONS

The second stage of the abstraction generation processe consists of generating
abstract actions using SAS4+ Auents marked as abstract. A new set of actions
iz defined as the abstract action set A2Ps, Tt is composed of the new actions
computed after removing Huents marked az abstract from standard actions. For
each action a € A a new action a®"® is generated, where pre®*(a) = pre(a)\ AP,
prev®®®(a) = prev(a), AP and post®®®(a) = post(a) '\, AP. If all fluents from the
post and pre sets are removed, the action is not added to AaPbs,

Algorithm 6.2 describes the generation process of the abstract actions. This
generation process is composed of three functions. The first one is the main function
of the generation process which iterates over all actions of the action space (line 3).

o7

08

VARIABLE REEOLUTION PLANNING

For each action a from the original space a new action is generated in the abstract
space. This process is composed of two phaszes: (1) the first one generates the
pre-conditions and the post-conditions using the generate_pre_and_post_fluents
function (line 4); and (2) the second one generates the prevail-conditions using the
generate_prevail_fluents function (line 6), if the fluent set gemerated by the
function generate_pre_and_post_fluents is not empty (line 5). Finally, if the
abstract action keeps at least one effect, the action is added to the abstract action
set (line 8).

Algorithm 6.2: Pseudo-code of the generation process of the abstract action
space
input: ordered state variable set V'
input: actions set A
output : abstract action set A2Ps
begin
Set A%P5 empty
foreach a € A do
prepost <+ generate_pre_and post Huente(get effectsfluents(a))
if prepost is not empty then
prevail +— generate_ prevail fluents(get_ prevail Huents(a))

name +— get_action_name(a)
Aabs U action(name, prevail, prepost)

o =1 & ;& B kW

r;turn Aabs

=]

The generate_pre_and_post_fluents function (line 1) generates both the
pre-conditions and the post-conditions set (predicates) for the new action.
The function iterates over all Huents of the original effect set adding to
the predicate set each pre-condition and post-condition which has not been
marked as abstract (lines 5 and 8). Finally, the function returns the predicate
set. The generate_prevail_fluents function (line 11) generates the set of
prevail-conditions for the new abstraction. As the previous function, this function
iterates over all Huents of the original prevail set adding to the prevail set each
prevail-condition which has not been marked as abstract (line 14). Finally, the
function returns the prevail set.

64 VRP ALCORITHM

Algorithm 6.3: Pseundo-code of the generation functions which generate the
prevail-conditions, the pre-conditions and the post-conditions of the abetract
actions.

1 Function generate pre_and_ post_Huente(F)
input :original Auent eet: F

output: new pre-condition and poet-condition Huent eet: p

2 Set eff +— empty

3 foreach f € Fdo

4 if f.pre is not empty then

5 if a(f.pre) then

8 |_ predicates U f.pre

T else

a8 if a(f.post) then

o |_ predicates U f.post
10 return predicates

11 Function generate prevail fluents(F)
input :original prevail fluent eet: F
output: new prevail luent set: prevail
12 Set prevail + empty

13 foreach f £ F do

14 if a(f) then

18 |_ prevail U f

16 return prevail

Figure 25 illustrates the description file generated for the example described in
Figure 23. Thiz file represents the planning task in a high level language used by
the preprocessor module of FD®. This file is used by the planning module to solve the
abstract planning tazk. As we can see in the example, action navigate-ri-w01-w02
does not generate any abstract action when the abstraction is applied. However,
action communicate_rock_data-rl-general-wl0-w20-w30 generates an abstract
action with one precondition less. The result of this step is a high level representation
including both abstract actions and abstract fluents generated using the =zet AP.

Corollary 2. Let TT = (F, A, I, G) be a planning task, let P be a predicate set, and
let l’lg]Jlai = [ng“,.ﬂkgbs, Ig}”, Gg}“] be the abstract planning task. The size of the
abstract action set will always be |ASP%| < |A|.

3The syntax of the high level language used by the preprocessor of FD is described in
http:/ fwww fast-downward.org /PreprocessorOutputFormat

a9

100

VARIABLE REEOLUTION PLANNING

Proof. (Corollary 2) According to definition 13, the projection Projp(a) of an action
a £ A transforms the action a in an abstract action agps Which i= added to A;hs if
eff(agps) # 0. Otherwize, the action ag,p, i= not added to Aghs. Therefore, given
that actions in A are transformed in abstract actions and they can either be added

to A®P*® or not, and the projection operation does not create any new action, then
it must be true that |AgPs| < |A.

6.4.3 SEARCH USING PREDICATE ABSTRACTIONS

Finally, the third phase of VRP generates a sequential abetract plan using both
the action set A from the original space and the abstract action set A2Ps from
the abstract space. The search algorithm implemented in this phase is based on
relaxing some far future details about the planning tazk in order to decreaze the
time needed to generate a solution plan. Thus, we have to define how the execution
time must be measured during the search process and from what point predicate
abstraction must be deploved. The most common way to measure the execution
time during search consistz of monitoring the depth of the nodes according to
the actions which have been chosen to build the solution. Then, we introduce the
conecept of horizon (Stentz, 1995b) into the search which is bounded using the depth
of the nodes of the search space.

Definition 18. (Horizon). A valid Horizon i= any k natural number such that
k= 0.

The horizon described in Definition 18 is employed to define which action set
must be used to generate the successors of a state during search. The function
getApplicableActions(A, A®P® 5. k) generates the applicable actions for the
state s according to the horizon value k. This function compares the depth of the
state d(s) with k. If the horizon value k iz higher than d(s), the applicable actions
of the state s are generated using the original action set A. Otherwise, the function
getApplicableActions(s, k) uses the abstract action set A%P® to choose them.

getActions(A, s) dis) <k

getActions(A®P%,s) d(s) =k M)

getApplicableActions(A, A%, 5, k) = {

During the search process, the effect of the horizon is combined with the
predicate abstraction, effectively pruning the search space. The combination of both

64 VRP ALCORITHM

Variables:
Tl £ {at-wll, at-wD2, at-wl3, at-wll, at-wll, at-wl3, at-w20, at-w21, at-w22, at-w23,
at-w3l, at-w3l, at-w32, at-w33}
rs1 £ {empty-rs1, full-rs1}
¢l € {communicated_rock_data-wll, —communicated_rock_data-w10}
¢l € {communicated_soil data-w22, —communicated soil data-w22}
vl € {have_rock_analysis-rl-wll, at_rock_sample-w10}
s1 € [have_scil analysis-rl-w22, at_soil sample-w22}
Initial State:
Tl = at-wid
rsl = empty-rsl
¢l = —communicated rock data-wl0
¢l = ~communicated soil data-w22
vl = at_rock sample-wl0
s1 = at_soil _sample-w22
Goal:
¢l = communicated rock data-wli
¢l = communicated =oil data-w22
Action communicate rock data-rl-general-w10-w20bw30
PREV: rl = at-w10 PRE: v1 = have_rock__analysis-rl-wli0
POET: ¢l = communicated rock data-w10

Action navigate-rl-wil-wi02
PRE: r1 = at-w01 POST: rl = at-wi2

Abstract action communicate rock data-rl-general-wl0-w20-w30
PRE: v1 = have_rock__analysis-rl-wll POST: ¢l = communicated rock data-wl0

Figure 25: Multi-valued state variable representation of the Rovers planning task including
abetract actions when predicate at is removed. This representation ie described using a
high level language used by the preprocessor of FD.

parameters decreases the number of applicable actions for each state s; when depth
iz greater than k. Thus, it i= expected that solving time decreases, because the

number of generated states will be much less. However, the quality of the generated
abstract plan depends on the value of k. We believe that small values of k decrease

the planning time and decrease the number of expanded nodes during search.

101

102

VARIABLE REEOLUTION PLANNING

Potentially, thiz diminishes the accuracy of the plan and increases the number of
replanning steps when this technique is used on a planning and execution cycle
(more abstract actions means more execution failures). On the other hand, high
values of k increase the accuracy of the plan, but increase the planning time. In the
woret case, if the value of k iz close to the size of the standard plan, the planning
time using the horizon and the predicate abstraction will be equal than the standard
planning time. In order to understand how the value of k influences the =earch
process, we will choose a representative set of values to use on the experiments
reported in the next section.

Algorithm 6.4 shows the pseudo-code of the k-bounded Best-First Search (BFS).
The open list, open, organizes the generated states in a list according to their f-value.
The open list stores search states which are composed of one state, the action which
generates the state, the h value and the g value. The algorithm starts inserting the
initial state using the state function (line 2). Then, the algorithm iterates the open
liet until it is empty or a solution iz found (line 5). At each iteration, the next state
to be expanded iz extracted from the top of the open list (line 6) and inserted in
the closed list (line 7). First, the algorithm checks whether the current state is a
goal state (line 8). If the current state is a valid goal state, the algorithm stope the
search (line 9) and builds the zolution path going over the closed list starting from
the current state (line 23). Otherwize, the algorithm generates the applicable actions
ueing the getApplicableActions function (line 12). If d(current) is lower than k,
the successors are generated using the original action set (line 12). But, if d{current)
iz greater than k, the successors are generated using the abstract action =et (line
14). Finally, the successors of the current state are generated. Each successor is
evaluated (line 15) and added to the corresponding list {open or closed). Then, the
algorithm checks if the successor has been generated previously and can be reopened
or updated (line 17). Otherwise, the algorithm inserts the successor in the open list
or in the closed list if the successor is a dead-end. Finally, the algorithm builds
the zolution using the buildSelution function (line 23). This function finds the
forward path from [to the current state iterating the closed list if the current state
iz a goal state. Otherwise, the function cutputs "no plan’.

6.5 EMmPIRICAL EvALUATION

In this section, we describe the method that we have followed to conduct the
empirical evaluation of the different approaches which have been developed in this
thesiz. During the last years, the planning community has done many efforts to
develop common methods and tools to measure the capabilities of the different
planning systems and compare their performance. These efforts led to the creation
in 1998 of the International Planning Competition (IPC). This competition has

6.5 EMPIRICAL EVALUATION

Algorithm 6.4: Psendo-code of the k-bounded Best Firet Search algorithm

© o = B o s R R

-
=]

i1
12
i3
14
15
i8
i7
18

1o
20

21
12

23

input: Planning task: TT= (F, A, L, G)
input: Abstract planning task: T1SP* = (Fabs, pabs jabs gabs)
input: Horizon value: k

output : Sequential abstract plan or "no plan”
begin

Set open + open U state(l, empty, evaluate(1),0)
Set closed + empty
Set solved + false
while open is not empty and not solved do
current + getBest5tate{open)
closed + closed U{current}
h + getH[current)
if G C current then
|_ solved + true

else

acts + getApplicableActions|A, Agbs, current, ki

SUCCESS0TS +— generateSuccessors|current, acts)

foreach suc € successors do

hsue + evaluate(suc)

Qsuc +— getG(current) 4+ getCost(suc)

if reopen(suc, closed) or update|suc, hgy o, open) then
Open +—
open U state(getState(suc), getAction(suc), heuc, Gsuc)

else if not isDeadEnd(suc) then

Open +—

| openl) state(getState(suc), getAction(suc), heuc, Gsuc)
else

closed «—
closed U state getState(suc), getAction(suc), heuc, 9suc)

return buildSolution(sy, current, A, A%b 5 solved, closed)

as objective to offer a common environment and rules in order to compare the
performance of current state-of-the-art planners.

In the last years, IPC rules have become a standard to compare planner performance
and evaluate research in AP. However, most of these rules have been created to
compare the performance of the plan generation process without any consideration
about the execution process. In order to evaluate this thesis, we have implemented

103

104

VARIABLE REEOLUTION PLANNING

a new version of the PELEA architecture to solve planning tazks in a simulated or
real-world environment. The PELEA architecture automatically tracks the planning
and execution process measuring the planning and replanning time, the number of
planning episodes, the number of executed actions, the evolution of the goals and
memory usage. Besides, it validates all the solution plans using the plan evaluation
system provided for MDPSim (Younes et al., 2005).

As described in Chapter 5, LPELEA architecture deploys a planning, monitoring
and execution loop to solve a planning task in simulated or real-world environment.
In order to perform a set of experiments to analyze the capabilities of the different
approaches developed in this thesis, we have defined a basic setting. The maximum
planning time for a problem haz been set to 1000 zeconds and the maximum
execution time for a complete planning-execution-replanning loop for each planning
tack has been set to 86400 seconds (1 day). Each problem has been executed 10 runs
where a run i=s a complete execution of a planning task in the simulated environment.
A run i= considered complete when the goals are reached, the maximum planning
time is reached, the maximum execution time is reached or a dead-end is detected.

6.5.1 EVALUATION METRICS

We measure the performance of planning and execution with two types of metrics:
coverage and time score. The time score metric has been extended to measure the
planning time, the execution time and the replanning time.

» Coverage: Thiz metric measures the total number of planning tasks solved
from the benchmark within the time and memory bounds. It is the official
metric for the optimal track of the IPC since 2008,

» Time Score: This metric measures the reward that planners get for solving the
planning tasks as early as possible. Planning systems get a time score in the
interval (0, 1] for each task solved. The fastest planner is awarded one whole
point, while other planners solving the same problem in more time receive a
fraction of a point. If a planner does not solve the problem before the time
limit it gets 0 points for that problem. The total score of a planner in a domain
iz the sum of its score in all the problems of that domain. This metric is used
to score three different values: (1) firet planning time; (2) full planning time;
and (3) full planning and execution time.

Different equations may be proposed to determine the score of the planning

systems. In the context of this thesis, we use the time score metric from the
Sequential Satisficing Track of the IPC-2011. Let t, be the minimum time

6.5 EMPIRICAL EVALUATION

in seconds required by the fastest planner to solve the task, rounding all the
times to the upper second, let t; be the time in seconds obtained by the
planner p and let ty .« be the maximum planning time. Then, the time score
of a planner p that solves the problem in t,, is computed following Equation 2.
Any planner solving the problem in less than one second receives the maximum
score.

] if tp = tmax
tscure[t*: tp, t‘TI'lD'x] = 1 if tp < 1s (2]
to/ty ifty > s

Score: This metric i= used to measure different variables which are collected
during planning and execution (planning steps, quality of the solution, plan
deviation, etc). As the previous metric, planning systems get a score in the
interval (0, 1] for each task solved. The best planner iz awarded one whole
point, while other planners solving the same problem but obtaining a higher
wvalue for the variable measured receive a fraction of the point. Let v, be the
minimum value required by the best planner to solve the task, let v, be the
wvalue obtained by the planner p and let v, ., be the maximum value for the
variable measured. Then, the score of a planner p that solves the problem
with the value vp, is computed following Equation 3.

0 if v, >v
Vscore(Vas Vi, Vimax) = . P max (3)
v*‘;vp if Vo <= Vimax

6.5.2 PLANNERS

In order to evaluate the results of our research, in this thesis we have compared the
performance of the different versions of our approach against the closest competitors
models in terms of planning and execution systems based on PDDL and its variants:

» Classical techniques, which use planning and replanning when an execution
failure iz detected. We use LAMA11, an anytime planner developed within
the Fast-Downward framework (Richter and Westphal, 2010). Once LAMA11
has found a first solution, it continues to search for better solutions until
it exhausts the search space or the available resources (memory and/or
time). LAMA11 was the winner of the sequential satisficing track of IPC2011.

105

106

VARIABLE REEOLUTION PLANNING

LAMAI1l assumes it will be given 30 mins to generate a plan. This is
unreasonable for most robotics tasks. Therefore, in our case, we only use
the first solution and we call this configuration LAMAF.

» Probabilistic techniques, which use a PPDDL model, so it has information on
probabilistic outcomes of actions. We have used mGPT (Bonet and Gefiner,
2005), the winner of the last Probabilistic track based on PPDDL. mGPT
iz a planning svstem based on heuristic search for solving Markov Decision
Processes (MDPs) by extracting and using different classes of lower bounds
along with various heuristic-search algorithms.

» Reactive techniques, which choose the best action according to the current
state of the environment. In order to provide a better behaviour than a pure
reactive system, we tune our approach to work like a reactive system.

6.5.3 BENCHMARK DoMAINS

A set of different benchmark of planning tasks haz been defined in each competition
to test the planners’ capabilities of solving tasks of different kinds. These planning
tacgks are classified in domains. Problems of the same domain are of the same type,
having a common structure but varyving in difficulty. However, most of the planning
domains have been designed with the aim of checking the limits of both the heuristic
functions and/or the search algorithms. Then, our benchmark iz composed of both
domains from previous IPCs and domains designed to solve real-world problems.

In this thesis, we consider a benchmark set of f domains. For each domain we have
chosen 5 different problems per domain az a baseline to generate our benchmark.
Problems were chosen by running state-of-the-art planners and choosing problems
that could be considered as easy, medium and hard according to the time it takes
the planners to solve them. Each problem i= executed 15 times in the simulated
environment, =0 we already have 150 different problem execution traces. During
execution, due to the use of the error simulator (zee section 5.3.4.2) and MDPSim
(see section 5.3.4.1), the problem’s structure changes according to the different
failures and the exogenous events. We present a detailed description of the different
planning domains which have been considered:

+« The Rover domain was dezigned for the sequential track of IPC-3 (2002)
and it was inspired on the Mars exploration rovers missions where an area
of the planet is represented as a grid of cells, called waypoints. They contain
samples of rock or soil that can be collected by the robots. Each robot can
traverse across different waypoints and can perform a set of different actions

6.5 EMPIRICAL EVALUATION

{(analyze rock or soil samples or take pictures of a specific waypoint). All data
collected by robot units has to be sent to the lander, that is placed in a specific
waypoint.

The Depots-robots domain is inspired on the current efforts of
some companies to automate warehouse management processes by using
homogeneous robot units like Amazon company which i= using Kiva
robots (Wurman et al., 2007) in its warchouses. In this domain, there iz a
set of robot units, a set of humans and a set of pods which are located in a
warehouse. The warehouse is defined az a grid composzed of cells. Robot units
can move among adjacent free cells and carry pods to humans. Humans are
located in specific locations where they can use products which are contained

in the pods.

The TidyBot domain was designed for the sequential track of the IPC-6
(2012) and it was inspired on a household cleaning task. There iz one or
more robot unite which must pick up a set of objects and put them into goal
locations. The environment is represented as a bi-dimensional grid, divided
into navigable locations and surfaces (tablez and cupboards) on which objects
may lie. Robots have a gripper, which moves relative to the robot, up to
some maximum radius. Existing objects block the gripper, so that it may be
necesgary to move one object out of the way to put another one down. Robots
can carry one object at a time in the gripper, but may also make use of a cart,
that can hold multiple objects.

The Port domain is inspired on the current container handling syvstems used
on porte to move the containers carried on by the ships. In this domain, there

iz a set of ships, a set of hoists and a set of crates which are located in ships.

There are some docks which are shared by all hoists. Hoiste are assigned to
one ship and can move and stake crates between ships and the dock. Besides,
crates can be stacked on the dock. The goals of thiz domain consist on loading
crates on ships.

The Satellite domain was designed for the sequential track of IPC-3 (2002)
and it was inspired on the Satellite observation missions. In this domain, there
iz a set of satellites equipped with different instruments, which can operate in
different modes. The goal is to acquire images, dividing the observation tasks
among the satellites, based on the capabilities of their instruments. Satellites
must acquire images from different objectives from the space.

The Warehouse domain is a variant of the Sokoban Domain inspired on
the warehouse management processes by using heterogeneous robots. In this

domain, there are two different robot units which can move around the place.

107

108

VARIABLE REEOLUTION PLANNING

The first robot unit (cargo robot) offers a basic mechanism to push and pull
pods in specific storage locations. The second robot unit (coordinator robot)
analyzes the label of the pods to obtain information about the pod’s final
location using Computer Vision. Pods are identified using a (Quick Response
code (QR) label, which has information about the pod (storage location,
priority, weight, etc). This information can be critical during the storage
process. In order to solve a problem in this environment, coordinator robots
must obtain information about the different pods and command to the cargo
robots to move the pods to the correct storage location. Thus, it implies a
collaboration process between different robot units. Cargo robots can only
move and transport pods, meanwhile coordinator robots can move and get
information about the pods using the QR labels. This domain was used in
one of the papers references in Chapter 8.

G.5.4 THE EVALUATION ENVIRONMENT

The evaluation environment has been confizured using the LPELEA architecture
described in Chapter 5.3 which uses both the MDPSim to emulate the execution
of plans and the Error Simulator which increases the variability of the execution
dynamics introducing exogenous events. The VRP technique described in this
chapter has been implemented over the Fagt-Downward (FD) planning system. The
source code, written in C+4, has been built as a variation of the preprocessor
and the solver system of FD. The new planner has been called Abetract k Fast
Downward (AKFD)Y,

The LPELEA architecture has been configured as shown in Figure 365. This loop
iz used to evaluate VRP using the AKFD planning systems. The planning-execution
process starts with the Execution node. Given a planning task (consisting of a
deterministic PDDL domain and problem) and a horizon k, the Execution node
requests a plan 7 to the Monitoring node, which, in turn, requests a plan to the
Decizion Support node. This node generates a plan using vrp, taking as input
the deterministic PDDL domain and problem as well az k. Next, the Monitoring
node iteratively sends every action a; in the plan to the Execution node based on
Algorithm 5.1. Finally, the Execution node sends each action to the real world to
be executed and receives the new observed state. In our case, the real world has
been realistically simulated by using two nodes. The Error simulator transforms
the action a; into another action af in PPDDL such that it incorporates new
stochastic effects into the action model. Next, the Error simulator sends the new

4The source code is available at https:/ /bithucket.org /momartin, akfd
5 The source code of the vRP modules is available at https:/ /bithucket.org/momartin/peleahorizon.
There are some detailed instructions in the repository on how to use it.

6.5 EMPIRICAL EVALUATION 109

action to the actual simulator, MDPSim in this case. MDPSim executes each action
using a stochastic action model in PPDDL, manually generated from the original
action model (PDDL domain).

PDDL Domain
PELEA Prol:-]lem Simulator

e e R 1 e
E action q; E E !
i o action q Error '
! | Monitoring Execution : = :
' ' ' Simulator !
H i current state s : ! !
1 1 1
Pk = ; ; El :
OB P 5 :
! = = 1 3] :
: | i :
1 1 1
E Decision task 1 ' MDPS; '

! 11m 1
1 1
| Support plan 0 : i
1 1 .
1 1

Horizon k Problem

Predicate set PPDDL Domain

Figure 26: Light PELEA Architecture used to evaluate VRP.

After every execution of an action, if the observed state is not valid according to
the deterministic version of the domain (as in Definition 11), PELEA generates a
new plan using the observed state as the new initial state. This process is repeated
using a re-planning-execution-monitoring loop until it senses a state where the goals
have been reached. Due to the characteristice of the simulator, we assume that the
different agents (robots) can wait in a secure state during the computation of a new
plan. This means that the state of the different agents will not change during the
planning stepe.

The performance of AKFD i= compared to FF-Replan (Hoffmann and Nebel, 2001),
mCPT (Bonet and Geffner, 2005) and Lama (Richter and Westphal, 2010) over five
problems of the Rovers domain. Our approach has been configured manually where
a horizon value of 10 actions and a predicate set composed of the predicate at. In the
Rovers domain, which we have described before, we have designed an error model
based on four failures which have been encoded into PPDDL. (1) There is a general
error which prevents the execution of any action. Each action has a probability
equals to 0.05 that the action iz not executed properly; (2) A calibration error
happens when a rover tries to take a picture, and the camera accidentally removes

110

VARIABLE REEOLUTION PLANNING

ite calibration, so the rover needs to calibrate the camera again. This error has a
probability equals to 0.1; (3) A communication error occurs when a rover tries to
send samples or images to the lander and the information sent by the rover is never
received. The sample is lost and the rover must take the sample again. This error
has a probability equals to (.1. The domain definition has been modified allowing
thiz kind of failures. Rock and soil samples do not disappear from a waypoint
when a rover uses them. And (4) a navigation error happens when a rover moves
to a different waypoint than the expected one when it is navigating. In the case
that the rover finished its movement in a different waypoint, this waypoint must
be connected with the origin or destination waypoint. This error has a probability
equals to 0.15. All these experiments were conducted in a Intel Xeon 2.93 GHZ (Quad
Core processor (64 bits) running under Linux. The maximum available memory for
the planners was set to 8 GB.

Table 4 shows the results for five different problems of the Rovers domain where
an abetraction has been computed using the predicate at. This predicate has
been selected manually. The results report the average over 15 executions and
the standard error over five different metrics (M). F corresponds to planning time
for the first planning episode in seconds. T corresponds to the total planning
time (including firet planning time) of all runs in seconds. R corresponds to the
number of replanning episodes. A corresponds to the number of actions executed
in the simulated environment and C corresponds to the number of problems solved.
Coverage iz described in terms of four values: (1) number of solved problems; (2)
number of unsolved problems that have exceeded the maximum planning time
(1000 seconds); (3) number of unsolved problems that have exceeded the maximum
planning and execution time (86400 secondz); and (4) number of unsolved problems
by dead-ends. The last value is the sum of the other four values. LAMAF solves all
problems, but using much longer planning time than our approach. Besides, our
planner decreases the first planning time on one order of magnitude in all problems
chosen from the Rovers domain. We can also see that an approach based on MDPs,
maCPT, that receives as input more information than our approach (the probabiliztic
effects of actions), iz not able to scale up and does not s=olve any problem. In
general, the time performance of AKFD is better than the other three planning
systems solving the problems quicker than them. Besides, AKFD needs less time to
compute a sequential abstract plan which is an important advantage over the other
two approaches in dynamic and stochastic environments where the reazoning time
is important to offer real interaction with the environment. FF-Replan can only
solve two planning tasks of the Rovers benchmarks. Finally, mGPT cannot solve
any planning task, because this planner needs more than 1000 seconds to build a
solution according to the probability distribution of the action model.

6.5 EMPIRICAL EVALUATION

Plannar M Froklam
rovars 36 rowars 37 rovers 38 rovers 30 covars 40
{14,80,40) {14, 80.40) (14,8557 (14,0862 (14,100,887
Fis) 39410 - 6324 4 1.9 - -
T(s) 1789 +329.1 - 49481 + 11318 - -
FF-Raplan g 401 + 67 - B985+ 10.2 - -
A 311.74 374 - 350.5 4 24.1 - -
[10,5,0,0/15 0,150,015 11,4,0,0/15 415 0,0/15 3,15,0,0/15
Fis) B804 401 4121433 2365+ 1.8 2571 4+1.2 3548422
T(s) 1132542029 712554+ 1145.5 32051 + 2367 33427 4 8454 440812 4+ 8721
LAMAF R 45.8 +54 TH.80 4+ 73 50.24+7.3 B8.2 4+ 5.1 To.1+10.2
A 32364 24.2 512.20 4+ 28.9 43284 42.3 488.8 +21.2 530.84 233
(o] 15,0, 0/15 150,0,0/15 15,08,0,0/15 15,0,0,0/15 15,8,0,0/15
Fis) - - - - -
T(s) - - - - -
maFT R - - - - -
A - - - - -
(o] @,15,8,0/15 8,150,015 8,150,015 415 0,0/15 3,15,0,0/15
Fis) BB 400 13.84+ 00 20.2 + 0.1 14.6 4 01 3.8+ 0.1
ARFD T(s) 501.5 4+ 684 1271.34 953 1847.7 + 144.9 1380.1 + 529 1886.5 + 69.3
(k= 10} R = e 1041+ 8.8 73.1 + 82 1MAF+ 58 P51+ 28
A 354.14 21.3 59L3A4 157 4261 4+ 257 5937 +215 SeB31+ 189
(o] 15,0, 0/15 150,0,0/15 15,08,0,0/15 15,0,0,0/15 15,8,0,0/15

Table 4: Comparing AKFD to LaMaF, FF-Replan and mGPT over five probleme from the
Rovers domain. AKFD has been tuned removing the predicate at and using a horizon value of
10 actione. Both parameters have been chosen manually. The performance of the planners is
meagured over 3 metrics (M). F corresponds to planning time for the firet planning episode
in eeconde. T corresponde to the total planning time (including first planning time) of all
runs in seconds. R corresponds to the number of replanning episodes. A corresponds to the
number of actions executed in the eimulated environment and C corresponds to the number
of problems solved. The best results are highlight in bold. Besidee, for each problem we have
defined three values which describe the complexity of the problem: (i) number of rovers; (ii)
number of waypoints and (iii) number of goals.

These results show that vRP can be used to solve planning task in dynamic and
stochastic environment decreasing both the first planning time and the full planning
time keeping the quality of the solution. However, vRP depends of three parameters
(the predicate set, the horizon value and the environment) which must be analyzed
in order to discover the influence of these parameters in the process of planning and
execution. In the next sections, we analyze the effects of each parameter.

111

112

VARIABLE REEOLUTION PLANNING

6.5.5 THE PREDICATE SET

The predicate set defines which predicates are going to be removed in order to
generate the abstract state space. In this section, we analyze the effect of using
different predicate sets composed of one or more predicates in order to analyze the
effects over the planning time and the quality of the executed plan. Table 5 shows
the results for five different problems of the Rovers domain where an abstraction
has been computed using one predicate in order to analyze the influence of different
predicates when abstractions are built. We have chosen five dynamic predicates
from the categorization shown of Table 3 (Page 95). The predicate sets used to
build abetractions are: APy = {at}, AP, = {have-image}, AP3 = {have-rock-analysiz},
AP, = {have-soil-analysis} and AP5 = {calibrated}. We only compare AKFD with
LAMAF, becanse mGPT does not solve any problem and FF-Replan does not solve
difficult problems. The results show small differences in the first planning time
(F) depending on which predicate is used to build the abstraction. Neither, there
are significant differences in the full planning time (T). However, the predicate
have_rock_analysis provides the best results for all problems. In our opinion,
thiz happens because there are more goals of the type communicated_rock_data
or rock goals are the moet difficult to reach. This is an important fact, because the
predicate used to build good abstractions can be chosen depending on the structure
on the problem or the type of goals.

Definition 19. (Domination between predicates) Let TT = (F,A,L,G) be a
planning task, let Py € F a predicate, let P2 € F a predicate, let 'ng:” the sequential
abstract that solve the abstract planning task ﬂg:“ and let let ?T;;” the sequential
abstract that solve the abstract planning task l’lﬂl’s. A predicate Py dominate over
Py, if mgPe C mghe.

Regarding to the number of replaning steps, we observe that some predicates like
calibrated or have_rock_analysis reduce the number of replanning steps (R)
and the full planning time (T). This fact can be related to the similarity of the plan
generated by AKFD and LAMAF. Table 6 shows the size of the plans generated in
the first planning step. Predicates have-image and calibrated generate the most
accurate plans, but none of these predicates generates the predicate abstraction
which produces the best results. Then, the predicate used to built the predicate
abstraction depends on the structure of the planning task.

The previous results show that there are some differences in the performance of
AKFD depending on the predicate used to build the predicate abstraction. According
to this, we analyze if some predicate can be used to build a more complex predicate

6.5 EMPIRICAL EVALUATION

Plannar M Problam
rovars 35 rovers 37 rovers 38 covers 30 covars 40
{14, 50,40 (14,8040 {14,85.57) {14,08,62) (14,100,887
Fis) B0.4401 4121 £3.3 2365+ 1.8 2571 4+1.2 3548422
T(s) 113254 2029 712554 11455 32051 + 2367 33421 4+ 8454 440812 4+ 8721
LAMAR R 45.8 +54 TE.80 4+ 7.3 58.24+7.3 BE.2 4+ 51 To.1+10.2
A 3323.8 4242 512.20 + 289 43284 42.3 488.8 +21.2 530.84 233
[150,0,0/15 15,08,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) Ba+al 18.8 + 0.1 20.2 + 0.1 Td.6+ 0.1 3.8+ 0.1
T(s) 5915+ 684 1271.3 4+ 5.3 1847.7 + 144.9 1380.1 £ 529 199654+ 69.3
::-::l R &l3t+ a6 104.1 £+ 8.8 73.1 + 82 1MOAF+ 58 P51+ 28
A 354.1421.3 59234 257 428.1 4 25.7 5937 + 235 SeB31+ 189
[150,0,0/15 15,08,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) 12402 18.6+0.1 24.04+00 206400 221+02
T(s) 5P4.6 4 B9.5 1313.04 2044 1517.2 4+ 257.8 1289.1 £ 1368 20504 4+ 464.5
*Al::l R SR3+ &9 A+ 146 FAl24+1Lra a2 4101 844 4193
A IFRT L4469 SP1e4 44.7 475.84 366 594.6 + 613 524.2 4 39.0
[150,0,0/15 15,08,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) 1.&e+al 20.34+00 253400 200 £ 00 NE+an
AKFD T(s) B385.4 + 615 1205.5 + 230.5 14371 4+ 252.4 1112.2 4+ 1269 1885.9 +190.9
APy R 523+ &7 8524+ 160 &8+ 129 Fde+105 ER.6 4 T.9
A 35304277 SBRE+ TP 48604555 5&4.8 +35.8 549.24 422
[1500015 15.0.00/15 15.0.0.0/15 15.0.0.0/15 15.0.00/15
Fis) 109 4a3 183 4+00 23.F+0.2 157+ 0.2 2E4 + 00
AKFD T(s) Fode £621 140324 171.3 1623941152 15605 + 63.9 2275.6+ 1747
AP, R FlL.2+ 74 10264120 TREL+ 59 M&e24+ 4.8 PS84+ 58
A 3B5.04 233 59624 51.2 4664 4 30.2 65404323 5606+ 125
[150,0,0/15 15,08,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) .24 Q2 169 +00 234 +£0.0 17.8 £ 000 etz
AKFD T(s) 56614 79.0 1320.04 1708 18357 4+ 191.9 1251.5+ 211.7 19329 4+ 1883
AP R 565+ &2 LER- L kg 8024+ 95 o0 £ 151 804 + 82
A 349.7 4+ 346 G00EL 4BT 48124 34.3 5580 + 484 519.8 4+ 348
(o] 150,0,0/15 15,8,0,0/15 15,08,0,0/15 15,8,0,0/15 15,8,0,0/15

Table 5: Comparing AKFD to LAMAF over five problems from the RHovere domain. AKFD has
been tuned removing one predicate and horizon of 10 actions. Each configuration is denoted
to AP which means Abetract Predicate and a number. Both parametere have been chosen
mamually. The best resulte are highlight in bold.

abstraction in order to improve the performance of AKFD. We have defined 5
different predicate sets:

APy = {at}

APz = [have-image}

APz = [have-rock-analysis}
AP4 = [have-soil-analysis}
APs = {calibrated}

114

VARIABLE REEOLUTION PLANNING

Froblem
Planner rovere 36 rovers 37 rovere 38 rovers 39 rovers 40
(14,80,40) (14,80.40) (14,85,5T) (14,95,62) (14,100,68)
LAMAF 250 393 306 358 385
AKFD (P = APy) 119 174 156 183 203
AKFD (P = AP2) 206 334 315 302 338
AKFD (P = AP3z) 162 239 218 320 167
AKFD (P = APy4) 141 251 226 175 334
AKFD (P = APs) 228 355 330 382 360

Table 6: Comparing the size of the firet plan generated by AKFD and LaMaF for five problems
from the Rovere domain.

APg = {at, have-rock-analysis}

AP7; = {at, have-rock-analysis, have-soil-analysis}

APg = {at, have-rock-analysis, have-soil-analysis, have-image}

APg = {at, have-rock-analysis, have-soil-analysis, have-image, calibrated}

Table 7 shows the results for five different problems of the Rovers domain where
the abstractions have been built using different predicate sets. We have used the
predicate at as a base to build the other predicate sets. Each set haz been buils
by including a new predicate over the previous until all dynamic predicates used
in the previous section are part of the predicate set. For instance, the set APy =
APg U{have — soil — analysis}. According to the results shown in Table 7, there is
no significant difference between the results of the different configurations of AKFD.
This effect is produced due to the way in which the abstract action set is built. The
predicate at decreazes the size of the action space when the predicate abstraction
iz built using it, because the navigate actions are pruned from the original action
space. This means that rovers can take pictures, rock and soil samples immediately
without moving across the environment. Then, a predicate abstraction built using
more predicates related to these tasks will not improve the abstraction produced
by the predicate at. Predicate at dominates over other dynamic predicates like
have-rock-analysis, have-soil-analysis and have-image, becaunse it simplifies
moet of the tasks performed by the rovers in the environment (see Definition 19).
Besides, a predicate abetraction composed of many predicates can produce an
excessive eimplification of the abstract space. This fact may increase the number of

6.5 EMPIRICAL EVALUATION

replanning steps due to the bad quality of the sequential abstract plans generated
in each planning step.

Plannac M Froblem
rovers 36 rovars 3T rovars 28 rowvars 30 rovars 40
(14,20,40) (14,580,400 (14,25 57) (14,08 62) (14,100,683
Fis) Bod 4+ 01 4121433 2365+ 1.8 571 +13 1548422
Tis) 113254+2029 71255+ 11455 320514 23687 33421+ 8454 44081218720
LAMAF R 45.8 £54 TEA0 £ 7.3 592473 88,2451 TOA1+10.2
A 328.6 +24.2 512,204 289 43284423 4B6.8+21.2 531084233
o 15,0,0,0/15 15,0,0, 0,15 15,0,0,0/15 15, 0,0,0/15 15,0,0,0/15
Fis) e+l 128 +01 02401 14,64+ 01 238400
. Tis) 591.5 + 684 12713 £ 953 1847.7+£ 1449 138001 £52.9 10965 4+ 503
(P=aP;) R 643+ 66 104.1 £ 88 TRl 482 1107 £5.8 951 +£28
A 3541 £21.3 502314 257 426.1 + 257 SPLT 4+ 235 5683+ 159
o 15,0,0,0/15 15,0,0, 0,15 15,0,0,0/15 15, 0,0,0/15 15,0,0,0/15
Fis) e+l 127 +01 19.8 +03 1444+ 000 229402
Tis) 5708 £75.2 13581 £ 1751 17116+ 1253 1322341544 2084.54+ 95.8
(P ﬂ%sn R EL24+ES 1111 £152 PLELTS 1064 +126 PEAL52
A 3471 £24.5 63524482 477.8 £ 305 E15E+49.1 55754+ 23.4
o 15,0,0,0/15 15,0,0,0,/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) e+l 120400 192 4+01 13,6400 223403
Tis) E05.7 + 0.4 1161.1 4+ 229 1S181+£11&81 13258+ 119.5 2226641420
(P ﬂ%?; R EEE+ES P51 409 8r44 &9 1082404 105.6 £ 6.3
A 3558 £ 504 5404 4+ 265 46664232 SEREL 177 SE0E+21.4
[15,0,0,0/15 15,0,0,0,15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) 4400 121 +01 191+ 13,6400 221402
Tis) 5548+ 616 1321.7£175.2 160154 2027 12508+ 159.9 21407 £ 1228
(P ﬂ%,; R ElAa+72 1081 £ 14.7 E7.E+107 T02E+132 1024 £ 66
A 3710 £25.2 6214 £59.1 4722439.9 SET.2 4+ 695 5832 4+ 441
[15,0,0,0/15 15,0,0,0,15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) g1+ 00 128402 181401 13,2401 218402
Tis) 5761 £81.2 12285+ 1088 14964 £ 1444 1235.24+91.9 20501+ 3104
(P ﬂ%,; R 634 4+ 04 1031493 Br4483 1002+ 8.1 9824159
A 37524417 EOET £ 418 4476+ 29.6 SESE+ 333 57001 £ 73.3
o 15,0,0,0/15 15,0,0, 0,15 15,0,0,0/15 15, 0,0,0/15 15,0,0,0/15

Table T: Comparing AKFD to LAMAF over five problems from the Rovere domain. AKFD has
been tuned removing different predicate sets. The beet results are highlight in bold.

Table 8 shows the size of the original action space and the abstract action sets
generated using different predicate sets to build the predicate abstraction. The
results show that the combination of predicates calibrated and at generates the
smallest abstract action set. However, this combination does not produce the best
resulte for AKFD.

In conclusion, we believe that some predicates dominate over others depending on
the structure of the planning task. In order to generate good abstractions analyzing

115

116

VARIABLE REEOLUTION PLANNING

Froblem
Planner rovere 36 rovers 37 rovere 38 rovers 39 rovers 40
(14,80,40) (14,80.40) (14,85,5T) (14,95,62) (14,100,68)
LAMAF 12096 22854 25577 26353 26371
AKFD (P = APy) 9914 20572 23157 23780 23635
AKFD (P = AP2) 12096 22854 25577 26353 26371
AKFD (P = AP3z) 12096 22854 25577 26353 26371
AKFD (P = APy4) 12096 22854 25577 26353 26371
AKFD (P = APs) 9763 12710 18296 133097 26371
AKFD (P = APg) 9914 20572 23157 23780 23635
AKFD (P = AP7) 9914 20572 23157 23780 23635
AKFD (P = APg) 9914 20572 23157 23780 23635
AKFD (P = APo) 3457 4050 6419 5689 TO44

Table 8 Comparing the size of the action eet generated by AKFD and LaMar for five
problems of the Rovers domain.

the planning task i= important to identify which predicates can be used to simplify
the complexity of the search process keeping the maximum information in the
abstract planning task. Besides, we think that a good abstraction must be buils
using predicates with no domination among them in order to avoid unnecessary
simplifications in the abstract space. In Chapter 7, we are going to analyze if it is
possible to build good predicate abstractions automatically taking advantage of the
information of the problem in order to choosze the best predicate set.

6.5.6 THE HORIZON VALUE

The horizon value defines when the predicate abstraction is deployed during search.
In this zection, we analyvze the effect of using different horizon values in order to
analyze the effects over the planning time and the quality of the executed plan. We
have run AKFD with different values of k = (2, 5, 10, 20, 30, 50, 100) and a predicate
abstraction built using predicate at. Besides, we have chozen the value of k = 400
to represent the results of LAMAF in the figures. This value has been chosen given
that the longest plan generated by LAMAF is 393 actions for rovers 37 problem and
that means that AKFD will not switch to the abstract action set, and thus all search
will be standard LAMAF search.

6.5 EMPIRICAL EVALUATION

Figure 27 shows the evolution of four metrics depending on the horizon value for five
different problems of the Rovers domain. We have not shown the coverage metric (C)
because all problems are solved by all AKFD configurations and LAMAF. Figure 27 (a)

shows the average first planning time for the whole cycle of planning and execution.

AKFD reduces the first planning time by one order of magnitude in all problems in
comparison with LAMAF. But, there are no significant changes on the first planning
time among the different configurations of AKFD. Meanwhile, Figure 27 (b) shows
the average full planning time for the whole cycle of planning and execution. In
general, AKFD decreases the full planning time for most configurations. If the horizon
value is smaller than 5, AKFD needs much more time than LAMAF to solve all
problems. But, when the horizon value is bigger than 5, AKFD can solve all problems
decreasing the full planning time. Besides, our approach decreases on a order of
magnitude the planning and execution time on problem rovers 37 when the horizon
value takes values between 20 and 30.

=20 . 23000 . . .
rovarz 36 roves 36 ——
rovarz 37 S —
rovers 3§ —— rowers 3§ ——

400 - roverz 35 = 20000 rowars 35 -

g rovars 40 ¥ —:

E P B E

g o0 E -ee g 10000

B Fﬂsﬁjﬂ e

] H

100 5000
e (= -
o oM
=0 100 10 o0 30 o0 333 40 ° s0 100 13w oo 3= 308 380 400
Horxen (ki Horizon: (K

(b) Full planning time

o P
M A
i L .
= owmep
£ H
', i . _,
m—————— g i/ —
. .] e — L L
1“ Hiorzen [kl = * Horizon Tk =
(c) Replanning steps (d) Executed actions

Figure 27: Evolution of four metrics during the whole cycle of planning and execution
depending on the value of k for five problems from the Rovers domain. The x axis shows
the value of k and the y axis shows the value of the metric. The horizon value of 400
corresponds to LAMAF due to the longest plan generated by LaMar is 393 action for rovers
37 problem. Figures (a) and (b) are shown in decimal-scale and Figure (c¢) and (d) are
shown in log-scale.

117

118

VARIABLE REEOLUTION PLANNING

On the other hand, Figure 27 (c) shows that the number of replanning stepe is
similar regardless of the horizon value except for small values like 2 and 5. As
we explained before, the accuracy of a plan is the difference between the original
plan generated by LAMAF and the abstract plan generated by AKFD. If the horizon
value is small, the number of replanning steps is huge due to the accuracy of the
abstract plans. Nevertheless, the accuracy of the abstract plans increases as the
horizon value is increased. In general, AKFD obtains better results than LAMAF
decreasing the number of actions executed to solve the planning tasks when k=30.
In conclusion, if AKFD iz tuned with medium horizon values (20, 30 and 50) it =solves
planning tasks executing a similar number of actions than LAMAF, but decreasing in
one order of magnitude the planning time. The data used to generate the different
figures shown in Figure 27 are presented in Table 9.

The complexity of the planning task decreases during the cycle of planning and
execution. Then, there iz a point in which the planning task is simple enough to be
solved by LAMAF in seconds. At this point, it is not useful to simplify the planning
task using predicate abetractions. Figure 28 shows the average planning time for
the first 60 iterations of the cycle of planning and execution for problem 40 using
different values of k = (2, 5, 10, 20, 30, 50). These results show that LAMAF needs
less replanning steps to solve the problem, because the plans generated by LAMAF
do not contain abstract actions and the plans generated for each planning step
are fully informed. Plans generated by the different configurations of AKFD need
more replanning steps according to the accuracy of the sequential abstract plan,
but in this case the planning time is always very short. Interestingly, there i= an
iteration during the planning and execution cycle at which the planning time for
LAMAF is similar to the planning time for AKFD and after this iteration LAMAF
takes less time to compute plans keeping the accuracy of the plan. These results
suggest that AKFD does not improve over standard planning from scratch from that
point on. For problem rovers 40, this point is around 40 planning steps. Besides, the
computational cost of the planning task of AKFD (time) is constant regardless of the
horizon value as we can see in Figure 29. This Figure shows the average planning
time for the whole cycle of planning and execution for problem 40.

In conclusion, we think that the horizon value iz an important parameter for VRP.
These results shows that VRP can be easily parameterized by appropriately setting a
value for k so that its behavior gradually transits from a more deliberative approach
(using large values of k) to a more reactive approach (using small values of k). In
the extremes, if k=1, VvRP becomes an almost pure reactive system, while if k=o0o,
VRP behaves as the standard deliberative planner in which is based.

6.5 EMPIRICAL

EVALUATION

Plannar M Freblam
rovars 36 rovers 3T rovars 38 rovers 30 rovers 40

(14,580,400 (14,80,40) (14,25,57) (14,05,62) (14, 100, 58)
Fis) Bod 40 4121 £3.3 23654+ 1.8 257.141.3 1548422
Tis) 11325+ 2029 71255+ 11455 32051 & 2367 33421 + 8454 440612 £ 8721
LAMAF g 458 +54 FEE0£T.2 592473 EE24+ 51 7o £102
A 32364242 512204+ 289 43284423 4B&.8 £21.2 5308 +233
[15,0,0,0,15 15,0,0,0/15 15,0,0,0,15 15,0,0,0/15 15,0,0,0/15
Fis) a7 +00 147 +£001 215 +01 1524+ 01 253400
- Tis) 305974+ 3258 220691 £9344.2 135033 L 32268 184426 £ 882277 150220 £ 24662
(k=2) R 3282 4 3367 17174+ 7157 954 £ 1691 14233 + SBE.9 Fodd £1137
A E11.3 £ 64.81 I0BLEL 12931 120260 £290.37 24095412323 12687.6+£1923
[15,0,0,0,15 15,0,0,0/15 15,0,0,0,15 15,0,0,0/15 15,0,0,0/15
Fis) 0.7+ 008 18.8 401 201401 14.5401 23.7+03
- Tis) 122534921 2316+ 2182 27ER.P £ P45 20831 + 1408 335054+ 1948
(k=5) R 134.2411.4 1857 £ 165 1527 +4.8 167.7 £ 125 157.3 £ 105
A 4046 + 367 7051 +E82.2 55714 256 63374429 E17.7+61.5
[15,0,0,0,15 15,0,0,0/15 15,0,0,0,15 15,0,0,0/15 15,0,0,0/15
Fis) B840 18.8 401 202400 146+ 01 229400
- Tis) 5015+ 684 127134953 1347.7 £ 144.9 13801 £529 19065+ 693
(k=10 R 634 EE 1041 £ 88 TRl 482 110.7 + 5.8 951428
A 35414 21.3 59234 257 40001 £ 257 59374235 5683+ 189
[15,0,0,0,15 15,0,0,0/15 15,0,0,0,15 15,0,0,0/15 15,0,0,0/15
Fis) a7 +00 138 +£00 204401 146+ 01 229400
- Tis) 4364 + 318 BES.A + 341 11359 + 2205 11354 41207 20204 + 2671
(k=20 R 47.7 434 71425 AT +119 flige2 241 +126
A 33ET £ 188 5287 +£13. 447.7 £ 54.6 553.7+ 159 571.3 £ 568
[15,0,0,0,15 15,0,0,0/15 15,0,0,0,15 15,0,0,0/15 15,0,0,0/15
Fis) a7 +00 141 001 204402 148+ 01 229400
- Tis) 3ER5 4319 8285+ E1.9 10826 + 3191 11151 £ 1421 16688+ 1984
{k=30) R 417429 E7.1 £4.2 SET4+17.4 BET+125 FE1 404
A 3165+£181 00,1 + 57 412.7 + 488 5381 +£428 534.3 +45.9
[15,0,0,0,15 15,0,0,0/15 15,0,0,0,15 15,0,0,0/15 15,0,0,0/15
Fis) 157409 222421 07402 224402 352400
- Tis) 5011 £ 969 10253+ 1583 1377.7 & 2009 1107.1 + 1481 172784+ 3152
k=50) R 5034130 TEAL124 ERE+104 841 +11.6 TEE+ 143
A 354.2 4 218 56214359 55814222 5368+ 636 520.8 +21.6
[15,0,0,0,15 15,0,0,0/15 15,0,0,0,15 15,0,0,0/15 15,0,0,0/15
Fis) 163408 223400 Y] 229402 181402
- Tis) 5072 4 748 9601 £ 98B 13959 + 2001 11163 £ 1155 1B61.6 4+ 2152
(k=100 R 517+ &% FIEETT Fo14£152 42402 ET.EL B8
A 3477 £ 29.8 5038 + 2668 4684 £431 5358+ 208 S06E+41.9
o 15,0,0, 0,15 15,0,0,0/15 15,0,0, 0,15 15,0,0,0/15 15,0,0,0/15

Table 9: Comparing AKFD using different horizons to LAMAF over five problems from the
Rovers domain where predicate at has been removed manually. F' corresponds to planning
time for the first planning episode in seconds. T' corresponds to the total execution time
(including planning time) of all runs in seconds. R correeponde to the number of replanning
epieodes. A corresponds to the number of actions executed in the simulated environment
and C corresponds to the mimber of problems solved. The best results are highlight in bold.
Besides, for each problem we have defined three values which describe the complexity of

the problem: (i) number of rovers; (i) number of waypoints and (iii) mumber of goale.

119

120

VARIABLE RESOLUTION

600

PLANNING

[T
; AKFD(2)
i AKFD(5)
500 i AKFD(10) i
— AKFD(20)
4 : AKFD(30)
5 00 i AKFD(50)
k1 LAMAF
2 300 |
F i
o :
| = B
= 200 i
| = B
o : : :
e i i i
ol | i i i i
o 10 20 30 40 50 60

Planning iteration

Figure 28: Average planning time for the first 60 iterations of planning and execution for
Rovers problem 40. The x axis shows the number of planning steps and the v axis shows

the planning time for each step. Both axis of the figure are shown in decimal-scale.

600))
500
400
300

200

Planning Time (Seconds)

100

.. AKFD(10) .

_ AKFD(50)

AKFDI{2)
AKFDIS)

AKFD(20)
AKFD(30)

LAMAF

1 i i

100

150 200 250

Planning iteration

300 350

Figure 29: Average planning time for the whole cycle of planning and execution for Rovers

problem 40. The x axis shows the number of planning steps and the y axis shows the

planning time for each step. Both axis of the Figure are shown in decimal-scale.

6.5 EMPIRICAL EVALUATION

6.5.7 THE ENVIRONMENT

The environment is not a real parameter of VRP, but its complexity can influence
the other two parameters (the predicate set and the horizon value). In this section,
we analyze how VRP works in more complex environments. Then, we evaluate the
performance of VRP in two different ways: (1) increasing the percentage of errors and

exogenous events of the environment; and (2) increasing the size of the environment.

First, we analyze the effect of increasing the number of failures and the number of
exogenous events. Figure 30 shows the full planning time of problem rovers 40 using
different values of k in four different environments. The environments have been
configured using four different stochasticity levels (10%, 20%, 30% and 40%) which

are used to increment both the number of errors and the number of exogenous events.

The results show that vRP has a similar behavior regardless to the stochasticity level
of the environment. In conclusion, a higher percentage of errors and exogenous
events implies more replanning steps. And, then the total time obviously increases
with the stochasticity level.

10000

Planning time {seconds)

N S . sl =
1 10 100

Horizon (k)

Figure 30: Evolution of the full planning time depending on the value of k for problem 40
with different stochasticity levels. The x axis shows the value of k and the y axis shows
the full planning time. The value of 500 of the x axis corresponds to LaMaF, becanse the
solution plan of problem 40 has less than 500 actions and no abstraction is applied to solve
the problem. Both axis of the Figure are shown in log-scale.

Second, we analyze the effect of increasing the complexity of the environment in
order to analyze the performance of VvRP in more complex environments. Table 10

121

122

VARIABLE REEOLUTION PLANNING

shows the results of five complex problems of the Rovers domain. These problems
have been designed increasing the number of waypoints (175, 200, 250 and 300),
the number of goalz (98, 110, 145, 150 and 180) and the number of rovers (60).
The results show that our approach can solve these difficult problems while LAMAF
cannot solve any, because the first planning step consumes the maximum planning
time of 1000 seconds. This means that vRP can handle difficult problems solving
them partially at each planning step decreasing the planning time in a cycle of

planning and execution.

Plannar M

Problam

rowar 175 covers 200 covers 250 rovers 300 rowars 100

{175,15,14%) (200, 15,110) (250,15, 150) (300, 15, 150) {100, 50 D EY

Fis) 10728 4+ 04 109294 08 11025402 1177+ ae 10434403

T(s) - - - - -

LAMAF R _ - - - -
A - - - - -

o 0,0,50/5 0,0,50/5 6,050/5 0,050/5 0,0,50/5

Fis) 115.84 04 1837.BE+ 015 212.14 Q3 45214+ 24 Bd.8 + 01

— T(=) 160582.2 4+ F146.3 199625+ 11567 21989.8 4+ 9536 1984153 + 12341 E44 7.9 + 184.9
(k = 10) R 155.4 4+ 957 1967+ 106 1B8.5 4453 53.3+ 356 P15+ 5.5
A 872.4 4 5811 11493 4 7.6 1075.33 +40.09 835.34+ 2256 51774142

o 50,0,0/5 5.00,0/5 5000/5 5000/5 5.00,0/5

Fis) 1238405 2029 4048 - 3357424 AT+ 0

— T(s) 15855.5 + 545.6 18838.1 4+ 5212 - 220379+ 11118 42808 + 207.5
(k = 20) R 17EI L+ 149 172.4 4 87.9 - Fle+ 42 BB.E 4145
A 1287.2 + 65.9 1138.3 + 48.5 - Se7E4 149 4T8.14+71.4

o 5,0,0, 0,5 5,0,0,0/5 0, 0,0,0,/0 5, 0,0,0/5 5,0,0,0/5

Table 10: Comparing AKFD to LAMAF on five difficult problems from the Hovere domain.
The meaning of the metrics is the same ae in Table 4. The best resulte are highlight in bold.

6.5.8 VRP IN DIFFERENT DOMAINS

This section reports the experimental results obtained in five different domains. For
each domain, we have developed an error simulator which prevents the execution
of the actions and generates exogenous events simulating a real world environment.
Table 11 shows a snummary for six different planning domains. In order to measure
the performance of vRP and LAMAF in different domains, we have computed the
score using the equations described in section 6.5.1. We compute the first planning
time (F) and the planning time (T) using equation 2 and the replanning stepe (R},
the number of executed actions (A) and the coverage (C) using equation 3. The
maximum number of points for each metric iz 75, because for each domain we have
executed 75 planning tasks. In general, vRP obtains much higher scores than those
obtained by LAMAF. On one hand, if the horizon value is less than 5, VRP cannot

6.6 DISCUSEION

solve many of the problems of the benchmarks. As we described in section 6.5.6, VRP
can behave like a reactive system when is tuned with small horizon values. However
in these cases, the number of replanning steps is increased due to an excessive
number of abstract actions in the solution plan. This fact can be an important
problem in some domains in which the system iz executing the same actions until
the maximum execution time iz reached.

On the other hand, if the horizon value is equal to or greater than 5, VRP can solve
most of the problems of the benchmark decreasing the first planning time and the
full planning time. However, our approach produces a small increment in both the
number of planning stepe and the number of actions executed in the environment
except for some problem in which VRP needs less actions. Interestingly, no horizon
value dominates over the others in any domain. This means that the features of
the domain and/or the problem are important in order to choose which predicates
can be used to build the abstractions and when abstractions should be deploved
during search.

6.6 Discussion

In this Chapter, we have presented Variable Resolution Planning (vRP), a novel
technique that uses an abstraction mechanizm that dynamically removes some
predicates during the planning process. Our approach is able to significantly
decrease the computational effort of the search process. The predicate abstraction
iz only used in nodes of the search tree that are far away from the initial state of
the search. The exact computation of a plan in those nodes is not crucial, given
that most probably the actions will not be executable, since the execution system
(robot) will find an execution failure earlier on. Abstractions are started to be uzed
from a given planning horizon k. According to the results presented in this chapter,
VRP can gradually control the relation between reasoning and execution using two
parameters: (1) the predicate set, our approach can change the accuracy of the
sequential abstract plan depending on what predicates are removed; and (2) the
value of k, our approach can work as a reactive system, generating short plans of
actions, or as a deliberative system, generating full sound plans.

There are eeveral lines to research further in the context of this work in order to
improve the results on domains with different features. Predicate abstractions are
built using predicates that are chosen manually according to the knowledge about
both the problem and the domain. Besides, we have observed that some predicates
generate smaller abstract space than others as we showed in Table 8 This fact
can be important in order to decrease the number of replanning steps or generate
more informed sequential abstract plans. Interestingly, we can observe that some

123

124

VARIABLE REEOLUTION PLANNING

Domain Total

Planner Metrics “p " Depots Robots TidyBot Port Satellite Total
F(s) 5.4 22.2 2007 25.9 0 742

T(s) 10.6 27.4 s 122 0 ER.T
e R 68.3 42.2 281 a5 0 1721
A 65.9 20.2 78 183 0 1512

c 75 45 M 4 0 105

F(s) 70.8 0 10 0 0 80.8

T(s) 5 0 0.1 0 0 5.1

AKFD R 18.2 0 0.2 0 0 187
(=2) 4.8 0 0.1 0 0 4.9
c 75 0 10 0 0 85

F(s) 74.3 52.8 643 73.3 67.3 2221

T(s) 22 18 121 412 404 1587

AKFD R 50.4 20.2 202 67.6 6.2 226.8
(k=5) 28.4 17.4 11 ard E1.2 1454
c 75 55 65 75 700 240

F(s) 74.2 64.9 72.6 731 52.1 338.9

T(s) 56.7 2.7 228 59.8 423 2161

AKFD R 64.7 24.4 226 66 5LT 252.5
(k=10) 4 50.9 1.3 236 56.4 402 2115
c 75 71 75 7B 59 3ES

F(s) 73.6 62.9 707 724 49.4 2201

T(s) 65 49 527 BL2 442 2621

AKFD R 62.9 48.3 545 TLE E0.6 288.8
(k=20) 59 474 464 463 408 248.8
c 75 68 75 7B 52 45

F(s) 73.5 53.8 677 607 471 AT

T(s) 7.7 44.8 E4.2 465 ary

AKFD R 67.4 472 E7.2 TL.8 485 202.2
e 618 44.9 £0.6 dd.1 448 6.2
c 75 50 75 7B 50 ax

Table 11: Resulte of planning and execution on eix different planning domains. The first
column corresponds to the planners used to solve the benchmark. The meaning of the
metrics is the same as in Table 4. However, the results of each metric have been computed
uging the equations described in 6.5.1. The next five columne correspond to the score
obtained for each domain. The last column corresponde to the total ecores. The best ordering

scores are highlighted in bold.

6.6 DISCUSEION

predicates improve the time performance of VEP more than others; thiz means
that there is a relation between the structure of the problem and the predicate set
used to build the predicate abstraction. In Chapter 7, we are going to explore how
to generate predicate sets automatically using different techniques based on the
information of the problem and the domain.

While the selected predicates have some influence over the quality of the plan after
the horizon, the value of k influences the accuracy of the plan before the horizon
and even the number of replanning steps. Small k values decrease the quality of
the plan before the horizon, increasing the number of replanning steps. Meanwhile,
large k values increase the quality of the plan before the horizon, but planning time
increases. Besides, the value of the horizon has some influence over the planning
time, which is extremely important in robotic environments where robots cannot
spend much time on reasoning. In general, smaller values of k decrease planning
time. If the value of k is changed dynamically during execution, vRP could decrease
the number of replanning steps and increase the guality of the plan before the
horizon. Some of the experiments show that k could be tuned during planning and
execution depending on the size of the plan or the number of goals that must be
reached. Interestingly, we can observe that different values of k solve better different
groups of problems. This fact leads us to think that changing the value of the horizon
during planning and execution dynamically could improve the performance of the
process increasing the coverage and decreasing the full planning time.

125

GENERATING PREDICATE SETS AUTOMATICALLY

As described in the previous chapter, Variable Resolution Planning (vrP) is a
novel technique that generates Sequential Abstract Plans (SAP) removing far future
information. These plans are used to solve planning tasks in dynamic and stochastic
environments in a planning and execution cyele in order to avoid failures and/or
capture information about the environment which commonly cannot be known
initially. However, vRP must be tuned with two parameters: (1) the horizon value
which defines when the future information is removed; and (2) the predicate =set
which defines which information about the planning task is removed. In the previous
chapter, these parameters have been chosen mamally which implies an advanced
knowledge about both the domain and the problem in order to choose the best
configuration for vRP.

In thizs chapter we introduce a variation of Variable Resolution Planning where
the predicate set is computed automatically using some information which is not
encoded directly in the planning task. This means that this information must
be extracted using other mechanisms or other sources. We try to extract this
information from two different data structures extensively used in Automated
Planning: (1) the landmark graph; and (2) a relaxed plan. We present alzo a new
version of the planner AKFD which generates a sequential abstract plan using a
predicate set computed automatically. We empirically compare this new version of
AKFD to both the previous version and other approaches finding that our technique
decreases the complexity of =olving planning tasks in dynamic and stochastic
environments generating the predicate set antomatically using the information of
the planning task.

7.1 INTRODUCTION

Planning tasks are described by means of two input files: a domain and a problem.
The domain file contains a definition of the action model, a set of ungrounded
predicates F and a set of types. Meanwhile, the problem file defines a set of objects,
an initial state (I), and a set of goals (G). The information encoded in both
files can be used to identify some features related to the type of predicates, but

127

128

GENERATING PREDICATE SETS AUTOMATICALLY

it is not possible to identify features related to the complexity of the planning
tagk or the relevance of each predicate according to both the initial state and
the goals. Therefore, in order to generate good abstractions extracting other
tyvpe of information about the planning task is necessary. In order to collect this
information, we use different techniques that have been previously used to build
heuristic functions. The information generated for these techniques is used to obtain
information related to the relevance of predicates.

Figure 31 shows the new structure of the vRP architecture. The new wversion of
the vRP planning system is composed of three different phases. In the first phase,
called Knowledge Gathering, information about the planning task is extracted.
This phase receives three parameters: the domain, the problem and the generation
technique. Thiz phase can collect data from two different data sources: (1) the
landmark graph which produces a hierarchy of some grounded predicates that must
be true to reach the goals; and (2) the relaxed plan which generates a relaxed
sequence of actions where the delete effects of each action have been ignored.
These data structures and their generation process are described in the section 7.2.
The information extracted on the previous phase is used by the Abstraction
Generation phase where a set of abstract actions and variables (abstract states)
are built. Finally, the Search Algorithm phase is executed to generate a sequential
abstract plan. Upon termination, the search algorithm either outputs a SAP or no
solution.

7.2 DATA EXTRACTION TECHNIQUES

In this section, we describe the different mechanisms used to build the data
structures from which we collect information to built the predicate set automatically.
We have chosen two different data structures: (1) the landmark graph and (2) the
relaxed plan.

7.2.1 THE LANDMARK GRAPH

Landmarks can be defined as logical formulas (poszible consisting of a single fact)
that must be achieved in every valid plan. Landmarks can be defined as facts that
must be achieved at some point of the solution plan before the goals are reached. It
iz possible to use landmarks to simplify the planning task. For example, if a robot
must go from room A to room B and the rooms are connected by a door which
iz locked, the door must be open at some point in every solution plan. Hence, if a
human tries to solve this task, it would most likely first find the way to open the
door and then go to room B. This task can be decomposed into two emall tasks, one

7.2 DATA EXTRACTION TECHNIQUES

Planning task

1 1
1 1
i Knowledge Gathering E Mechanism
; :
1] :
otk . :
1] E 1 !
39 3 G !
i i
: ' :
! Abstractions Generation i
i a
A - i
1 b E n 1
R <4
1 L L 4 !
Horizon(k) | i ;
() : Search Algorithm L Sclution

1 1
1 1

1

Figure 31: VrP's architecture.

of finding a way to open the door, and other to go from room A to room B when
the door has been opened. Both tasks are usually easier to solve than the original
tazl.

Landmarks were first described by Porteous et al. (2001) and were later studied in
more detail by Hoffman (2004). Landmarks can be considered as subgoals that must
be achieved in every plan. There are two kinds of landmarks: (1) fact landmarks; and

(2) action landmarks. Both concepts are formally defined in the next two definitions:

Definition 20. (Fact Landmark) Let TT = (F, A, [, G) be a planning task and let
f € F be a fact. f iz a fact landmark of the planning task TT, if for each valid plan =

that solves TT, f is true at some point 1.

Definition 21. (Action Landmark) Let TT = (F, A, I, G) be a planning task and let
a € A be a grounded action. a is an action landmark of the planning task TT, if for
every valid plan 7 that =olves TT, a € 7.

1 Facts in the initial state and facts in the goal state are always considered landmarks by definition.

129

130

GENERATING PREDICATE SETS AUTOMATICALLY

Finding the complete set of landmarks for a planning task is
PSPACE-complete (Hoffmann et al., 2004), but there are some methods that can
efficiently compute a subset of the landmarks using a graph generated by the
delete-relaxation heuristic. This subset of landmarks i=s generated as a graph in
which some partial orders between fact landmarks are defined. The landmark
graph is an important part of many of the techniques that exploit landmarks and
describes the interactions and orders between landmarks. Besides, the landmarks
graph is a directed graph composed of the fact landmarks of the planning task and
the orders between them. Orders between landmarks are relations between two
facts landmarks that represent the partial order in which they must be achieved.
Different tvpes of orders can be defined:

» Natural order: Let a and b be fact landmarks of a planning tazk T1, a is
naturally ordered before b, denoted a <, 44 b, if in each successful plan in

which a is true at some time i and b is true at some time j, j=i.

s Necessary order: Let a and b be fact landmarks of a planning task T1, a is
necesgarily ordered before b, denoted a <, b, if in each successful plan in
which a iz true at some time i then b is added at time i+1.

» (Greedy-necessary order: Let a and b be fact landmarks of a planning task TT,
a iz greedy-necessarily before b, denoted a <gn b, if in each successful plan
in which a must be true at some time i then b is true at time i+1, when b is
first achieved.

Figure 32 shows a Logistics task composed of a set of locations which are grouped
into two cities; City 1 contains three locations A, B and C, while city 2 contains
locations D, E. Locations C and E are airports. Two types of vehicles are available:
two trucks (tq, t;) and one plane (ay). The goal consists on transporting the package
1 from location B to location D.

A partial landmark graph for our running example iz depicted in Figure 33. This
graph includes factz landmarks where natural orderings are represented by bold
arce and necessary ordering are represented by dashed arcs.

Commonly, the landmark graph has been used to build domain-independent
heuristics (Richter et al., 2008; Karpas and Domshlak, 2009). In this thesis, we are
interested in the different mechanisme that these heuristic functions use to generate
the landmarks graph. Several landmark generation techniques have been developed
in order to collect the maximum number of landmarks:

7.2 DATA EXTRACTION TECHNIQUES 131

City 2

4

ap

/

Goal

Figure 32: Deterministic planning task of the Logistics domain: the goal consists on
transporting package py from location B to D

« Zhu/Givan technique (Zhu and Givan, 2003) is an incomplete method
for finding causal landmarks based on planning graph propagation. First,
this technique identifies the action landmarks of the planning task. Action
landmarks are represented as a conjunction of propositions (preconditions
of the actions). Then, these propositions are analyzed in order to identify
candidate fact landmarks. If a candidate is identified, a planning graph
propagation process is performed to verify if the candidate is a fact landmark.

« h™ technique (Richter et al., 2008) is an incomplete method for finding fact
disjunctive landmarks. This technique generates a set of landmarks using a
queue which stores the predicates which can be landmarks. This queue is
started with the facts in the goal. The algorithm analyzes each element of
the queue checking if the element is a landmark until the queue is empty.
During the checking process new landmarks can be added to the queue. The
algorithm finishes when the queue is empty.

» Exhaustive technique is a complete method for finding all fact landmarks
implemented in the FD planning system. This technique checks for each fact
of the planning task if it is a fact landmark. The checking process is done
using the relaxed plan.

132

GENERATING PREDICATE SETS AUTOMATICALLY

Figure 33: Partial landmark graph for the example task shown in Figure 1. Bold arcs
represent natural orderings, dached arce represent necessary orderinge.

7.2.2 THE RELAXED PLAN

A relaxed plan can be defined as= a sequential plan of actions which has
been computed by removing the delete effects of the actions of the Planning
Task (Hoffmann and Nebel, 2001). These plans are built using the Planning
Graph (Blum and Furst, 1997) which is a layered representation of the planning
tagk. The Planning Graph iz composed of different levels generated by alternating
propoeitions and actions layers. The first layer includes all the propositions defined
in the initial situation, then the second layer is composed of all the relaxed actions
which can be applied in the previous layer. The third layer iz composed of the
propositions generated from applyving the actions of the second layer. The generation
process of the relaxed plan extends the different layers until a goal state i= generated.
Then, the algorithm goes over the planning graph from the goal state to the initial
state generating the relaxed plan. Formally the relaxed plan can be defined as:

Definition 22. (Relaxed plan (Hoffmann and Nebel, 2001)) Let TT = (F, A, L G)
be a planning tazk and let 7, be a plan. Then, 7, i= a relaxed plan of TT if Ya €
m, del{a) = 0.

7.3 VRP ALGORITHM

Figure 34 shows both the solution plan and the relaxed plan that solve the planning
task depicted in Figure 32. Thizs plan is composed of relaxed actions. There are some
similarities between relaxed plans and sequential abstract plans. A relaxed plan can
be considered as a sequential abstract plan which has been computed removing all

dynamic predicates from the delete effects of the actions with a horizon value of 0.

As we see in the Figure 34, the relaxed plan is shorter or has equal length to the
solution plan.

1 | drive(ty, A, B) drive(tq, A, B)

2 | load{p1, t1, B) load(p1, t1, B)

3 | drive(ty, B, C) drive(ty, B, C)

4 | unload(py, ty, C) | fly(ay, E, C)

5 | fly(ay, E, C) unload(py, t1, C)
6 | load{p1, a1, C) load(p1, a1, C)

7 | Aylaq, C, E) unload(p1, a1, E)
8 | unload(py, a;, E) | drive(ts, D, E)

9 | drive(ts, D, E) load(py, t2, E)
10 | load(p1, t2, E) unload(pq, t2, D)
11 | drive(tz, E, D))

12 | unload(py, t2, D)

Figure 34: Relaxed plan of the planning task depicted in Figure 32. Left: sequential plan.

Right: relaxed plan.

7.3 VRP ALcoRrRIiTHM

As shown in the previous chapter, predicates can be removed from the original
planning task to decrease the size of the search space and generate a new smaller
abstract search space. In order to build the predicate abstractions iz mandatory
to choose a predicate which can be built manually. The knowledge gathering phase
has been included in the vRP architecture to provide some mechanism to generate a
predicate set automatically. In the following, we only provide a detailed description
of the knowledge gathering phase because the other phases are equal to the original
VRP.

133

134

GENERATING PREDICATE SETS AUTOMATICALLY

7.3.1 KNOWLEDGE (GATHERING

The first phase of the new version of VRP consists of gathering knowledge from the
planning tazk to select predicates to abstract over. The relevance of each predicate
depends of different factors: (i) the type of predicate — if the predicate iz added
or deleted during search —; (ii) if the information that describes the predicate is
relevant to achieve the goals; and (iii) the information on a predicate is relevant to
select other predicates. This information is collected during the first planning step of
the planning and execution cycle and stored in a file. This file is used during the rest
of the planning and execution cycle in order to generate the predicate abstractions
which are used during search. This information can be extracted from different data
structures. Then, we have defined two different approaches which extract some of
these features about some predicates of the planning task.

7.3.1.1 LANDMARKS BASED SELECTION

The landmark extraction process generates a landmark graph which stores the
information of each landmark and the order relationship between them. This data
structure can be used to obtain some relevant information about the predicates
as: (1) the number or occurrences of an ungrounded predicate in the graph; (2)
the partial order between the different ungrounded predicates; (3) the complexity
of generating a predicate according to its position in the graph. Regarding the
example shown on Figure 23, the landmark set L is composed of landmarks related
to the location of the rover, the state of the rover store and the analysiz of rock and
soil.

LT ={at{rl wi1), at(rl w3d), at(rl wld), have_soil_amalysis(r], w22},
full(rsl), at(rl wll), have_rock_analysis(r]l, wi0),
empty(rs]), communicated soil_data({w22},
communicated_rock_data(wl(0)}

There are several algorithms to compute landmarks (Richter et al., 2008; Karpaz and
Domshlak, 2009; Helmert and Domshlak, 2009; Keyder et al., 2010; Pommerening
and Helmert, 2012). In this thesis. we have computed landmarks using the
exhaustively technique described in the previous section. Once landmarks are
computed, we build a subset of landmarks composed of dynamic predicates
removing goal predicates. It iz not necessary remove static predicates from the
landmark set, so these predicates are not considered az landmarks. See landmark
definition in section 7.2.1.

7.3 VRP ALGORITHM

Definition 23. (Predicates set extracted from the landmark set). Let 1T =
(F, A, 1, G) be a planning tazk, L(TT) the =et of fact landmarks of TT and let name(p)
be a function which gets the ungrounded predicate of a grounded predicate p. The
predicate set to be abstracted, extracted from the landmark set is:

ps(M ={n|leL(TM,1&G,n =name(l),1 € g(n, F)}.

According to the previous definition, the predicates set for the planning task
depicted on Figure 23 is

ps(TT) ={at, empty, full, have_rock_analysis, have_scil_analysis}

Additionally, we obtain additional information for each element of the predicate set
ps, although this information has not been used in this version of the technique. The
additional information is related to the number of occurrences and the relative order
of the ungrounded predicates in the landmark graph, which is computed as the first
occurrence of a grounded predicate of the type of the predicate. Algorithm 7.1 shows
the pseudo-code of the generation process based on Landmarks. The candidate
list, candidates, stores the information about the predicates collected. For each
ungrounded predicate a list of grounded predicates is stored and their relative
location in the Landmarks graph. Initially, the algorithm computes the landmark
graph of the planning task IT (line 2). Then, the algorithm iterates the landmarks
graph as a list. At each iteration, the corresponding predicate is analyzed in order
to extract its information. First, the algorithm checks if the predicate i= a goal (line

6). If the predicate i= not a goal predicate, it iz considered as a candidate predicate.

Then, the algorithm retrieves the name of the predicate (line 7) which iz used to
identify the type of the predicate and searches in the candidate list if there i= an
instance of this predicate type. If there is not an instance, a new instance (line 10)
iz added to the candidate list (line 11) and the information about the grounded
predicate iz added (line 14). Finally, the information of the candidate list iz uzed to
build the predicate zet of the planning task (line 14).

7.3.1.2 RELAXED PLAN BASED SELECTION

The relaxed plan extraction process generates a relaxed plan which stores a set of
ordered relaxed actions. This data structure can be used to obtain some relevant

135

136

GENERATING PREDICATE SETS AUTOMATICALLY

Algorithm 7.1: Psendo-code of the generation process based on Landmarks
input: Planning task: 1= (F,A,LG)
output : Predicate set computed from the landmark graph
begin
Set graph « generateLandmarkGraph(TT)
Set fileName + "abstractions.sas”
Set candidates +— empty
foreach predicate € graph do
if predicate is not goal then
name + getMame(predicate)
candidate + getCandidate(candidates, name)
if candidate is empty then
candidate + generateCandidate(name)
candidates Ucandidate;

L=R T - L

=]
= 0

-
<]

position + getRelativePosition(graph, predicate)
params + getParams(predicate)
candidate.addOccurrence(params, position)

-
-]

-
=

return buildPredicateSet(fileMame, candidates)

-
o

information about the predicates which are part of the preconditions and the added
effects of the action: (1) the number of occurrences of the ungrounded predicates
in the preconditions and the added effects of the action; and (2) the partial order
between the different predicates according to their position in the relaxed plan.
Regarding the example shown on Figure 23, the relaxed plan RP i= depicted in
Figure 35.

The relaxed plan i= iterated by extracting all predicates from the effects of each
action. As described below, the relaxed plan i=s computed by removing the delete
effects of the actions, so we collect all predicates from the effects of each action.
Then, the predicate set is built according to definition 24.

Definition 24. (Predicates set extracted from the relaxed plan). Let TT =
(F, A, 1 G) be a planning task, let 71, = (ap, ..., a,) be the relaxed plan of 1T and let
name(p) be a function which gets the ungrounded predicate of a grounded predicate
P - The predicate set extracted from the relaxed plan is:

ps(ll) ={n|¥Ya emn,rp € Add(a), p € G,n = name(rp]}.

7.3 VRP ALGORITHM

navigate(rl, w10, wll)

navigate(rl, wll, w2l)

navigate(rl, w21, w22)

sample rock(rl, rsl, w22)

navigate(rl, w21, w20)

comunicate_rock data(rl, 11, w22, w20, w30)
navigate(rl, w20, wl0)

sample soil(rl, w20, wi10)
communicate rock data(rl, 11, wl0, w20, w30)

w00 =1 @ W = W bk

Figure 35: Relaxed plan of the planning task depicted in Figure 32.

According to the previous definition, the predicates set for the planning task
depicted on Figure 23 is

ps(TT) ={at, full, have_rock_analysis, have_soil_analysis}

As in the previous technique, we collect more information during the genmeration
process of the predicate set. This information is related to the number of occurrences
of the predicate in the effects of the actions, the relative order in the plan and the
average distance of each predicate to the goal state according to the action that
added it. The algorithm 7.2 shows the pseudo-code of the generation process based
on the Relaxed Plan. The candidate list, candidates, stores the information about
the predicates collected. For each ungrounded predicate a list of grounded predicate
iz stored as well as ite position in the relaxed plan and the action name. Initially,
the algorithm computes the relaxed plan of the planning task IT (line 2). Then,
the algorithm iterates the relaxed plan. At each iteration, the algorithm extracts
the added predicates of each action (line 6). Each predicate iz analyzed in order to
extract its information, starting to check if the predicate i= a goal (line 8). If the
predicate is not a goal predicate, it is considered as a candidate predicate. Then,
the algorithm retrieves the name of the predicate (line 9) which iz used to identify
the type of the predicate and searches in the candidate list if there is an instance
of this predicate type. If there is not an instance, a new instance (line 12) is added
to the candidate list (line 13) and the information about the grounded predicate is
added (line 16). Finally, the information of the candidate list is used to build the
predicate set of the planning tazk (line 17).

137

138

GENERATING PREDICATE SETS AUTOMATICALLY

Algorithm 7.2: Psendo-code of the generation process based on Relaxed Plan
input: Planning task: 1= (F,A,LG)
output : Predicate set computed from the Relaxed Plan

1 begin

2 Set relaxedPlan + computeRelaxedPlan(IT)

1 Set fileName + "abstractions.sas”

4 Set candidates +— empty

5 foreach action € relaxedPlan do

8 predicates + getAddedPredicate(action)

T foreach predicate £ predicates do

8 if predicate is not goal then

8 name + getMame(predicate)
10 candidate + getCandidate(candidates, name)
11 if candidate is empty then
12 candidate + generateCandidate(name)
12 L candidates Ucandidate;
14 position + getPosition(relaxedPlan, predicate)
18 params + getParams(predicate)
18 candidate.addOccurrence(params, position, getName(action])
17 return buildPredicateSet(fileMame, candidates)

7.4 EMPIRICAL EvALUATION

The evaluation environment has been configured using the light version of the
PELEA architecture described in chapter 5.3 which uses both the MDPSim to
emulate the execution of plans and the Error Simulator which increases the
variability of the execution dynamics introducing exogenous events. The VRP
approach described in this chapter has been implemented over the previous version
of AKFD. The source code, written in C++4-, has been built as an extension of the
processor of the previous version of AKFD 2.

The PELEA architecture has been configured as shown in Figure 36. The
configuration of the PELEA architecture is similar to the previous one except for the
inpute of the planning system which receives two different inputs: (1) the horizon
value; and (2) the predicate generation mechanism. All these experiments were
conducted in a Intel Xeon 2.93 GHZ Quad Core processor (64 bitz) running under
Linux. The maximum available memory for the planners was set to 8 GB.

2 https:/ /bitbucket.org/momartin/akfd stores the source code

7.4 EMPIRICAL EVALUATION

PDDL Domain
PELEA Prol:-]lem Simulator
' action q; ; ' '
: ;,l:t- ﬂl :
! | Monitoring Execution : = : * .Error '
' i ' Simulator !
: current state s; ! ! :
VB = ! ! g E
; 4 i : g :
i % g , ! % i
1 1 o :
: i :
" Decision task TT ! !
! S t ' MDPSim ;
: HPpo plan 7t [: :

Horizon k Problem
mechanism PPDDL Domain

Figure 36: Light PELEA Architecture used to evaluate VRP with antomatic predicate set
generation.

Table 12 shows a summary for five different planning domains. In order to compare
the performance of the different versions of vRr (Manual (M), Landmarks based (L)
and Relaxed Plan bazed (R)) to LAMAF in different domains, we have computed the
score using the equations described in section 6.5.1. We compute the first planning
time (F) and the planning time (T) using equation 2 and the replanning stepe (R},
the number of executed actions (A) and the coverage (C) using equation 3. The
maximum number of points for each metric iz 75, because for each domain we have
executed 75 planning tasks. In general, the manual version of vRP obtains better
scores than the Landmarks version of vRP, the Relaxed Plan version of vRP and
LAMAF. On one hand, if the horizon value iz less than 5, VRP cannot solve many of
the problems of the benchmarks, excepts for the Relaxed Plan version which can
solve problems for all domains.

On the other hand, if the horizon value i= greater than or equal to 5, the manual
version of VRP can solve most of the problems of the benchmark decreasing the
first planning time and the full planning time. Both the Landmarks version and the
Relaxed Plan version of vRP obtain similar results in most of the domains, but the
results get worse due to both the computation cost of the generation process of the
predicate set and the excessive number of predicates included in the predicate set
which can degenerate the sequential abstract plan. The Landmarks version improves

139

GENERATING PREDICATE SETS AUTOMATICALLY

140

uremop Ilad symsal jsaq a) PEIMET] aw ‘ploq uy senbrunpag a1y a1} Jo 81008 ej0] A 0 puodsalios SMUN{OD eIy JEE] AT,
-anbrnjaa) uolyeiauas wel] pareay] a1} of spuodssiiod) pue anburie) nolpelauad Yrempre 1} 0f spucdsaliod T Uo1jIa[@s Tenwey] 21}
0} puodsaliod [y aI8Ts ‘UTEMIOP 1[7Es 10] PauTE)qo 21008 1]} 0f puodsallod SUIN]0d US8XTs JXau o1], F SfJE], Ul 8 ures a1} s1 s11ja
a1]} jo SuluEawm 1], “WMEWOp [0Es 10] PaINsEsll SOlIjaul jualaylp a1} o} spuodsaiios () umnjos puosss ot [, {IBWISUaY a1} aAj0s o)
paen sisuueld s} o} spuodsaizos () ummoo jeay e, suremop Sunme(d juatagip sy uo uornoaxs pue Sumueld jo symesy (g1 AqEL

POE OTE PEE a1 ov 0z 9L oL 9L oL 9L 9L va ov os 9L 9L oL o
g4 | g088 | 9°BET TPT | 92 | ¥ o'y | £% 9Ty TES | L | =Iv | Lo gaz | vee | avs | zEE | v v
EOET | 8PS | FERE | I oA | EEF TER | s | g | LEm | viw | R Ty | 4¥E | oTF | wER | TV | 50 H | (oe=a)
g0z | et EBIE | 40 rar | ¥IE var | ®moe (6w | ves | eEm | ¢ o veE [vee | vws | gE [swe | (L e
are TPPT | B0 a's B'ED | L0E g'ag | SET | 9'09 g0 | vre | ssa | Lov B BE3 | wwn | zre | S'EL ()
gTE gTE ovE g1 o oe) ik) gL))) ik B)) gL o
Iz 9TIE | B TET | TET | 4 L8P 818 | ZE L ger | sav | i war | @0 gy | s8% | £4% | 989 v
ToET | EVEE | ovsE | FT | TV | viow 9% | oTF | 9'i% gor | oo | sor | av TFF | ¥F L9 | BP9 | £ED H | (og=a)
E'arE | 680 | ETAET | TOT | TIE | 4E 8BTS | €€ var | war | vre | see | TR EOF gae | ves | ve | oo (=L e
43EE | vo9T | EUIEE PPE | OE 4°0F 493 | T | EEL aog | sor | so0a | EZEE E'TE 8 | wsp | sov | 9B (sda
EOE 9EE 56 gE EQ og) ik) a9 Ed) og) |72)) gL o
o0rt | 984T | TEoE TAT | @B E'BP o | ez | &Eg | oar 0T | ToT B'1E ov vog | zvr | @9v | S0% v
£EaT | 9882 | @vET | EWE | ®ov | 2'vE 83 ¥ey | T0E 35 | ove | vez | TPE | #OF | BEE [P12 | TeE | TP H | for==)
a1 FTOET | PAnT AT | %5€ | B4R | BPF | ¥EE | A% vog | oFE | el | 9EE rar | zoe | o9r | o0w | 4ER (=11 s
E'EEE | E'04T | T'BEE | ¥E L'SE | EPP 943 | ovT | B4 E8r | soE | BEL | ELE o | eve | oo 018 | T (sda
PLE SOE orE 9E EF i)) gL) ¥ EF g9 ™" oL g)) gL o
10 20T | L°0ET oar | 4oz | w08 | TIE | 8BE | VIE 4 L o8 1T PT AT TEE | %4 | E'BE v
£E9T | O'ELT | E0IE | @B | 9708 | TER | @m vag | vE LT | @ BT AT 285 | g0z | gEv | Lav | owor H (g=1
LT0T | PEOT | TR TE5 | ol LEF | 958 | £EE | 908 | & o 0 LT 91 a1 | zEr | L0E | TOE (=11 s
LopE | EogT | EEEE | ®EE | TPE | sam | vem | suv | EEL | oEe | mEr | EPe | war | ®mEE | ®Es | 9o | ere | Eewe | (Hla
9ET DET g8 TE o o g9 o o ET g1 ot 0E 0E o)) gL o
BEF 01 o'y TIE | 0 0 et | o 0 0 1o 1o LR T 0 TE Al 8 v
[i]33 £'08 T8 var | o i gar | o i iy 4 0 £0 o' 8'E i aEl | 8z 8T H (z=1)
L 41T % g8l | O o g0 | O o L0] 1o 1 BT o 4E zol | AF (=11 s
ot | 4798 808 aFE | O o gEF | O o B8 L] ot a8l TAE o Lo | wme | B (=1
o1 o I OF I gL o
arT o TFI BLE ¥RE TED v
14T 0 Ve T'8% L L8 H AYHYT
Brhd [i] 4 arE Rt 9T (=)L
EPs] B'gE L0E E'EE e (=)g
H _..h _E H _..h _E H T _E H _..h _E H _..h _E H _..h _E
L il g walpIL moqoy syodeg sIBAY ey | muwers
=L pre—

7.4 EMPIRICAL EVALUATION

the score of the manual version in TidyBot domain and the Relaxed Plan version
improves the score of the manual version in the Port domain. In conclusion, we
show that both the Landmarks version and the Relaxed Plan version of vRP can
generate automatically predicate abstractions which decrease the planning time in
dynamic and stochastic environments. This i= an important advantage over the
manual version of VRP in which the predicate set iz chosen manually. Additionally,
we can observe that there are important differences between the results of each
automatic technique. This means that the predicate set generated by each technique
iz different.

T.4.1 THE CENERATION TIME

In this section, we analyvze the computational effort of generating the predicate
set using the different techniques described in this chapter. Figure 37 shows the
average time of the first planning time for all domains. On one hand, we can observe
that the Landmarks based technique increases the time of the first planning time
according to the complexity of the domains. Besides, there are some domains in
which the generation process based on Landmarks needs excessive time to compute
the landmark graph. As an example, the generation process consumes the maximum

planning time allowed when AKFD tries to solve some problems of the Port domain.

This fact iz related to the complexity of the planning task making the planning task
unsolvable.

On the other hand, the Relaxed Plan based technique increases the first planning
time too. However, the increase in time is lower than the increase in time introduced
by the Landmarks technique. This means that the generation process of the

relaxed plan requires less time than the generation process of the landmark graph.

Additionally, it is important to emphasize that in some domains, like Port and
Satellite, the time needed to generate the first sequential abstract plan is shorter
than the time needed for the other configurations of AXFD and LAMAF. Thus, the
computational cost of generating the predicate zet using the relaxed plan of the
planning task is not very expensive. Finally, the results show that in some domains
(Port and Satellite) the average time of generating the first sequential abetract plan
using the relaxed plan iz smaller than the average time of the other configurations

of AKFD.
7.4.2 THE PREDICATE SET

In this section, we analyze what predicates are chosen from the planning task using
the different techniques described in this chapter. Table 13 shows the average

141

142

GENERATING PREDICATE SETS AUTOMATICALLY

T 218.2
L] 303.2
Satellite | 13105

7]1,0325
I 77.8

R | 548.1

Port 1919
4881
418
. 1569
TidvBot 328

6336
f11.1

199

Depots-Robots [7.9

04324
168

0234

Rovers 0162

12697

Figure 3T: Average time of the firet planning time in five different domains. The average time
is computed using the first planning time of 75 rune for each domain. In blue the average
of the first planning time of LaMarF is shown. In red the average of the first planning time
of AKFD (k=10 ueing a mamal technique to generate the predicate set is ehown. In light
brown the average of the first planning time of AKFD (k=10 ueing the Landmarke technique
to generate the predicate set is shown. In grey the average of the firet planning time of AKFD
(k=10 ueing the Relaxed Plan technique to generate the predicate set is shown.

7.5 SUMMARY

number of occurrences of each grounded predicate collected from the different
planning tasks. The results show that both techniques generate similar predicate
sets. However, the mumber of occurrences of each predicate collected for each
technique is different. Interestingly in most domains, there are some predicates
which are only collected using one of the techniques. Thiz means that the predicate
set generated is different depending of the technique chosen to generate it.

7.5 SUMMARY

In this chapter, we have presented a variation of Variable Resolution Planning
(vRP) which uses a generation technique that dynamically generates the predicate
set which is used to build predicate abstractions. On one hand, the Landmarks
based technique builds the landmark graph of the planning task by deploying
an exhaustive algorithm which checks if each predicate of the search space is a
landmark. The landmark graph is explored in order to collect the information about
the predicates which is used to generate the predicate set. This process is only
conducted during the first planning step of the planning and execution cycle in
order to avoid excessive time effort during the different planning steps. The time
needed to compute the landmark graph is excessive in some domains according to
the maximum planning time. Besides, the computation effort increases according
to the complexity of the planning task. In general, the Landmarks based technique
iz able to significantly decrease the computational effort of the search process if the
time required to build the landmark graph is not very high.

On the other hand, the Relaxed Plan based technique builds the relaxed plan for
the initial state of the planning task. The relaxed plan ie explored in order to

collect the information about the predicates added for each action of the plan.

The generation process of the Relaxed Plan always needs much lees time than the
Landmark based technique. This is an important feature in order to generate specific
predicate abetractions automatically as quick as possible. Additionally, predicate
abstractions decrease the computational effort of the planning task solving difficuls
problems automatically.

In conclusion, we can say that the automatic generation process of the predicate
set offers an important advantage against manual generation. This process can
generate a predicate set automatically according to the structure of the planning
tagk. This i= an important advantage in complex domains which are difficult to
analyze. Additionally, the predicate sets built using both generation techniques
can be used to generate predicate abstractions which can solve a large number

of planning tasks of the benchmark with similar results than the manual version.

However, the predicate sets are generated using a large number of predicates which

143

GENERATING PREDICATE SETS AUTOMATICALLY

Diomain Predicates Manual Landmarks Relaxed Plan
have-rock-analysis 0 384+15%6 20849

at 1 14+0 664+ 13.1
have-soil-analysis 0 337 x£1331 21883

Rovers empty 0 1M6+£15 0
calibrated 0 15.8+1.3 38+17

have-image 0 28444579 146£2.1

full 0 0 42.6+10.3

empty 0 Ted+428 488+ 244

Depots Robots at-pod 0 24109 M+25
at-robot 1 3B+ 16 488+24,4

free 0 3B+ 16 M+25

CArTies 0 0 13.8+28
gripper-obstacle 0 1046+£135 6.2+0.79

parked 0 2+0 0

base-pos 1 1026+141 192+ 06

ohject-pos 0 438+108 344057

gripper-rel 0 7+0 2805

not-pushing 0 1£0 0

TidyBot not-pushed 0 1+£0 0
cart-pos 0 1004+14.2 0.8+0.5

base-obstacle 0 1026+14.2 W0+05

holding 0 34405 3d4+06

on-cart 0 40 0
gripper-empty 0 1£0 34£05

pushing 0 0 0.8+0.5

clear 0 1128+ 3866 61.2+ 406

on-dock 0 528+547.7 0

Port. available 0 f.6+94 26+ 167
at 1 30+245 26+ 167

lifting 0 15+122 352+ 238

height 0 20,6+171 26+ 167

POWET-0T1 1 17,821 1Mm£15

Satellite power-avail 0 15+1.2 0
calibrated 0 19.8+22 M+15

Table 13: Average number of occurrences of each grounded predicate in the predicate set.

7.5 SUMMARY

can introduce an excessive simplification of the planning task when abstractions
are applied. This fact can degenerate the accuracy of the sequential abstract plans
incurring in more replanning steps. Then, there is room to improve both techniques
using the additional information collected about the predicates in order to build
better predicate sets.

145

Part 111

CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

This thesis sets out to prove our initial hypothesis:

It is poesible to solve a planning task in dynamic and stochastic
(real-world) environments using deterministic planning by generating
k-bounded plans by means of abstractions which are built removing
some predicates that represent future information about the
environment

This chapter summarizes the contributions over the state-of-the-art that we have
presented to prove this hyvpothesis.

8.1 CONTRIBUTIONS
The contributions of this thesis are grouped in three classes:
1. Variable Resolution Planning Model

In this thesis, we introduced the concept of Variable Resolution Planning (vRP),
a novel technique in which both the action space and the state space are pruned
by removing some predicates from the description of the planning task. We have
preserted a theoretical model to build and represent predicate abstractions for
deterministic planning. This work has been published in:

Moisés Martinez, Fernando Fernandez, and Daniel Borrajo (2012). “Variable
resolution planning through predicate relaxation” In proceedings of the ICAPS
workehop on Planning and Plan Execution for Heal World Systeme: Principles and
Practices (PlanEx). Atibaia, Sac Paulo, Brazil, (pages 5-12). (Chapter 6)

Moisés Martinez, Fernando Fernandez, and Daniel Borrajo (2013). “Selective
Abstraction in Automated Planning” In proceedings of Second Annual Conference

149

150

CONCLUBIONS

on Advancee in Cognitive Syetems (Cogsye). Baltimore, USA, (pages 133-147).
| Chapter &)

2. Variable Resolution Planning Planners

In this thesis, we introduced two approaches of Variable Resolution Planning based
on different techniques to generate the predicate set which is used to build predicate
abstractions. The first approach is based on generating the predicate set manually
(Chapter 6). The second approach is bazed on generating the predicate set using the
information about the planning task collected using two different data structures:
(1) the landmark graph; and (2) the relaxed plan (Chapter 7). Both approaches are
implemented by extending the Fast Downward planning system in the Abstract K
Fast Downward (AKFD) planning system which implements vRP over SAS™. This
planner has two extensions: (1) a first version of AKFD which deploys predicate
abstraction by choosing the predicate set and the horizon value mamually; and (2)
a second version which deplovs predicates abstraction where the predicate zet has
been generated antomatically and the horizon value has been chosen manually. This
work has been published in:

+ Moisés Martinez, Fernando Fernandez, and Daniel Borrajo (2016). “Planning and
Execution through Variable Resolution Planning” In Journal of Robotics and
Autonomous Systems, volume 83, (pages 214-230). (Chapter 6 and Chapter T)

3. Empirical Analysis

We provided a rich empirical evaluation of the proposed approaches for two different
tagks: (1) to solve different planning and execution tazks where the predicate set
iz chosen manually; and (2) to solve different planning and execution tasks where
the predicate set is chosen automatically. Besides, we have implemented a Error
Simulator which can introduce both more complex failures and exogenous events
in the environment during execution. Different domaine were used in our empirical
evaluation, including domains proposed in this thesi= and benchmarks from the
deterministic planning community. Besides, the PELEA architecture implemented
to conduct the empirical evaluation has been deploved as control system in different
real scenarios. This work has been published in:

¢ Luis J. Manso, Luie V. Calderita, Pablo Bustoe, Javier Garia, Moisés Martinez,
Fernando Fernandez, Adrian Homero-Garcée and Antonio Bandera (2014), “A

8.1 CONTRIBUTIONS

general-purpose architecture to control mobile robots®, In proceedings of the 15th
Workshop of physical agente (WAF), Ledn, Spain, (pages 105-116). (Chapter 5)

Moisés Martinez, Fernando Fernandez, and Daniel Borrajo (In press). “Planning
and Execution through Variable Resolution Planning” In Journal of RHobotice and
Autonomous Systems. (Chapter 6 and Chapter T)

Nerea Luis, Sofia Herreo and Moisés Martinez. “Robot Collaboration in a Warehouee
Environment through Planning and Execution” In The IJCAI-2016 Workshop on
Autonomous Mobile Service Robots, New York, USA. (Chapter 6)

151

FUTURE WORK

Throughout this thesis we have outlined ideas for future research. In this chapter,
we identify more general ideas of future work that apply to the thesis as a whole. We
have defined an approach that uses abstraction based on removing some predicates
in order to simplify the planning task. These abstractions are built removing some
predicates from the structure of the planning task after a horizon has been reached.
There are a number of ways in which this work can be extended.

9.1 IMPROVING THE PREDICATE SET GENERATION MECHANISM

Variable Resolution Planning can generate a predicate set using two different
mechanisms. Both techniques are able to extract critical information about the
predicates (number of oceurrences, relative order with the other predicates, distance
to the goals, ete), but we have only collected the fact nmame of the grounded
predicates. This means that the predicate sets generated for both techniques build
similar predicate sete for all problems of each domain. Besides, in some domains
the time needed to generate the predicate set iz huge depending of what generation
technique iz used.

A future direction iz to improve the generation techniques in two ways: (1)
decreasing the time needed to generate the predicate set by analyzing other different
landmark graph generation algorithms, like the landmark generation method
introduced by Keyder (Keyder et al., 2010); and (2) increasing the information
used to generate the predicate set in order to choose a smaller predicate set
where predicates are more related with the structure of the problem. It would be
really interesting to analyze all information which can be collected from both data
structures in order to choose the best predicate set. This fact can help to build
better abstractions which decrease the number of replanning step during execution
and increase the accuracy of the sequential abstract plan.

153

154

FUTURE WOREK

9.2 AUTOMATICALLY CHANGING THE PREDICATE SET DURING EXECUTION

As we describe below, Variable Resolution Planning solves a planning task in a
planing and execution cycle where the complexity of each planning step is decreased
by using a predicate abstraction. VRP generates a sequential abstract plan for
each planning step, but the accuracy of the plan can be degraded depending of
which predicates are chosen to build the predicate abstractions. Our approach
uses different antomatic techniques to build the abstraction, but these mechanisms
choose all ungrounded predicates of the candidate set. The selection technique does
not perform any analysis of which predicates are better than others or any analysis
in order to detect if the abstraction generated by one predicate dominates other
abstractions. In addition, the structure of the planning task can change depending
of the evolution of the planning and execution cycle. These changes can produce that
the predicate set computed in the initial state could not be the most appropriate
one in other steps of the planning and execution cycle.

An interesting improvement to Variable Resolution Planning consists of computing
different predicate sets during planning and execution in order to generate a good
abstraction according to the state of the planning task. This improvement should
compte a new predicate set whenever the system detects that the planning task has
changed enough. For instance, the predicate set generation process can be performed
periodically if the generation time is not very high. In theory, this process should
compute better abstractions which increase the accuracy of the sequential abstract
plans decreasing the number of replanning stepa.

9.3 AUTOMATICALLY CHANGING THE HORIZON DURING EXECUTION

As we describe below, the horizon value k has an important influence on the quality
of the plan before the horizon and even over the number of replanning steps. Small
k values decreaze the quality of the plan before the horizon, increasing the number
of replanning steps. Meanwhile, large k values increase the quality of the plan before
the horizon, but planning time increases too. Besides, we believe that the value of the
horizon has some influence over the planning time, which is extremely important
in robotic environments where robots cannot spend much time on reasoning. In
general, emaller values of k decrease planning time, meanwhile higher values of k
increase the accurate of the abstract plan increasing the planning time.

It would be interesting to analyze the behaviour of Variable Resolution Planning
if the horizon value iz changed dynamically during planning and execution. The

horizon value can be computed using information about the current state, the size
of the last plan and/or the number of goals that must be reached. In our opinion,

9.4 HEURISTIC FUNCTIONS BASED ON VARIABLE RESOLUTION PLANNING

if the value of k is changed dynamically during execution, VvRP could decrease the

number of replanning steps and increase the quality of the plan before the horizon.

9.4 HEURISTIC FUNCTIONS BASED ON VARIABLE REsoLUTION PLANNING

Heuristic functions are commonly used in Automated Planning to estimate the cost
from a given state to a goal state. Red-black heuristic (Katz et al., 2013) tries to
improve the delete relaxation heuristic selecting which variables are relaxed. This
heuristic function divided the set of state variables into two disjoints sets (red and
black). During the planning process, red variables are treated as in delete relaxation
abstraction while black wariables are not relaxed. Predicate abstractions can be
tuned depending on what variables are marked as red or black. In Chapter 6, we
described the concept of Predicate Abstraction which removes some predicates
from the structure of the planning task in order to build an abstract space simpler
than the original one.

A future direction consists of generating a heuristic function bazed on combining
Variable Resolution Planning and GraphPlan. The predicate abstraction generates
an abstract action space where some predicates are removed from both the
preconditions and the effects of the actions. The Abstract Relaxation heuristic
consists of generating a relaxed plan using two different action spaces in a
Graphplan-style algorithm. Then, the relaxed plan is built using original actions
in the first part of the relaxed plan and abstract actions in the final part of the
relaxed plan. This approach decreases the information used in the final part of the
relaxed plan, but preserves full information in the first part. In our opinion, this
heuristic function could increase the information used to build the relaxed plan
which can be useful to build a better heuristic function.

9.5 VARIABLE RESOLUTION PLANNING IN REAL-WORLD SCENARIOS

Variable Resolution Planning has been designed to solve real-world problems. In this
thesiz, we have tried to simulate real-world environments by introducing two types
of events: (1) probabilistic actions which simulate errorz in the action’s execution
related to the structure of the environment or due to failures in the actuators of
the automatic systems; and (2) exogenous events which try to simulate the effects
produced by other agents and/or the process of collecting unknown information
about the environment.

It would be interesting to deploy VRP in combination with LPELEA architecture
as a deliberative controller of a real robotic system or an automatic agent for

155

156

FUTURE WOREK

a video-game. In both cases, the interaction with the environment is one of the
most important processes, because the control system must face two important
problems: (1) changes in the environment which are produced to other agents
(robots, humans, agents, etc) which cannot be predicted, and (2) quick responses
to offer a realistic interaction with the environment. Besides, new information can
be dizcovered during execution changing the structure of the planning task and/or
the goals of the problem. Finally, it is important to emphasize that real-world
environments are described using a large amount of information which increases
the complexity of the environment and therefore of the problems to be solved in
these environments. In our opinion, VRP can be used to solve complex problems as
we have shown previously.

Part TV

APPENDIX

THE ABSTRACT K FAST DOWNWARD PLANNER

The Abetract K Fast Downward (AKFD) planner is based on the Fast Downward
planning system (Helmert, 2006). This planner accepts as input planning tasks
encoded in the propositional fragment of PDDL 2.2 (Fox and Long, 2003), including
ADL conditions and effects, derived predicates (axioms) and action costz (Helmert
and Geffner, 2008). AKFD consists of four separate components:

The translation module transforms a propositional planning task encoded in
PDDL into a finite domain planning task.

» The preprocesor module builds a set of data structures using the finite-domain
representation generated by the translation module. These data structures
represent the domain transition graphs of the state wvariablez and the
successors generators, one for each action set. This module uses two input
parameters: (1) the output file generated by the translation module and (2)
the predicate set which can be generated manually or automatically.

#» The predicate generator module iz a variation of the search module that
generates the predicate set used to build the abstract planning task. This
module can build the predicate zet using two different data structures: (1) the
Landmarks graph and (2) the Relaxed Plan.

#» The search module generates an sequential abstract plan using a greedy
best-first search in order to find a solution as quickly as possible.

These components are implemented as separate programs which are executed in
an specific sequence. The order in which these programs are executed defines the
version of vRP. Figure 38 shows the execution sequence of the different versions
of vRr. The manual version of VRP (AKFD) consistz of a sequence of three
modules. The translation and preprocesor modules correspond to the Predicate
Generation phase and the search module corresponds to the Search Algorithm
phaze. Meanwhile, the dynamic version of VRP (AKFD) consists of a sequence of five
modules. The translation, preprocesor and predicate generation modules correspond

159

160 THE ABSTRACT K FAST DOWNWARD PLANNER

to the Knowledge Gathering phase. The second preprocesor module corresponds to
the Predicate Generation phase and the search module corresponds to the Search
Algorithm phase.

AKFD
(; ;
1 1
' Translation !
: :
1 1
1 1
1 1
1 1
1 1
Knowledge { ' Preprocesor "
Gathering : :
i ;
1 1
1 1
1 1
1 1
i | Predicate Generator | |
1 1
1 1
\. AKFD ' '
£ " i '
: P :
' Translation : : :
Predicate i i E i
Generation : ! ' !
1 1 1 1
1
! Preprocesor E i Preprocesor E
N ; i ;
£ ' i '
1 1 1 1
1 1 1 1
Search : Search ! : Search !
Algorithm] E eare i E eare i
] P i
\

Figure 38: Execution sequence of the different version of VRP.

HOW TO DEPLOY THE LIGHT PELEA ARCHITECTURE

This Annex describes how to download, configure and use the LPELEA architecture
described in thi= dissertation. The LPELEA architecture iz made available under
the GNU Public License (GPL). If you want to use the architecture in any way that
is not compatible with the GPL, vou will have to get permission from the author
of this dissertation.

B.1 INSTALLATION CUIDE

Then, it is possible to use the LPELEA architecture in any operative system.
However, we recommended to use in Limux (Ubuntu 14.04 o higher) which iz the
main platform for which the architecture is developed and tested.

» Step 1: Installing Java

The first step consists on installed Java version 1.7 or higher using the next
commands (this sequence of commands are for Ubuntu 14.04 or Debian 8).

$ sudo echo "deb http://ppa.launchpad.net/webupd8tean/java/ubuntu xenial
main" | tee fetc/apt/sources.list.d/webupdStean-java.list

$ sudo echo "deb-src http://ppa.launchpad.net/webupd&tean/java/ubuntu xenial
main" | tee -a fetc/apt/sources.list.d/webupdfteam-java.list

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys
EEA14886

$ sudo apt-get update

$ sudo apt-get install -y oracle-javaT-installer

» Step 2: Installing dependencies

The second step consiste on installing some important dependencies which are
necessary to download and compile the LPELEA architecture.

$ sudo apt-get install maven git

161

162

HOW TO DEPLOY THE LIGHT PELEA ARCHITECTURE

» Step 3: Download LPELEA source code

The third step consists on downloading the source code. We recommended to
define a destination folder (DIRNAME) which must be empty if exists. If the
destination folder does not exist, it will be created by the clone command.

$ git clone https://bltbucket.org/momartin/pelea.git DIRNAME

» Step 4: Compiling the source code

The four step consists on compiling the source code using the next commands.

$ cd DIRNAME
$ mvn compile

» Step 5: Integrating the AKFD planning system

The five step consists on integrating the AKFD planning system into the
LPELEA architecture (This step is optional, because you can use another
planner developing if you implement a wrapper). We are going to download
and compile the planning system. We commonly locate the different planning
systems into the planners folder inside to the folder in which the architecture
have been downloaded in the step 2. But, the planning system can be located
in a different folder. Linux iz the main platform for which the planner is
developed. All features should work without restrictions under Linux. We
recommended to used the decision support node in a Linux machine.

$ sudo apt-get install cmake g4+ g++-multilib make python

$ flex bison

$ git clone https://bitbucket.org/momartin/akfd.git DIRNAME
$ cd ./planners/akfd

$./build.py

B.2 ConrFicURING AND RUNNING LPELEA

The LPELEA architecture iz composed of a set of nodes which are interconnected
between them. In order to run each node, it is necessary to define a XML
configuration file. This file describes a set of properties which are used by the
different nodes which are part of the architecture. These properties are defined
ueing term nodes. Each term node has two attributes: (1) a name which describes
the name of the property; and (2) a value which describes the value of the property.
An example of a configuration file iz depicted in Figure 39. This example shows
a set of global properties and a set of properties which are specific for the node
identified as AKFD. Commonly, each node has a set of specific properties.

B.3 HOW TO RUN LPELEA

<Txml wersicn="1.0" encoding="UTF-2" standalone="yes"7>
<configuration>

<term value="192.168.1.100" pame="IF"/»

<term value="30520" name="FORT"/»

<term value="NOT" name="TEMPORAL"/>

<term value="/home/plg pelea/problems/warehouse/domnain. pddl" name="DOHATHN"/>

<term value="/home/plg pelea/problems/warehouse/pll.pddl" name="FROBLEM"/ >

<term value="/home/plg/pelea/experiment/" name="OUTFUT_DIR"/>

<term value="/home/plg pelea/temp/" name="TENF_DIR"/»

<term value="AKFD" name="NAME"/»

<term value="1" name="ROUNDS" />

<term value="PARTIAL" name="STATE"/»

<term value="0H" name="DEBUG" />

<nodes>

<node type="plamer" id="AKFD"»
<term value="AFFD" name="FLANNER_NAME"/»
<term value="/home/plg pelea/planners/akfd/" name="FLANNER_DIR"/>
<term value="org.pelea.planners.AKFD" name="FPLANNER_CLASS"/»
<term value="0" name="FLANNER_MODE"/>
<term value="1000" name="MAX_FLANNING_TIME"/»
</node>

</nodes>
<fconfiguration>»

Figure 39: Example of a configuration file of LPELEA architecture.

B.2.1 GrLoBaL PARAMETERS

The global parameters define properties which are common to all nodes. Table 14
shows the meaning of the global properties.

B.3 How Tto runw LEELEA

This section describes how to run a node in LPELEA architecture. The meaning of
the options is:

+ c: XML configuration file.

n: Unique name of the node. This corresponds to the id of the node in the
configuration file.

« p (optional): Numeric id for job generation. Thiz parameters is only used to
execution and monitoring nodes.

163

164

HOW TO DEPLOY THE LIGHT PELEA ARCHITECTURE

MName Type Diefanlt value Description

IF String The host name in which the monitoring node is
running.

PORT Int The port on which the monitoring node accepts client
connections.

TEMPORAL Enumerate NOT The type of actions. This means that each action has
a maximum execution time. The available values are
NOT (0) and YES (1.

DOMAIN String The location of the PDDL domain file.

FROELEM String The location of the PDDL problem file.

OUTPUT_DIR String Jtemp The directory inwhich LFELEA output files are stores.

TEMF_DIR String JStemp The directory in which LPELEA temporal files are
stores.

NAME String LPELEA the name used to identify information in output files.

ROUNDS Int 1 The number of whole execution of the problems.

STATE Enumerate FULL The structure of the state information collected to the
everution nodes. LPELEA allows two types of states:
(1) Full (FULL) which means that each execution
node send global information about the state of the
environment; (2) Partial (PARTTAL) which means that
each execution node send partial information about the
state of the environment.

DEEUG Enumerate OFF Enable debug information in the nodes. The available

values are OFF (0) and ON (1).

Table 14: Global properties of the LPELEA architecture

Java -jar LPELEA.jar -c <file> -n <name> -p <numeric_id>

DETAILED RESULTS FROM CHAPTER 6

In this appendix, we show the detail results for the different planning domains used
in the empirical evaluation of the Chapter 6.

.1 DETAILED RESULTE FOR HOVERS DOMAIN

Planner M Problem
rovers 86 Tovers 3T rovers 98 rovers 99 Tovars 40
{14.50.40) {14.80.40) {14.85 57) {14.55.62) [14.100.58)
Fis) B804 401 4121 433 2365+ 1.8 2571+13 3548422
T(s] 1132542029 T12554+ 11455 32051 +23a7 3342148454 440612 + 8721
LAMAF R 458454 TE.2D 473 592473 a8.2+51 TO.14 102
A 32364343 E13.30+ 289 4328 +423 488.8 £321.2 53084233
] 15,040,015 15,0,0,0/15 15,0,0,0/15 15,0.0,0/15 15,0,0,0/15
Fis) 114401 189410 23a4+01 120 +00 205402
T(s] 1932146563 43TEZ+4+23375 328974+ E8393 24SRE4T45E ATHN T 411003
(];u:Dn] R 184.8 +£580 B0+ 1468 15204383 1428 +37.6 1886 +44.5
A S51E+ 1149 Q094 + 3286 MFB+£502 &d452 + 70T EFbd + 662
] 15,040,015 15,0,0,0/15 15,0,0,0/15 15,0.0,0/15 15,0,0,0/15
Fis) M4+01 186 +001 242402 192441 200 4+00
T(s] TEFA+14dE 18324 42204 17e2B8+ 1843 1556242179 707 +£4157
(];u:i] R Tie+11.0 12324134 E40478 B2+ &5 1M10+175
A 411.4 +£30.4 e66d + 51.8 dFd 04323 aldE +293 57164455
] 15,040,015 15,0,0,0/15 15,0,0,0/15 15,0.0,0/15 15,0,0,0/15
Fis) 1M3+02 186 +001 240401 206400 L1 +0z
o T(s] 504 6+ 895 1313042044 1517242578 1289141346 20504 +454.5
[k=10] R S5E34+89 I0E+ 148 Fizti1z2e a2 4101 8444193
A ITT.T+4809 His 4447 4758 +3466 S04 E+ 633 52424 390
] 15,040,015 15,0,0,0/15 15,0,0,0/15 15,0.0,0/15 15,0,0,0/15
Fis) M4+01 184 £001 254402 21.0+01 209400
o T(s] 4617 +44.9 12244 42074 135.64+1387 1224541647 21827 + 2838
[k=20) R 454 +4.5 BE&+ 145] 8324105 8Rz4+11.5
A IS0E+127 0224528 4498 £41.7 5684 +506 S5B1.8+ 348
] 15,040,015 15,0,0,0/15 15,0,0,0/15 15,0.0,0/15 15,0,0,0/15
Fis) 11,5401 19,4 +0,1 24,9401 20,3401 301 404
o T(s] 440,64+ 30,6 11302 +1448 1359241445 11649+ 1780 215722432821
[k=20) R 434429 Bla4+ 110 a5 E4+T.0 TR0 4+1z4 01.3403
A Mig+I86 204632 dTES +122 5709 +£41.1 5FiF 4429
[+] 15, 40,0415 15,0.0,0/15 15,0,0.0/15 15, 40,0415 15,0.0,0/15

Table 15: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Hovere domain removing predicate have_image manually.

165

DETAILED RESULTE FROM CHAPTER 6

FPlannar M Freblem
rovers 36 rowars 37 rovars 28 covars 30 rovars 40
{14,80,40) {14, 50,40 {14,858 57) {14,08,62) {14,100,68)
Fis) 04 401 4121433 23654 1.8 571412 3548422
T(s) 1132542029 712554+ 11455 32051 + 2367 33421 + 845.4 440812 4 8721
LAMAF R 4584+ 54 TH.80 4 7.3 50.2473 88.24 5.1 Tl +10.2
A 32364 24.2 512.204+ 289 43284423 488.8 + 21.2 53084+ 233
[15,0,0,0/15 150,0,0/15 150,0,0/15 15,8,0,0/15 15,8, 0,0/15
Fis) 1.9+ 05 222441 283401 287 400 3.7+ 0.2
ARFD T(s) 460.1 £+ 978 1190241200 15169 + 2405 1260.5 + 820 17963 4 407.2
(k=2) R 465+ 10.7 814497 FLZ4 162 8544 3.4 FA.24+170
A 35484+ 672 504.04 B8 6 4518 + 584 SFd.&4 260 538.8 £ 59.1
[15,0,0,0/15 150,0,0/15 150,0,0/15 15,8,0,0/15 15,8, 0,0/15
Fis) 120401 2.2+ Q0 263 4+02 287 400 3.7+ a0
ARFD T(s) 444.6 + 285 10769+ 1557 122864 843 NMFRF L+ L2 18517 + 1438
(&=5) R 44.04+ 28 Fils4 9.3 SP.E+ 45 8224 7.1 F4.B + 65
A 350.24 158 57444 29.5 48615+ 1465 55884511 S5208 4177
(o] 15,8,0,0/15 150,0,0/15 15 0,8,0/15 15,8,0,0/15 15,8, 0,0/15
Fis) 1.6+ 01 .34+041 153401 2000 £ a0 3E+ 00
ARFD T(s) 5354 + 835 120554 23045 143714 2524 1ML L 1269 1693.2 4 1009
(k=10 R 5234+ A7 Ba24+ 180 cRE+ 129 e+ 105 &6+ 79
A 353.0 4+ 27.7 SERE4 TO.9 48604 55.5 S564.8 4 35.8 549.24422
(o] 15,8,0,0/15 150,0,0/15 15 0,8,0/15 15,8,0,0/15 15,8, 0,0/15
Fis) 137+ 0.0 19.7+ 41 270400 2.6+ 0.2 3E+ 00
ARFD T(s) 52624 821 1074.3 4+ 1484 13012 4 279.9 1184.2 £+ 105.0 1918.1 4+ 2734
(k=20 R 49.8 + 8O TaE+ 1.4 8L0+13.5 B1.EL 7.7 Fre+105
A 3744 4 205 Se5e+403 4458 4+ 39.0 6285 4 31.1 55124 27.9
[15,0,0,0/15 150,0,0/15 150,0,0/15 15,8,0,0/15 15,8, 0,0/15
Fis) 129401 2.7+ Q1 2B+ 00 N7+ 3.9+ 0.2
T(s) 5105+ FE& 1135841553 1478.2 4 187.1 18L&+ 1720 1834.54 2327
(‘_:g;lljj R 5004+ 74 R4+ 108 FLOL 9.5 TR4411.2 F4.24+121
A 3486 4+ 349 5690+ 284 50104496 55604 462 551.64+29.2
(o] 15,8,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 15,8, 0,0/15

Table 16: Comparing AKFD using different horizons to LAMAF and mGPT over five problems

from the Rovere domain removing predicate have_rock_sample manually.

C.1 DETAILED RESULTS FOR ROVERS DOMAIN

Plannar B Freblem
rovers 36 rowars 37 rovers 38 rovers 30 rovars 40
{14,80,40) (14,80,40) {14,85.57) (14,08 62) {14, 100 58
Fis) 804 +0.1 4121433 2365+ 1.8 257.14+1.2 3548423
T(s) 11315 4 202.9 712554+ 11455 32051 + 2367 3342.1 4 8454 440812 4+ 87211
LAMAR R 45.8 + 5.4 TE.804 7.3 59.24+7.3 B8.2 4+ 5.1 TO.1+ 102
A 323.64 24.2 512.20 4+ 289 43284 423 4868.8 + 21.2 530.8 4+ 233
O 15,0,0,0/15 15,8,0,0/15 15,0,0,0/15 1500,0/15 150,0,0/15
Fis) 108 4+0.2 159+ 01 B.e4+01 1564+ a1 289403
ARED T(s) BE0LTF 4+ 5780 16943.5 + 2651.3 121664 £+ I7PO5 B123.7 4+ 20374 1056004 £+ 32090
(k=2 R BFLO4574.3 1263.4 + 189.7 slas+ 1960 &19.4 4 1581 437241426
A 1559.4 + 8P&.1 2326643507 1M7d&4 3228 11974+ 310.0 9204 41993
O 15,0,0,0/15 15,8,0,0/15 15,0,0,0/15 1500,0/15 150,0,0/15
Fis) 107 +00 183 +01 230400 1564+ a1 ZRE4+ Q0
ARED T(s) 1325.4 4 140.5 I578.2 4 B11 28069 + 301.7 2129.6 4+ 1568 355204 3237
(k=5) R 13344141 1898 £ 56 13de+ 158 15884+123 1506+ 13.5
A 51484 6857 7452+ 146 51504 43.1 6802 4 54.5 5P88 £+ 520
O 15,8,0,0/15 15,0, 0/15 15,8,0,0/15 1500,0/15 150,0,0/15
Fis) 10.9 403 183 +01 23.F+0.2 157+ 0.2 284401
ARED T(s) To4.94 621 1403.2 41713 1623941153 15&0.8 + 63.9 227564+ 1747
(k=10) R Fl.2+74 10X+ 120 TR.E L+ 59 1624+ 4.8 PREL+EE
A 38504 23.3 50624512 4664 4 30.2 654.04323 S6R.e+ 125
O 15,8,0,0/15 15,0, 0/15 15,8,0,0/15 1500,0/15 150,0,0/15
Fis) 108 £0.0 174+ 1.8 234 400 157+ a1 345+ 04
ARED T(s) 54384 957 M54.7 + 2170 1537.1 £ 107.2 10583 + 1470 1800.1 £ 1300
(k=20) R S54.8 + 9.8 B854 + 158 7o.6+ 56 FEAL£115 Fd4 + 80
A 38364334 57e.0 4433 S0484 42 554.0 +34.2 Sdd.4 4 240
O 15,0,0,0/15 15,8,0,0/15 15,0,0,0/15 1500,0/15 150,0,0/15
Fis) 107 +00 183 +01 230400 1564+ a1 ZRE4+ Q0
T(s) 1325.4 4 140.5 I578.2 4 B11 28069 + 301.7 2129.6 4+ 1568 355204 3237
{::;Dn} R 13344141 1898 £ 56 13de+ 158 15884+123 1506+ 13.5
A 51484 6857 7452+ 146 51504 43.1 6802 4 54.5 5P88 £+ 520
O 15,0,0,0/15 15,@,0,0/15 15,0,0,0/15 1500,0/15 15,0,0,0/15

Table 17: Comparing AKFD using different horizons to LAMAF and mGPT over five problems

from the Hovere domain removing predicate have_soil_sample manually.

168

DETAILED RESULTE FROM CHAPTER 6

Planner M Problem
rovers 36 rovars 37 rovars 38 rovers 30 rovars 40
{14.80.40) {14.80.40) (14.85.57) {14.05.62) (14,100,858
Fis) 804 +0.1 41214323 23654 1.8 257.141.2 3548422
Tis) 11315 4 2029 F125.54+ 11455 32051 £ 2367 33421 + 8454 440812 4+ 8721
LAMAF R 45.8 + 5.4 TE.804 7.3 59.24 73 B8.2 4+ 5.1 To.l1+ 0.2
A 323.64 24.2 512.20 + 28.9 43284423 488.8 + 1.2 530.8 4+ 233
O 15,0,0,0/15 15,0,0,0/15 15,8,0,0/15 15,0,0,0/15 150,40/15
Fis) 11.2 400 176401 232402 218+ 00 ZRFT 400
AKFD Tis) BFO.3 41739 1424.2 41716 1861.5 4+ 144.4 168367 + 2883 19584 4+ 169.4
(k=12 R 8524+ 17.0 1004 4+ .9 B84 T3 PEEL 124 12324 7.2
A 35344 31.0 50404+ 692 4474 4+ 268 SEEEL+ B9 5518 +41.5
O 15,0,0,0/15 15,0,0,0/15 15,8,0,0/15 15,0,0,0/15 150,40/15
Fis) 11.2 400 194+ a1 MF4+ 25 21.84 0.2 IFE+ 00
AKFD Tis) FI0Q 4 955 1374.0 4+ 3346 16837.0 £ 1453 11708 £171.9 23144 4 2569
k=5 R FA2 4 10.3 9004 24.4 TRE+AZ 8124111 fa0+10.9
A IM.e4 323 SPEE L+ TTE 46154 21.8 53564+ 158 52164 375
O 15,0,0,0/15 15,0,0,0/15 15,8,0,0/15 15,0,0,0/15 150,40/15
Fis) 11.240.2 194+ a1 234400 178+ 0.1 etz
AKFD Tis) 5661 £ 7.0 13200 4+ 170.8 18357+ 191.9 12515+ 211.7 193294 1883
(k = 10) R 565+ 82 MEL+ 11T B0.24 95 O£ 151 B04+ 82
A MeT 4346 S00LE + 4B T 481.2 4 34.3 5580+ 484 5180+ 366
O 15,0,0,0/15 15,0,0,0/15 15,8,0,0/15 15,0,0,0/15 150,40/15
Fis) 11.2 400 17.3 4010 241+ 00 181 £ 00 5402
AKFD Tis) S804 11006 11569 + 60.6 1325.8 +205.3 11657 £ 207.9 1808.3 4+ 241.8
(k = 20) R 5424 11.3 Bid4 + 58 6504+ 105 814 4147 FEE+10.2
A 35924 261 58484452 4504 4 37.6 563.2 4 37.8 5496 £ 255
O 15.0.00/5 15,0,0,0/15 15,8,0,0/15 15,0,0,0/15 150,40/15
Fis) 13,043,2 1832 +0,1 235402 181 £0,1 321403
AKFD Tis) 406,04 58,4 1187, 9+ 97,4 1243, 04+ 91,7 1181+ 1468 1843.2 4 2129
(k = 30) R 19,8459 88, 24+7.5 59,8+4.4 TR0+ 08 Fl4 4+ 124
A 144 24.3 &20.0 4+ 395 45604+ 19.8 S5&7.5 + 488 539.24 21.8
O 15.0.00/5 15,8,0,0/15 15,0, 0/15 15,0,0,0/15 150,805

Table 18: Comparing AKFD using different horizons to LAMAF and mGPT over five problems

from the Hovere domain removing predicate calibrated manmually.

C.1 DETAILED RESULTS FOR ROVERS DOMAIN

Flannar B Problam
rovars 36 rovers 37 rovers 38 rovars 30 rovers 40

{14.80.40) {14.80.40) {14.85.57) (14.085.62) (14, 100.68)
Fis) 804 401 4121 4+ 3.3 23654 1.8 2571413 354.84 23
Tis) 11315 4 202.9 F1255 4+ 11455 3205.1 4+ 2367 33421 + 8454 440812 + 871
LAMAF R 45.8+ 5.4 TE.60 4 7.3 59.24 7.3 88.2 451 TO.1+ 102
A 32364 24.2 512.20 + 28.9 43284423 4B8.8 + 21.2 530.8 4+ 233
O 15,08,0,0/15 15,8, 0,0/15 15,4 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) eF+a 195401 228403 lTde+ 01 13.24 00
AKFD Tis) 1044.9 4 115.8 250394 3951 INTL4 1282 BT 4+19327F 256264 5004
k=5 R 1M4e+ 128 13744222 151.4 4+ 7.2 2851 +1836 2078 £ 403
A d4dd.4 4 40.9 540.4 + 51.8 60224354 1057.5 + 6064 TRa&+ 1326
O 15,08,0,0/15 15,8, 0,0/15 15,4 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) LA R 199403 2294+ 0.2 Td4 401 137+ 00
AKFD Tis) 5708 £+ 75.2 17164+ 1253 2084.5 + 5.8 13223 +154.4 13581 £ 175.1
(k= 10) R 6124+ 8.8 P36+ 75 PB4 4+ 5.2 1064 + 1268 1MLe+ 152
A 4754 245 4778 +305 557.64+ 234 E15&6 4496 635004 482
O 15,08,0,0/15 15,8, 0,0/15 15,4 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) B4 02 199402 229401 14.8 £ 0.1 13.24 00
AKFD Tis) 48714+ 713 12247 4 1607 17983 4 3251 10702 +£ 1136 PP5E £+ 534
(k& = 20) R 53.5+ 8.2 G621+ B9 84.2 4+ 157 B5.24 9.3 14+ 48
A .24 329 449.6+21.3 S540.8 + 608 534.2 4 29.9 56L&+ 136
O 15,8,0,0/15 15,8, 0,0/15 154 0,0/15 15,0,0,0/15 15 0,8,0/15
Fis) eF+a 200 + 03 232401 14.9 £ 0.1 143403
AKFD Tis) 4452 4 44.5 13372 41737 17861 4+ 2062 1011.52 + 89.4 PFES £ 1004
(k& = 30) R 482 4+5.2 Fl54+9.2 B4.2 4+ 1008 TREL AP P54+ 8.
A a8+ 181 456.8 +41.2 S5&1.6 £ 454 53084143 5308+ 47.6
O 15,8,0,0/15 15,8, 0,0/15 154 0,0/15 15,0,0,0/15 15 0,8,0/15

Table 19: Comparing aKFD using different horizone to LAMAF over five problems from the

Rovers domain removing 2 predicates chosen manually.

170

DETAILED RESULTE FROM CHAPTER 6

Plannar B Froblam
rovars 36 rovers 37 rovars 38 rovars 30 covars 40
(14.80.40) {14.80.40) (14.85.57) (14.08.62) {14.100.88)
Fis) B804 401 4121 £3.3 23654 1.8 2571 4+1.3 3548422
T(s) 1132542029 712554 11455 32051 £ 2367 33421 + 8454 440812 4+ 8721
LAMAR R 458 +54 TE.80 4+ 7.3 59.24 7.3 88.2 + 5.1 To.1+10.2
A 32364 24.2 512.20 4 289 43284423 488.8 4 21.2 530.8 4+ 233
O 15,8,0,0/15 15,0,0,0/15 15,0,0,0/15 15,08,0,0/15 15,0,0,0/15
FFPT(s) fdd + 013 19.08 £+ Q0P 22084019 13564 QOB 13.04 £ 013
T(s) 1067.56 £ 13295 150959 4+ 23726 32664 4 16849 247E.59 & 208.80 2668344 41249
(]:J:DS} R 11820 4 14.09 144.00 4 1284 154.20 4 9.85 20180+ 1695 2202043521
A 434.60 + 4255 56040 4 3944 &0820 42108 FBO.2O0 £ &69.51 B27.804 14365
O 15,8,0,0/15 15,8,0,0/15 15,0,0,0/15 15,08,0,0/15 15,0,0,0/15
FFPT(s) 9554+ 005 19.14 4+ 014 2227 4+ 028 13584 O0F 12894+ 01
T(s) &05.74 4 BO40 151806 + 118.05 2226644 14203 1325.84 +119.54 115100 £2202
{k*ffnj R &6.60 £+ 845 Bi404 692 10560 + &5.34 10204 P37 95.00 £+ 089
A 355.80 4 50.18 4ea.604 2322 S589.80 4+ 21.35 5806041773 549.40 4+ 2650
Fis) B0 4+ 034 19.40 4 020 22404 0.25 1376+ Q04 1300+ 008
AKED T(s) 433,86 + 6430 1270.05 + 8502 158256+ 31812 101810 4+ 14511 104444 4 190,81
(k = 20) R 4740 4+ 771 69.00 4 4.52 F4E0 4+ 14.74 BL204 1189 BE00 £ 1870
A 210041758 448,804 2205 518.604+37.23 54580+ 47.63 56600 4 1740
O 15,8,0,0/15 15,0,0,0/15 15,0,0,0/15 15,08,0,0/15 15,0,0,0/15
Fis) el 4004 19.44 4 Q16 22484018 137E+ Q00 1330 £ 007
AKED T(s) 48692 +47.04 1328604+ 95.15 1555.64 4+ 238.69 954.34 + 11241 Q75T+ 12238
(k = 30) R 50,00 £ 4.98 FLE045.92 FAO0411.52 FR.O0L 976 FEe0 £ 1044
A 3382041208 442604 1229 52680 + 4288 541.80 4+ 3708 538.00 4+ 4880
O 15,0, 0/15 15,8,0,0/15 15,8,0,0/15 15,8,0,0/15 15,8,0,0/15

Table 20: Comparing AKFD using different horizone to LAMAF over five problems from the

Rovers domain removing 3 predicates chosen manually.

C.1 DETAILED RESULTS FOR ROVERS DOMAIN

Plannar M Froblam
rovars 35 rovers 37 rovars 28 rovers 30 rovars 40
{14.80.40) {14.80.40) {14.85.57) {14.05.62) {14, 10058
Fis) 804 401 4121433 23654 1.8 2571413 3548423
T(s) 113254 2029 F125.54+ 11455 32051 + 2367 33421 4+ 8454 440812 4+ 87211
LAMAF R 458+ 54 T804 73 50.2473 #88.2 + 5.1 TO.1+ 102
A 32364242 512.20 + 28.9 43284423 486.8 + 21.2 530.8 4+ 233
[150,0,0/15 15,4 0,0/15 150,0,0/15 1500,0/15 150,0,0/15
Fis) fdd4 4013 19.08 £ 0.09 22084019 13.56 +0.08 13044013
T(s) 106756 + 13295 2599594 237.26 321664 + 18849 24T7RSY 4 20880 266E.34 + 41249
{:Zns; R 11820 4 14.09 144,00 4 1284 154.20 4 R.ES 20LEd £ 1695 220,20 4 3521
A 434.60 + 4255 560,40 4 3044 &06.20 4+ 21.06 TRO.20 4+ &0.51 827.80 + 14365
[150,0,0/15 15,4 0,0/15 150,0,0/15 1500,0/15 150,0,0/15
Fis) .55 + 005 1904 £0.14 22274026 13.58 £ 0.07 1299 £ 011
T(s) S05.74 4 8040 151806+ 11805 222664 + 14203 132584 4 119.54 1151.09 £ 2292
(kffﬂj R sa.60+ 845 83404692 10560 4+ 634 10820 4 .37 P5.00+ 089
A 355.80 £ 50.38 466 60 4 23.22 SECED 4+ 21.35 SER.E0 4+ 17.73 54940 4 2650
[150,0,0/15 15,4 0,0/15 150,0,0/15 1500,0/15 150,0,0/15
Fis) B0+ 034 1940 £0.20 22404 0.25 137 +0.04 1310+ 006
T(s) 43186 4 64.30 1270.05 + 86.02 158256 + 31812 1018104 14501 104444 4 190,81
(k*:;ln) R 47404 771 &P.00 £ 4.52 F4.B0 4+ 14.74 BI04 11.89 Be00 £ 1870
A 321.00 £ 17.58 448 80 4 22.05 518604 3723 S45.80 4+ 47.63 See0d 4+ 1740
[150,0,0/15 15,4 0,0/15 150,0,0/15 1500,0/15 150,0,0/15
Fis) el 4004 1944 £ 016 22484018 1378 +000 13304007
T(s) 48692 +47.04 1328 &0 + 9515 1555.64 + 23869 e54.34 + 11241 Q3757+ 12236
(k*:gu) R SO0.00+ 498 Fle0 £+ 592 Fio04£ 1152 FFO0 4978 Fee0 £ 1044
A 3320 4+ 1106 442 6 4 1229 526804+ 4286 54180+ 37.08 53800 + 4880
(o] 15 0,8,0/15 154 0,0/15 15 0,8,0/15 1500,0/15 150,0,0/15

Table 21: Comparing aKFD using different horizone to LAMAF over five problems from the

Rovers domain removing 4 predicates chosen manually.

171

172

DETAILED RESULTE FROM CHAPTER 6

C.2 DETAILED RESULTS FOR OTHER DOMAINS

Plannar Maicics Preblam
DRobots 2050 DRobots 2 10 2 DRobots 5 10 2 DRokots 5 10 3 DRobots 5 20 0
(5.25.5) (10.25.10) (10,100, 107 (10,100,109 (10, 100,20
Fis) 0.8+ 03 1.8 400 - 171.8 £ 214 -
Tis=) 48417 188+ 230 - 3E04.3 4 4532 -
LAMAF g B.3433 16.44+1.4 - 404456 -
A ET.2422 122.7 + 10.8 - 2156 +£27.9 -
'] 15,0,0,0/15 15,0,0,0/15 0,15,0,0/15 15.00.0,15 0,15,0,0/15
Fis) - - - - -
akFD)))))
k=2y R - - - - -
A - - - - -
] 0,0,15,08/15 0,0,15,0/15 0,0,15,0/15 0,0,15, 0,15 0,0,15,0/15
Fis) 0,54 +0,00 0,80+ 0,01 - 9,83 £0,02 15,144+5,18
AKED Tis=) 10,74 £2, 76 108,69 £12274 - 279727+ 791,87 6821,80 4+ 5272, 96
k=85 R 19,83 4534 12217 £139,05 - 281,50 4+ 80,50 377,32 +221,92
A B0, 17 £23, 37 445 50+ 534, 96 - 984,00+ 257,00 1200,44 4+ 790,41
] 15,0,0,0/15 15,0,0,0/15 0,0,15,0/15 10,0,0,5/15 10,0,0,5/15
Fis) 0,50 40,11 ae340,00 10,24 + 0,06 10,10 +£0,08 20,804+ 0,09
AKED Tis=) 7804237 27,74 +£531 TEPE, 20 £ 479,832 824,25 + 247,38 10028, 73 4+ 2340, 37
(k=10 R 13,50 £4,03 30,00 £5, 07 772,75+ 482,13 B1,17 424 30 470,004+ 109,43
A 69,334+ 6,75 166,00 +£19, 60 3810, 75 £ 2483 39 413,67 £ 108,£5 242787 £ 487,69
] 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0,15 10,0,0,5/15
Fis) 0,58 £0,01 0864000 10,384+ 0,05 10,28 £0,04 22544091
AKED Tis=) 58541,15 21,604+ 3,30 1207,44 + 739,41 437,54+ 43 26 S50139,74 +£10345, 82
(k=z2m R 10,17 £2,11 22504+ 3,69 100,00+ 47,69 41,17 +£4,52 1376,00+ 210,08
A FLET 3,00 133, 824+£11,71 622,33 4+ 235 05 251,83 417,22 E511,00+ 953,73
] 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0,15 §,7.0,0/15
Fis) 0,57 £0,01 087 4+0,00 10,93 £ 0,07 11,27 £0,22 -
AKED Tis=) 6 184+1,55 21,67 +£4,22 1133,78 4+ 817,92 410,65 + 58,70 -
(k=3 R 10,67 £2,87 067 £3,77 71,834+ 131,63 37,40 + 5,75 -
A 74,83 £12,72 140,32 4£11,26 477,33 4 230,47 236,60 +4, 32 -
'] 15,0,0,0/15 15,0,0,0/15 10,5,0,0/15 12,3,0,0/15 0,15,0,0/15

Table 22: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Depots-robote domain mamially removing predicate at-robot. The meaning of the
rows is the same as in Thble 4. In bold, we highlight the best resulte per row The problems’
complexity has been defined as: (i) the mumber of robote; (ii) the number of cells of the
grid; and (iii) the number of goale.

C.2 DETAILED RESULTS FOR OTHER DOMAINS

Planner Matrics Froblem
TidyBot 01 TidyBot 00 TidyBot 11 TidyBot 16 TidyBot 17
(1. 18, 4) (1. 20, 4) (1. 20, 4) (1. 20. 4) (1. 22. 4)
FFT(s) - 331 403 - LR -
Ti=) - 153.1 4+ 259 - 493 L 9A5 -
LAMAF R - 4.3 +0.8 - 183+ 11 -
A - 3B.54+08 - 110.4 + 141 -
] 0,15,0,0/15 15,0,0,0/15 0,15,0,0/15 15,0,0,0/15 0,15,0,0/15
Fis) - 31.2401 - - -
AKFD Tis) - ETINS 449997 - - _
k=23 R - 2194+ 1635 - - -
A - 4676+ 3459 - - -
] 0,0,0,15/15 15,0,0,0/15 0,0,0,15/15 0,0,0,15/15 0,0,0,15/15
Fis) 20.5+ 0.1 3o 402 30.7 402 308402 4B 7 +00
Ti=) 21088 + 2783 FI4E£ 953 21634410966 7SIES5+£ 51918 3I7TISS L1008
.g:':ns) R 1035+ 13.5 2201 £3.2 1028 £ 36.2 2467 +£ 1683 L3424
A 3454+ 165 TEA £ 9] 1568 +£1157 8555+ 5469 30274237
] 11.0.04,/15 15,0,0,0/15 12,0,0,2/15 1100415 120.0.2/15
Fis) 211402 3o 402 3z2402 il44ar 464402
Ti=) 13839+ 7114 41224672 1269.8 £455.1 2316345422 12749 £ 8429
{k*:fu; R GRS+ 349 122421 4024147 754 £ 1345 2684185
A 30724165 406453 214.6 £ 971 3431 4£842 1424 £1074
] 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 LO070 15,0,0,0/15
Fis) 219402 324 400 3ze40l 7402 481404
- Ti=) 835.4 4+ 2373 2467 + 838 022,53 +4134 Bi57+ 1882 E461 £ 214
(k=200 R 2814106 EE+2E IB.TE127 52463 128445
A 166.2 4+ 39.5 422419 154.8 + 539 1633 + 289 EO44+173
] 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 .00 ,10 15,0,0,0/15
Fis) 2214012 331 403 358403 3245400045 503403
- Ti=) FAES £ 3441 2149 + 861 1085.2 + 288.1; 810,24+ 2388 4BO.T+£1131
(e =30y R 1044137 58+28 306481 212474 8.2+ 25
A 212241204 442422 1686 4+ 27.9 13324+ 288 838429
'] 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,00/15 15,0,0,0/15

Table 23: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the TidyBot domain manually removing predicate base-pos. The meaning of the rows
is the same as in Table 4. In bold, we highlight the beet results per row. The problems’
complexity has been defined by: (i) number of robots; (ii) size of the environment and (iii)
number of goale.

174

DETAILED RESULTE FROM CHAPTER 6

FPlannar Meatrics Freblem
ports 5 & ports 05 30 ports 10 20 ports 10 40 ports 15 20
(5.20.10) (5.50.30) (10, 20, 20) (10.110.400 (1E.120.20)
Fis) L21al - 1el.1£22 - 135.7 £ 0.8
Tis) 5341 - 121214 3829 - 953.1 £ 2635
LAMAR R A541. - 98124 - 58424
A 148+ 25 - E0.EL5E - 44.94£1.2
C 150,40/15 0,15,0,0/15 150,405 8,150,015 150 0,05
Fis) - - - - -
- Tis) - - - - -
(e =2) R - - - - -
A - - - - -
C 0,0,0,1515 0,0,0,155 0,0,0,1515 0,0,0,1515 0.0,0,1515
Fis) L21al EEP L 0E 454401 2831 0.2 B2.54£01
ARFD Tis) 48101 QBES £ 2047 297541104 5221.9 £1201. 599.9 1+ 58.1
(& =5) R Atian 17759 83xle 207 £ 52 BF 409
A 11.7+09 2334105 49.7 4+ 41 101.25+ 0.8 427+ 15
C 150,80/15 15,0,0,0/15 150,80/15 15,0,0,0/15 150 0,0/15
Fis) L21al 695+ 00 4494+ 03 281.941.2 eLEL 00
P Tis) 2.1+ 06 GEL5 L PES 4736 4£159.2 4279541349 481.2 £ 288
ik = 109 R 0.¥+Q5 11.7+ 21 102447 1624045 &7+ 0.5
A 1271045 .34 157 535433 100.1+1.62 433422
C 150,80/15 15,0,0,0/15 150,80/15 15,0,0,0/15 150 0,0/15
Fis) L21al Foetod 443452 2TE.1 £0.7 657+ 0.2
P Tis) 240 715841642 21224406 4160.2 4 8549 4912 41046
ik = 209 R L7109 127432 &3xae 1654+34 T+ 1.7
A 1271045 Beitia 807+ 1.3 1013 +1.9 44.7+£1.2
C 150,80/15 15,0,0,0/15 150,80/15 15,0,0,0/15 150 0,0/15
Fis) 1.2102 a5.v L+ 08 452401 2778423 6754+ 0.2
P Tis) 251 1.8 7o4.3 4 2208 231.8 1182 3840.8 £ 12108 4783 1 2609
ik = 30) R 1.241.4 143+ 66 4.3+ 05 147 £ 52 8.3+ 4.0
A 120041032 BE.YL 15 5133109 1004 £ 0.8 43.1 £ 08
C 150,80/15 15,0,0,0/15 150,80/15 15,0,0,0/15 150 0,0/15

Table 24: Comparing AKFD using different horizons to FD and mGPT over five problems
from the Port domain removing predicate at. The meaning of the rows is the eame as in
Table 4. In bold, we highlight the best results per row. Besides, three values have been
defined to describe the complexity of the problem: (i) mumber of shipe; (ii) number of

pallet-ship and (iii) mumber of goals.

C.2 DETAILED RESULTS FOR OTHER DOMAINS

Plannar Matcics Froblam
satallite 1 satallite 2 satallita 3 satallite 4 satallite 5

{10, 132, 342) {10, 140, 348} {10, 132, 351} {11, 133, 327) {12, 132, 330)
Fis) o - - - -
T(s) - - - - -
LAMAF =3 - - - - -
A - - - - -
O 0,10,0,0/10 0,150,015 @,15,0,0/15 0,150,015 0,150,015
Fis) - - - - -
ARED T(s) - - - - -
k=z R - - - - -
A - - - - -
O 0,0150/15 0,0150/15 O,415 0715 0,0150/15 0,0150/15
Fis) 215824100 528,84 23.2 2488 4 9.3 218.8 4+ 0.7 1B3. 840, ¢
AKED T(s) 125864 £ 27109 247T38.8 4+ 31264 113807 +2534.3 4805+ 2173, 6 TEEE.25 4 36829
k=15 R 124.54+17.5 1083+ 224 1194 + 34.4 L7+ 186 Br.T+12 7
A 47, 949, 2 10285+ 187 977, 7 +26,5 8723417, 2 TRE, T+ 7,1
O 15,0,0,0/15 14,08,1,0/15 13,8,2 0/15 15,0,0,0/15 15,0,0,0/15
Fis) 24934 2.2 GOLEL 41.2 26594+ 154 244.7 4+ 4.7 -
AKED T(s) EPe54 4 139001 276563 £ 43161 9B383 4+ 22515 TE2A.84 1725 -
(k= 10) R 1007 £ 168 11234195 104.9 £ 68 B3.T+ 08 -
A o744 4 208 10397 4+ a7.2 1014.5 4 325 BR324+ 4 -
O 15,0,0,0/15 15,0,0,0/15 e1,.00/10 15,0,0,0/15 0,150,015
Fis) 2481 4+ 27 57el+ el 243.2 + 145 223.3 4 4.1 -
AKED T(s) EROAT + 4181 2EOBAY £ 9349 8881.8 +4129 107681 4+ 3820.5 -
(k= 20) R 843 + 65 107.3 4+ 8.2 1002457 87.5+ 3.5 -
A P8E54 145 10021 + 127 100354118 BT2.1411.2 -
O 14,08,1,0/15 15,0,0,0/15 14,815 0715 14,0,1,0/150 0,0150/15
Fis) 248.5 +3.8 56434171 M7 L1909 2181 +4.1 -
AKED T(s) S8TE4.8 44321 254517 4 2354.9 715954+ 3985 1464 7.2 4 5883.5 -
(k= 30 R 951 + &9 108.1 4+ 159 B8.6 + &9 1.2 43 -
A B38.24 198 8e8.14+ 196 880.84+ 121 BB7.5+ 334 -
O 13,8,2,0/15 12,8,2,0/15 14,3,1, 0/15 13,8,2,0/15 8015015

Table 25: Comparing AKFD using different horizons to FD and mGPT over five problems
from the Satellite domain removing predicate power-on. The meaning of the rows is the
same as in Table 4. For each problem has been defined three valuee which describe the
complexity of the problem: (i) the number of satellite; (ii) the number or directions and (iii)
the number of goals.

DETAILED RESULTS FROM CHAPTER 7

In this appendix, we show the detail results for the different planning domains used

in the empirical evaluation of the Chapter 7.

.1 THE RoveErs DoMAIN
Plannar M Faoblem
rovars 36 rovars 37 rovars 38 rovars 30 rovvars 40

{14,80,407 (14,80,40) (14,8557 (14,08,62) {14,100,88)
F(s) 1.1 2 0.0 153400 227441 181 £0.1 257 4+ 0.0
AFD Tis) GP09.9 £4210.5 35157.7 + 165484 14271.3 + 42341 P201.1 4+ 72274 142465+ 19628
(k=13 R F37.0 £ 4578 284604 13653 F49.3 4 2228 F20.3 £+ 5&7.1 &d13 4 BET
A 1303.7 + 8244 44147 £ 19230 12577+ 3408 126504 994.0 11523+ 1525
[2.0.0.0,/3 150,005 150,405 15,0,0,0/15 150,0,0/15
F(s) 12400 153400 227441 181 £0.1 257 400
AFD Tis) Meee L 482 A744.2 4 19008 34699+ 1728 1560.3 £ 10882 39268+ 2289
(k=15 R 1263 4+4.9 2PRT L1580 18004+ %1 121.04 854 173 +10.2
A 46604+ 10.7 108434+ 511.5 6303 4 2.6 4443 4+ 3711 &3R4+ 198
[150,0,0/15 150,005 150,405 15,0,0,0/15 150,0,0/15
F(s) 1.1 2 0.0 153400 232445 181 £0.1 256400
AFD Tis) &81.0 £ 675 1394241229 18057+ 1915 132364 831 2M47EBE6+ 26315
(k = 10) R FlL.AL a9 Moo+ 98 L0 4100 1027 + 6.8 MO+ 120
A 41804 80 S8&.0+ 278 480.0 £ 203 55804 8.8 SE7R7 L+ 38
[150,0,0/15 150,005 1504015 15 0,0,0/15 150,0,0/15
F(s) 1.3 400 155+ 0.0 231 4+4a1 164 £0.1 259403
AFD Tis) S504.2 4 50.9 1075.1 £ 978 1342.0 + 1855 PEIP 41804 1&650.7 £ 829
(k = 20) R 5L34 54 8434 7.8 693407 FETFL 130 Fi3 437
A 407 £1LE 55134200 4463 4+ 285 SOLT 706 S0834 221
[150,0,0/15 150,005 1504015 15 0,0,0/15 150,0,0/15
F(s) 13400 157+ 00 220441 163 +£0.1 261402
e Tis) 400.6 + 588 10545+ 1200 11588 + 2480 60044 457.5 12629 + BF1.5
(k = a0) R 423442 817+ 0.7 SO 4127 457 + 359 5604 395
A 34374136 584.2 4+ 269 4123 4347 350.3 4+ 244.5 383742593
[150,0,0/15 150,005 1504015 15 0,0,0/15 150,0,0/15

Table 26: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Rovers domain removing a predicate set generated ueing the Relaxed Plan

antomatically.

177

178

DETAILED RESULTSE FROM CHAPTER

L

Plannar B Froblam
rovars 36 rovers 37 rovers 38 covars 30 rovars 40
{14.80.40) {14.80.4070 {14.85.57) {14.08.62) (14.100.68)
Fis) 04 + 00 4121 £3.3 2365418 571413 354.84 23
Tis) 1132542029 F1255 4+ 11455 32051 + 2347 33421 4 8454 440812 4 8711
LAMAF R 45.8 + 54 TE.60 4+ 7.3 58.2 4+ 7.3 88.2 + 5.1 TO.1+ 102
A 323.64+ 24.2 512.20 + 289 43284423 488.8 4 212 530.84 233
O 15,0,0,0/15 15,0,0,0/15 15,0, 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) 13.41 4+ 0.34 20,19 £0.53 28.88 +0.22 21.844+ 016 52.8944 043
Tis) 2R ESE 4 138430 EB14.19 £ 1534.95 5024.64 4 947.92 &926.29 4+ 200250 &420.82 4+ B29.46
{:I:D‘zj R 326884 15815 S57FL22 4+ 13670 2EO.00 4+ 53.01 575004+ 17150 31142 4+ 4060
A BOL254 35613 1432004 320.74 ePR5E 4 119062 1406.00 4 40793 BO250 410032
O 15,0,0,0/15 15,0,0,0/15 15,0, 0,0/15 15,0,0,0/15 15,08,0,0/15
Fis) 13.200 4013 19.88 +0.04 29.08 £ 027 N424028 3301 £ Q45
Tis) e37104 15301 2250.78 £ 157.80 212808 £ 220.08 2061.12 4 37371 3250.354 37115
{:I:D:.j R 1023341698 189004 1279 1711+ 1362 16844 4 31.75 15643 4+ 1818
A 44178 + 7244 FAF.254 37.22 S500.44 4 34.74 EPF.EP 11912 &56.004 6817
O 15,0,0,0/15 15,0,0,0/15 15,0, 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) 1301 £ 601 20.07 +£0.25 .02 40009 544019 33144045
Tis) 57e13 4 8127 123851 £ 10879 149642 4 144.35 123518 £ 91.91 2050.00 4+ 31936
(k*:?lil} R &3.40 4+ 9.35 10210 4+ 230 8140+ 826 100204 7.98 PE204 1589
A 3752044374 60ATO 4+ 43,81 447,80 + 2057 56560 4+ 33135 57000+ 713
O 15,0,0,0/15 15,0,0,0/15 15,0, 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) 13.79 £ 077 2028 £ 0u60 29.30 £0.39 e84+ 011 33184+ 042
Tis) 430.54 + 8449 100912 4 10895 129933 4+ 143.21 1030.73 £+ P0.42 159671 £ 17246
(k*:gn} R 4680+ .28 8100 £+ .03 FOBO 4+ 833 BLEOL AT FE.E0 4+ B eD
A 323.00 + 25.88 537.504 25.62 476804+ 2007 54560 + 2836 5318044182
O 15,0,0,0/15 15,0,0,0/15 15,0, 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) 1328+ 012 2019 +£0004 29.59 £ 0.35 2.8240.31 3330440
Tis) 47916+ 7708 853.12 4 124.90 1243.85 4 151.88 102301 +126.82 1522304+ 13004
,3:':1;.;.} R 5218+ 875 TR3I 4 1058 6722 4+ BA2 BL11 £ 1015 FLI24 62T
A 35424 4+ 27.91 53633 4 39.42 446564 33.63 542133 4 .64 518.856 £ 2510
O 15,0,0,0/15 15,0,0,0/15 15,0, 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) 1366+ 014 20.91 £ 049 29.53 £ 0.41 21.94 4 0.25 33964 Q6T
AKFD Tis) 475.56 + 93.04 PRE05 + 154.29 124264 4 190.59 SE2.TE + 16471 1722.84 4 28797
(k = 50} R 51654+ 1027 EL11 41339 BATEL 1070 FEP2 L1307 B1.21 £ 1447
A 3533943316 559.564 3832 460.78 4+ 47.70 555.86 £ 47.5¢ 543114 4 2765
O 15,0,0,0/15 15,0,0,0/15 15,0, 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) 14.29 + 007 231E 4001 a4 £002 23054010 5804029
AKFD Tis) SO0X11 4+ f0.60 1074.21 £ 17851 113684 £ 170,31 107621 + 154,89 1568.35+ 21649
(k= 100 R 52804071 B340413.27 &020 4+ .31 BrL&0 £ 1183 FAL53 41007
A 34540 4+ 31.67 S5E004 30000 dad. 80 4 2220 535.90 4+ 3548 511.904 2434
O 15,8,0,0/15 15,08,0,0/15 15,8, 0,0/15 15 0,8,0/15 15 0,8,0/15

Table 27: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Rovers domain removing a predicate eet generated ueing the landmark graph

antomatically.

D.2 THE DEroTs ROBOTS DOMAIN

D.2 THE DEPOTS ROBOTS DOMAIN

Plannar M Problam

D'Robots 2 05 O DRobots 2 10 2 DRobots 5 10 2 DRobots 5 10 3 DRobots & 20 O
(5.25.5) {10.25.10) (10,100,107 {10, 100,107 {10.100.20)

Fis) 08403 1.8400 - 171.8 4+ 234 -
t{s) 48417 18.8+ 230 - 356043 + 4532 -
LAMAF R B.3433 18.4 +1.4 - 404 + 58 -
A BY.24+ 22 122.74+10.8 - 215.6 + 27.9 -
[150,0,0/15 15,0,0,0/15 3,150,015 15.0.00/15 8,150,015
Fis) a7+ 00 1.240.0 - - -
ABED T(s) 27394 3454 1324 417.3 - - -
(k=12) R SELO 4+ Fa4T 187+ 196 - - -
A B4A7.0 £ 10290 28534222 - - -
[150,0,0/15 15,0,0,0/15 0,0,150/15 O,0,150/15 0,0150/15
Fis) ar+al 1.1 £ - 139402 -
ABED T(s) et 16 47.24 1.1 - 5975.9 4 25456 -
k=5) R 230433 54.5 + 0.5 - 622042660 -
A B0+ 17T 198.5+ 65 - 2030.0 £ BP0 -
[150,0,0/15 14,08,1,0/15 0,0,150/15 12,0,3,0/15 0,0150/15
Fis} ar+al 1.2441 14.1 £ 41 155+ 1.1 -
ABED T(s) a&E4 05 PB4+ LT 20255 + 12364 6784 +150.2 -
(k= 10) R 122415 BAF 4+ Fer 27041270 683+ 154 -
A ca04 43 4363 4 365.3 1017.54+571.5 3587 + 654 -
[150,0,0/15 15,0,0,0/15 14,8,1,0/15 15,0,0,0/15 0,0150/15
Fis) a7+ 00 1.2400 154 + 1.8 14.5+ 0.4 0.2 +08
ABED T(s) as+1.1 189423 28677 + 12561 4618 4 39.5 1022164+ 49638
(k= 20) R 123421 No+2e 2663 4+ 1308 453 4+ 4.1 383104 230.7
A Flat 24 1527+ 5.0 154004 Feld 8 283.7 + 21.5 226204+ 14855
[150,0,0/15 15,0,0,0/15 15,8, 0,0/15 15,0,0,0/15 12,08,3,0/15
Fis) ar+al 1.2400 14.5 4+ 1.1 150+ 0.5 3.0 +08
ABED T(s) O+ 2e 17.241.2 11233473410 Era B v 5159056 + 26543.3
(k = am) R 127453 18.2 4+ 1.7 FO0 4+ 231 3534+ 48 1650.04 12763
A Fl.i433 T42043.3 IPe0453.21 257.0 +50.3 10281.04 63213
(o] 15 0,8,0/15 15,8,0,0/15 10,8, 50/15 15,0,0,0/15 4.4.7,0/15

Table 28: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Depots-Robots domain removing a predicate set generated using the Relaxed Plan

antomatically.

179

180

DETAILED RESULTE FROM CHAPTER T

Plannar B Froblam

DRobots 2 05 O DHRobots 2 10 2 DRobots 5 10 2 DRobots 5 10 3 DRobots 5 20 O
(5.25.5) {10.25.10) {10.100.10% {10, 100.10) {10.100.20%

Fis) 08403 1.84 00 - 171.84 234 -
s} 484+ 1.7 1B.8 + 230 - 356043 + 4532 -
LAMAF R B.3433 18.44+1.4 - 404458 -
A BEY.24+22 122.7+ 10.8 - 215.6 + 27.9 -
O 15,0,0,0/15 150,0,0/15 3,150,015 15.40.0/15 O,15,0,0/15
Fis) a4 ae+ ol - - -
ARFD s} 49.8 +41.9 2967 4 217.1 - - -
(k=12 R Q4.7 + 7.9 33864+ 2483 - - -
A 177.3+ 1443 SE0E £413.0 - - -
O 15,0,0,0/15 15 0,8,0/15 3,015,015 0,015 0715 3,015, 0/15
Fis) 1.01 +0.2 L34 001 21.EB+009 2le4 0l #1.1+7.935
ARFD s} 16034+ 27 615 4+ .40 1365864 2345.3 2B0M.9 + 19977 14811.1 4+ 15433
(k=15 R 03 +58 FAT 108 14432 4 10u.2 4.7+ 211.8 TED.T + 1834
A 1057+ 162 254.3 4+ 15.9 47638 + 5434 9557+ 6136 2832.5 + 435.2
O 15,0,0,0/15 15 0,8,0/15 4006710 15,0,0,0/15 80,8 0/15
Fis) aFfan 13400 3.2+ 0.1 215400 682+ 84
ARFD s} 594+ L8 241+ 089 633.1 £7.03 BET.7 4+ 283 29541.5 4+ 28438
(k= 10) R 10.7 433 EF4+13 4.5 4 05 BP.4 434 1447.7 4 3456
A 697 + 105 1433 £ 102 3805+ 285 484.5 4+ 38.50 F181.5 4+ 139210
O 15,0,0,0/15 150,0,0/15 15,4 0,0/15 15,0,0,0/15 15,0,0,0/15
Fis) LE-E NN 13400 FAR-E YN | 2.7 02 -
s} Fd4 25 181438 B0d.4d 41807 451.2 + 445 -
{k_fgn} R 133 451 17.64+4.24 59.4+ 184 44.7 4+ 56 -
A 743442 14544116 435.3 4+ 1123 25654 31.5 -
O 15,0,0,0/15 150,0,0/15 15,4 0,0/15 15,0,0,0/15 0,015,015
Fis) LE-E NN 1440 - 22.540.2 -
- s} 82412 24.1 + &7 - 38T.B+ 1107 -
(k = 30) R 1.9+ 21 244 4+ 64 - 38.34+11.2 -
A TP+ 132 13274152 - 233.34+ 224 -
O 15,0,0,0/15 15 0,8,0/15 3,015,015 15,0,0,0/15 3,015, 0/15

Table 29: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Depots-Robots domain removing a predicate set generated ueing the landmark
graph auntomatically.

D3 THE TIDYBOT DOMAIN 181

D.3 THE TipyBoT DOMAIN

FPlannar M Problam
TidyBot 01 TidyBot 00 TidyBot 11 TidyBot 16 TidyBot 17
(1. 18. 4 (1. 20. 4) (1. 20u 4) (1. 20. 4) (1. 22. 4)
Fis) - 331403 - &1 £ 000 -
T(s) - 153.1 4+ 25.9 - 9493 4 Q15 -
LAMAF R - 4.34 08 - 18.34+1.1 -
A - 3B.5+ 08 - 110.4 + 141 -
[0154015 150,0,0/15 0,150,015 15,0,0,0/15 3,150,015
Fis) - 443 4+1.4 - - -
AKFD T(s) - 1725.0 + 667.6 - - -
(k =13) R - S804 236 - - -
A - 11504532 - - -
o - 12,0,2,0/15 - - -
Fis) - 447 + 0.5 458+ 0.5 424 400 gil1t 02
AKFD T(s) - 723154 2369 TR 6+ 6ETT 54482 4 27536 21032 4 805.2
ik =15) R - 233482 BP0+ 220 189.0 £ 452 453 4+ 14.3
A - BB 3 4+ 207 26204 &40 sda04+ 1271 1657+ 428
[- 150,0,0/15 12,08,2,0/15 50.10,0/18 15,8, 0,0/15
Fis) 295413 43164+ 00 44.4 4+ 0. 4274+ 01 ela4 0l
AKFD T(s) 5442.3 4+ 28118 P55 41569 1082341413 25377 + 6412 205944 4194
(k = 109 R 2EL5 41465 125454 343447 885+ 225 4704+ 9.9
A 13231.0 4 8500 s0.7 + 168 17334168 423,54 QL5 204.7 4 54.9
(o] 120,205 15 0,8,0/15 15,8,0,0/15 12,0, 2,015 15,8, 0,0/15
Fis) R.0+47 447 + 0.6 464+ 1.0 43.7 4+ 0.8 edd 4 00
AKFD T(s) 486124+ 83 25224424 13425 4 FO2.2 1007.8+ 1378 4943 4+ 1874
(k = 209 R 223445 Fd414 4.7+ 223 315445 100+ 4.3
A 18X0+11.0 480437 2193 4+ 903 Nedtad eBI 4 B2
[150,40/15 150,0,0/15 15,08,0,0/15 11,0,4,0/15 15,8, 0,0/15
Fis) 93+0a2 443 + 0.1 484+ 0.9 44.2 4 1.1 eal 4 02
T(s) 62654 2014 18134153 Fli24 2410 854.0 4+ 51.1 514241316
(‘j:l:m;lljj R I00+99 474+ 05 W0F+7.6 2534 1.2 10.3 4 21
A 198.3 4+ 720 427 +12 1493 4+ 294 159.7 £ 180 TROL+ES
(o] 150,40/15 15 0,8,0/15 15,8,0,0/15 15,0,0,0/15 15,8, 0,0/15

Table 30: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the TidyBot domain removing a predicate set generated using the Relaxed Plan
antomatically.

182

DETAILED RESULTSE FROM CHAPTER

L

Plannar B Froblam
TidyBot 01 TidyBot 0D TidyBot 11 TidyBot 16 TidyBot 17
1. 18. 4) {1. 20. 4) (1. 20. 4) (1. 2. 4) {1 232. 4)
Fis) - 331403 - &0 +00 -
T(s) - 153.1 4+ 259 - 493 4+ 935 -
LAMAF R - 4.34 0.8 - 18.3 + 1.1 -
A - 3B.5+ 0.8 - 110.4 4 14.1 -
O 415 0,015 15,0,0,0/15 0,150,015 15,0,0,0/15 @,15,0,0/15
Fis) - 31,23 40,05 - - _
ARED T(s) - 6739, 46 £ 4999, 70 - - _
(k=2) R - 219,004+ 153,49 - - -
A - A&7, 00+ 348,97 - - -
O 4001010 10,080,010 0001010 0,00,1010 a,4010/10
Fis) - 55,09 41,12 53,64 +1,02 - 88,604+1,18
AED T(s) - &62 84 4+ 57,53 4407,32 4+ 893,38 - 7475, 33 4 F420,99
k=15 R - 2004218 181,00 + 63,19 - 183,604 185,02
A - 71,67+ 14,82 511,004+ 213,93 - 521,804+ 453, 84
O 4001010 10,080,010 &, 0,0,4/10 0,010,010 10,0,0,0/10
Fis) 34,8440,12 56,29 4+0,92 55,57+1,27 53,9441, 23 88, B5 + 0,48
AED T(s) 5134, 68 £ 3383, 40 306,92 + 46,84 1395, 15+ 157, 44 1394, 324234, 04 818,00+ 280,35
(k= 10) R 278 50+ 185 25 e004+1,83 49, 00 + 65, 68 47,9243 32 18,00 + 5,48
A 1365, 50 £ P03, 67 45,67+ 2,87 253,334+ 29,77 189, 34 4+ 23 Q4 9B, 004 26,87
O 8,0,0,2/10 10,080,010 10,0,0,0/10 10,0,0,0/10 10,0,0,0/10
Fis) 534,184 0,98 56,24 +0,95 56,34 41,11 54,785 40,09 89,31 +£0,23
AED T(s) 471,28 +43, 33 21,72+ 73,13 B34,02 4+ 390,36 129918+ 114, 48 445 32 4+ 78,11
(k= 20) R 28,174+ 211 5, 504+ 2,80 27,87 +13 &9 44,33 44,11 B &7 + 1,89
A 148,83 + 9,99 41,754+ 2,59 158,00 + 52,36 191, 33 + 29, 51 60,00 41,63
O 10,0, 0,0/10 10,080,010 10,0,0,0/10 10,0,0,0/10 10,0,0,0/10
Fis) 34,8541, 08 57,0340,91 57, 8241,54 55,0940, 33 1,86 41,53
AKED T(s) 850, 87 + 168, 55 24315+ 76 74 1012894149, &7 T40,15 4+ 89,13 532,824 33,11
(k = 30) R 41,004 17,58 & 5042 &9 32, 504517 22,0042 04 10,87 £+ 0,94
A 220,83 4+103, 95 40,50 £ 1,658 181,00+ 32 ad 151,334+ 22 98 688,833 4 8,50
O 10,8, 0,0/10 10,00, 010 10,0,8,010 10,08,0,0/10 10,00, 0,10

Table 31: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the TidyBot domain removing a predicate set generated using the landmark graph

antomatically.

D4 THE PORT DOMAIN 183

D.4 THE PORT DOMAIN

Plannar M Problem
ports 5 5 ports 05 30 ports 10 20 ports 10 40 ports 15 20
(5.20.107 (5.50.30) (10.80,20) (10.110.40% (LE.120.20)
Fis) 1.2400 - 181.14+22 - 135.7 £ 0.8
Tis) 53414 - 12121 1 3829 - 953.1 £ 2635
LAMAR R 2541 - PE124 - 58424
A 1481 25 - E0.8 + 58 - 44.94£1.2
C 15,0,0,0/15 0,15,0,0/15 15,0,0,0/15 0, 15,0,0/15 150 0,0/15
Fis) 1.7+010 E5.9 £0.1 &1.5£0.32 32514 0.8 4+ 02
Tis) 57105 4034.7 L 17ETF BE7.eL TOE 12449.1 £ 5535 12098 £49.1
{:l:l;} R 33105 89.0 £ 4.0 187 £1.7 6l.7 £ 26 1804+ 0.8
A 107+ 05 16454 165 423+ 57 113324210 ATo0L£16
C 15,0,0,0/15 5 0,10,0/15 15,0,0,0/15 15,0,0,0/15 150 0,0/15
Fis) 1.7+010 E5.3£0.2 &1.8£05 2268+ 0.7 .9+ 02
Tis) 41+12 124002 1187 63BE8 41232 59£3.5 + 3604 &74.1 £20.0
{:I:DE} R 2108 2BiLle 14.043.2 283 4£1.7 23405
A 127+ 08 93.7+£45 497+ 45 101.7 £ 5.4 40.7£1.2
C 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 150 0,0/15
Fis) 1.7+010 E8.24£03 &l.E£032 329.141.2 L7 02
AKFD Tis) 45105 69014923 503841566 4214.0 £ 5287 7195 L 809
(k = 10) R 23105 13.7+£2 10.7+3.8 180+ 24 To.0+14
A 123105 - R 52341.2 1023429 437 +£1.7
C 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 150 0,0/15
Fis) 1.7+010 709 £00 &2.4 +£0. 3329404 P29+ 02
AKFD Tis) 34105 FeRT L1297 41224209 35054 £+ 465.9 4316 £61.1
(k = 20) R 12105 156+ 28 831405 1434 21 53409
A 120105 87.1 £ 59 S54.04£22 eFaL 1 4434 21
C 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 150 0,0/15
Fis) 17100 FL1 £0 &3.1 £0.2 234.941.0 484+ 02
AKFD Tis) 43119 1012342334 3847 £ 289 28376 L ETLT 2909 + 8.3
(k = 30 R 22116 208+ 4.9 7.FoR 14.7 £ 21 4.7 +1.2
A 127+ 09 843449 51.0£08 eF.0L 14 45.8 £ 0.8
C 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 150 0,05

Table 32: Comparing AKFD using different horizons to LaMAF and mGPT over five
problems from the Port domain removing a predicate set generated using the Relaxed
Plan automatically.

DETAILED RESULTE FROM CHAPTER T

Plannar Matrics Froblem
ports 5 5 ports 05 30 ports 10 20 ports 10 40 ports 15 20
(%.20.10) (5.50.30) (10.80,20) (101104000 (15,120, 20)
Fis) 1.2 401 - 161.14+22 - 1357 +£08
Tis) 53411 - 121201+ 3829 - 9531 + 3635
LAMAE R 35410 - P&+ 24 - 5E+24
A 148425 - E0E+5.E - 449 41.3
[15,0,0,0/15 0.15.0.0/15 15,0,0,0/15 0150015 15,0,0,0/15
Fis) - - - - -
- Tis) - - - - -
=2 R - - - - -
A - - - - -
[0,0,0,15/15 0,0,0,15/15 0,0,015/15 00,0,15/15 0,0,0,15/15
Fis) 1.8+00 4771+ 4.0 I7REL S 13624 +£1.6 TRRO L 53
- Tis) 3E4+05 13703 £ 1049 T £ 494 FOER £7EL 140384+ 31.6
k=5 R 1.7 +05 213426 1024123 237405 103405
A 11.3 +£05 BR.7 £+ 8.1 487421 1002447 41,4425
[15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 15,0, 0,015 15,0,0,0/15
Fis) 1.8+00 4785411 3745472 - 4.6+ 21
- Tis) 3441 10751 £ 1374 TEEP + 836 - 12152 + 806
k=1m R 12 +08 141+ 2.1 106422 - 7a+14
A 125408 BAE4 75 527419 - 43341
[15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 o1000/10 15,0,0,0/15
Fis) 1.8+00 48254+ 3.9 119492 - TEE24 1.4
- Tis) 35415 10815+ 1162 6644912 - 12081 4+57.9
k=z2m R 12414 128426 650424 - TA+1
A 127 £05 853439 523426 - 432434
[15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 o1000/10 15,0,0,0/15
Fis) 22404 4843 431 74+ 10 18655 4+ 3459 BOPE £ BE
- Tis) 2.84+08 1003.45+114.8 EBB.E8+ 753 54833112163 11266+ 604
k=aym R 0.7 +05 117425 53419 168.7+£51 534125
A 127 £05 B3.1+1.6 5534262 6.7 £0.9 449416
o 15,0,0,0/15 15,0,0,0/15 15,0,0,0/15 41000010 15,0,0,0/15

Table 33: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Port domain removing a predicate set generated using the landmark graph

antomatically.

D.5

THE SATELLITE DOMAIN

D.5 THE SATELLITE DOMAIN
Plannar M Problam
satallita 1 satallita 2 satallita 3 satallite 4 satalllta 5

{10. 132, 342) {10. 140. 3483 {10. 1332, 351) {11. 133. 327) {12. 132, 330)
Fis) - - - - -
T(s) - - - - -
LAMAF R - - - - -
A - - - - -
[Q1500715 AIS00/15 Q500715 A150.0/15 Q1500715
Fis) 23764+ 1.7 23544 1.4 2270400 2198450 -
ARED T(s) 152383 4+ 11422 23968.64 25712 2123554 0.0 318826 + 57006 -
(k=13) R 27404+ B0 704172 25104+ 0.0 204.04 530 -
A BPEA 4 224 1023.04 54 eFA0 £ 00 M504+ 1110 -
[15,0,0,0/15 15,8,0,0/15 15,0,0,0/15 12,0,3,0/15 40,1505
Fis) 2339421 2330436 - - 153.5 4+ 0.4
ARED T(s) 175461 + 2669 13044.1 £+ 554.2 - - 170206+ 7831
k=5) R 1883+ 69 1677+ &9 - - 18534 1.0
A 9734+ B2 ePee+ 1221 - - POES £+ 1.5
[15,0,0,0/15 10,0,5 0/15 3,15,0,0/15 8,150,015 11,4, 0,0/15
Fis} 234.7 409 - - 2377413 -
ARED T(s) 1229604 5798 - - 114337 498423 -
(k= 10) R 137.7+ 5.8 - - 1220434 -
A 800412 - - BE5.04 237 -
[15.0.0.0/15 0,312 0/15 0,0,150/15 10,0,5,0/15 40,1505
Fis) 2451 £ 0.5 - - - -
ARED T(s) 114621 £ 11571 - - - _
(k= 20) R 103.7 + 5.3 - - - -
A Q483 4223 - - - -
[15,0,0,0/15 @,15,0,0/15 3,15,0,0/15 8,150,015 415 0,015
Fis) S8L0+ &l - - - -
ARED T(s) 12566.4 + 854.8 - - - _
(k = a0) R 913478 - - _ _
A eFEA 4 235 - - - -
[15,0,0,0/15 @,15,0,0/15 3,15,0,0/15 8,150,015 415 0,015

Table 34: Comparing AKFD using different horizons to LAMAF and mGPT over five problems
from the Satellite domain removing a predicate set generated ueing the relaxed plan
automatically.

186

DETAILED RESULTSE FROM CHAPTER

L

Plannar Matcics Problam
satallita 1 satallita 2 satallita 3 satallita 4 satallita 5

{10, 132, 342) {10, 140, 345) {10, 132, 381} {11, 132, 327) {12, 132, 330)
Fis) - - - - -
T(s) - - - - -
LAMAF =3 - - - - -
A - - - - -
O O,15,0,0/15 O,15,0,0/15 O,15,0,0/15 3,150,015 415 0,015
Fis) 3135408 S00.54 0.8 IB7.2 4+ 1.04 - -
AKED T(s) 186765 +£ 570.5 15686.2 + 17535 28228.1 + 6419.86 - -
k=15 R 1823437 1785+ 282 194.7 £+ 181 - -
A 7ol 4+ 299 885.2 4452 1045.3 4+ 23.2 - -
O 15,0,0,0/15 14,8,1, 015 15,0,0,0/15 0,0,150/15 40,1505
Fis) 312.84 0.8 IEL1 £ 542 I0XT 454 3104 4 5211 -
AKED T(s) 12665.5+1121.2 13459.9 +1274.4 2EA00.6 £ 44259 2I00LT1 £ 19384 -
(k= 10) R 131.9 £ 59 13114113 152.34 54 1344 £11.7 -
A FLF 4+ 227 PPB4 + BlE 10768 + .20 P41.8 £ PAT -
O 15,0,0,0/15 6,0,9,0/5 15,0,0,0/15 7,0 80/15 40,1505
Fis) 3252433 3601 £ 149 - EAAE A -
AKED T(s) 10140.3 + 10237 12310.2 +1151.5 - 18890.1 + 1580.7 -
(k = 20) R 1051 4+6&2 1264 £ 510 - 1047 £+ 51 -
A O55.24 86 10057 + 0.9 - M3+ AT -
O 15,0,0,0/15 15,0,0,0/15 O,0,15,0/15 15,4 0,0/15 40,1505
Fis) 34184+ 155 36724+ 168 - 30T.7T +41.8 -
AKED T(s) 109908 + 15963 20993.3 4 593158 - 220439 4+ 16439 -
(k = 30) R 10234104 103.7 +4.5 - 85.T+122 -
A e57.5 4.1 10287 +11.7 - BBd.4 4+ 65.2 -
O 15,0,0,0/15 15,0,0,0/15 3,0,15, 015 80O 7005 4015015

Table 35: Comparing AKFD using different horizons to LaMAF and mGPT over five problems
from the Satellite domain removing a predicate set generated using the landmark graph

antomatically.

BIELIOGRAPHY

Apuirre, Eugenio and Antonio Gonzalez (2003). “A Fuzzy Perceptual Model for Ultrasound
Sensors Applied to Intelligent Navigation of Mobile Robots.” In. Applications
Intelligence 19.3, pp. 17T1-187 (page 3).

Ai-Chang, Mitchell et al. (2004). “MAPGEN: Mixed-Initiative Planning and Scheduling for
the Mare Exploration Rover Mission.” In. IEEE Intelligent Systems 19.1, pp. 8-12. DO
10.1007/510489-014-0542-0 (page 1).

Alami, Rachid, Raja Chatila, Sara Fleury, Malik Ghallab, and Félix Ingrand (1998).
“An Architecture for Autonomy” In. Internafional Jowmal of Robotic Research 17.4,
pp. 315-337 (page T2).

Albore, Alexandre, Héctor Palacios, and Hector Geffner (2007). “Fast and Informed Action
Selection for Planning with Sensing” In. Proceedings of the Twelveth Conference of the
Spanish Association for Ariificial Intelligence, CAEPIA. Salamanca, Spain, pp. 1-10
(page 45).

Amir, Eyal and Pedrito Maynard-reid (1999). “Logic-Based Subsumption Architecture” In.
Proceedings of the Sizteenth International Joint Conference on Artificial Intelligence,
pp. 147-152 (pages 3, T6).

Asuncién, Marc de la, Luis A. Castillo, Juan FernindezOlivares, Oscar Garcia Pérez,
Antonic Gonzales, and Francieco Palao (2005). “SIADEX: An interactive
knowledge-based planner for decieion support in forest fire fighting” In. Artificial
Intelligence Communications 18.4, pp. 257-268 (pagee 1, 11).

Auer, Peter, Nicolé Cesa-Bianchi, and Paul Fischer (2002). “Finite-time Analysis of the
Multiarmed Bandit Problem” In. Jowrnal of Machine Learning 47.2-3, pp. 235-256
(page 37).

Béckstrom, Christer and Bernhard Nebel (1993). “Complexity Results for SAS+ Planning”
In. Computational Intelligence 11, pp. 625-655 (pages 19, 53, 96).

Bellman, Richard (1957). “A Markovian Decieion Process” In. Indiana University
Mathematical Journal 6, pp. 679684 (page 34).

Bernardini, Sara, Maria Fox, and Derek Long (2014). “Planning the Behaviour of
Low-Cost Quadeopters for Surveillance Missions” In. Proceedings of the Twenty- Fourth
International Conference on Automated Planning and Scheduling (ICAPS). Portemouth,
New Hampshire, USA (page 11).

Bertoli, Piergiorgio, Aleesandro Cimatti, Ugo Dal Lago, and Marco Pistore (2003).
“Bxtending PDDL to nondeterminism, limited sensing and iterative conditional plans”
In. Proceedings of ICAPS'03 workshop on PDDL. Trento, Italy (page 43).

187

http://dx.doi.org/10.1007/s10489-014-0542-0

188

BIBELIOGRAFPHY

Blum, Avrim and Merrick L. Furst (1997). “Fast Planning Through Planning Graph
Analysis” In. Artificial Intelligence Jouwrnal 90.1-2, pp. 281-300 (pages 26, 132).

Blum, Avrim L. and Merrick L. Furst (1995). “Fast Planning Through Planning Graph
Analysis” In. Artfificial Intelligence 90.1, pp. 1636-1642 |pages 45, 52).

Blythe, Jim (1994). “Planning with External Evente” In. Proceedings of the Tenth
Annual Conference on Uncertainty in Artificial Intelligence. Seattle, Washington, TTSA,
pp. 94-101 (page 64).

Bonet, Blai and Hector Geffner (2000a). “Planning with Incomplete Information as Heuristic
Search in Belief Space” In. Proceedings of the Fifth Infernational Conference om
Artificial Intelligence Planning Systems. Breckenridge, CO, USA, pp. 52-61 (page 38).

Bonet, Blai and Héctor Geffner (2000b). “Planning with Incomplete Information as
Heuristic Search in Belief Space” In. Proceedings of the fifth International Conference
on Artificial Intelligence Planning Systems, pp. 5261 (pagee 40, 43).

Bonet, Blai and Héctor Geffner (2001). “Planning as Heuristic Search” In. Artificial
Intelligence 129, pp. 5-33 (pages 26, 45).

Bonet, Blai and Hector Geffner (2003). “Labeled RTDP: Improving the Convergence of
Real-Time Dynamic Programming” In. Procesdings of the Thirfeenth International
Conference on Automated Planning and Scheduling. Trento, Italy, pp. 12-21 (page 66).

Bonet, Blai and Hector Geffner (2005). “mGPT: A Probabilistic Planner Based on Heuristic
Search” In. Jowrnal of Artificial Intelligence Research 24, pp. 933-944. poI: 10.1613/
jair.1688 (pages 2, 28, 35, 106, 109).

Bonet, Blai and Hector Geffner (2006). “Learning Depth-First Search: A Unified
Approach to Heuristic Search in Deterministic and Non-Deterministic Settings, and
Its Application to MDPs.” In. Proceedings of the Sizteenth International Conference on
Automated Planning and Scheduling. Cumbria, UK, pp. 142-151 (page 35).

Borgo, Stefano, Amedeo Cesta, Andrea Orlandini, Riceardo Rasconi, Marco Suriano,
and Alessandro Umbrico (2014). A Cooperative Model-based Control Agent for a
Heconfigurable Mamfacturing Plant” In. Proceedings of the second ICAPS Workshop
on Planning and Robotics (PlanRob). Portsmouth, New Hampshire, USA (page 73).

Borrajo, Daniel and Mamuela Veloeo (2012). “Probabilietically Reusing Plane in
Deterministic Planning” In. Proceedings of ICAPS'12 workshop on Heuristics and
Search for Domain-Independent Planning. Atibaia Brazil (pages 2, 33, 69).

Borrajo, Daniel, Anna HRoubickova, and Ivan Serina (2014). “Progress in Case-Based
Planning” In. ACM Computing Surveys 47.2, 35:1-35:39 (page 69).

Boutilier, Craig (2000). “Approximately Optimal Monitoring of Plan Preconditions” In.
Proceedings of the 16th Conference in Uncerfainty in Artificial Intelligence. Stanford,
California, USA, pp. 5462 (page T0).

Boutilier, Craig, Ray Reiter, and Bob Price (2001). *“Symbolic Dynamic Programming
for First-order MDPs"™ In. Proceedings of the 17th International Joint Conference on
Artificial Intelligence - Volume 1. San Francisco, CA, USA, pp. 690697 (pages 28, 35).

Bregina, John L., Ari K. Jonseon, Paul H. Morris, and Kanna Hajan (2005).
“Mized-Initiative Activity Planning for Mars Rovers” In. Proceedings of the Ninefeenth
International Joint Conference on Artificial Intelligence, pp. 17091710 |page 34).

http://dx.doi.org/10.1613/jair.1688
http://dx.doi.org/10.1613/jair.1688

BIELIOGRAPHY

Britanik, J. and M. Marefat (2004). “CBPOF: A Domain-Independent Multi-Caee Reuse
Planner” In. Computational Intelligence 20.2, pp. 405443 (page 69).
Brooke, Rodney A. (1986). “A Robust Layered Control System for a Mobile Robot™ In.

IEEE Jouwrnal of Hobotics and Automation 2.10, pp. 14-23. DOI: 10.1109/ JRA . 1986 .

1087032 (pages 3, T6).
Briigmann, Bernd (1993). “Monte Carlo Go” In. In Technical Report Maz Planke Institute

(page 37).
Bryant, Randal E. (1992). “Symbolic Boolean Manipulation with Ordered Binary-decision

Diagrame™ In. ACM Computing Surveys 24.3, pp. 203-318. Dol: 10. 1146/ 136036 .

136043 (page 41).

Bryce, Daniel and Subbarac Kambhampati (2004). “Heurietic Guidance Measures for
Conformant Planning” In. Proceedings of the Fourteenth International Conference on
Automated Planning and Scheduling, pp. 365-375 (page 66).

Bulitko, Vadim and Greg Lee (2006). “Learning in Real-time Search: A Unifying Framework”
In. Journal of Artificial Intelligence Research 25.1, pp. 119-157 (pages 56, 58).

Bulitko, Vadim, Lihong Li, Ruesell Greiner, and Ilya Levner (2003). “Lookahead
Pathologies for Single Agent Search” In. Proceedings of the Fighteenth International
Joint Conference on Artificial Intelligence (IJCAI). Acapulco, Mexico, pp. 1531-1533
(page 59).

Burch, Jerry K., Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang
(1990). “Symbolic Model Checking: 10°20 States and Beyond” In. Proceedings of the
fifth Annual Symposium on Logic in Computer Science. Philadelphia, Pennsylvania,
USA, pp. 428-439. DOL: 10.1109/LICS.1990.113767 (page 41).

Buro, Michael (2003). “ORTS: A Hack-Free RTS Game Environment” In. Proceedings of
the Third International Conference on Computers and Games, pp. 156-161 (page 56).

Butler, Greg, Andrea Gantchev, and Peter Grogono (2001). “Object-oriented design of the
subsumption architecture” In. Software Practice & Erperience 31.9, pp. 911-923. Don
10.1002/spe . 396 (page 3).

Cai, Shacwei, Zhong Jie, and Kaile Su (2015). “An effective variable selection heuristic in
SLS for weighted Max-2-SAT"” In. Journal of Heuristics 21.3, pp. 433456 (page 28).

Carbonell, Jaime G., Oren Etzioni, Yolanda Gil, Robert Joseph, Craig Knoblock,
Steve Minton, and Manuela Veloso (1991). “PRODIGY: An integrated architecture for
planning and learning”™ In. In Kurt VanLehn, Architectures for Intelligence, pp. 241-278
(page 52).

Cassandra, Anthony H., Leslie Pack Kaelbling, and Michael L. Littman (1994). “Acting
Optimally in Partially Obeervable Stochastic Domaine” In. Proceedings of the 12th
National Conference on Artificial Infelligence. Seattle, WA, USA, pp. 1023-1028
(page 28).

Castellini, Claudio, Enrico Giunchiglia, and Armando Tacchella (2003). “SAT-based
planning in complex domains: Concurrency, constrainte and nondeterminism” In.
Artificial Intelligence Jowmal 147.1-2, pp. 85-117. DOI: 10. 1016/ 50004~ 3702(02)
00376-2 (page 41).

189

http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.1109/LICS.1990.113767
http://dx.doi.org/10.1002/spe.396
http://dx.doi.org/10.1016/S0004-3702(02)00375-2
http://dx.doi.org/10.1016/S0004-3702(02)00375-2

190

BIBELIOGRAFPHY

Champandard, Alex J., Tim Verweij, and Remco Straatman (2009). “The Al for Killzone
2s multiplayer bots” In. Proceedings of Game Developers Conference (page 3).

Cimatti, Alessandro and Marco Roveri (2000) In. Journal of Artificial Intelligence Research
(JAIR) 13, pp. 305-338. DOL: 10.1613/jair.774 (page 41).

Coddington, A. M., M. Fox, and D. Long (2001). “Handling Durative Actions in Classical
Planning Frameworke” In. Proceedings of the 20th Workshop of the UK Planning and
Scheduling Special Interest Group. Edinburgh, Scotland, pp. 44-58 (page 64).

Coles, Amanda and Andrew Coles (2012). “Branched Plans with Execution-Time Choice
to Reduce the Coste of Conservative Planning” In. Procesdings of ICAPS'1 2 workshop
on Planning and Plan Erecution for Real World Systems: Principles and Practices
{PlanEz). Atibaia, Sac Paunlo, Brazil (page 64).

Coles, Amanda Jane, Andrew Coles, Angel Garcia Olaya, Sergio Jiménez, Carlos Linares
Lopes, Scott Sanner, and Sungwook Yoon (2012). *A Survey of the Seventh
International Planning Competition™ In. AT Magazine 33.1, pp. 8388 (page 31).

Culberson, Joseph C. and Jonathan Schaeffer (1998). “Pattern databases” In.
Computational Intelligence 14.3, pp. 318-334 (page 53).

Dean, Thomas and Keiji Kanazawa (1989). “A Model for Reasoning About Persistence and
Causation” In. Computational Intfelligence 5.3, pp. 142-150 (page 30).

Driger, Klaue, Bernd Finkbeiner, and Andreas Podelski (2006). “Directed Model Checking
with Dietance-Preserving Abstractions” In. Proceedings of the 13th International SPIN
Workshop on Model Checking Software. Vol. 3925, Lecture Notes in Computer Science.
Berlin, Germany, pp. 19-36 (page 53).

Driger, Klaue, Bernd Finkbeiner, and Andreas Podelski (2009). “Directed Model Checking
with Dietance-Preserving Abstractions” In. Journal on Software Tools for Technology
Transfer STTT 11.1, pp. 27-37. DOL: 10.1007/810009-008-0092-= (page 53).

Draper, Deniee, Steve Hanke, and Daniel Weld (1994). “Probabilistic Planning With
Information Gathering and Contingent Execution™ In. Proceedings of the Second
International Conference on Al Planning Systems. Menlo Park, California, USA,
pp. 31-36 (page G6).

Dwvorak, Filip, Arthur Bit-Monnont, Feliz Ingrand, and Malic Ghallab (2014). “Plan-Space
Hierarchical Planning with the Action Notation Modeling Language™ In. Proceedings
of the IEEE International Conference on Tools with Artificial Intelligence. Limaesol,
Cyprue (page 72).

Edelkamp, 5. (2001). “Planning with pattern databases” In. Proceeding of the sizth
European Conference on Planning, pp. 13-24 (page 53).

Edelkamp, Stefan (2002). “Symbolic Pattern Databases in Heurietic Search Planning” In.
Proceedings of the Sizth International Conference on Artificial Intelligence Planning
Systems. Toulouse, France, pp. 274-283 (page 24).

Fikes, Richard E. (1971). “Monitored Execution of robot plan produced by STRIPS" In.
Proceedings of the International Federation for Information Processing congress (IFIP)
(pages 65, T0).

Fikes, Richard E. and Nile J. Nilsson (1971). “STRIPS: A New Approach to the A pplication
of Theorem Proving to Problem Solving™ In. Proceedings of the 2nd International Joint

http://dx.doi.org/10.1613/jair.774
http://dx.doi.org/10.1007/s10009-008-0092-z

BIELIOGRAPHY

Conference on Arfificial Intelligence. London, England, pp. 608620 (pagee 21, 45, 50,
6a).

Fikes, Richard E., Peter E. Hart, and Nile J. Nilseon (1972). “Learning and Executing
Generalized Hobot Plane” In. Artificial Infelligence Journal 3, pp. 251-288 (pages 65,
TB).

Finzi, Alberto, Félix Ingrand, and Nicola Muscettola (2004). “Model-based executive control
through reactive planning for antonomous rovere™ In. Procedings of the International
Conference on Intelligent Robots and Systems IEEE/RSJ. Sendai, Japan, pp. 879-884
(page 73).

Fox, Maria and Derek Long (2003). “PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains” In. Jowrnal of Artificial Intelligence Research 20.1,
pp. 61-124 (page 159).

Fox, Maria, Alfonso Gerevini, Derek Long, and Ivan Serina (2006). “Plan Stability:
Heplanning wversus Plan Repair” In. Proceedings of the Sizteenth International
Conference on Automated Planning and Scheduling. Cumbria, UK, pp. 212-221 (pages 2,

Francés, Guillem and Hector Geffner [2015). “Modeling and Computation in Planning:
Better Heuristice from More Expreseive Languages” In. Proceedings of the 25th
International Conference on Automated Planning and Scheduling (ICAPS). Jerusalem,
Ierael, pp. T0-T8 (page 24).

Fritz, Christian and Sheila A. Mcllraith (2007). “Monitoring Plan Optimality During
Execution™ In. Proceedings of the 17th International Conference on Automated Planning
and Scheduling (ICAPS), pp. 144-151 (page T0).

Garcia, Javier, José E. Flérez, Alvaro Torralba Arias de Reyna, Daniel Borrajo,
Carloe Linares Lopez, Angel Garcia Olaya, and Juan Sdenz (2013). “Combining linear
programming and automated planning to solve intermodal transportation problems.”
In. Furopean Journal of Operational Research 227.1, pp. 216-226 (page 11).

Gat, Erann (1998). “On Three-Layer Architectures” In (page 72).

Geffner, H. (2000). “Functional Stripe: a more Hexible language for planning and problem
solving” In, pp. 188-200 (page 24).

Gerevini, Alfonso and Ivan Serina (2000). “Fast Plan Adaptation through Planning Graphs:
Local and Syetematic Search Techniques” In. Proceedings of the Fifth International
Conference on Artificial Intelligence Planning Systems. Breckenridge, CO, TSA,
pp. 112-121 (page 68).

Ghallab, Malik and Hervé Laruelle (1994). “Representation and Control in IxTeT, a
Temporal Planner” In. Proceedings of the Second International Conference on Artificial
Intelligence and Planning Systems. Chicago, Illincie, USA, pp. 61-67 (page 72).

Giacomo, Giuseppe De, Raymond Reiter, and Mikhail Soutchanski [1998). “Execution
Monitoring of High-Level Robot Programs.” In. Proceedings of the 6th International
Conference on Principles of Knowledge Hepresentation and Reasoning, pp. 453465

(page 69).

191

192

BIBELIOGRAFPHY

Goldman, Robert P. and Mark S. Boddy (1996). “Expressive Planning and Explicit
KEnowledge.” In. Proceedings of the Third International Conference on Artificial
Intelligence Planning Systems, pp. 110-117 (page 37).

Gutmann, Jene steffen, Masaki Fukuchi, and Masahiro Fujita (2005). “Real-time path
planning for humanoid robot navigation™ In. Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI). Edinburgh, Scotland, pp. 1232-1237
(page 56).

Haigh, Karen Zita and Manuela M. Veloeo (1996). “Planning with Multiple Goale for Robot
Execution™ In. Proceedings of the National Conference on Artificial Intelligence Fall
Symposium “Plan Execution: Problems and Issues™ New Orleane, LA, USA | pp. 65-T1
(page 65).

Hansen, Eric A. and Shlomo Zilberstein (2001). “LAO*: A heurietic search algorithm that
finde eolutions with loope™ In. Artificial Intelligence 129.1-2, pp. 3562 (pages 35, G6).

Hart, Peter E., Nils J. Nilseon, and Bertram Raphael (1968). “A formal basis for the heuristic
determination of minimum cost paths™ In. IEEE Transactions on Systems Science and
Cybernetics 2, pp. 100-107 (pages 26, 56).

Helmert, Malte (2008). “The Fast Downward Planning System” In. Jowrnal of Artificial
Intelligence Hesearch 26, pp. 191-246. DOI: 10,1613/ jair. 1706 (pagee 19, 27, 159).
Helmert, Malte (2009). “Conciee finite-domain representations for PDDL planning tasks”
In. Artificial Intelligence Jowmnal 173.5-6, pp. 503-535. DOL: 10.1016/j. artint . 2008.

10.013 (page 27).

Helmert, Malte and Carmel Domshlak (2009). “Landmarke, Critical Pathe and Abstractions:
What's the Difference Anyway?” In. Proceedings of the 19th Infernational Conference
on Automated Planning and Scheduling. Theesaloniki, Greece (page 134).

Helmert, Malte and Hector Geffner (2008). “Unifying the Causal Graph and Additive
Heuristice.” In. Proceedings of the Eighteenth International Conference on Automated
Planning and Scheduling. Sydney, Australia, pp. 140-147 (page 159).

Helmert, Malte, Patrik Haslum, and Jérg Hoffmann (2007). “Flexible Abetraction Heuristics
for Optimal Sequential Planning”™ In. Proceedings of the Sewventeenth International
Conference on Automated Planning and Scheduling. Providence, Rhode Island, TUSA,
pp. 17T6-183 (pages 27, 45, 53).

Helmert, Malte, Patrik Haslum, Jérg Hoffmann, and Raz Niseim (2014). “Merge-and-Shrink
Abstraction: A Method for Generating Lower Bounds in Factored State Spaces” In.
Journal of the ACM (JACM) 61.3, 16:1-16:63 (page 53).

Hernandez, Carlos and Pedro Meseguer (2005). “LETA*(k)" In. Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence. Edinburgh,
Scotland, UK, pp. 1238-1243 (page 58).

Hoffmann, Jorg and Ronen I. Brafman (2006). “Conformant Planning via Heuristic Forward
Search: A New Approach” In. Artificial Intelligence Journal 170.6-T, pp. 507-541. DOL:
10.1016/j .artint .2006.01.003 (page 40).

Hoffmann, Jérg and Bernhard Nebel (2001). “The FF Planning System: Fast Plan
Generation Through Heuristic Search” In. Journal of Artificial Intelligence Research
14, pp. 253-302. DOL: 10.1613/jair.8EE (pagee 26, 45, 52, 109, 132).

http://dx.doi.org/10.1613/jair.1705
http://dx.doi.org/10.1016/j.artint.2008.10.013
http://dx.doi.org/10.1016/j.artint.2008.10.013
http://dx.doi.org/10.1016/j.artint.2006.01.003
http://dx.doi.org/10.1613/jair.855

BIELIOGRAPHY

Hoffmann, Jérg, Julie Porteous, and Laura Sebastia (2004). “Ordered Landmarks in

Planning” In. Journal of Artificial Intelligence Research 22.1, pp. 215-278. DOI: 10.

1613/jair.1492 (pages 120, 130).

Howard, R. A. (1960). Dynamic Programming and Markev Processes. MIT Prees (page 35).

Howard, Ronald A. and Jamee E. Matheson, eds. (1984). Headings on the Principles and
Applications of Decision Analysis. Menlo Park, CA: Strategic Decision Group (page 31).

Hyafil, Nathanael and Fahiem Bacchue [2004). “Utilizing Structured Representations and
CSPe in Conformant Probabilistic Planning” In. European Conference on Artificial
Intelligence (ECAT 2004) (page 37).

Ihrig, Laurie H. and Subbarac Kambhampati (1997). “Storing and Indexing Plan
Derivatione through Explanation-based Analysie of Retrieval Failuree” In. Jowrnal of
Artificial Intelligence Research (JAIR) T, pp. 161-198 (page 69).

Ingrand, Felix, Raja Chatila, Rachid Alami, and Frederic Robert (1996). “PRS: A High
Level Supervieion and Control Language for Autonomous Mobile Robots” In. In
Proceedings of the IEEE International Conference On Robotics and Automation (ICRA),
pp. 4349 (page 72).

Iehida., Toru and Richard E. Korf (1991). “Moving Target Search” In. Proceedings of the 12th
International Joint Conference on Artificial Intelligence (IJCAI). Sydney, Australia,
pp. 204-211 (pages 56, 58).

Jimenez, Sergio, Andrew 1. Coles, and Amanda J. Smith {2006). “Planning in Probahbilistic
Domaine Using a Deterministic Numeric Planner™ In. Proceedings of the 25th Workshep
of the UK Planning and Scheduling Special Interest Group (PlanSIG 2006) (page 36).

Jiménez, Sergio, Fernando Fernandez, and Daniel Borrajo (2008). “The PELA A rchitecture:
Integrating Planning and Learning to Improve Exzecution” In. Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence. Chicago, Illinoie, TUSA,
pp. 12041299 (page T4).

Kalyanam, K. and R. Givan (2008). “LDFS with determinietic plan based subgoals” In.
Proceedings of the sizth International Planning Competition. Eighteenth International
Conference on Automated Planning and Scheduling. Freigburg, Germany (page 36).

Kambhampati, Subbarao, Eric Parker, and Eric Lambrecht (1997). “Understanding and
extending graphplan™ In. Hecent Advances in Planning: Fourth European Conference
on Planning, ECP’97. SpringerVerlag, pp. 260-272 (page 26).

Karpae, Erez and Carmel Domshlak (2009). “Cost-Optimal Planning with Landmarks”
In. Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI-09), pp. 1728-1733 (pages 130, 134).

Katz, Michael, Jorg Hoffmann, and Carmel Domshlak (2013). “Red-Black Relaxed Plan
Heuristice” In. Proceedings of the Twenty-Seventh National Conference on Artificial
Intelligence. Bellevue, Washington, USA (page 155).

Kautz, Henry and Bart Selman (1992). “Planning as satisfiability” In. Proceedings of
the 10th European Conference on Artificial Intelligence (ECAI). Vienna, Austria,
pp. 359-363 (page 2T).

Keiji Nagatani, Howie Choeet and Sebastian Thrun (1998). “Towards exact localization
without explicit localization with the generalized Voronoi graph™ In. Proceeding of the

193

http://dx.doi.org/10.1613/jair.1492
http://dx.doi.org/10.1613/jair.1492

194

BIBELIOGRAFPHY

IEEE International Conferente on Robotics and Automation (ICRA). Leuven, Belgium,
pp. 342-348 (page T6).

Keller, Thomae and Patrick Eyerich (2012). “PROST: Probabilistic Planning Based on
UCT" In. Proceedings of the 22nd International Conference on Automated Planning
and Scheduling (ICAPS). Atiba’i: AAAI Prees, pp. 118-127 (page 37).

Keyder, Emil, Silvia Richter, and Malte Helmert {2010). “Sound and Complete Landmarks
for And/Or Graphe” In. Proceedings of the 2010 Conference on ECAI 2010:
19th European Conference on Artificial Intelligence. Amsterdam, The Netherlands,
pp. 335-340 (pages 134, 153).

Knoblock, Craig, Josh Tenenberg, and Qiang Yang (1990). “Learning abetractions
hierarchies for problem solving” In. Proceedings of the Eighth National Conference of
Artifical Intelligence. Boeton, MA, pp. 223-228 (pages 6, 92).

Knoblock, Craig A. (1904). “Automatically Generating Abstractions for Planning” In.
Artificial Intelligence 68.2, pp. 243-302 (page 93).

Knoblock, Craig A., Josh D. Tenenberg, and Qiang Yang (1991). “Characterizing
Abstraction Hierarchies for Planning” In. Proceedings of the nineth National Conference
on Artificial Intelligence. Vol. 2. Anaheim, CA, USA | pp. 692-697 (pagee 51, 54).

Kocsis, Levente and Csaba Szepesvari (2006). “Bandit Based Monte-carlo Planning” In.
Proceedings of the 17th European Conference on Machine Learning Berlin, Germany,
pp. 282-293 (page 3T).

Koenig, Sven (1996). “Agent-Centered Search: Situated Search with Small Look- Ahead”™ In.
Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI).
Portland, Oregon, USA, pp. 13-65 (page 56).

Koenig, Sven, David Furcy, and Colin Baner (2002). “Heuristic Search-Based Replanning.”
In. Proceedings of the sizth International Conference on Artificial Intelligence Planning
Systems, pp. 204-301 (page 68).

Koenig, Sven, Maxim Likhachev, and David Furcy (2004). “Lifelong Planning A*" In.
Artificial Intelligence Jowrnal 155.1-2, pp. 93-146. DOI: 10. 1016/ j . artint . 2003 .
12.001 (page 57).

Koller, Alexander and Jorg Hoffmann (2010). “Waking Up a Sleeping Rabbit: On
Natural-Language Sentence Generation with FF" In. Proceedings of the 20th
International Conference on Automated Planning and Scheduling (ICAPS). Toronto,
Ontario, Canada, pp. 238-241 (page 11).

Kolobov, Andrey, Mausam, and Daniel 5. Weld (2010). “Classical Planning in MDFP
Heuristice: with a Little Help from Generalization™ In. Proceedings of the Tweniyth
International Conference on Aulomated Planning and Scheduling, ICAPS 2010.
Toronto, Ontario, Canada, pp. 97-104 (page 2).

Korf, Richard E. (1985). “Depth-first Iterative-Deepening: An Optimal Admissible Tree
Search” In. Artificial Intelligence 27, pp. 97-109 (page 56).

Korf, Richard E. (1990). “Real-time Heuristic Search” In. Artificial Intelligence Journal
42.2 3, pp. 180-211. pol: 10.1016/0004-3702(20)90064-4 (pages 3, 56, 58).

http://dx.doi.org/10.1016/j.artint.2003.12.001
http://dx.doi.org/10.1016/j.artint.2003.12.001
http://dx.doi.org/10.1016/0004-3702(90)90054-4

BIELIOGRAPHY

Krogh, Roman Van Der and Mathijs De Weerdt (2005). “Flan Repair as an Extension of
Planning” In. Proceedings of the 15th International Conference on Automated Planning
and Scheduling (ICAPS-05). Monterey, CA, USA, pp. 161-170 (page 2).

Kushmerick, Nicholas, Steve Hanks, and Daniel Weld (1995). “An Algorithm for
Probabilistic Planning™ In. Artificial Intelligence Jowrnal T6.1-2, pp. 230-286. DOL
10.1002/spe. 296 (page 33).

Likhachev, Maxim, Geoff Gordon, and Sebastian Thrun (2004). “ARA*: Anytime A* with
Provable Bounds on Sub-Optimality” In. Procesedings of the 1 6th conference in advances
in neural information proccessing systems (NIPS), pp. T67-T74 (page 5T7).

Likhachev, Maxim, David Ferguson, Geoffrey Gordon, Anthony Stentz, and Sebastian
Thrun (2005). “Anytime Dynamic A*: An Anytime, Heplanning Algorithm” In.
Proceedings of the 15th International Conference on Automated Planning and Scheduling
(ICAPS) (page 57).

Little, Iain and Sylvie Thiébaux (2006). “Concurrent Probabilistic Planning in the
Graphplan Framework” In. In Proceedings of the Fifteenth International Conference
on Automated Planning and Scheduling, pp. 263-273 (page 33).

Littman, Michael L., Judy Goldsmith, and Martin Mundhenk (1998). *The Computational
Complexity of Probabilistic Planning” In. Jowrnal of Artificial Intelligence Research
9.1, pp. 1-36 (pagee 4, 30, 53).

Luis, Nerea, Sofia Herreo, and Moisés Martinez (2016). “Hobot Collaboration in a
Warehouee Environment through Planning and Execution™ In. Proceedings of the first
LICAT Workshop on Autonomous Mobile Service Hobots. New York, USA (page 80).

Majercik, Stephen M. and Michael L. Littman (1998). “MAXPLAN: A New Approach
to Probahbilietic Planning.” In. The Fourth International Conference on Artificial
Intelligence Planning Systems. Pittsburgh Pennsylvania, USA, pp. 86-93 (page 36).

Martinez, Moisés, Fernando Fernandez, and Daniel Borrajo (2012). *Variable resolution
planning through predicate relaxation™ In. Proceedings of ICAPS12 workshop on
Planning and Plan Ezecution for Real-World Systems: Principles and Practices
(PlanEz). Atibaia, Sac Panlo, Brazil, pp. 5-12 (page 95).

Martinez, Moisés, Fernando Fernandez, and Daniel Borrajo (2013). “Selective Abstraction
in Automated Planning.” In. Proceedings of Second Annual Conference on Advances in
Cognitive Systems [Cogsys). Baltimore, USA, pp. 133-147 (pages 95, 96).

Matthies, Larry H. et al. (2002). “A portable, autonomous, urban reconnaissance robot™ In.
Hobotics and Autonomous Systems 40.2-3, pp. 163-172. DOI: 10.1016/30921-88920(02)
00241-5 (page 56).

Mausam and Daniel S. Weld (2008). “Planning with Durative Actions in Stochastic
Domains” In. Journal of Artificial Intelligence Research 31.1, pp. 33-82 (page 64).
MecAllester, David A. and David Rosenblitt [1991). “Syetematic Nonlinear Planning”™ In.
Proceedings of the 9th National Conference on Artificial Intelligence. Vol. 2. Anaheim,

CA, USA, pp. 634-639 (page 44).

MecCain, Norman and Hudson Turner (1997). *“Causal Theories of Action and Change”
In. Proceedings of the 1{th National Conference on Artificial Infelligence. Providence,
Rhode Island, USA, pp. 460465 (page 41).

195

http://dx.doi.org/10.1002/spe.396
http://dx.doi.org/10.1016/S0921-8890(02)00241-5
http://dx.doi.org/10.1016/S0921-8890(02)00241-5

196

BIBELIOGRAFPHY

MecCarthy, John and Patrick J. Hayee (1969). “Some Philosophical Probleme from the
Standpoint of Artificial Intellipence” In. Machine Intelligence. Edinburgh University
Press, pp. 463-502 (page 21).

Medermott, Drew (2000). “The 1998 AI Planning Systems Competition” In. Al Magazine
21, pp. 35-55 (pages 14, 24).

MeGann, Connor, Frederic Py, Kanna Hajan, John P. Ryan, and Richard Henthorn
(2008a). “Adaptive Control for Autonomous Underwater Vehicles” In. Proceedings of
the Twenty-Third AAATl Conference on Artificial Intelligence. Chicago, llinois, TTSA,
pp. 1319-1324 (page T3).

MeGann, Conor, Frederic Py, Kanna Hajan, Hans Thomas, Richard Henthorn, and
Robert S. McEwen (2008b). “A deliberative architecture for AUV control” In. 2008
IEEE International Conference on HRobotics and Automation. Pasadena, California,
USA, pp. 1049-1054 (page T3).

Mendelson, Elliott (1987). Infroduction to Mathematical Logic. Vol. 3. Monterey, CA, USA:
Wadsworth and Brooks/Cole Advanced Booke & Software (page 16).

Muscettola, Nicola (1994). “HSTS: Integrating planning and scheduling” In. Intelligent
Scheduling, pp. 169-212 (page 70).

Nareyek, Alexander and Tuomas Sandholm (2003). “Planning in dynamic worlds: More than
external evente” In. Proceedings of the Workshop on agents and automated reasoning
(IJCAI). Acapulco, Mexico, pp. 30-35 (page 64).

Nau, Dana, Malik Ghallab, and Paclo Traverso (2004). Automated Planning: Theory &
Practice. San Francieco, CA, USA: Morgan Kaufmann Publishere Inc. (page 11).

MNebel, Bernhard and Jana Koehler (1995). “Plan Reuse versus Plan Generation: A
Theoretical and Empirical Analysis” In. Artificial Intelligence Jowrnal 76, pp. 427454
(page 68).

Newell, A. and H.A. Simon (1972). Human Problem Solving. Upper Saddle River, NJ, USA:
Prentice Hall, Englewood Cliffs (pages 12, 47, 50).

Onaindia, Eva, Oscar Sapena, Laura Sebastia, and Eliseo Marzal (2001). “SimPlanner:
An Execution-Monitoring System for Replanning in Dynamic Worlds.” In. Proceedings
of the Artificial Intelligence International Conference in Portugal (EPIA). Vol. 2258,
Lecture Notes in Computer Science, pp. 393400 page 68).

Palacioe, Héctor and Hector Geffner (2005). “Mapping Conformant Planning into SAT
Through Compilation and Projection™ In. Proceedings of the 1ith Conference of
the Spanish Association for Artificial Intelligence. Santiago de Compostela, Spain,
pp. 311-320. DOL: 10.1007/11881216_33 (pages 2, 41).

Palacioe, Héctor and Héctor Geffner (2008). “Compiling Uncertainty Away: Solving
Conformant Planning Problems using a Claesical Planner (Sometimee)” In. Proceedings
of the Twentyfirst AAAI National Conference on Arfificial Intelligence. Boston,
Maseachueetts, USA, pp. 900-905 (page 40).

Palacioe, Héctor and Héctor Geffner (2007). “From Conformant into Classical Planning:
Efficient Translations that May Be Complete Too” In. Proceseding of the seventeenth
International Conference on Automated Planning and Scheduling, pp. 264-271 (pages 40,

http://dx.doi.org/10.1007/11881216_33

BIELIOGRAPHY

Pearl, Judea (1984). Heuristics: Infelligent Search Strategies for Computer Problem Solving.

Boston, MA, USA: Addiron-Wesley Longman Publishing Co., Inc. (pages 26, 52).

Pednault, Edwin P. D). (1994). “ADL and the State-Transition Model of Action.” In. Journal
of Logic and Computation 4.5, pp. 467-512 (page 22).

Pemberton, Joseph and Richard E. Korf (1994). “Incremental Search Algorithms for
Heal-Time Decision Making” In. Proceedings of the 2 nd Arfificial Intelligence Planning
Systems Conference (AIPS-94, pp. 140-145 (page 56).

Peot, M. A. and David E. Smith {1992). “Conditional nonlinear planning” In. Proceedings
of the First International Conference on Artificial Intelligence (AAAI). College Park,
Maryland, pp. 189-197 (pages 2, 44, 66).

Pohl, Ira (1970). “Heuristic search viewed as path finding in a graph” In. Artificial
Intelligence Journal 1.3-4, pp. 193-204 (page 26).

Pommerening, Florian and Malte Helmert (2012). “*Optimal Planning for Delete-Free
Tacks with Incremental LM-Cut™ In. Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling ICAPS. Atibaia, Sao Paulo, Bragil
(page 134).

Porteous, Julie, Laura Sebastia, and Jorg Hoffmann (2001). “On the extraction, ordering
and usage of landmarks in planning” In. Proceedings of the European Conference of
Planning. Toledo, Spain, pp. 37-48 (pages 27, 129).

Puterman, Martin L. (1994). Markov Decision Processes: Discrete Stochastic Dymamic
Programming. lst. New York, NY, USA (page 28).

Quintero, Ezequiel, Vidal Alcazar, Daniel Borrajo, Juan Ferndndez-Olivares, Fernando

Fernandez, Angel Garcia Olaya, César Guzméan, Eva Onaindia, and David Prior (2011).
* Autonomone Mobile Robot Control and Learning with the PELEA Architecture.” In.

Proceedings of the AAAI 11 Workshop on Automated Action Planning for Autonomous
Mobile Robots (PAMR). San Francisco, CA, USA (page 76).

Rajan, K., C. McGann, F. Py, and H. Thomas (2007). “Robust Miesion Planning using
Deliberative Autonomy for Autonomoue Underwater Vehicles” In. Proceedings of the
Workshop on Robotics in Challenging and Hazardous Environments, ICRA. Rome, Ttaly
(pages 1, 11).

Eamalingam, G. and Thomas Reps (1996). “An Incremental Algorithm for a Generalization

of the Shortest-path Problem” In. Jowrnal of Algorithms 21.2, pp. 267-305. DOI: 10.

1006/ jagn.1996.0046 (page 57).

Eeiter, R. (1987). “Readinge in Nonmonotonic Reasoning” In. Ed. by Matthew L. Ginsberg.

San Francisco, CA, USA. Chap. On Closed World Data Bases, pp. 300-310 (page 21).

Reyna, Alvaro Torralba Arias de, Carlos Linares Lépez, and Daniel Borrajo (2013).

#Symbolic Merge-and-Shrink for Coet-Optimal Planning™ In. Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI). Beijing, China
(page 53).

Richter, Silvia and Matthias Westphal (2010). “The LAMA Planner: Guiding Cost-based
Anytime Planning with Landmarks” In. Journal of Artificial Intelligence Research 391,
pp. 127-177. DOL: 10.1613/ jair.2972 (pages 27, 105, 109).

197

http://dx.doi.org/10.1006/jagm.1996.0046
http://dx.doi.org/10.1006/jagm.1996.0046
http://dx.doi.org/10.1613/jair.2972

198

BIBELIOGRAFPHY

Richter, Silvia and Mattias Weetphal (2008). “The LAMA planner using landmark counting
in heuristic search” In. Proceedings of the sizth International Planning Competition.
Eighteenth International Conference on Automated Planning and Scheduling. Freighurg,
Germany (page 45).

Richter, Silvia, Malte Helmert, and Matthiae Weetphal (2008). “Landmarks Revisited”
In. Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
pp. 975082 (pages 130, 131, 134).

Rintanen, Jussi (1999). “Constructing Conditional Plans by a Theorem-Prover” In. Journal
of Artificial Intelligence Research (JAIR) 10, pp. 323-352 (page 41).

Rintanen, Jusei, Keijo Heljanko, and Ilkka Niemeld (2006). “Planning as satisfiability:
parallel plans and algorithms for plan search” In. Artificial Intelligence Research
170.12-13, pp. 1031-1080 (page 28).

Sacerdoti, Earl D. (1972). “Planning in a hierarchy of abstraction spaces” In. Artificial
Intelligence 2.5, pp. 115-135 (page 50).

Sanner, Scott (2011). Relational Dynamic Influence Diagram Language (RDDL): Language
Description (pagee 31, 33).

Sanner, Scott and Craig Boutilier (2005). “Probabilietic planning via linear
valueapproximation of firet-order mdpe” In. In Proceedings of the fifth International
Planning Competition. International Conference on Automated Planning and
Scheduling (page 35).

Sebastia, Laura, Eva Onaindia, and Elieeo Marzal (2006). “Decomposition of Planning
Problems” In. Artificial Intelligence Communications 19.1, pp. 4981 (page 3).

Shimbo, Masashi and Toru Iehida (2003). “Controlling the learning procese of real-time
heuristic search™ In. Artificial Intelligence Journal 146.1, pp. 1-41. DOI: 10. 1016/
£0004-3702(03)00012-2 (page 58).

Simmons, Reid (1992). “Concurrent Planning and Execution for Autonomous Robots™ In.
IEEFE Control Systems 12.1, pp. 46-50 (page T1).

Simmons, Reid G., Richard Goodwin, Karen Zita Haigh, Sven Koenig, Joseph O'Sullivan,
and Manuela M. Veloso (1997). “Xavier: Experience with a Layered Robot Architecture”
In. ACM SIGART Bulletin 8.1-4, pp. 22-33. DOI: 10.1145/272874.272878 (page T1).

Simon, Herbert and Allen H. Newell (1969). “Gpa: A case study in generality and problem
solving” In. Artificial Intelligence 2.5, pp. 109-124 (page 50).

Smith, David E. (2004). “Choosing Objectivee in Ower-Subecription Planning.” In.
Proceedings of the Fourteenth International Conference on Aufomated Planning and
Scheduling, pp. 303401 (page 24).

Smith, David E. and Daniel 5. Weld [1998). “Conformant Graphplan™ In. Proceedings of the
fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications
of Artificial Intelligence, pp. BBO-896 (pages 26, 30).

Son, Tran Cao, Phan Huy Tu, Michael Gelfond, and A. Ricardo Morales (2005).
*Conformant Planning for Domaine with Conetraints: A New Approach” In. Proceedings
of the 20th National Conference on Artificial Intelligence - Volume 3. Pitteburgh,
Pennsylvania, pp. 1211-1216 (page 40).

http://dx.doi.org/10.1016/S0004-3702(03)00012-2
http://dx.doi.org/10.1016/S0004-3702(03)00012-2
http://dx.doi.org/10.1145/272874.272878

BIELIOGRAPHY

Stentz, Anthony (1995a). “The Focussed D* Algorithm for Real-time Replanning” In.
Proceedings of the 14{th International Joint Conference on Artificial Intelligence. San
Francisco, CA, USA, pp. 1652-1659 (page 57).

Stentz, Anthony (1995b). “The Focuseed D* Algorithm for Real-time Replanning” In.
Proceedings of the 1{th International Joint Conference om Artificial Infelligence.
Montreal, Quebec, Canada, pp. 1652-1659 (page 100).

Stentz, Anthony and Martial Hebert (1995). “A Complete Navigation System for Goal
Acquisition in Unknown Environments” In. Autonomous Hobols 2, pp. 127-145
(page 56).

Teichteil-kénigsbuch, Florent, Guillaume Infantes, and Ugur Kuter (2008). EFF: A Hobust,
FF_Based MDP Planning Algorithm for Generating Policies with Low Probability of
Failure (page 36).

Tompkine, Dave A. D., Adrian Balint, and Holger H. Hoce (2011). “Captain Jack: New
Variable Selection Heuristics in Local Search for SAT" In. Proceedings of the 14th
International Conference on Theory and Application of Satisfiability Testing. Ann
Arbor, MI, pp. 302-316 (page 28).

Trope, Yaacov and Nira Liberman (2010). “Construal-level theory of peychological distance.”
In. Psychological Review 117.2, pp. 440-463. DoOI: 10.1037/a0018963 (page 85).

Veloso, Manuela M. (1993). “Prodigy /Analogy: Analogical Reasoning in General Problem
Solving.” In. Proceedings of the first European Conferente on Case-Based Reasoning.
Vol. 837. Lecture Notee in Computer Science, pp. 33-52 (page 69).

Veloso, Manuela M., Martha E. Pollack, and Michael T. Cox (1998a). “Rationale-Based
Monitoring for Continnous Planning in Dynamic Environmente” In. Proceedings of the
Fourth International Conference on Artificial Intelligence Planning Systems. Pitteburgh,
PA, USA, pp. 171-179 (page 64).

Veloso, Manuela M., Martha E. Pollack, and Michael T. Cox (1998b). “Rationale-Based
Monitoring for Planning in Dynamic Environmente.” In. Proceedings of the
Fourth International Conference on Artificial Intelligence Planning Systems (AIPS),
pp. 171-180 (page TO).

Wang, Chenggang, Saket Joshi, and Roni Khardon (2007). “First Order Decision Diagrams
for Relational MDPs” In. Proceedings of the 208h International Joint Conference on
Artificial Intelligence, pp. 1095-1100 (page 35).

Washington, Richard (1995). “Incremental Planning for Truly Integrated Planning and
Reaction™ In. Vol. 28, pp. 2840 (page 66).

Weld, Daniel S., Corin R. Anderson, and David E. Smith (1998). “Extending Graphplan
to Handle Uncertainty & Sensing Actione.” In. Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pp. 897004 (page 44).

Wilkine, David E. (1990). “Can Al Planners Solve Practical Problems?” In. Computational
Intelligence 6.4, pp. 232-246 (page 68).

Williams, Brian C. and Pandurang P. Nayak (1996). “A Model-based Approach to Heactive
Self-Configuring Systeme” In. Proceedings of the National Conference on Artificial
Intelligence (AAAI). Vol. 2, 971—078 (page 70).

199

http://dx.doi.org/10.1037/a0018963

200

BIBELIOGRAFPHY

Wu, Jia-Hong, Rajesh Kalyanam, and Robert Givan (2011). “Stochastic Enforced
Hill-climbing™ In. Artificial Infelligence Jowrnal 42.1, pp. 815-850. DOI: 10.1613/ jair.
3420 (pages 35, 45).

Wurman, Peter R., Raffaello D'Andrea, and Mick Mountz (2007). “Coordinating Hundreds
of Cooperative, Autonomous Vehicles in Warehouees” In. Proceedings of the 19th
National Conference on Innovative Applications of Artificial Intelligence. Vol 2
(page 107).

Yang, Qiang, Josh D. Tenenberg, and Steven Woods (1991). Abstraction in Nonlinear
Planning. Tech. rep. University of Waterloo (page 6).

Yang, Simon X. and Max Meng (2003). “Real-time collision-free motion planning of a mobile
robot ueing a Neural Dynamics-based approach”™ In. Intemational Jowrnal of Robotics
and Automation 2.3, pp. 1541-1552 (page 3).

Yoon, Sung Wook, Alan Fern, and Robert Givan (2007). “FF-Replan: A Baseline for
Probabilistic Planning™ In. Proceedings of the Seventeenth International Conference
on Automated Planning and Scheduling. Providence, Rhode Island, USA, pp. 22-26
(pages 2, 34, 68).

Yoon, Sung Wook, Alan Fern, Robert Givan, and Subbarac Kambhampati [2008).
“Probabilietic Planning via Determinization in Hindsight.” In. Proceedings of the
Twenty-Third Conference on Artificial Intelligence, pp. 1010-1016 (page 2).

Younee, Hakan L. 8. and Michael L. Littman (2004). “PPDDL1.0: An extension to pddl
for expressing planning domains with probabilistic effects” In. In Technical Report
CMU-C5-04-162 (page 30).

Younee, Hikan L. S., Michael L. Littman, David Weiseman, and John Asmuth
(2005). “The First Probabilistic Track of the International Planning Competition.
International Conference on Automated Planning and Scheduling” In. Jouwmal of
Artificial Intelligente Hesearch 24, pp. 851887 (pages 30, 39, 44, 81, 104).

Zalama, Eduado, Jaime Gémez, Mariano Paul, and Peran José Ramdn (2002). *Adaptive
behavior navigation of a mobile robot™ In. TEEE International Conference on Systems,
Man, and CybernAdaptive behavior navigation of a mobile robotetics, Part A: Systems
and Humans, Vol. 31. 3, pp. 160-169 (page 3).

Zettlemoyer, Luke S., Hanna Pasula, and Leelie Pack Kaelbling (2005). “Learning Planning
HRules in Noisy Stochastic Worlds” In. Proceedings of the Twentieth National Conference
on Artificial Intelligence (AAAI), pp. 911-918 (pages 2, 4, 65).

Zhu, Anmin and Simon X. Yang (2010). “A goal-oriented fuzzy reactive control for mobile
robots with automatic rule optimization.” In. Internafional Conference on Intelligent
Robots and Systems, pp. 3688-3603 (page 3).

Zhu, Lin and Robert Givan (2003). “Landmark Extraction via Planning Graph Propagation™
In. In ICAPS DOCTORAL Consortium (page 131).

Zickler, Stefan and Manuela Veloso (2010). *Variable Level-of-Detail Motion Planning
in Environmente with Poorly Predictable Bodiee” In. Proceeding of the nineteenth
European Conference on Artificial Intelligence. Lisbon, Portugal, pp. 189-194 (page 3).

http://dx.doi.org/10.1613/jair.3420
http://dx.doi.org/10.1613/jair.3420

