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Abstract

In this paper we present a survey on the “Favard theorem” and its extensions. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Given a sequence {Pn}∞n=0 of monic polynomials satisfying a certain recurrence relation, we are in-
terested in �nding a general inner product, if one exists, such that the sequence {Pn}∞n=0 is orthogonal
with respect to it.
The original “classical” result in this direction is due to Favard [10] even though his result seems

to be known to di�erent mathematicians. The �rst who obtained a similar result was Stieltjes in
1894 [23]. In fact, from the point of view of J -continued fractions obtained from the contraction of
an S-continued fraction with positive coe�cients, Stieltjes proved the existence of a positive linear
functional such that the denominators of the approximants are orthogonal with respect to it [23,
Section 11]. Later on, Stone gave another approach using the spectral resolution of a self-adjoint
operator associated with a Jacobi matrix [24, Theorem 10:23]. In his paper [21, p. 454] Shohat
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claims “We have been in possession of this proof for several years. Recently Favard published an
identical proof in the Comptes Rendus”. Also Natanson in his book [17, p. 167] said “This theorem
was also discovered (independent of Favard) by the author (Natanson) in the year 1935 and was
presented by him in a seminar led by S.N. Bernstein. He then did not publish the result since the
work of Favard appeared in the meantime”. The “same” theorem was also obtained by Perron [19],
Wintner [28] and Sherman [20], among others.
Favard’s result essentially means that if a sequence of monic polynomials {Pn}∞n=0 satis�es a

three-term recurrence relation

xPn(x) = Pn+1(x) + anPn(x) + bnPn−1(x); (1.1)

with an; bn ∈ R, bn ¿ 0, then there exists a positive Borel measure � such that {Pn}∞n=0 is orthogonal
with respect to the inner product

〈p; q〉=
∫
R
pq d�: (1.2)

This formulation is equivalent to the following: Given the linear operator t :P→ P; p(t)→ tp(t),
characterize an inner product such that the operator t is Hermitian with respect to the inner product.
A �rst extension of this problem is due to Chihara [5]. If {Pn}∞n=0 satis�es a three-term recurrence

relation like (1.1) with an; bn ∈ C; bn �= 0, �nd a linear functional L de�ned on P, the linear space
of polynomials with complex coe�cients, such that {Pn}∞n=0 is orthogonal with respect to the general
inner product 〈p; q〉=L[pq], where p; q ∈ P. Notice that in the case analyzed by Favard [10] the
linear functional has an integral representation

L[p] =
∫
R
p d�:

Favard’s Theorem is an inverse problem in the sense that from information about polynomials we
can deduce what kind of inner product induces orthogonality for such polynomials. The aim of
this contribution is to survey some extensions of the Favard Theorem when a sequence of monic
polynomials {Pn}∞n=0 satis�es recurrence relations of a di�erent form than (1.1).
In the �rst place, in [8] a similar problem is studied relating to polynomials orthogonal with respect

to a positive Borel measure � supported on the unit circle, which satisfy a recurrence relation

�n(z) = z�n−1(z) + �n(0)�∗
n−1(z); |�n(0)|¡ 1; (1.3)

where �∗
n(z) = z

n�n(1= �z).
Thus, a Favard Theorem means, in this case, to identify an inner product in P such that {�n}∞n=0

satisfying (1.3) is the corresponding sequence of orthogonal polynomials.
The structure of the paper is as follows. In Section 2 we present a survey of results surrounding the

Favard Theorem when a sequence of polynomials satis�es a linear relation like (1.1). In particular,
we show that the interlacing property for the zeros of two consecutive polynomials gives basic
information about the preceding ones in the sequence of polynomials.
In Section 3, an analogous approach is presented in the case of the unit circle in a more general

situation when |�n(0)| �= 1. Furthermore, an integral representation for the corresponding inner
product is given. The connection with the trigonometric moment problem is stated when we assume
that the nth polynomial �n is coprime with �∗

n .
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In Section 4, we present some recent results about a natural extension of the above Favard theorems
taking into account their interpretation in terms of operator theory. Indeed, the multiplication by t is
a Hermitian operator with respect to (1.2) and a unitary operator with respect to the inner product

〈p; q〉=
∫
R
p(ei�)q(ei�) d�(�): (1.4)

Thus, we are interested in characterizing inner products such that the multiplication by a �xed
polynomial is a Hermitian or a unitary operator. The connection with matrix orthogonal polynomials
is stated, and some examples relating to Sobolev inner products are given.

2. The Favard theorem on the real line

2.1. Preliminaries

In this subsection we summarize some de�nitions and preliminary results that will be useful
throughout the work. Most of them can be found in [5].

De�nition 2.1. Let {�n}∞n=0 be a sequence of complex numbers (moment sequence) and L a func-
tional acting on the linear space of polynomials P with complex coe�cients. We say that L is a
moment functional associated with {�n}∞n=0 if L is linear, i.e., for all polynomials �1 and �2 and
any complex numbers �1 and �2,

L[�1�1 + �2�2] = �1L[�1] + �2L[�2] and L[xn] = �n; n= 0; 1; 2; : : : :

De�nition 2.2. Given a sequence of polynomials {Pn}∞n=0, we say that {Pn}∞n=0 is a sequence of
orthogonal polynomials (SOP) with respect to a moment functional L if for all nonnegative integers
n and m the following conditions hold:
(1) Pn is a polynomial of exact degree n,
(2) L[PnPm] = 0; m �= n,
(3) L[P2n ] �= 0.
Usually, the last two conditions are replaced by

L[xmPn(x)] = Kn�n;m; Kn �= 0; 06m6n;

where �n;m is the Kronecker symbol.

The next theorems are direct consequences of the above de�nition [5, Chapter I, Sections 2 and
3, pp. 8–17].

Theorem 2.3. Let L be a moment functional and {Pn}∞n=0 a sequence of polynomials. Then the
following are equivalent:
(1) {Pn}∞n=0 is an SOP with respect to L.
(2) L[�Pn] = 0 for all polynomials � of degree m¡n; while L[�Pn] �= 0 if the degree of � is n.
(3) L[xmPn(x)] = Kn�n;m; where Kn �= 0; for m= 0; 1; : : : ; n.

3
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Theorem 2.4. Let {Pn}∞n=0 be an SOP with respect to L. Then; for every polynomial � of degree n

�(x) =
n∑
k=0

dkPk(x) where dk =
L[�Pk]
L[P2k ]

; k = 0; 1; : : : ; n: (2.1)

A simple consequence of the above theorem is that an SOP is uniquely determined if we im-
pose an additional condition that �xes the leading coe�cient kn of the polynomials (Pn(x) = knxn+
lower-order terms). When kn = 1 for all n = 0; 1; 2; : : : the corresponding SOP is called a monic
SOP (MSOP). If we choose kn = (L[P2n ])

−1=2, the SOP is called an orthonormal SOP
(SONP).
The next question which obviously arises is the existence of an SOP. To answer this question, it

is necessary to introduce the Hankel determinants 	n,

	n =

∣∣∣∣∣∣∣∣∣∣∣∣

�0 �1 · · · �n
�1 �2 · · · �n+1
...

...
. . .

...

�n �n+1 · · · �2n

∣∣∣∣∣∣∣∣∣∣∣∣
:

Theorem 2.5. Let L be a moment functional associated with the sequence of moments {�n}∞n=0.
Then; the sequence of polynomials {Pn}∞n=0 is an SOP with respect to L if and only if 	n �=
0 for all nonnegative n. Moreover; the leading coe�cient kn of the polynomial Pn is given by
kn = Kn	n− 1=	n.

De�nition 2.6. A moment functional L is called positive de�nite if for every nonzero and non-
negative real polynomial �; L[�]¿ 0.

The following theorem characterizes the positive-de�nite functionals in terms of the moment
sequences {�n}∞n=0. The proof is straightforward.

Theorem 2.7. A moment functional L is positive de�nite if and only if their moments are real
and 	n¿ 0 for all n¿0.

Using the above theorem, we can de�ne a positive-de�nite moment functional L entirely in
terms of the determinants 	n. In other words, a moment functional L is called positive de�-
nite if all its moments are real and 	n¿ 0 for all n¿0. Notice also that for a MSOP, it is
equivalent to say that Kn¿ 0 for all n¿0. This, and the fact that an SOP exists if and only if
	n �= 0, leads us to de�ne more general moment functionals: the so-called quasi-de�nite moment
functionals.

De�nition 2.8. A moment functional L is said to be quasi-de�nite if and only if 	n �= 0 for all
n¿0.

4
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We can write the explicit expression of the MOP in terms of the moments of the corresponding
functional:

Pn(x) =
1
	n−1

∣∣∣∣∣∣∣∣∣∣∣

�0 �1 · · · �n
�1 �2 · · · �n+1
...

...
. . .

...
�n−1 �n · · · �2n−1
1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
; 	−1 ≡ 1; n= 0; 1; 2; : : : : (2.2)

One of the simplest characteristics of orthogonal polynomials is the so-called three-term recurrence
relation (TTRR) that connects every three consecutive polynomials of the SOP.

Theorem 2.9. If {Pn}∞n=0 is an MSOP with respect to a quasi-de�nite moment functional; then the
polynomials Pn satisfy a three-term recurrence relation

Pn(x) = (x − cn)Pn−1(x)− 
nPn−2(x); n= 1; 2; 3; : : : ; (2.3)

where {cn}∞n=0 and {
n}∞n=0 are given by

cn =
L[xP2n−1]
L[P2n−1]

; n¿1; and 
n =
L[xPn−1Pn−2]

L[P2n−2]
=

L[P2n−1]
L[P2n−2]

; n¿2;

respectively; and P−1(x) ≡ 0; P0(x) ≡ 1.

The proof of the above theorem is a simple consequence of the orthogonality of the polynomials
and Theorem 2:2. A straightforward calculation shows that (
1 =L[1])


n+1 =
Kn
Kn−1

=
	n−2	n
	2n−1

; n= 1; 2; 3; : : : ;

and 	−1 ≡ 1. From Theorem 2.7 and De�nition 2.8 it follows that, if 
n �= 0, then L is quasi-de�nite
whereas, if 
n ¿ 0, then L is positive de�nite. Notice also that from the above expression we can
obtain the square norm Kn ≡ L[P2n ] of the polynomial Pn as

Kn ≡ L[P2n ] = 
1
2 · · · 
n+1: (2.4)

A useful consequence of Theorem 2.5 are the Christo�el–Darboux identities.

Theorem 2.10. Let {Pn}∞n=0 be an MSOP which satis�es (2:3) with 
n �= 0 for all nonnegative n.
Then

n∑
m=0

Pm(x)Pm(y)
Km

=
1
Kn

Pn+1(x)Pn(y)− Pn+1(y)Pn(x)
x − y ; n¿0; (2.5)

and
n∑
m=0

P2m(x)
Km

=
1
Kn
[P′
n+1(x)Pn(x)− Pn+1(x)P′

n(x)]; n¿0: (2.6)

5
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For an arbitrary normalization (not necessarily the monic one) of the polynomials Pn, the three-term
recurrence relation becomes

xPn−1(x) = �n Pn(x) + �nPn−1(x) + �nPn−2(x): (2.7)

In this case, the coe�cients �n and �n can be obtained comparing the coe�cients of xn and xn−1,
respectively, in both sides of (2.7) and �n is given by L[xPn−1Pn−2]=L[P2n−2]. This leads to

�n =
kn−1
kn
; �n =

bn−1
kn−1

− bn
kn
; �n =

kn−2
kn−1

Kn−1
Kn−2

; (2.8)

where kn is the leading coe�cient of Pn and bn denotes the coe�cient of xn−1 in Pn, i.e., Pn(x) =
knxn+ bnxn−1 + · · ·. Notice also that knowing two of the coe�cients �n, �n, and �n, one can �nd the
third one using (2.7) provided, for example, that Pn(x0) �= 0 for some x0 (usually x0 = 0) and for all
n= 1; 2; 3; : : : .
The above TTRR (2.7) can be written in matrix form,

xPn−1 = JnPn−1 + �nPn(x)en; (2.9)

where

Pn−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0(x)

P1(x)

P2(x)

...

Pn−2(x)

Pn−1(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Jn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 �1 0 : : : 0 0

�2 �2 �2 : : : 0 0

0 �3 �3 : : : 0 0

...
...
...
. . .

...
...

0 0 0 : : : �n−1 �n−1

0 0 0 : : : �n �n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; en =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

: (2.10)

Denoting by {xn; j}16j6n the zeros of the polynomial Pn, we see from (2.9) that each xn; j is an
eigenvalue of the corresponding tridiagonal matrix of order n and [P0(xn; j); : : : ; Pn−1(xn; j)]

T is the
associated eigenvector. From the above representation many useful properties of zeros of orthogonal
polynomials can be found.

2.2. The zeros of orthogonal polynomials

De�nition 2.11. Let L be a moment functional. The support of the functional L is the largest
interval (a; b)⊂R where L is positive de�nite.

The following theorem holds.

Theorem 2.12. Let (a; b) be the support of the positive-de�nite functional L; and let {Pn}∞n=0 be
the MSOP associated with L. Then;
(1) All zeros of Pn are real; simple; and located inside (a; b).
(2) Two consecutive polynomials Pn and Pn+1 have no common zeros.

6
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(3) Let {xn; j}nj=1 denote the zeros of the polynomial Pn; with xn;1¡xn;2¡ · · · ¡xn;n. Then;

xn+1; j ¡ xn; j ¡ xn+1; j+1; j = 1; 2; 3; : : : ; n:

The last property is usually called the interlacing property.

Proof. Notice that, in the case when the SOP is an SONP, i.e., Kn=1 for all n, then the matrix Jn is
a symmetric real matrix (Jn= J Tn ; where J

T
n denotes the transposed matrix of Jn). So its eigenvalues,

and thus, the zeros of the orthogonal polynomials are real. To prove that all zeros are simple, we
can use the Christo�el–Darboux identity (2.6). Let xk be a multiple zero of Pn, i.e., Pn(xk) = P′

n(xk)
=0. Then (2.6) gives

0¡
n∑
m=0

P2m(xk)
Km

=
1
Kn
[P′
n+1(xk)Pn(xk)− Pn+1(xk)P′

n(xk)] = 0:

This contradiction proves the statement. Let {xk}pk=1 be the zeros of Pn inside (a; b). Then, Pn(x)
∏p
k=1

(x − xk) does not change sign in (a; b) and L[Pn(x)
∏p
k=1 (x − xk)] �= 0, so p= n, i.e., all the zeros

of Pn are inside (a; b). Thus, the statement 1 is proved. To prove 2; we use the TTRR. In fact, if
xk is a zero of Pn and Pn+1, then it must be a zero of Pn−1. Continuing this process by induction,
we get that xk must be a zero of P0(x) ≡ 1, which is a contradiction. Before proving the interlacing
property 3 we will prove a theorem due to Cauchy [22, p. 197].

Theorem 2.13. Let B be a principal (n − 1) × (n − 1) submatrix of a real sym-
metric n × n matrix A; with eigenvalues �1¿�2¿ · · ·¿�n−1. Then; if 
1¿
2¿ · · ·¿
n are the
eigenvalues of A;


1¿�1¿
2¿ · · ·¿�n−1¿
n:

Proof. Let A be the n× n matrix
A=

(
B a
aT b

)
;

and assume that the theorem is not true, i.e., �i ¿
i or 
i+1¿�i (since the matrix A is real symmet-
ric, all its eigenvalues are real). Let i be the �rst such index. If �i ¿
i (the other case is similar),
there exists a real number 
 such that �i ¿
¿
i. Then, B − 
In−1, where Ik denotes the identity
k × k matrix, is nonsingular (det(B− 
In−1) �= 0), and the matrix

H =
(
B− 
In−1 0

0 b− 
− aT(B− 
In−1)−1a
)

=
(

In−1 0
−aT(B− 
In−1)−1 1

)(
B− 
In−1 a
aT b− 


)(
I −(B− 
In−1)−1a
0 1

)

is congruent to A− 
In. Then, by the inertia theorem, the matrix H has the same number of positive
eigenvalues as A− 
In, i.e., i− 1. But H has at least as many positive eigenvalues as B− 
In−1, i.e.,
i. The contradiction proves the theorem.

Obviously, the interlacing property 3 can be obtained as a simple corollary of the Cauchy Theorem,
since the matrix Jn associated with the SONP is a real symmetric matrix and we can choose as A the

7
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matrix Jn+1 whose eigenvalues are the zeros of the polynomial Pn+1 and then, the principal submatrix
B is the matrix Jn whose eigenvalues coincide with the zeros of Pn. This completes the proof of
Theorem 2:12.

2.3. The Favard Theorem and some applications

In this subsection we will prove the so-called Favard Theorem.

Theorem 2.14. Let {cn}∞n=0 and {
n}∞n=0 be two arbitrary sequences of complex numbers; and let
{Pn}∞n=0 be a sequence of polynomials de�ned by the relation

Pn(x) = (x − cn)Pn−1(x)− 
nPn−2(x); n= 1; 2; 3; : : : ; (2.11)

where P−1(x) = 0 and P0(x) = 1. Then; there exists a unique moment functional L such that

L[1] = 
1; L[Pn Pm] = 0 if n �= m:
Moreover; L is quasi-de�nite and {Pn}∞n=0 is the corresponding MSOP if and only if 
n �= 0; and
L is positive de�nite if and only if cn are real numbers and 
n ¿ 0 for all n= 1; 2; 3; : : : .

Proof. To prove the theorem, we will de�ne the functional L by induction on Pn, the linear
subspace of polynomials with degree at most n. We put

L[1] = �0 = 
1; L[Pn] = 0; n= 1; 2; 3; : : : : (2.12)

So, using the three-term recurrence relation (2.11), we can �nd all the moments in the following
way: Since L[Pn] = 0, the TTRR gives

0 =L[P1] =L[x − c1] = �1 − c1
1; then �1 = c1
1;

0 =L[P2] =L[(x − c2)P1 − 
2P0] = �2 − (c1 + c2)�1 + (c1c2 − 
2)
1;
then we can �nd �2, etc. Continuing this process, we can �nd, recursively, �n+1 by using the TTRR,
and they are uniquely determined. Next, using (2.11) and (2.12), we deduce that

xkPn(x) =
n+k∑
i=n−k

dn; iPi(x):

Then, L[xk Pn] = 0 for all k = 0; 1; 2; : : : ; n− 1. Finally,
L[xnPn] =L[xn−1(Pn+1 + cn+1Pn + 
n+1Pn−1)] = 
n+1L[xn−1Pn−1];

so, L[xnPn] = 
n+1
n · · · 
1.
Moreover, L is quasi-de�nite and {Pn}∞n=0 is the corresponding MSOP if and only if for all n¿1,


n �= 0, while L is positive de�nite and {Pn}∞n=0 is the corresponding MSOP if and only if for all
n¿1, cn ∈ R and 
n ¿ 0.

Next, we will discuss some results dealing with the zeros of orthogonal polynomials.
The following theorem is due to Wendro� [27] (for a di�erent point of view using the B�ezoutian

matrix see [2]).

8
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Theorem 2.15. Let Pn and Pn−1 be two monic polynomials of degree n and n− 1; respectively. If
a¡x1¡x2¡ · · · ¡xn¡b are the real zeros of Pn and y1¡y2¡ · · · ¡yn−1 are the real zeros
of Pn−1; and they satisfy the interlacing property; i.e.;

xi ¡yi ¡xi+1; i = 1; 2; 3; : : : ; n− 1;
then there exists a family of polynomials {Pk}nk=0 orthogonal on [a; b] such that the above poly-
nomials Pn and Pn−1 belong to it.

Proof. Let cn=x1+x2+ · · ·+xn −y1−y2−· · ·−yn−1. Then, the polynomial Pn(x) − (x−cn)Pn−1(x)
is a polynomial of degree at most n− 2, i.e.,

Pn(x)− (x − cn)Pn−1(x) ≡ −
nR(x);
where R is a monic polynomial of degree r at most n− 2. Since

x1 − cn = (y1 − x2) + · · ·+ (yn−1 − xn)¡ 0;

and Pn−1(x1) �= 0 (this is a consequence of the interlacing property), then 
n �= 0 and R(x1) �= 0.
Moreover, Pn(yi)=−
nR(yi). Now, using the fact that Pn(yi)Pn(yi+1)¡ 0 (again this is a consequence
of the interlacing property), we conclude that also R(yi)R(yi+1)¡ 0, and this immediately implies
that R has exactly n− 2 real zeros and they satisfy yi ¡ zi ¡yi+1 for i = 1; 2; : : : ; n− 2.
If we now de�ne the polynomial Pn−2 of degree exactly n − 2, Pn−2 ≡ R, whose zeros interlace

with the zeros of Pn−1, we can construct, just repeating the above procedure, a polynomial of degree
n − 3 whose zeros interlace with the ones of Pn−2, etc. So we can �nd all polynomials Pk for
k = 1; 2; : : : ; n.
Notice also that, by construction,

Pn(x) = (x − cn)Pn−1(x)− 
nPn−2(x);
so


n =
(x1 − cn)Pn−1(x1)

Pn−2(x1)
¿ 0;

because sign Pn−1(x1)=(−1)n−1 and sign Pn−2(x1)=(−1)n−2, which is a consequence of the interlacing
property x1¡y1¡z1.

We point out here that it is possible to complete the family {Pk}nk=0 to obtain a MSOP. To do
this, we can de�ne the polynomials Pk for k = n+ 1; n+ 2; : : : recursively by the expression

Pn+j(x) = (x − cn+j)Pn+j−1(x)− 
n+jPn+j−2(x); j = 1; 2; 3; : : : ;

where cn+j and 
n+j are real numbers chosen such that 
n+j ¿ 0 and the zeros of Pn+j lie on (a; b).
Notice also that, in such a way, we have de�ned, from two given polynomials Pn−1 and Pn, a
sequence of polynomials satisfying a three-term recurrence relation of the form (2.11). So Theo-
rem 2.14 states that the corresponding sequence is an orthogonal polynomial sequence with respect
to a quasi-de�nite functional. Moreover, since the coe�cients in (2.11) are real and 
n+j ¿ 0, the
corresponding functional is positive de�nite.

9
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Theorem 2.16 (Vinuesa and Guadalupe [26]; Nevai and Totik [18]). Let {xn}∞n=1 and {yn}∞n=1 be
two sequences of real numbers such that

· · · ¡x3¡x2¡x1 = y1¡y2¡y3¡ · · · :
Then there exists a unique system of monic polynomials {Pn}∞n=0 orthogonal with respect to a
positive de�nite functional on the real line such that Pn(xn) = Pn(yn) = 0 and Pn(t) �= 0 for t �∈
[xn; yn]; n= 1; 2; : : : .

Proof. Set P0 = 1, 
0 = 0 and c0 = x1. De�ne {Pn}∞n=1, {cn}∞n=1 and {
n}∞n=1 by
Pn(x) = (x − cn)Pn−1(x)− 
nPn−2(x); n¿1;


n = (xn − yn)
[
Pn−2(xn)
Pn−1(xn)

− Pn−2(yn)
Pn−1(yn)

]−1
; cn = xn − 
n Pn−2(xn)Pn−1(xn)

: (2.13)

The above two formulas come from the TTRR and from the requirement Pn(xn) = Pn(yn) = 0. By
induction one can show that Pn(x) �= 0 if x �∈ [xn; yn], Pn(xn)=Pn(yn)=0 and 
n+1¿ 0 for n=0; 1; 2; : : :
. Then, from Theorem 2.14 {Pn}∞n=0 is a MSOP with respect to a positive de�nite moment functional.

Notice that, in the case xn=−yn, for n=1; 2; 3; : : :, the expression (2.13) for 
n and cn reduces to

n = xn

Pn−2(xn)
Pn−1(xn)

; cn = 0:

3. The Favard Theorem on the unit circle

3.1. Preliminaries

In this subsection we will summarize some de�nitions and results relating to orthogonal poly-
nomials on the unit circle T= {|z|= 1; z ∈ C}. See [13].

De�nition 3.1. Let {�n}n∈Z be a bisequence of complex numbers (moment sequence) such that
�−n = ��n and L be a functional on the linear space of Laurent polynomials �= Span{zk}k∈Z. We
say that L is a moment functional associated with {�n} if L is linear and L(xn) = �n, n ∈ Z.

De�nition 3.2. Given a sequence of polynomials {�n}∞n=0 we say that {�n}∞n=0 is a sequence of
orthogonal polynomials (SOP) with respect to a moment functional L if
(i) �n is a polynomial of exact degree n,
(ii) L(�n(z) · z−m) = 0, if 06m6n− 1, L(�n(z) · z−n) = Sn �= 0, for every n= 0; 1; 2; : : : .

For such a linear functional L we can de�ne a Hermitian bilinear form in P (the linear space of
polynomials with complex coe�cients) as follows:

〈p(z); q(z)〉=L(p(z) · q(1= �z)); (3.1)

where q(z) denotes the complex conjugate of the polynomial q(z).

10
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Notice that De�nition 3.2 means that {�n}∞n=0 is an SOP with respect to the above bilinear form,
and thus the idea of orthogonality appears, as usual, in the framework of Hermitian bilinear forms.
Furthermore,

〈zp(z); zq(z)〉= 〈p(z); q(z)〉; (3.2)

i.e., the shift operator is unitary with respect to the bilinear form (3.1). In particular, the Gram
matrix for the canonical basis {zn}∞n=0 is a structured matrix of Toeplitz type, i.e.,

〈zm; zn〉= 〈zm−n; 1〉= 〈1; zn−m〉= �m−n; m; n ∈ N:
In this case the entries (m; n) of the Gram matrix depend of the di�erence m− n.
In the following we will denote Tn = [�k−j]

n
k; j=0.

Now we will deduce some recurrence relations for the respective sequence of monic orthogonal
polynomials.

Theorem 3.3. Let L be a moment functional associated with the bisequence {�n}n∈Z. The sequence
of polynomials {�n}∞n=0 is an SOP with respect to L if and only if det Tn �= 0 for every n =
0; 1; 2; : : : : Furthermore; the leading coe�cient of �n is sn = det Tn−1=det Tn.

De�nition 3.4. L is said to be a positive-de�nite moment functional if for every Laurent polynomial
q(z) = p(z)p(1= �z); L(q)¿ 0.

Theorem 3.5. L is a positive-de�nite functional if and only if det Tn¿ 0 for every n= 0; 1; 2; : : :.

De�nition 3.6. L is said to be a quasi-de�nite moment functional if det Tn �= 0 for every n =
0; 1; 2; : : : :

Remark. Compare the above de�nitions with those of Section 2.1.

In the following we will assume that the SOP {�n}∞n=0 is normalized using the fact that the
leading coe�cient is one, i.e., we have a sequence of monic orthogonal polynomials (MSOP) given
by (n= 0; 1; 2; : : :)

�n(x) =
1

det Tn−1

∣∣∣∣∣∣∣∣∣∣∣

�0 �1 · · · �n
�−1 �0 · · · �n−1
...

...
. . .

...
�−n+1 �−n+2 · · · �1
1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣
; det T−1 ≡ 1: (3.3)

Unless stated otherwise, we will suppose the linear functional L is quasi-de�nite.

Theorem 3.7 (Geronimus [11]). If {�n}∞n=0 is an MSOP with respect to a quasi-de�nite moment
functional; it satis�es two recurrence relations:
(i) �n(z) = z�n−1(z) + �n(0)�∗

n−1(z); �0(z) = 1 (forward recurrence relation);

11
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(ii) �n(z) = (1− |�n(0)|2)z�n−1(z) +�n(0)�∗
n(z); �0(z) = 1 (backward recurrence relation); where

�∗
n(z) = z

n�n(1= �z) is called the reciprocal polynomial of �n.

Proof. (i) Let Rn−1(z) = �n(z)− z�n−1(z). Thus, from orthogonality and (3.2)

〈Rn−1(z); zk〉=L(zk · Rn−1(1= �z)) =L(zk−n+1 · zn−1Rn−1(1= �z)) = 0;
for k = 1; 2; : : : ; n− 1, and L(z−j · zn−1Rn−1(1= �z)) = 0; j = 0; 1; : : : ; n− 2.
This means that the polynomial of degree at most n − 1, zn−1Rn−1(1= �z), with leading coe�cient

�n(0), is orthogonal to Pn−2, i.e.,
zn−1Rn−1(1= �z) = �n(0)�n−1(z):

Thus, Rn−1(z) = �n(0)�∗
n−1(z).

(ii) From (i) we deduce

�∗
n(z) = �

∗
n−1(z) + �n(0)z�n−1(z):

Then, the substitution of �∗
n−1(z) in (i), using the above expression, leads to (ii).

Remark. Notice that, if we multiply both sides of (ii) by 1=zn, use the orthogonality of �n as well
as the explicit expression (3.3), we get the following identity:

det Tn
det Tn−1

= (1− |�n(0)|2)det Tn−1det Tn−2
: (3.4)

The values {�n(0)}∞n=1 are called re�ection coe�cients or Schur parameters for the MSOP. Notice
that the main di�erence with the recurrence relation analyzed in Section 2 is that here only two
consecutive polynomials are involved and the reciprocal polynomial is needed. On the other hand,
the basic parameters which appear in these recurrence relations are the value at zero of the orthogonal
polynomial.

Theorem 3.8. L is a quasi-de�nite moment functional if and only if |�n(0)| �= 1 for every n =
1; 2; 3; : : : :

Proof. If L is quasi-de�nite the corresponding MSOP satis�es both (i) and (ii). If for some n ∈ N,
|�n(0)|= 1, then from (ii), �n(z) = �n(0)�∗

n(z). Thus,

〈�n(z); zn〉=�n(0)〈�∗
n(z); z

n〉= �n(0)〈zn�n(1= �z); zn〉
=�n(0)〈�n(1= �z); 1〉= �n(0); �n(z)〉= 0;

which is a contradiction with the fact that {�n}∞n=1 is an MSOP.
Assume now that a sequence of polynomials is de�ned by (i) with |�n(0)| �= 1. We will prove

by induction that there exists a moment functional L which is quasi-de�nite and such that {�n}∞n=1
is the corresponding sequence of MOP.
Let �1(z) = z + �1(0). We de�ne �1 =L(z) =−�1(0)�0. Thus

T1 =
(
�0 �1
�1 �0

)

is such that det T1 = �20(1− |�1(0)|2) �= 0.

12
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Furthermore,

〈�1(z); z〉=L(�1(z) · 1=z) = �0 + �1(0)�1 = �0(1− |�1(0)|2) �= 0;
i.e., �1 is a monic polynomial of degree 1 such that 〈�1(z); 1〉=�1 +�1(0)�0 =0, i.e., is orthogonal
to P0.
Assume {�0; �1; : : : ; �n−1} are monic and orthogonal. Let an = �n(0), |an| �= 1, and construct a

polynomial �n of degree n such that

�n(z) = z�n−1(z) + �n(0)︸ ︷︷ ︸
an

�∗
n−1(z):

If �n(z) = zn + cn;1zn−1 + · · ·+ cn;n−1z+ an, we de�ne �n =−cn;1�n−1 − · · · − cn;n−1�1 − an�0. Notice
that this means that 〈�n(z); 1〉= 0.
On the other hand, for 16k6n− 1, using the recurrence relation (i)

〈�n(z); zk〉= 〈�n−1(z); zk−1〉+ an〈�∗
n−1(z); z

k〉= 0;
where the last term in the above sum vanishes since

〈�∗
n−1(z); z

k〉= 〈zn−k−1; �n−1(z)〉:
Finally, using (3.4), we have

〈�n(z); zn〉= det Tn
det Tn−1

= (1− |�n(0)|2)det Tn−1det Tn−2
;

and thus, because of the induction hypothesis, 〈�n(z); zn〉 �= 0.

Corollary 3.9. The functional L is positive de�nite if and only if |�n(0)|¡ 1; for n= 1; 2; : : : .

3.2. The zeros of the orthogonal polynomials

In the following we will analyze the existence of an integral representation for a moment
functional.
First, we will consider the case of positive de�niteness.

Proposition 3.10 (Landau [12]). If � is a zero of �n(z); then |�|¡ 1.

Proof. Let �n(z) = (z − �)qn−1(z), where qn−1 is a polynomial of degree n− 1. Then,
0¡ 〈�n(z); �n(z)〉= 〈(z − �)qn−1(z); �n(z)〉= 〈zqn−1(z); �n(z)〉
= 〈zqn−1(z); zqn−1(z)− �qn−1(z)〉= 〈qn−1(z); qn−1(z)〉 − ��〈zqn−1(z); qn−1(z)〉
= 〈qn−1(z); qn−1(z)〉 − ��[〈�n(z); qn−1(z)〉+ �〈qn−1(z); qn−1(z)〉]
= (1− |�|2)〈qn−1(z); qn−1(z)〉;

and the result follows.

Corollary 3.11 (Montaner and Alfaro [16]). If � is a zero of �∗
n(z); then |�|¿ 1.

13
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Remark. Notice that, in the quasi-de�nite case, we only can guarantee that |�| �= 1.

Next, we will de�ne an absolutely continuous measure such that the induced inner product in
Pn agrees with the restriction to Pn of our inner product associated with the positive-de�nite linear
functional. In order to do this, we need some preliminary result.

Lemma 3.12 (Erd�elyi et al. [8]). Let �n be the nth orthonormal polynomial with respect to a
positive de�nite linear functional. Then;

1
2�

∫ 2�

0
�k(ei�)�j(ei�)

d�
|�n(ei�)|2 = �j;k ; 06j6k6n¡∞:

Proof. Notice that
1
2�

∫ 2�

0
�n(ei�)�n(ei�)

d�
|�n(ei�)|2 = 1; (3.5)

and, for j¡n,

1
2�

∫ 2�

0
�n(ei�)�j(ei�)

d�
|�n(ei�)|2 =

1
2�

∫ 2�

0

[
�j(ei�)
�n(ei�)

]
d�

=
1
2�

∫ 2�

0

ei(n−j)��∗
j (e

i�)
�∗
n(ei�)

d�

=
1
2� i

∫
T

zn−j−1�∗
j (z)

�∗
n(z)

dz = 0; (3.6)

because of the analyticity of the function in the last integral (see Corollary 3.11). Then, �n(z) is
the nth orthonormal polynomial with respect to both, a positive linear functional and the absolutely
continuous measure d�n = d�=|�n(ei�)|2. By virtue of the backward recurrence relation (Theorem
3.7(ii)) for the orthonormal case, the polynomials {�j}n−1j=0 , which are uniquely de�ned by this
recurrence relation, are orthogonal with respect to both, the linear functional and the measure d�n.
Thus, the result follows.

Remark. In [8], an induction argument is used in order to prove the previous result. Indeed, assuming
that for a �xed k6n,

1
2�

∫ 2�

0
�k(ei�)�j(ei�)

d�
|�n(ei�)|2 = �j; k ; 06j6k;

they proved that

1
2�

∫ 2�

0
�k−1(ei�)�l(ei�)

d�
|�n(ei�)|2 = �k−1; l; 06l6k − 1:

Notice that the nth orthogonal polynomial de�nes in a unique way the previous ones; thus, the proof
of the second statement (the induction) is not necessary. Of course, here we need not do this since
we are using the backward recurrence relation for the orthogonal polynomials �n.

14
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Notice also that the measure d�n = d�=|�n(ei�)|2 de�nes an MSOP {�n}∞n=0 such that �m(z) =
zm−n�n(z), for m¿n, where �n is the monic polynomial corresponding to �n. Moreover, the sequence
of re�ection coe�cients corresponding to this MSOP {�n}∞n=0 is {�1(0); : : : ; �n(0); 0; 0; : : :}. Usually,
in the literature of orthogonal polynomials, this measure d�n is called a Bernstein–Szeg�o measure
(see [25]).
In Section 2, Theorem 2.15, we proved that the interlacing property for the zeros of two poly-

nomials Pn−1 and Pn of degree n− 1 and n, respectively, means that they are the (n− 1)st and nth
orthogonal polynomials of an MSOP. Indeed, the three-term recurrence relation for a MSOP plays a
central role in the proof. In the case of the unit circle, we have an analogous result, which is known
in the literature as the Schur–Cohn–Jury criterion [4].

Theorem 3.13. A monic polynomial p of degree n has its n zeros inside the unit circle if and only
if the family of parameters {ak}nk=0 de�ned by the following backward algorithm

qn(z) = p(z); qn(0) = an;

qk(z) =
qk+1(z)− ak+1q∗k+1(z)

z(1− |ak+1|2) ; ak = qk(0); k = n− 1; n− 2; : : : ; 0;

satis�es |ak |¡ 1; k = 1; 2; : : : ; n:

Proof. Notice that the polynomials {qk}nk=1, q0 = 1, satisfy a backward recurrence relation like
the polynomials orthogonal on the unit circle with truncated Schur parameters {ak}∞k=1. Because
{a1; a2; : : : ; an; 0; 0; : : :} is induced by the measure d�n = d�=|qn(ei�)|2 = d�=|p(ei�)|2, up to a constant
factor, then p = qn(z) is the nth monic orthogonal polynomial with respect to the measure d�n.
According to Proposition 3.10 its zeros are located inside the unit disk.
Conversely, if the polynomial p has its zeros inside the unit disk, then |an|= |qn(0)|¡ 1. On the

other hand, since

qn−1(z) =
qn(z)− anq∗n(z)
z(1− |an|2) ;

if � is a zero of qn−1 with |�|¿1, then qn(�) = anq∗n(�), and 0¡ |qn(�)|¡ |q∗n(�)|. This means that
|qn(�)=q∗n(�)|¡ 1, but this is in contradiction with the fact that the zeros of qn(z) are inside the unit
disk and thus, by the maximum modulus principle, |qn(z)=q∗n(z)|61 if |z|¡ 1, which is equivalent
to |qn(z)=q∗n(z)|¿1 for |z|¿1. The same procedure applied to all 16k6n− 2 leads to the result.

Remark. The above criterion is a very useful qualitative result in the stability theory for discrete
linear systems [4]. In fact, given the characteristic polynomial of the matrix of a linear system, we
do not need to calculate its zeros (the eigenvalues of the matrix) in order to prove that they are
located inside the unit disk, and then to prove the stability of the system.

3.3. The trigonometric moment problem revisited

Next, we can state our main result.

15
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Theorem 3.14 (Erd�elyi et al. [8]). Let {an}∞n=1 be a sequence of complex numbers such that |an|¡ 1;
n= 1; 2; : : : . Let

�0(z) = 1; �n(z) = z �n−1(z) + an�∗
n−1(z); n¿1:

Then; there exists a unique positive and �nite Borel measure � supported on T such that {�n}∞n=0
is the corresponding MSOP. In other words; the positive-de�nite linear functional associated with
the re�ection coe�cients {an}∞n=0 can be represented as

L[p(z)] =
∫ 2�

0
p(ei�) d�(�):

Proof. Let

�n(�) =
∫ �

0
d�n(t) =

∫ �

0

dt
|�n(eit)|2 ;

where �n denotes the nth orthonormal polynomial with respect to L. The function �n is monotonic
increasing in [0; 2�] and according to Lemma 3.12,

|�n(�)|6
∫ 2�

0

d�
|�n(ei�)|262�d0¡ +∞ ∀n ∈ N; � ∈ [0; 2�]:

From Helly’s selection principle (see, e.g., [5]) there exists a subsequence {�nk}∞nk=0 and a monotonic
increasing function � such that limnk→∞ �nk (�) = �(�). Furthermore, for every continuous function f
on T,

lim
nk→∞

1
2�

∫ 2�

0
f(ei�) d�nk (�) =

1
2�

∫ 2�

0
f(ei�) d�(�):

Finally,

1
2�

∫ 2�

0
�k(ei�)�j(ei�) d�(�) = lim

nl→∞
1
2�

∫ 2�

0
�k(ei�)�j(ei�) d�nl(�) = �j;k ;

taking nl ¿max{k; j}.

To conclude the study of the positive de�nite case, we will show an analog of Theorem 2.16 of
Section 2 in the following sense.

Theorem 3.15 (Alfaro and Vigil [1]). Let {zn}∞n=1 be a sequence of complex numbers such that
|zn|¡ 1. Then; there exists a unique sequence of monic polynomials �n orthogonal with respect to
a positive-de�nite moment functional such that �n(zn) = 0.

Proof. Since �1(z)= z+�1(0)= z− z1, then �1(0)=−z1, and |�1(0)|¡ 1. Using induction, assume
that zn−1 is a zero of �n−1 and |�n−1(0)|¡ 1. Let �n(z) = z�n−1(z) +�n(0)�∗

n−1(z), for n¿ 1, and
zn be a zero of �n. Then, substituting zn in the above expression, we deduce

zn�n−1(zn) =−�n(0)�∗
n−1(zn):

But �∗
n−1(zn) �= 0 (otherwise zn would be a zero of �n−1, which is a contradiction). Thus,

�n(0) =−zn�n−1(zn)�∗
n−1(zn)

; but then |�n(0)|= |zn|
∣∣∣∣∣
�n−1(zn)
�∗
n−1(zn)

∣∣∣∣∣ ¡ |zn|¡ 1;
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since |�n−1(zn)=�∗
n−1(zn)|¡ 1 by the maximum modulus principle (see the proof of Theorem 3.13).

Then, the sequence {zn}∞n=1 de�nes uniquely a sequence of complex numbers {an}∞n=1, with an=�n(0),
and this sequence, according to Theorem 3.14, uniquely de�nes a sequence of orthogonal polynomials
{�n}∞n=0 with re�ection parameters an such that �n(zn) = 0.

In the quasi-de�nite case, as we already pointed out after Proposition 3.10, if �n is the nth
orthonormal polynomial with respect to a quasi-de�nite moment functional L, then the polynomials
z�n(z) and �∗

n(z) have no zeros in common. They are coprime, and by the B�ezout identity [4], there
exist polynomials r(z) and s(z) such that

z r(z)�n(z) + s(z)�∗
n(z) = 1;

or, equivalently, if u(z) = z r(z), i.e., u(0) = 0,

u(z)�n(z) + s(z)�∗
n(z) = 1:

The next result is analogous to that stated in Lemma 3.12.

Theorem 3.16 (Atzmon [3]). There exists a unique real trigonometric polynomial f(�) of degree
at most n; such that

1
2�

∫ 2�

0
�n(ei�)e−ik�f(�) d�= 0; 06k6n− 1; (3.7)

1
2�

∫ 2�

0
|�n(ei�)|2f(�) d�= 1; (3.8)

if and only if there exist u; v ∈ Pn; with u(0)=0; such that u(z)�n(z)+v(z)�∗
n(z)=1. Furthermore;

f(�) = |u(ei�)|2 − |v(ei�)|2:

Proof. If f satis�es (3.7) and (3.8), consider the function g(�) = f(�)�n(ei�), which is a trigono-
metric polynomial of degree at most 2n. The conditions mean that the Fourier coe�cients ĝ(k) of
g(�) are ĝ(j) = 0, j = 0; 1; : : : ; n − 1, and ĝ(n)�∗

n(0) = 1. Then, there exist polynomials u; v ∈ Pn,
such that u(0) = 0, v(0)�∗

n(0) = 1 and g(�) = e
in�v(ei�)− u(ei�). In fact,

u(z) =−
n∑
j=1

ĝ(−j)zj and v(z) =
n∑
j=0

ĝ(j + n)zj:

Now we introduce the trigonometric polynomial of degree at most 3n, h(�) = �n(ei�)f(�)�n(ei�).
Notice that

h(�) = �∗
n(e

i�)v(ei�)− u(ei�)�n(ei�);
and h is a real-valued function. Then,

�∗
n(e

i�)v(ei�)− u(ei�)�n(ei�) = �∗
n(ei�)v(ei�)− u(ei�)�n(ei�);

or, equivalently,

s(�) = u(ei�)�n(ei�) + v(ei�)�∗
n(e

i�) ∈ R:

17
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This means that the algebraic polynomial of degree at most 2n,

q(z) = u(z)�n(z) + v(z)�∗
n(z);

is real-valued on the unit circle, and thus q̂(j) = q̂(−j) = 0, i.e.,
q(z) = q(0) = u(0)�n(0) + v(0)�∗

n(0) = 1:

This yields our result.
Conversely, assume there exist polynomials u; v ∈ Pn with u(0) = 0, such that
u(z)�n(z) + v(z)�∗

n(z) = 1: (3.9)

Let f(�)= v(ei�)v(ei�)−u(ei�)u(ei�), a trigonometric polynomial of degree at most n. We will prove
that the orthogonality conditions (3.7) and (3.8) hold.
Indeed, let g(�) = f(�)�n(ei�). Taking into account (3.9), we have

u(ei�)�n(ei�) + v(ei�)e−in��n(ei�) = 1; i:e:; ein� = u(ei�)�∗
n(e

i�) + v(ei�)�n(ei�):

Then, using (3.9) as well as the last expression, we obtain

g(�) = �n(ei�)[v(ei�)v(ei�)− u(ei�)u(ei�)] = ein�v(ei�)− u(ei�); (3.10)

which yields our orthogonality conditions

ĝ(j) = 0; j = 0; 1; : : : ; n− 1 and ĝ(n)�∗
n(0) = 1:

In order to prove uniqueness of f, notice that if u; v ∈ Pn satisfy (3.9) together with u(0)= 0, then
f(�) = u(ei�)�n(ei�)f(�) + v(ei�)�∗

n(e
i�)f(�). By (3.10), we get

f(�)�n(ei�) = ein� v(ei�)− u(ei�);
and

f(�)�∗
n(e

i�) = v(ei�)− ein�u(ei�):
Thus, f(�) = |v(ei�)|2 − |u(ei�)|2. The uniqueness of f follows from the uniqueness of u; v.

To conclude this section, we will show with two simple examples how to �nd the function f
explicitly.

Example 3.17. Let �3(z) = 2z3 + 1. Notice that because the zeros are inside the unit circle, we are
in a positive-de�nite case. Moreover, �∗

3(z) = z
3 + 2. Using the Euclidean algorithm for z�3(z) and

�∗
3(z), we �nd

2z4 + z = 2z(z3 + 2)− 3z; and z3 + 2 =−3z(− 1
3 z

2) + 2:

Thus,
1
6 z

2(2z4 + z) + (z3 + 2)(12 − 1
3 z

3) = 1; and u(z) = 1
6z
3; v(z) = 1

2 − 1
3 z

3:

Then

f(�) = | 12 − 1
3e
3i�|2 − 1

36 =
1
3(1− cos 3�) = 1

6 |e3i� − 1|2¿0:

18
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Example 3.18. Let �3(z) = z(z2 + 4). Notice that now there are two zeros outside the unit circle.
In this case, �∗

3(z) = 4z
2 + 1. An analogous procedure leads to

z�3(z) = z4 + 4z2 = 1
4 z

2(4z2 + 1) + 15
4 z

2; �∗
3(z) =

16
15 (

15
4 z

2) + 1:

Thus

− 16
15 z

2(z2 + 4) + ( 415 z
2 + 1)(4z2 + 1) = 1; u(z) =− 16

15 z
2; v(z) = 4

15 z
2 + 1;

so

f(�) = | 415 e2i� − 1|2 − 256
225 =− 1

15 (1 + 8 cos 2�);

which gives rise to a nonpositive case, i.e., to a signed measure on [− �; �].

4. The Favard Theorem for nonstandard inner products

To conclude this work, we will survey some very recent results concerning the Favard theorem
for Sobolev-type orthogonal polynomials.
First of all, we want to point out that the Favard Theorem on the real line can be considered in

a functional-analytic framework as follows.

Theorem 4.1 (Duran [6]). Let P be the linear space of real polynomials and B an inner product
on P. Then; the following conditions are equivalent:
(1) The multiplication operator t; i.e.; the operator t : P → P; p(t) → t p(t); is Hermitian for B;

that is; B(t f; g) = B(f; t g) for every polynomial f; g.
(2) There exists a nondiscrete positive measure � such that B(f; g) =

∫
f(t)g(t) d�(t).

(3) For any set of orthonormal polynomials (qn) with respect to B the following three-term recur-
rence holds:

tqn(t) = an+1qn+1(t) + bnqn(t) + anqn−1(t); n¿0; (4.1)

with q−1(t) = 0, q0(t) = 1 and {an}∞n=0; {bn}∞n=0 real sequences such that an ¿ 0 for all n.

Notice that from the three-term recurrence relation (4.1) we get

t2qn(x) = an+2an+1qn+2(t) + (bn+1an+1 + bnan+1)qn+1(t)

+ (a2n+1 + a
2
n + b

2
n)qn(t) + (anbn + anbn−1)qn−1(t) + anan−1qn−2(t);

i.e., the sequence {qn}∞n=0 satis�es a �ve-term recurrence relation, which is a simple consequence of
the symmetry of the operator t2 ≡ t · t.
Here we are interested in the converse problem, which is a natural extension of the Favard

Theorem: To characterize the real symmetric bilinear forms such that the operator t2 is a Hermitian
operator. A nonstandard example of such an inner products is

B(f; g) =
∫
f(t)g(t) d�(t) +Mf′(0)g′(0); f; g ∈ P;

for which t2 is Hermitian, i.e., B(t2f; g) = B(f; t2g).
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Theorem 4.2. Let B be a real symmetric bilinear form on the linear space P. Then the following
conditions are equivalent:
(1) The operator t2 is Hermitian for B; that is; B(t2f; g) = B(f; t2g) for every polynomial f; g.
(2) There exist two functions � and � such that

B(f; g) =
∫
f(t)g(t) d�(t) + 4

∫
f0(t)g0(t) d�(t); (4.2)

where f0 and g0 denote the odd components of f and g; respectively; i.e.;

f0(t) =
f(t)− f(−t)

2
; g0(t) =

g(t)− g(−t)
2

:

Moreover; if we put �n =
∫
tn d�(t) and �n = 4

∫
tn d�(t); then the matrix

an;k =
{
�n+k if n or k are even;
�n+k + �n+k otherwise;

is positive de�nite if and only if B is an inner product. In this case the set of orthonormal
polynomials with respect to an inner product of the form (4:2) satis�es a �ve-term recurrence
relation

t2qn(x) = An+2qn+2(t) + Bn+1qn+1(t) + Cnqn(t) + Bnqn−1(t) + Anqn−2(t); n¿0; (4.3)

where {An}∞n=0; {Bn}∞n=0; and {Cn}∞n=0 are real sequences such that An �= 0 for all n.

Also we get a generalization of the Favard Theorem.

Theorem 4.3. Let {qn}∞n=0 be a set of polynomials satisfying the initial conditions q−1(t)=q−2(t)=0;
q0(t) = 1 and the �ve-term recurrence relation (4:3). Then; there exist two functions � and � such
that the bilinear form (4:2) is an inner product and the polynomials {qn}∞n=0 are orthonormal with
respect to B.

Remark. The above theorem does not guarantee the positivity of the measures � and �. In fact in
[6] some examples of inner products of type (4.2) where both measures cannot be chosen to be
positive, or � is positive and � cannot be chosen to be positive, are shown.

All the previous results can be extended to real symmetric bilinear forms such that the operator
“multiplication by h(t)”, where h is a �xed polynomial, is Hermitian for B, i.e., B(hf; g)=B(f; hg).
The basic idea consists in the choice of an adequate basis of P which is associated with the

polynomial h. Assume that deg h= N , and let Eh = span[1; h; h2; : : : ]; then

P= Eh ⊕ t Eh ⊕ · · · ⊕ tN−1Eh:
If �k denotes the projector operator in tkEh, then �k(p) = tkq[h(t)]. We introduce a new operator
�̃k : P→ P, p→ q, where q denotes a polynomial such that �k(p) = tkq[h(t)]. Then we obtain the
following extension of Theorem 4.2:

Theorem 4.4. Let B be a real symmetric bilinear form in P. Then the following statements are
equivalent:
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(1) The operator “multiplication by h′′ is Hermitian for B; i.e.; B(hf; g) = B(f; hg) for every
polynomial f; g; where h is a polynomial of degree N .

(2) There exist functions �m;m′ for 06m6m′6N − 1 such that B is de�ned as follows:

B(f; g) =
∫
(�0(f); : : : ; �N−1(f))

⎛
⎜⎝

d�0;0 · · · d�0;N−1
...

. . .
...

d�N−1;0 · · · d�N−1;N−1

⎞
⎟⎠

⎛
⎜⎝

�0(g)
...

�N−1(g)

⎞
⎟⎠ :

(3) There exist functions �0 and �m;m′ for 16m6m′6N − 1 such that B is de�ned as follows:

B(f; g) =
∫
f g d�0 +

∫
(�1(f); : : : ; �N−1(f))

⎛
⎜⎝

d�1;1 · · · d�1;N−1
...

. . .
...

d�N−1;1 · · · d�N−1;N−1

⎞
⎟⎠

⎛
⎜⎝

�1(g)
...

�N−1(g)

⎞
⎟⎠ :

(4) There exist functions �̃m;m′ for 06m6m′6N − 1 such that B is de�ned as follows:

B(f; g) =
∫
(�̃0(f); : : : ; �̃N−1(f))

⎛
⎜⎝

d�̃0;0 · · · d�̃0;N−1
...

. . .
...

d�̃N−1;0 · · · d�̃N−1;N−1

⎞
⎟⎠

⎛
⎜⎝

�̃0(g)
...

�̃N−1(g)

⎞
⎟⎠ :

(5) There exist functions �̃0 and �̃m;m′ for 16m6m′6N − 1 such that B is de�ned as follows:

B(f; g) =
∫
fg d�̃0 +

∫
(�̃1(f); : : : ; �̃N−1(f))

⎛
⎜⎝

d�̃1;1 · · · d�̃1;N−1
...

. . .
...

d�̃N−1;1 · · · d�̃N−1;N−1

⎞
⎟⎠

⎛
⎜⎝

�̃1(g)
...

�̃N−1(g)

⎞
⎟⎠ :

Proof. The equivalence 1⇔ 2⇔ 3 was proved in [6]. 4 and 5 are a straightforward reformulation
of the above statements 2 and 3, respectively.

In a natural way, matrix measures appear in connection with this extension of the Favard Theorem.
This fact was pointed out in [7, Section 2]. Even more, if B is an inner product of Sobolev type,

B(f; g) =
∫
f(t) g(t) d�(t) +

N∑
i=1

∫
f(i)(t)g(i)(t) d�i(t); (4.4)

where {�i}Ni=1 are atomic measures, it is straightforward to prove that there exists a polynomial h of
degree depending on N and mass points such that h induces a Hermitian operator with respect to
B. As an immediate consequence we get a higher-order recurrence relation of type

h(t)qn(t) = cn;0qn(t) +
M∑
k=1

[cn;kqn−k(t) + cn+k; kqn+k(t)]; (4.5)

where M is the degree of h and {qn}∞n=0 is the sequence of orthogonal polynomials relative to B.
Furthermore, extra information about the measures {�i}Ni=1 in (4.4) is obtained in [9] when the

corresponding sequence of orthonormal polynomials satis�es a recurrence relation like (4.5).
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Theorem 4.5. Assume that there exists a polynomial h of deg h¿1 such that B(hf; g) = B(f; hg);
where B is de�ned by (4:4). Then the measures {�i}Ni=1 are necessarily of the form

�i(t) =
j(i)∑
k=1

�i; k�(t − ti; k);

for some positive integers j(i); where
(1) �i; k¿0; k = 1; 2; : : : ; j(i); i = 1; 2; : : : ; N .
(2) Ri = {ti; k}j(i)k=1 �= ∅ are the distinct real zeros of h(i); i = 1; 2; : : : ; N .
(3) supp�i⊂⋂i

k=1 Rk; k = 1; 2; : : : ; N .
(4) The degree of h is at least N + 1 and there exists a unique polynomial H of minimal degree

m(H) satisfying H (0) = 0 and B(Hf; g) = B(f;Hg).

The above situation corresponds to the so-called diagonal case for Sobolev-type orthogonal poly-
nomials.
Finally, we state a more general result, which was obtained in [6].

Theorem 4.6. Let P be the space of real polynomials and B a real symmetric bilinear form de�ned
on P. If h(t) = (t − t1)n1 · · · (t − tk)nk and N = deg h; then the following statements are equivalent:
(1) The operator “multiplication by h′′ is Hermitian for B and B(hf; tg) = B(tf; hg); i.e.; the

operators “ multiplication by h′′ and “multiplication by t′′ commute with respect to B.
(2) There exist a function � and constant real numbers Mi;j; l; l′ with 06i6nl−1; 06j6nl′ − 1;

16l; l′6k and Mi;j; l; l′ =Mj; i; l′ ; l; such that

B(f; g) =
∫
f(t) g(t) d�(t) +

k∑
l;l′=1

nl−1∑
i=0

nl′−1∑
j=0

Mi;j; l; l′f(i)(tl)g(i)(tl′):

To conclude, in view of the fact that the operator “multiplication by h” is Hermitian with respect
to the complex inner product

〈f; g〉=
∫
�
f(z)g(z) d�(z); (4.6)

where � is a harmonic algebraic curve de�ned by Ih(z)=0 and h a complex polynomial (see [15]),
it seems natural to ask:

Problem 1. To characterize the sesquilinear forms B : P × P → C such that the operator
“multiplication by h” satis�es B(hf; g) = B(f; hg) for every polynomial f; g ∈ P; the linear space
of polynomials with complex coe�cients.

In the same way (see [14]), given an inner product like (4.6), if � is an equipotential curve
|h(z)| = 1, where h is a complex polynomial, then the operator “multiplication by h” is isometric
with respect to (4.6). Thus, it is natural to formulate

Problem 2. To characterize the sesquilinear forms B :P×P→C such that the operator “multiplication
by h” satis�es B(hf; hg) = B(f; g) for every polynomial f; g ∈ P; the linear space of polynomials
with complex coe�cients.
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The connection between these problems and matrix polynomials orthogonal with respect to matrix
measures supported on the real line and on the unit circle, respectively, has been shown in [15,14].
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