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MAINTAINING A REPUTATION AGAINST A 
LONG-LIVED OPPONENT 

By MARCO CELENTANI, DREW FuDENBERG, DAVID K. LEVINE, AND 
WOLFGANG PESENDORFER1 

1. INTRODUCTION 

WE CONSIDER A GAME between a patient player 1 and a nonmyopic but less patient 
opponent, player 2. As usual in reputation models, we suppose that the patient player's 
type is private information, and that he may be a "commitment type" who is locked into 
playing a particular strategy. We investigate the extent to which an uncommitted or 
"normal" type of patient player can exploit his less patient opponent's uncertainty to 
maintain a reputation for playing like a commitment type. 

Most previous work on reputation effects has supposed that player 2 is in fact 
completely myopic, or equivalently that player 2 corresponds to a sequence of short run 
players (see Kreps and Wilson (1982), Milgrom and Roberts (1982), Fudenberg and 
Levine (1989,1992».2 Since a myopic player 2 will playa short-run best response in each 
period to that period's expected play, the best possible commitment for the long run 
player is to the Stackelberg strategy for the corresponding static game. 

This paper considers the case in which the patient player, pi ayer 1, has discount factor 
81 near 1, while his opponent, player 2, is an infinite-lived player who discounts future 
payoffs with a smaller discount factor 82 , Perhaps the best way to interpret this 
assumption of unequal discount factors is to interpret the model as a shorthand for a 
situation where player 1 faces a large number of identical player 2's, each of whom 
observe al! previous play. Under one interpretation the player 2's alternate play so that, 
for example, the first player 2 moves in periods 1, N + 1, etc. Alternatively, the first 
player 2 might move in periods 1 to N, the second in N + 1 to 2N, and so on. Under 
either interpretation, fue key is that player 1 cares more about future payoffs of this 
game than player 2 does, because he will be playing in more future periods? 

A game with a nonmyopic opponent differs from one with a myopic opponent in two 
main ways. First, because a nonmyopic opponent cares about future payoffs, the static 
Stackelberg strategy is no longer necessarily the best possible commitment: Higher 
payoffs can sometimes be attained by the use of rewards and punishments. In the 
prisoner's dilemma, for example, "tit-for-tat" is a better commitment against a nonmy­
opic opponent than the Stackelberg strategy of defecting. Second, it may be difficult to 
demonstrate that one is using a strategy with rewards and punishments unless these 
rewards and punishments are occasional!y carried out. This is similar to the way in which 

1 The authors are grateful for financial support from NSF Grants SBR-9223320, SBR-9223175, 
SBR-9409180, DGICYT PB92-0245, Human Capital Mobility Programme ERBCHBICT940975, and 
the VCLA Academic Senate. 

2 Celentani and Pesendorfer (1995) consider dynamic games wilh one large player and a 
continuum of small but long lived players. Small players in this setting care about lhe future but 
cannot inftuence the relevant history of lhe game and hence are strategically myopic. 

3 Thus the situation is similar to the "sequential contests" model of Fudenberg and Kreps (1987). 
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incorrect off-path beliefs can weaken reputation effects in the play of extensive-form 
games against myopic opponents (Fudenberg and Levine (1989)).4 

Our main assumption is that player 1 does not observe player 2's intended action, but 
only sees an imperfect signal of it, as in a model of moral hazard. We assume that tbe 
support of the distribution of signals is independent of how player 2 plays. Intuitively, this 
ensures that every reward and punishment in player l's strategy will occasionally be 
triggered, so that player 2 will learn how player 1 responds to all sequences of public 
outcomes. As a result, player 1's equilibrium payoff is bounded below by what he could 
get through commitment in the repeated game. In particular, if player 2 is sufficiently 
patient, player 1 gets approximately the greatest feasible payoff consistent with individual 
rationality of player 2. 

This conclusion holds with an arbitrarily small amount of noise. However, as the 
amount of noise shrinks, the patient player's discount factor must be increasingly close to 
one to ensure that its Nash equilibrium payoff is close to its limit value. Consequently, 
our result is of the most relevance when the amount of noise is "significant." 

The first general study of reputation with two nonmyopic players is Schmidt (1993), 
who studied perfect observability. He showed that the long-run player can guarantee at 
least the payoff he would get from precommitment to a static strategy that minmaxes his 
opponent. This is a good bound in sorne games, but in others, such as the prisoner's 
dilemma, it imposes no restrictions beyond those implied by individual rationality. 
SubsequentIy Cripps, Schmidt, and Thomas (1996) provided tight bounds in the case of 
perfect observability; Cripps and Thomas (1994) provided the parallel result when both 
players have time-average payoffs. In each of these papers, reputation effects need not 
allow the patient player to obtain as high a payoff as he could were he able to publicly 
commit himself to follow any strategy of his choice. 

The key point is that with perfectly observed actions, the problem of off-path beliefs 
can prevent player 1 from obtaining the payoff he would most prefer. Schmidt (1993) 
gives an example of a perfect Bayesian equilibrium in which player 2's inability to Iearn 
the strategy played off the equilibrium path prevents player 1 from achieving the payoff 
he would get with a public commitment. This example is based on the presence of a 
"perverse" type who plays like the "good" commitment type on lhe equilibrium path, but 
responds to deviations in a history dependent way. Cripps, Schmidt, and Thomas (1996) 
show that the perverse type is not required if we consider only Nash equilibria. Their 
Theorem 2 applies to games with observed actions where the patient player is either 
"normal" or plays an arbitrary finitely-complex strategy. It shows that there is a Nash 
equilibrium where player l's payoff is not substantially aboye the most he could obtain by 
playing a constant action, with player 2 choosing the individually rationa] response to this 
action that player 1 likes least. 

In Section 5 we provide an example that shows the assumption of imperfect observabil­
ity can in general not be dispensed with, even if we restrict to perfect Bayesian equilibria. 
The example shows that with perfect observability of actions there are perfect Bayesian 
equilibria of the infinitely repeated game in which player l's payoff is bounded away from 
the Stackelberg payoff. 

Finally, we should acknowledge that Aoyagi (1994) independentIy obtains a result 
similar to ours for the case where player 1 maximizes his time-average payoff while player 

4 Celentani (1996) uses multiple types of short-run players to get around the problem of 
unobservable off-path behavior of the long-run player in repeated games with observable actions. 
His approach can be extended to short run players who live for more than one periodo 
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FIGURE 1 

2 discounts. Aoyagi's paper differs in interpreting the noise as "trembles," and, more 
significantly, in considering a complex cIass of "commitment types" that may be empty in 
sorne games, but lhe basic intuition for his resuIts is the same. 

To iIIustrate an application of our Theorems, as well as how they differ from the 
bounds of Cripps, Schmidt, and Thomas (1996), we examine a version of the Prisoner's 
Dilemma.1t should be noted that the bound developed by Schmidt (1993) and by Cripps, 
Schmidt, and Thomas (1996) does not imply any restriction on the Nash equilibria of this 
game: the best pI ayer 1 can get while minmaxing player 2 is his own minmax. We start 
with a traditional prisoner's dilemma (see Figure 1). We add incomplete observability, by 
supposing that if a player chooses a particular action then there is a small chance that the 
realized action will be differen!. In particular suppose that conditional on choosing action 
C (or D) the realized action will be C (D) with probability 1 - 8 and D (C) with 
probability 8. For this example a simple ca1culation shows that the greatest socially 
feasible payoff for player 1 that gives player 2 at least the minmax is 3/2 - 28. Our 
resuIts imply that if player 2 is patient, then a more patient player 1 will receive a payoff 
cIose to 3/2 - 28 in every Nash equilibrium of this prisoner's dilemma with commitment 
types.5 

2. lliE MODEL 

Let g denote a stage game between two players, player 1 (¡he patient player) and 
player 2. We denote by Al' A 2 the finite (pure) action sets of the two players in the stage 
game with generic elements a" a2, and use al EÁ1' a 2 EÁ2 for mixed actions. We 
denote by A, Á the corresponding spaces of profiles. At the end of the stage game both 
players observe a stochastic outcome drawn from a finite set, y E Y, but players do not 
observe each other's action. The probability distribution over outcomes depends on the 
action profile and is given as p(·la); for mixed actions p('la) is defined in the obvious 
way. Stage game payoffs, denoted u¡(a), take the form u¡(a) '" L,yu¡(a¡,y)p(yla) and 
therefore the realized payoffs do not convey additional information about the other 
player's action. 

We consider an infinitely repeated game, Goo, constructed from g as follows. The 
public history at date l, h', is the sequence of past realizations of the outcome y. Player 
i's private history at l, h:, is the sequence of actions i chose in previous periods. Let H, 
H l , and H 2 denote the sets of infinite public and private histories, for player 1 and 2 
respectively. 

Player 1 can be one of countably many types, úJ E .a. These types are drawn from a 
common knowledge prior ¡.t assigning positive probability to all points in .a. Player l's 

5 Note that this payoff can be achieved if player 2 always chooses e and player 1 alternates 
between e and D. 
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type is private information. We focus on a particular type Wo E n, which we refer to as 
the normal type. Type W o seeks to maximize the average present value of Ul using the 
discount factor 81, while player 2 maximizes the average present value of u2 with the 
discount factor 82• Types of player 1 other than type Wo have von Neumann-Morgen­
stern preferences over sequences of own actions and public outcomes, but these are not 
necessarily representable in a time separable formo 

A behavior strategy for a type of player 1 or a behavior strategy for player 2 specifies a 
time indexed sequence of maps from prívate (for that player) and public histories to 
mixed actions (for that player). We denote these by Ul and U2 respectively. We also 
define U:(Ul' (2) to be the corresponding period t expected payoff. Finally, a behavior 
strategy for player 1, jI' specifies a behavior strategy for each type. A Nash equilibrium is 
a behavior strategy for each player such that given fue opponent's behavior strategy, no 
other behavior strategy yields a distribution over time sequences of own actions and 
public outcomes that is preferred to that in the proposed equilibrium. It is quite easy to 
show by taking limits of finite truncations of this infinite game that Nash equilibria exist.6 

Let E1(81, 82 ) denote the least (inf) expected payoffto player 1 conditional on type Wo in 
any Nash equilibrium. 

Say that a behavior strategy for player 1 has bounded recall if there exists a number N 
such that play at time t is entirely determined by the history between t - N and t - 1. A 
type of player 1 whose preferences make the type behavior strategy ul strictly dominant 
is called committed lo that strategy, and we write the type as W(Ul). 

We make four key assumptions: 

AsSUMPTION 1: If ul is apure strategy of bounded recall, then W(Ul) E n, that is, it has 
positive probability. 

AsSUMPTION 3: The supportof p(·la) is independentof a2. 

Define !!2'" mina, maxa, u2(a) to be the (pure strategy) minmax for player 2. 

ASSUMPTION 4: There exists apure profile a such that u2(a) > !!2. 

Assumption 1 ensures there are enough irrational types. (Since the set of bounded-re­
call strategies is countable this is consistent with our restrictions to a countable number 
of types.) Assumption 2 requires that regardless of the play of player 2 the information 
revealed by the outcomes identifies the action of player 1. If it fails, player 2 may play an 
action that precludes him from learning what stage-game action player 1 is playing, 
preventing player 1 from developing a reputation, even when player 2 is myopic. Note 
that the assumption is satisfied if player 1's actions are perfectly observed, as in the 
previous papers on reputation effects with two long-ron players. 

Assumption 3 is the substantive assumption: It says that player 2 cannot determine the 
set of possible outcomes through his own action. Note that this assumption does not 
require that player 1's action be imperfectly observed and indeed, whether player 1's 
action is observed or not is irrelevant. 

6 See, for example, Fudenberg and Levine (1983). 
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Assumption 4 says that there is a profile that is better for player 2 than the pure 
strategy minmax payoff. If we used mixed strategies in place of pure, this would be a mild 
nondegeneracy condition: failure would mean that the indifference of player 2 might well 
make him immune to threats by player 1. We restrict attention to the pure strategy 
minmax in order to avoid the complications involved in maintaining a reputation for 
playing a mixed strategy.1 The existence of a profile better for player 2 than the pure 
strategy minmax rules out some interesting games, but the assumption is satisfied in 
other games of interest, such as the prisoner's dilemma and the batde of the sexes. 

Let Gr: be the complete-information game corresponding to the N period repetition 
of g; players discount their payoffs in Gr: using the same discount factors 81 and 82 as 
in the infinity repeated game.8 Let GN be the N period game with discount factors 81 

and 82 , type space n, and prior /L. 
Before analyzing reputation in our model, we calculate as a benchmark how much 

player 1 might hope to get by precommitting. First we define a set of payoffs for player 1. 

DEFINITION 1: "1 E V1(82 ) if and only if for every e> O there is an N and apure 
strategy aF such that for every best response tJ't to tJ',N in Gr:, (ljN)l:;:, ,u¡(tJ'¡N, tJ't) 
~ V1 - B. 

Through a public precommitment (to apure strategy) a patient player can guarantee 
himself v1(8z) == sup V1(82 ).9 

3. AN IMPATIENT PlAYER 2 

Our main result is: 

In other words, if player 1 is very patient, then he gets nearly as much in any Nash 
equilibrium as the greatest amount consistent with player 2 choosing a best response in a 
finite truncation of the game. 

The idea is that if player 1 commits to an appropriate bounded recall strategy and 
player 2 plays a best response to it, then player 1 gets a payoff very close to the lower 
bound given aboye. Note that since the strategy has bounded recall there is a type who is 
committed to playing this strategy. In the usual reputational story, this would mean that 
if player 1 chooses this strategy, player 2 must either playa best response to it, or come 

7 These complications were addressed in the context of a myopic player 2 in Fudenberg and 
Levine (1992). The restriction is largely a matter of technical convenience: for player 1 to develop a 
reputation for mixed strategy punishments it would be necessal)' to allow a continuum of types. 
Working with a continuum of types increases the complexity of the notation substantially. 

8 To reduce notation we do not track this dependence explicitly in the notation. Since we do not 
need to discuss the N-period game with time-average payoffs, no confusion should result. 

9 Because we restrict attention to pure strategy commitment types, the worst punishment that 
player 1 can hope to "teach" player 2 to fear is the pure-strategy minmax; this restriction on 
punishments can result in a lower maximum payoff for pi ayer 1 than if mixed punishments were 
considered. 
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to believe that he faces a committed type. The situation here is complicated by the need 
to show that player 2 can learn the punishment strategy of player 1 without deviating: this 
is where Assumption 3 comes in. 

We proceed via several Lemmas. Our initial focus is on the response oí player 2 to 
bounded recall strategies in G~. 

LEMMA 1: For every '1/ > O Ihere exisls an N, 21 < 1, e> O and pure stralegy at for 
player 1 in G~, such Ihal if 1 > 81 ;o, 21 and player 2 plays an e-besl response lo at in G~, 
Ihen Ihe payoff lo player 1 is al leasl Pl( 82 ) - '1/. 

PROOF: Omitted; see Celentani et al. (1993). 

If a N is a profile in G~, let p( a N) be the probability distribution over N-Iength 
sequences of public outcomes induced by p. Notice that this is a finite vector. 

LEMMA 2: For any e> O, N Ihere exisls a 'Y> O such Ihal in G~ if IIp(at, a 2N)­
p(Ú,N, at)11 < 'Y and at is an e-best response by player 2 lo at, then it is a 2e-besl 
response lO út.lO 

PROOF: We identify type behavior strategies by player 1 that diífer only at iníormation 
sets that are unreachable given that strategy. It is sufficient to show that P(Ú1N , a2N ) .... 

p(at, at) implies Ú1N .... ato This in turn will follow if p(., at) has a continuous 
inverse. Since the domain of p(., at) is compact, the image of any c10sed set in the 
domain is c1osed, so it suffices to show that p(., at) is continuous and 1 - 1. Continuity 
is obvious. To show that p(., azN ) is 1- 1 suppose to the contrary that p(út, at) = 
p(at, azN ), but that at, Ú1N are not equivalent. Let (h', hi, h~) be a triple consisting of 
a public and private histories (oí the same length) possible under at such that 
út(h', hi) # alN (h', hi). By Assumption 2 it follows that 

Since h has positive probability under at, for sorne Ú2N , 

positive probability under at, at (and by hypothesis the 
(Ú1N , a2N )). This contradicts p(út, azN) = p(at, a2N). 

by Assumption 3 it has 
same probability under 

Q.E.D. 

For a given 81 let M(K, dI) be the finite set of probability distributions over types of 
player 1 that can be generated by Bayesian updating with no more than K observations 
of player l's play." 

For any fixed N, we can partition the set of histories into a sequence of blocks oí 
length N. Given a probability distribution p over the space n X H X H, X H 2 of types of 

10 The norm 11 11 may be taken to be ordinary Euclidean distan ce, where the probability 
distribution over a finite set pO is viewed as a vector. 

11 Note that, although az inftuenees the probability of the various elements of M(K, JI)' it does 
not inftuenee the set itself. 
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player 1 and public and private infinite histories (in particular, given the distribution 
induced by a Nash equilibrium of GOO

) we can then associate every infinite history that 
has positive probability under p with a sequence of N-period games of the same form as 
G N , where the prior beliefs in the N-period game beginning in period N(k - 1) + 1 are 
those given by Bayes rule applied to the distribution p and to the specified finite history 
(hN(k-I)+l,h~(k-I)+l,h~(k-I)+I). We will denote this game by GN,k, where the depen­
dence on the infinite history h is left implicit. 

For any jI' k, and for any probability distribution ¡l over player l's types, let 
cPf(hN(k-I)+ 1, ¡l, jI) be the probability distribution over player l's strategies in G~ 
defined by cPf(hN(k-I)+ 1, ¡l, j IX(1'IN) ~ Lw ¡l(w)jl«(1'INlw, hN(k-I)+ 1). Finally, for a given 
(1'2' let (1'2N(h t ) denote the strategy in G~ corresponding to the play of (1'2 in periods 
t + 1, .. . ,t + N. 

LEMMA 3: Fix a Nash equilibrium (j Jo (1'2) and suppose for some N and (1't, jI is such 
that type W o plays (1'IN in each G N.k. For every A> O, y> O, K there is an L such that if 
¡l E M( K, jI) the probability is less than A that there are more than L stages G N, k with 
IIp((1't, (1't(h N(k-I)+ 1» - p(cPf(hN(k-I)+ 1, ¡l, jI)' (1't(h N(k-I)+ 1»11;:0: y. 

PROOF: This is a restatement of Theorem 4,1 in Fudenberg and Levine (1992). 

PROOF OF THEOREM 1: Fix a Nash equilibrium (j Jo (1'2)' For any number '1 > O we may 
choose N, QI < 1, e> O, (1't so that Lemma 1 is satisfied for the tolerance '1/4 and 
hence if player 2 plays an e-best response to (1't in G~ then the payoff to player 1 in 
G~ is at least vl(82 ) - '1/4. The idea is to consider what happens when player 1 of type 
Wo repeatedly plays (1't and player 2 plays a best response. Our conclusion follows by 
demonstrating that if player 1 is more palient than QI' he gets at least vl(82 ) - 'l. 

To analyze the best response of player 2, we fix an integer K so that 82'N(max u2 -

min U2) < e(1 - 82)/4. Set N' ~ KN. Apply Lemma 2 to G~' where the tolerance is 
e(l - 82 )/2 to find a value for y. Apply Lemma 3 to blocks G N ' using this same value of 
y, and choosing A such that 

(1- (1- A)")(max u I - min u l ) < ¡. 
We refer to blocks GN',k in which 

11 p«(1't, (1't'(h N'(k-I)+ 1» 

-pe cPf(hN'(k-I)+ 1, ¡l, JI)' (1't'(h N'(k-I)+ 1» 11 ;:o: y 

as anomalous. 
Strategy (1'2 is at worst an e(1 - 82)/2 best response to 

in GN',k where jL(hN'(k-I)+ 1) denotes 2's posterior beliefs given hN'(k-I)+ 1 (¡his is the 
case since 82'N(max U2 - min u2) < e(1 - 82)/4). By Lemma 2 player 2 is playing an 
e(1 - 82 ) best response to the K-fold repetition of (1't except in the anomalous blocks. 
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Consequently, except in anomalous blocks, player 2 is playing an e-best response to ut 
in the first N periods of each N' block. Lemma 1 then shows that player 1 gets at least 
vt( li2 ) - r¡/2 in the frrst N periods of each nonanomalous block. Furthermore, with 
probability at least 1 - A there are at most L anomalous blocks. 

Now consider the infinitely repeated game beginning in any period kN + 1,1 ,,; k ,,; 1< -

1. This is identical to the game that begins in period 1, except that the prior of player 2 
may have changed. We may again organize this game into blocks of length N' and, since 
Lemma 3 applies to all priors reachable during periods up to N', the previous argument 
shows that for every k tltere are at most L anomalous blocks with probability at least 
1 - A. Thus with probability at least (1- A)< in the overall game there are at most I<L 
anomalous blocks. The payoff of player 1 is therefore at least 

Letting lit --> 1 gives the desired result. Q.E.D. 

4. A PATIENT PLAYER 2 

Our second Theorem shows that as li2 --> 1 player 1 can approximately obtain the 
maximum feasible payoff that gives player 2 his pure strategy minmax payoff. Note that 
this bound is derived by taking a particular order of limits. First, we derive a lower bound 
on player l's payoff as lit --> 1, and then we ask how this bound behaves as li2 --> 1. Let 
V* denote the convex hull of feasible payoffs that are at least as great as the pure 
strategy minmax. By vt we denote the projection of V* onto the payoffs of player 1. 

THEOREM 2: Suppose Assumptions 1-4 hold. Then liminfo, ~ tliminfol ~ ,E/li" li2 ) ~ 
maxVt· 

It is worth noting that if we allowed types of player 2, this result would remain valid, 
and the proof (and Theorem 1 from which it follows) would involve only notational 
changes. However, we cannot turn the Theorem around and use the fact that there are 
types of player 2 to find a bound on his payoffs similar to that for player 1: The validity of 
Theorem 2 depends crucially on the order of limits. 

Note also that the definition of V* makes use of the pure strategy minmax. As was 
argued in Section 2, we allow player 1 to establish a reputation only for apure strategy, 
since allowing him to establish a reputation for mixed strategy punishments would 
require the existence of a continuum of types that would make the notation significantly 
heavier. If we allowed a reputation for mixed strategies, we could use the usual feasible 
individually rational set, and replace the inequality in Theorem 2 with an equality. 

The proof of Theorem 2 is an immediate consequence of Theorem 1 and the following 
Lemma. 

LEMMA 4: For any v = (Vt, v2) with v E int V* there is a 82 such that, for li2 > 82 , 

v t E V/li 2 ). 

REMARK: We should emphasize that this Lemma concerns the complete information 
game, where reputation plays no role. The Lemma is thus more closely related to the 
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FIGURE 2 

literature on repeated games than to that on reputation effects, and indeed our proof 
uses "review strategies" of the sort introduced in Radner's 0981,1985) study of repeated 
agency games, and subsequently used in a number of papers on the folk Theorem in 
repeated games. Despite this close link to the repeated game literature, the Lemma we 
need does not seem to be a direct consequence of previous work, so we give a complete 
proof in the Appendix. 

5. EXAMPLE 

In this Section we give an example that shows that the conc1usions of Theorems 1 and 
2 fail with perfectly observable actions even if the equilibrium concept is strengthened to 
perfect Bayesian equilibriumY 

Suppose that the following stage game (see Figure 2) is played repeatedly with perfect 
observability. Player 1 is the row player and player 2 the column player. Notice that the 
Stackelberg payoff here is 2, with player 1 playing C and pi ayer 2 playing c. Suppose that 
there are two types of patient player: type W o is the normal type and type w I always 
plays C; note that there are no perverse types. The prior probability of the commitment 
type is /1-1 ~ .001. For simplicity we assume that there is a public randomization device. 

We c1aim that for all 81 :<>: 82 :<>: .99 there is a perfect Bayesian equilibrium 13 in which 
type wo's payoff is no more than 1; in particular this is the case if 81 ~ 82 :<>: .99.14 The 
equilibrium strategies we describe below can be adapted to support any payoff of type W o 
of player 1 strictly aboye his minmax payoff of 2/3, if 81 > 82 > 8 for sorne 8 < 1. 

Notice that if player 1 ever plays D, player 2 learns for certain that 1 is the normal 
type; at this point every equilibrium of the game where 1 is known to be normal (lhe 
"complete-information game") is a continuation equilibrium of the original game. For 
this reason, it is useful to consider the perfect equilibria of the complete-information 
repeated game. First, there are three static equilibria: (2,2) and O, -1) are pure strategy 

12 Moreover this example is robust to small chaoges in payoffs, and player 1 caonot obtain the 
Stackelberg payoff by commitment to a mixed strategy. We thank a referee for finding ao error in a 
previous example, and for encouraging us to find a robust example. 

13 Although sequential equilibrium has not been defined for infinite games, in the finitely 
repeated versions of the two-types example considered here the outcomes of perfect Bayesiao 
equilibria (PBE) and sequential equilibria coincide (Fudenberg and Tirole (1991)). We use Ihe 
simpler PBE concept because its conditions on beliefs are easier lo check. 

14 Cripps aod 1bomas (1993) give a related example for Ihe case where bolh players have Ihe 
same discount faclor. 
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equilibria, and there is a mixed strategy equilibrium in which player 1 plays e with 
probability 1/3 and player 2 plays e with probability 1/3; the payoff vector to this mixed 
strategy equilibrium is (2/3, - 2/3). Naturally, the infinite repetition of any of these 
static equilibria is a subgame-perfect equilibrium of the repeated game. Moreover, any 
payoff vector (u¡, u z) in the convex hull of the pure strategy payoffs that satisfies 
(u¡, u z) ~ (.687, - .646) can also be obtained in a perfect equilibrium. These payoffs can 
be achieved by strategies that specify a repeated public randomization yielding (u 1, U2) 

each period along the equilibrium path, with play switching to the static mixed strategy 
equilibrium if any player deviates.15 

Finally, when the two players have different discount factors, there are socially feasible 
payoffs that are not in the convex hull of pure strategy payoffs. Call a sequence of 
expected present values (v¡(t), vz(t)) socially feasible if there is a strategy profile that 
gives rise to this sequence. If in each period (v¡(t), vit» ~ (.687, - .646), then each 
payoff vector in the sequence is a perfect equilibrium payoff: again the punishment is 
reversion to the static mixed strategy equilibrium. A particular example of such payoffs 
are any payoffs of the form (Ilru¡, 1l2u Z) ~ (.687,0) where (u¡, u z) is an element of the 
convex hull of pure strategy payoffs. (Note that payoffs of this form need not themselves 
be a convex combination of pure strategy payoffs.) Such payoff sequences can be realized 
by playing (e, d) starting in period 1 and for T periods, and then switching to the 
stationary equilibrium (u¡, u z). That this nonstationary sequence is an equilibrium 
follows from: 

t::s; T+ 1. 

We will now describe a perfect Bayesian equilibrium of the incomplete information 
game in which type wo's equilibrium payoff is exactly equal to 1. We will describe the 
equilibrium through its equilibrium path and continuation equilibria that arise in re­
sponse to deviations. 

The equilibrium path: Along the equilibrium path player 1 always plays e while a (.5,.5) 
public randomization determines whether player 2 chooses dore. This implies that both 
players get a present value of 1. No information about player l's type is revealed on the 
equilibrium path, so player 2 does not update his beliefs. 

Deuiations from the equilibrium path: If both players deviate simultaneously both 
deviations are ignored. ¡6 If either player is the only deviator in a period in which player 2 
is supposed to play e, the deviation is ignored. This is consistent with equilibrium, since 
such deviations do not yield a short term gain. If player 1 is the only deviator in a period 

'5 The bound on player 1 's payoff is derived as follows. If the public randomization prescribes the 
play of (D, e), player 1 obtains 2(1 - 05,) + (2/3)05, fram deviating, and O + 05, v, fram conforming, 
where v, is pi ayer l's equilibrium payoff; conforming is bet!er than deviating if v, is greater than 
.68/.99 < .687. Similar calculations show that this bound on 1's equilibrium payoff implies that 
player 1 will not want to deviate when any of the other three pure strategy prafiles are supposed to 
be p,layed. The computations for player 2 are analogous. 

6 Play following simultaneous deviations is always irrelevant to the deterntination of equilibrium. 
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where 2 plays d, player 1 is revealed to be a normal type, and play switches to the 
repeated mixed strategy equilibrium of the complete information game. In this case, the 
deviation yields (1 - 8,) + 8,2/3 which is less than the equilibrium value of 1 for any 8,. 
Finally, if player 2 is the only deviator in a period in which 2 is supposed to play d, no 
information is revealed about player l's type, and play switches to a perfect Bayesian 
equilibrium of the incomplete information game that we refer to as the player 2 
punishment equilibrium. We verify below that the expected present value to player 2 in 
this punishment equilibrium is no greater than .81. Since 1 ~ (1 - 82).2 + .8182 , this will 
imply that player 2 has no incentive to deviate from the equilibrium path. 

Player 2 punishment equilibrium: Along the equilibrium path, play has two phases. The 
first phase lasts at most T periods, where 82 ~ 0.4 ~ 8z+ '. In this phase, the normal type 
of player 1 mixes between e, D as described below, while player 2 chooses d. The first 
phase ends when either time runs out (i.e., after T periods) or when player 1 plays D. If 
time runs out play switches to the cooperative equilibrium in which regardless of observed 
play both types of player 1 play e and player 2 plays c. This is clearly a perfect Bayesian 
equilibrium. If player 1 plays D in the tth period of the punishment equilibrium, he 
reveals his type and in the following period play switches to an equilibrium of the 
complete information game in which (e, d) is played up until and including period T, and 
whose present value payoffs are (8[-' u,(t), 82-' u 2(t)), where 

It can easily be checked that the vector (u,(t), uit» is socially feasible for all 1 !> t !> T, 

and that (8I-'u,(t), 8í-'u2(t)) ~ (ll[-l u,(1), 8z-'uil)) ~ (.79, .79). So from our earlier 
analysis these are indeed perfect equilibrium payoffs of the complete information game. 

Notice that the payoffs to player 1 following play of D are calibrated so that he is 
exactly indifferent between e and D, implying that he is willing to use a mixed strategy 
during the first phase, as we have specified. The exact mixing probabilities player 1 uses 
will be determined, as usual, by the consideration of his opponent's incentives, to which 
we now turno 

If player 2 deviates in a period when the realization of player I's strategy is e, the 
deviation is ignored. If player 2 deviates in the first phase and the realization of player l's 
action is D, then play switch es to the static mixed strategy equilibrium of the complete 
information game where player 1 is known to be the normal typeY 

To show that the deviation is not optimal for player 2, we must now specify the 
randomization probabilities for player 1 during the first phase of the punishment 
equilibrium, and the corresponding beliefs for player 2 conditional on observing a string 
of e played by player 1 in all t!> T during the first phase. These in turn will determine 
player 2's expected payoff from conforming to the specified strategies at such histories, 
which in turn will determine whether player 2 can gain by deviating. 

Denote by ¡.t, player 2's subjective probability that player 1 is a commitment type in 
the tth period of the first phase. Let p = 1 - 6(1 - 82 ). In the tth period of this phase, 
type W o chooses e with probability p, = (p - ¡.t) /0 - ¡.t,), so that the overall probabllity 

17 Note that playing D reveals that player 1 is the normal type. 
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that player 1 chooses e equals p. The beliefs of player 2 in the first phase are then given 
by /L, = /LO/p'-I. Since TS; In(A)/ln(82 ) we have 

/Lo 
/L,S; p' 

/Lo <------;:-..,..,.,.."..,,.,...,,. 
- (1 - 6(1 - 82 ))(ln(.4)/ln(5 2 )) 

< /Lo = 282 
- (1 - 6(1 - .99) )On(.4)/ln(.99)) . 

< .94 = 1 - 6(1 - .99) S; 1 - 6(1 - 82 ) = P 

for 82 > .99.18 Therefore, since p > /L" 1 S; t S; T, p, is greater than O. 
Let Vi denote player 2's expected payoff in period t of the first phase of the 

punishment equilibrium. To show that player 2 loses by deviating in the first phase of the 
punishment equilibrium, we first pravide a lower bound for Vi, 1 S; t S; T. 

After the first T periods of the punishment equilibrium, the continuation payoff of 
pi ayer 2 is either 2, if time ran out, or 2 - (1- 81)/(81-'+1), if in the first phase the 
realization of player l's strategy was D in period t, where 1 S; t S; T. It is therefore easy to 
see that Vi is bounded below by 

1-8 v,'> -(1-8 )+28'+1-' ____ 1 ·8,+1-,> 78 
2- 2 2 8[+1-t 2 _0' 

We claim that player 2 has no incentive to deviate in the punishment equilibrium if 

2(1- 82 ) + 82 [pVi+ 1 + (1-p)82 ( -2/3)] 

S; (1-p)(1- 82)(-1) + 82V¿+I. 

To see this, note that the right-hand side of the inequality is player 2's expected payoff 
fram conforming to d, and that the left-hand side is an overestimate of his payoff fram 
playing e, since it calculates player 2's current-period payoff as if player l's realized 
action were sure to be C. Note next that this inequality is equivalent to 

2(1- 82 ) + 82(6(1- 82))82 ( -2/3) 

S; 6(1 - 82 )(1 - 82 )( -1) + 826(1 - 82 )Vi+ l. 

Since Vi;;: .78 this inequality holds if 

2 + 82 .6. 82 ( -2/3) S; 6(1- 82 )( -1) + 82 '6.0.78 

which is satisfied for 82 ;;: .99. This shows that player 2 has no prafitable deviation fram 
the first phase of his punishment equilibrium. 

Finally note that .81 ~ 2 82 ~ vl, so that player 2's expected payoff in the initial period 
of the punishment equilibrium is indeed no greater than .81. As was remarked aboye, this 
shows that player 2 cannot gain by deviating along the equilibrium path. 

18 Note that 

!Lo -> !Lo ~ 244 as 
(1- 6(1 - 8,))OnlA)/ln(82)) .46 . 

82 -> 1. 
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APPENDIX 

PROOF OF LEMMA 4: Given "= ("" "2) with "E int V* let a, = (a,', ... , at) be a sequence of 
actions by player 1 such that there is a sequence of actions for player 2 such that in G!i the expected 
average payoff of player 1 is larger than ", - e/2 and the expected average payoff of player 2 is 
larger than "2' (Clearly for N suftíciently large such a sequence exists.) 

Consider the KMN-fold repeated game G~ MN in which player 2 has the time average payoff as a 
payoff function. Again we can partition G~MN into blocks of length MN,G{jN.\ k=l, ... ,K. 
Denote by ¡j, = (a" ... , a,) the sequence of M repetitions of a,. Let ª, be a (pure) action of player 
1 that minmaxes the payoff of player 2 in pure strategies. Further, let u} denote player l's average 
payoff in G{j N. k 

Let <T, be the followings![ategy: in G{jN",player 1 chooses ¡j,. In GliN.2 if", -u¡ -e/2<1j, 
then player 1 again chooses a, and so on. If for any k, ", - u} - e/2 > 1j, then player 1 plays action 
ª, for the next P repetitions of GliN •k 

CLAIM: Given e> O there are numbers 1j, K, N, M, and P with P /K < e such that for any (time 
average) best response <T2 lo <T, the following is salisfied: 

(i) if player 1 chooses ¡j, in GliN.k, k = 1, ... , K - P, then Pr(v, - u} < el> 1 - e. 
(ii) the fraction of slages k in which player 1 uses his punishment slralegy is smaller than e with 

probabiliJy (1 - e). 

Assuming for the moment the tmth of the claim, a straightforward upper hemi-continuity 
argument shows that the claim remains tme if <T2 is a discounted best response for 112 sufficiently 
close to 1. Moreover, the claim implies that the average payoff to player 1 in G~MN is greater than 
", - Be where B is a positive constant independent of e. This is the desired result. 

To demonstrate the validity of the claim, tírst choose 1j < e 2/( (3 + 1), where (3 is a fixed constant 
whose computation is described below. 

Denote by E[u}Wk-')MN+I] the expected payoff of player 1 in GliN.k given the history 
h(k-I)MN+l Given K and 1j we can choose M suftíciently large, so that: 

(a) if "1 - E[U}Wk-I)MN+ 1]- e/2 > 21j, then punishment occurs with probability greater than 
(1-1j) in GliN.k; 

(b) if v,-E[u}Wk - I)MN+lj-e/2<1j for all k and for all histories h(k-l)MN+' such that 

pI ayer 1 chooses ¡j, in GliN." then the probability that no punishment occurs in any G{jN,k is 
larger than (1 - 1j). 

Note that the utility loss from a punishment is bounded below by (v2 -~2)P,(v2 -~2 > O), 
whereas the gain from a deviation is bounded above by Ü2 - ~2' where Ü2 is the largest attainable 
payoff for player 2 in the stage game. Thus for appropriate choice of P we have 

(Al) ", - E[u}Wk - ')MN+' j - e/2 < 21j 

in all of the tírst K-P stages for any best response of player 2 and for all histories h(k-')MN+' 

such that player 1 chooses 11, in G{jN.k. Hence part (j) of the claim follows. 
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Now we establish part (ji) of the claim. Suppose to the contrary that player 2's (optimaO strategy 
triggers a punishment in more than an e fraction of the first K - P stages with probability greater 
than e. We claim that this implies that a profitable deviation exists. Suppose player 2 deviates so 
that v,-E[uflh(k-I)MN+'j-e/2<1) for all k=I, ... ,K-P and for all histories Mk-I)MN+I 

such that player 1 chooses ¡J, in Gf!N.k. Since inequality (Al) has to be satisfied for aH k = 1, ... , K 
- P, this deviation can be chosen so that the loss in every stage is bounded aboye by 1)(max u 2 -

min u,). Note that (after the deviation) the probability that a punishment occurs in any stage is 
smaller than 1). Thus player 2 also improves his average payoff over the first K - P stages by at least 
(e' - 1)XV, -!f.,).p by reducing the probability of punishment. ConsequentIy, if we choose 

(max u, - min u2 )K 

13= (v,-!f.,).p , 

player 2 gains from the devialion and part (ii) of the claim follows. Q.E.D. 
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