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ABSTRACT 
 

Ultra-fine grained (UFG) metallic materials have been a hot topic in materials science 

for the last 25 years. There is a significant body of research showing that the UFG 

materials have very high mechanical strength, but their commercialisation is limited due 

to their low uni-axial tensile ductility. The main objective of this PhD thesis is to study 

the bi-axial stretching formability of the UFG metallic materials. It is demonstrated that 

there is a significant effect of the stress state (stress triaxiality) on mechanisms 

operating during plastic deformation in the UFG commercially pure (CP) Cu and the 

deformation mechanisms are determined by the stress state. The microstructure of the 

UFG CP Cu can be designed in such a way so as to show very high formability, even 

exceeding that of its coarse-grained counterpart. The effect of metallographic and 

crystallographic texture on the bi-axial stretching formability of the UFG CP Ti has been 

analysed. It is shown that the UFG CP Ti can show bi-axial stretching formability 

sufficient for metalforming operations. Coarse dispersoids and fractured particles in the 

Al 2024 alloy significantly limit its formability, acting as sites for the formation of cracks 

leading to sample failure at the early stages of deformation. Based on the analysis of 

the experimental results, a general recipe to improve formability of the UFG metallic 

materials is proposed. 





 

 

RESUMEN 

 

En los últimos 25 años, los materiales metálicos de grano ultra-fino han levantado una 

gran expectación en el mundo de la ciencia de materiales. A pesar de que ya existe un 

importante trabajo de investigación que demuestra la alta resistencia mecánica de 

estos materiales, su comercialización se ha visto restringida por su baja ductilidad 

cuando están sometidos a tracción uniaxial. El principal objetivo de esta tesis es 

estudiar lo que se conoce en inglés como “stretching formability” bajo un estado de 

tensiones bi-axial para distintos materiales metálicos de grano ultra-fino. Se ha 

demostrado que el estado tensional, “stress triaxiality”, influye considerablemente en 

los mecanismos que operan durante la deformación plástica en el cobre puro comercial 

(CP Cu, por sus siglas en inglés) de grano ultra-fino. Asimismo, estos mecanismos de 

deformación están determinados por el estado tensional. La microestructura del CP Cu 

de grano ultra-fino podría diseñarse de modo que su “stretching formability” supere 

incluso a su homólogo de grano grueso. En el presente trabajo se analiza el efecto de 

la textura metalográfica y cristalográfica del CP Ti de grano ultra-fino. Se ha 

comprobado que su “stretching formability” se adecúa a las exigencias de los procesos 

industriales de conformado. Por otro lado, los dispersoides gruesos y las partículas 

fracturadas en una aleación de aluminio Al 2024 limitan su “formability” al actuar como 

lugares preferentes para la nucleación de fisuras, promoviendo entonces el fallo de la 

muestra en las etapas iniciales de deformación. En base al análisis de los resultados 

experimentales, se realiza una propuesta general para mejorar la habilidad al 

conformado de materiales metálicos de grano ultra-fino.    
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1. INTRODUCTION 

Improving mechanical strength of metallic materials without degradation of their ductility 

and formability properties is a highly topical subject due to their wide application in all 

engineering sectors [1]. It is well known that manipulating the microstructure via grain 

refinement down to ultra-fine or nanoscale is an excellent method for enhancing 

mechanical properties in order to enable more effective exploitation of the metallic 

materials. Severe plastic deformation is an extensively strengthening method because 

it involves an effective microstructure refinement in metallic materials down to ultra-fine 

and nanoscale [2,3,4,5]. Despite significant body of experimental and theoretical 

research on mechanical properties and deformation behaviour of ultra-fine grained 

(UFG) and nanostructured (NS) metallic materials exists in literature, their formability 

has not been studied in details yet.  

In this brief introduction, the most effective methods for processing of UFG and NS 

metallic materials are presented and their effect on the microstructure is considered. 

The main strengthening strategies in the UFG and NS metallic materials are shortly 

overviewed, and deformation mechanisms along with the main strategies to improve 

tensile ductility of these metals are outlined. Current state of the art in fracture 

behaviour of the UFG and NS metallic materials and their potential for 

commercialization in various sectors of engineering is presented. Finally, the 

importance of research on formability of UFG and NS metallic materials is 

demonstrated. 

1.1. Fabrication of UFG metallic materials 

There are two main processing routes to obtain bulk UFG or NS metallic materials. 

They can be synthesized either by consolidation of nanocrystallites (so called 'bottom-

up' approach) or by breaking down the coarse-grained microstructure into crystalline 

cells with ultra-fine or nano size (so-called 'top-down' approach). Both 'bottom-up' and 

'top-down' approaches to processing of bulk UFG and NS metallic materials have 

received considerable attention and development in the last 25 years [6]. Powder 

milling at cryogenic temperatures with further consolidation of the powders [7] is a nice 

illustration of the 'bottom-up' approach. A well-known example of the 'top-down' 

approach is grain refinement by severe plastic deformation (SPD) techniques [2]. By 
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imposing SPD into samples, coarse microstructure is refined into ultra-fine or nano 

crystallites. Since the first work in this field [8], SPD techniques have advanced to 

becoming the most developed grain refinement techniques. The main advantage of 

SPD techniques is their applicability to nearly all metallic materials. Nowadays, from a 

practical point of view, SPD of bulk billets appears to be the most promising processing 

route for manufacturing UFG and NS metallic materials for various industrial 

applications. 

In comparison with the bottom-up approach, SPD processing has also other 

advantages. The final workpiece is fully dense with lack of the usual porosity and 

contamination typical for the NS materials processed via bottom-up approach. The 

most common SPD methods are equal channel angular pressing (ECAP), high 

pressure torsion (HPT), accumulative roll bonding (ARB), cryorolling and hydrostatic 

extrusion (HE). 

It should be also noted that various SPD processes can be combined for further 

improvement of mechanical properties: for example, ECAP was combined with cold 

extrusion [9,10], cold rolling [11] and HE [12]. A change of deformation path implies 

additional refinement of the microstructure [3,13]. Subsequently, it can significantly 

affect the mechanical properties. Data on mechanical properties of some high strength 

UFG and NS light metals and alloys are presented in Table 1. 
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Table 1. Data on mechanical properties of some light metals and alloys showing high 

mechanical strength (σ0.2 is the 0.2% proof strength, σUTS ultimate tensile strength, εU 

uniform elongation, εf elongation to failure). 

Material 
Processing 

method 
Grain size 

(nm) 
σ0.2 

(MPa) 
σUTS 

(MPa) 

εu 

(%) 

εf 

(%) 
Ref. 

AA7075 HPT 22 978 1010 5.0 9.0 [5] 

AA6061 HPT 100 660 690 ~2.7 5.5 [14] 

AA2024 Cryorolling + aging 800 580 630 13.0 18.0 [15] 

Pure Ti (Grade 4), 

Longitudinal direction 

ECAP+swaging+ 

drawing 
200 1220 1280 3.7 10.1 

[16] 
Pure Ti (Grade 4), 

Transverse direction 

ECAP+swaging+ 

drawing 
200 600 1170 6.6 11.8 

Pure Ti (Grade 2) HE 47 1245 1320 1.8 7.5 [17] 

Ti-6Al-4V 
ECAP+extrusion+ 

annealing 
250 1310 1370 4.0 12.0 [18] 

ZE41A ECAP 1500 270 315 - 14 [19] 

AZ31B ECAP 1000-4000 350 500 - 15 [20] 

AZ31 ECAP 370 372 445 - 9.7 [21] 

1.2. Most widely used SPD methods and their effect on the 

microstructure 

There are numerous techniques developed up to date for SPD processing of metallic 

materials and the detailed list of all those techniques can be found in [22]. In this 

section, the most widely used SPD methods are described and microstructure evolution 

during SPD processing is shortly overviewed.  

1.2.1. Equal Channel Angular Pressing  

Equal channel angular pressing (ECAP), also known as equal channel angular 

extrusion (ECAE) imposes large plastic deformation on a billet by simple shear. The 

billet is pressed through a special die which has two intersecting channels at an angle 

typically in the range of 90º-120º (Figure 1). Cross section of both channels is the 

same, thus the billet can be subjected to several ECAP passes in order to increase total 
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strain induced into the billet. Moreover, this method enables rotation of the billet 

between passes so different slip systems can be activated during plastic deformation of 

the billet, thus leading to formation of more homogeneous UFG microstructure.   

 

Figure 1. Schematic drawing of ECAP processing: (a) typical ECAP facility (b) shearing 

plane within the die: the elements numbered 1 and 2 are transposed by shear as 

indicated in the lower part of the illustration. (c) Principal geometrical parameters of die 

[3]. 

The equivalent plastic strain imposed by ECAP can be estimated according to Equation 

1 where N is the number of passes, φ the intersection angle of two channels and ψ the 

angle subtended by the arc of curvature at the intersection point (Figure 1 c) [3].  

ࢿ ൌ ૜√ࡺ ൭૛ ࢚࢕ࢉ ൬࣐૛ ൅ ૛൰࣒ ൅ ࢉࢋ࢙࢕ࢉ ࣒ ൬࣐૛ ൅ ૛൰൱ Equation 1࣒

Various deformation routes so-called A, BA, BC and C describe each strain path. The 

billet is introduced into the die without rotation between passes in A route. BA route 

turns the sample 90º in alternate directions. BC route consists of rotating the sample by 

90º always in the same direction between ECAP passes. Billets are rotated by 180º in 

C route. These processing routes can activate different slip systems by the rotation of 

the billet in order to refine the microstructure to higher homogeneity degree (Figure 2).  
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Figure 2. Slip systems view on X,Y,Z planes for consecutive passes using processing 

routes A, BA, BC and C [3].  

Preliminary observations at the macroscopic level require to define the orthogonal 

planes of the ECAP processed billet as X the perpendicular plane to flow direction, Y 

the flow plane parallel to the side face at the exit point from the die and Z the 

longitudinal plane parallel to top surface at the exit point from the die (Figure 1 a).  After 

the first ECAP pass, grains on X plane are elongated parallel to Y direction and 

flattened in Z direction. Grains on Y plane are elongated in an inclined direction, 20-30º 

with respect to X direction. While an inspection on Z plane reveals that there are no 

significant changes in microstructure, grains maintain their equiaxed shape with some 

slip along Y direction. A microscopic observation reveals that mostly low angle grain 

boundaries (LAGBs) are present in the microstructure as well as bands of subgrains on 

each plane. However, as number of ECAP passes is increased, the dislocation 

structure becomes more homogeneous leading the transition from LAGBs to high angle 

grain boundaries (HAGBs). Consequently, subgrain bands might evolve to equiaxed 

ultra-fine grains with well-defined grain boundaries with the assistance of dynamic 

recovery. 

It was experimentally demonstrated that BC is the most effective processing route for 

producing equiaxed ultra-fine grains in the FCC metals such as pure aluminium 

[23,24,25,26], aluminium-based alloys [27,28,29] (Figure 3), pure copper and its alloys 

[30,31] and HCP metals as Ti [32], etc.  
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Figure 3. Typical microstructures after ECAP processing via BC route: Al 1100 alloy after 

6 passes, Al2024 alloy after 6 passes, Al3004 after 8 passes and Al 6061 alloy after 6 

passes [29]. 

The ECAP processing technique has been successfully applied even to hard to deform 

Mg and Mg alloys. A multiple-temperature complex ECAP processing route, consisting 

of consecutive extrusions at different temperatures and speeds, was developed for a 

commercial AZ31 Mg alloys [21]. It led to formation of a very homogeneous UFG 

microstructure with the average grain size of 370 nm (Figure 4) showing very high 

mechanical strength (0.2% proof strength of 372 MPa) (Table 1).    
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Figure 4. TEM image showing UFG-microstructure of AZ31 Mg alloy after multiple-

temperature ECAE processing [21]. 

1.2.2. High Pressure Torsion 

High pressure torsion (HPT) is a potential tool for grain refinement thanks to imposed 

simultaneously high pressure and torsion deformation. Typically, a disk is placed 

between two anvils while one of them rotates under pressure of several GPa (Figure 5). 

Workpieces are deformed by pure shear. HPT processing is very effective in reducing 

grain size since very high strains can be induced into disks without any crack formation 

due to very high applied pressure. Two main shortcomings can be noted for the HPT 

method: (1) Only small disks can be processed using this technique. The dimensions of 

the HPT disks are usually determined by the maximum pressure that can be applied to 

the disk during HPT processing. For the maximum pressure of 40 tons, disks usually 

have a diameter of 8 mm and a thickness of ~1 mm, though larger disks can be 

processed if higher loads can be applied. Cylindrical bulk samples of an UFG Al-Mg-Sc 

alloy were also successfully processed with a height of 8.57 mm [33]. However, the 

inhomogeneity of the microstructure along the height appears as a problem. Thus, 

processing of bulk samples using HPT technique is still at the early stages of 

development. (2) The second shortcoming of the HPT method is inhomogeneous strain 

induced into disk along the disk radius leading to inhomogeneous microstructure and 

properties along the disk radius. The equivalent true strain imposed by HPT processing 

is calculated using Equation 2 where N is number of revolutions, r is radius of the disk, 

h0 and h are the initial and final thickness, respectively [4].  
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Figure 5. Schematic drawing of HPT facility [4]. 

ࢿ ൌ ࢔࢒ ൬૛ࢎ࢘ࡺ࣊૙ࢎ૛ ൰ Equation 2

Non-homogeneous distribution of hardness along disk radius due to inhomogeneous 

microstructure in the processed disks is demonstrated on Figure 6. Periphery area of 

disk shows higher values of hardness being theoretically zero just at the centre of the 

disk, r = 0 (Equation 2). However, by increasing HPT turns, grain refinement saturates 

at periphery of the disk while grain refinement continues at the disk centre thus 

saturating microstructure and hardness along the disk [4].  

 

Figure 6. Microhardness distribution across the diameter of pure aluminum disks 

subjected to pressure of 1GP up to 8 revolutions [4].  
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Detailed description of the microstructure evolution during HPT processing can be 

found in [34]. Generally, HPT introduces very high density of crystal defects (dislocation 

and vacancies). At low strains, subgrain structure with dislocation walls is formed due to 

dislocation arrangement. Misorientation of these LAGBs increase with increasing strain 

due to absorption of dislocations by grain boundaries, and thus, LAGBs transform into 

HAGBs. Finally, a uniform microstructure with ultra-fine or even nano grains containing 

predominantly HAGBs is formed. For example, microstructure of a solution treated 

Al7075 after HPT processing at room temperature for 5 turns consists of nanoscale 

grains (average size of 26 nm) and high dislocation density (marked by “T”) appearing 

in both grain interiors and near grain boundary regions (Figure 7). The FCC solid 

solution is also observed to be free of precipitates, as revealed by the selected area 

electron diffraction (SAED) patterns in the lower left panel (Figure 7 a). The final 

microstructure is determined mainly by the HPT processing temperature and strain. The 

final grain size is generally in the range of ~100-300 nm for aluminium, copper and its 

alloys [35,36,37] as well as for pure Ti and Ti-based alloys [38,39,40]. Mg based alloys 

were also satisfactory processed by HPT achieving significant grain refinement 

whereas this is not easy by ECAP processing [41]. 

 

Figure 7. TEM images of microstructure of a solution treated Al7075 after HPT 

processing: (a) high-resolution TEM. Scale bar is 2 nm; (b) bright-field image. Scale bar 

is 100 nm [5]. 
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1.2.3. Accumulative Roll Bonding 

Accumulative roll bonding (ARB) was proposed in order to fulfil the need in NS 

materials in form of sheets which could be produced by using conventional rolling 

facilities (Figure 8). In ARB, sheets are rolled to a certain thickness reduction. 

Afterwards, they are cut in two halves and both halves are stacked together after a 

previous degassing stage and surface treatment. Then this process of rolling, cutting 

and stacking is repeated up to large cumulative strain. Equation 3 describes strain 

imposed into sheet, where N is the number of cycles, t0 and t the initial and the final 

thickness of sheet, respectively [22].  

 

Figure 8. Schematic drawing of ARB process [42]. 

ࢿ ൌ ࡺ ૛√૜  ࢔࢒ ൬࢚૙࢚ ൰ 
Equation 3

Examples of effective grain refinement in various metallic materials using ARB can be 

easily found in literature. After eight ARB cycles, commercially pure (CP) Cu showed a 

homogeneous UFG microstructure with the average grain size of 180 nm and 

containing predominantly HAGBs [42]. ARB processing led to formation of 

homogeneous UFG microstructures with the average grain size of 670 nm in pure Al 

[43], 280 nm in an Al-Mg alloy and 420 nm in the interstitial-free steel [44]. For instance, 

the microstructure analysis of an Al7075 alloy during ARB processing to different true 

strains [45] showed a evolution from a microstructure with cells and high density of 

dislocations forming tangles after 1 cycle (Figure 9 a) to one composed by equiaxed 
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grains of an average size of 350 nm, sharp boundaries and low dislocation density after 

5 cycles (Figure 9 d). After 3 cycles, cells boundaries were already well defined and 

dislocation density was lower (Figure 9 b). The saturation of the microstructure after 4 

ARB passes was observed, ARB was also found as a successful technique for 

production of the UFG metal-matrix composites with ceramic nanoparticles [46] and for 

synthesis of Ti/Al multilayered composite, mainly composed of ultrafine equiaxed grains 

with a mean size of 200–300 nm [47]. 

 

Figure 9. Microstructure evolution of an Al 7075 alloy after ARB processing up to (a) 1 

pass; (b) 3 passes; (c) 4 passes and (d) 5 passes [45]. 

1.2.4. Cryorolling 

Cryorolling can be defined as rolling that is carried out at cryogenic temperatures. In 

cryorolling, the strain hardening is retained up to the extent to which rolling is carried 

out. This implies that there will be no dislocation annihilation and dynamic recovery, 

whereas in rolling at room temperature, dynamic recovery is inevitable and softening 

takes place. During cryorolling, dense dislocation walls are first formed dividing the 

coarse grains into subgrain structure and containing mainly LAGBs. Observed 

subgrains are elongated in the rolling direction as parallel bands with poorly defined 

grain boundaries (Figure 10). Further deformation increases the volume fraction of the 

non-equilibrium grain boundaries. Equiaxed dislocation-free subgrains (marked by 
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squares in Figure 10 b) coexist with elongated grains with dislocations inside (marked 

by a circle in Figure 10 b). Finally, equiaxed UFG microstructure with well defined grain 

boundaries is formed with a subsequent suitable annealing treatment [48].  

The equivalent plastic strain for each pass of rolling can be estimated according to 

Equation 4, where h0 and h are the initial and final thickness, respectively [48]. 

ࢿ ൌ ૛√૜  ࢔࢒ ൬ࢎ૙ࢎ ൰ 
Equation 4

 

Figure 10. TEM micrograph of a cryorolled Al 7075 alloy at (a) true strain of 2.3; (b) true 

strain of 3.4 [49]. 

Cryorolling was successfully employed for grain refinement in a wide range of 

materials. Solid-solution treated Al2024 alloy after cryorolling exhibited grain size 

between 400-800 nm and uniformly distributed nano precipitates that enabled a good 

combination of high strength and ductility [15]. Other UFG aluminium-based alloys were 

also produced by cryorolling: Al 7075 alloy [49,50] or Al 6063 alloy [51]. Even 

microstructure of CP Al could be refined down to ultra-fine scale despite of it is quite 

difficult for other SPD processing due to its high stacking fault energy [52]. CP Ti 

[53,54] with multimodal grain structure was successfully processed by cryorolling and 

subsequent annealing.  

1.2.5. Hydrostatic Extrusion 

Extrusion is a process used to create objects of a fixed, cross-sectional profile. A 

material is pushed or drawn through a die of the desired cross-section. In the 
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hydrostatic extrusion (HE) process the billet is completely surrounded by a pressurized 

liquid, except where the billet contacts the die. This process can be done hot, warm, or 

cold, however the temperature is limited by the stability of the fluid used. The process 

must be carried out in a sealed cylinder to contain the hydrostatic medium. The 

advantages of this process include: 1) No friction between the container and the billet 

reduces force requirements. This ultimately allows for faster speeds, higher reduction 

ratios, and lower billet temperatures. 2) Usually the ductility of the material increases 

when high pressures are applied. 3) An even flow of material. 4) Large billets with large 

cross-sections can be extruded.  

In comparison with other SPD methods, HE usually requires lower total strain for grain 

refinement due to very high strain rates of the process, generally larger than  102s-1. HE 

has high potential to obtain a variety of shapes such as rods, wires or bars with 

complex shape cross section. However, workpiece temperature might be so elevated 

that a proper cooling system is required at the die exit. Equation 5 describes true strain 

imposed into rod where d0 and d are the initial and final diameter of extruded rods 

respectively [55]. 

 

Figure 11. Schematic drawing of HE facility. 

ࢿ ൌ ૛ ࢔࢒ ൬ࢊ૙ࢊ ൰ Equation 5

HE processing often results in formation of lamellae microstructure aligned along 

extrusion axis, as it was seen on longitudinal section of extruded bars for an Al 2017 

alloy [56,57] and CP Ti (grade 2) [58] after HE. This lamellae-type microstructure is 
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segmented into subgrains with high dislocation density and consequently LAGBs. After 

deformation to high strain level, the grain boundaries, that separate lamellas with 

different slip system, are straight and well defined having from medium to high 

misorientation. Homogeneous microstructure consisting of equiaxed ultrafine grains is 

observed on transversal section. Consecutive HE passes enables the increase of grain 

boundaries misorientation due to the easy recovery. Typical microstructures obtained 

by HE in various metallic materials are shown below (Figure 12).  Equiaxed dislocation 

free grains were found in CP Al while dislocation cell structure was observed in CP Cu 

(Figure 12 a, c). The presence of alloy elements lead to more efficient grain refinement 

in aluminium alloys (Figure 12 b). In the case of stainless steel, nanotwins are clearly 

seen (Figure 12 e, f). 

 

Figure 12. TEM micrographs of hydrostatically extruded with total true strain of 4 (a) 

aluminum; (b) Al2017; (c) copper; (d) titanium; (e) austenitic stainless steel and (f) 

Eurofer 97 steel [59]. 
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In the specific case of CP Ti, mostly HAGBs are observed on both longitudinal and 

transverse sections after 20 HE passes with total strain of 5.47 (Figure 13) [17,58]. 

Bands of elongated grains are mainly observed on the microstructure on longitudinal 

section while homogeneous distribution of equiaxed grains of about 50-300 nm are 

predominant on transverse section. It was reported that further deformation did not 

imply finer grains. In contrast, there was a slight trend of grain coarsening while strain 

level was further increased. 

 

Figure 13. TEM micrographs and SAED pattern of CP Ti after 20 passes of hydrostatic 

extrusion (a) on transverse section; (b) on longitudinal section. Arrow marks extrusion 

direction [17]. 

1.3. Main strengthening mechanisms in metallic materials 

Mechanical strength of a conventional polycrystalline metal is controlled by dislocation 

motion restriction. Generally, pure metals can be strengthened by introduction of 

obstacles to the glide of dislocations. Any inhomogeneity in the microstructure can act 

as such an obstacle. Introduction of solute atoms in the metal matrix was the first 

strengthening route for pure metals [60]. The introduction of solute atoms into solid 

solution in the solvent-atom lattice produces an alloy which is stronger than the pure 

metal due to the differences in the radius, modulus and valence between the matrix and 

solute atoms [61]. The solute must have appreciable solid solubility in the matrix at 

annealing temperature, remain in the solid solution after a slow cool, and not be 

removed by reacting with other elements in the alloy. Later it was found that 

deformation processing of metals and alloys (forging) can also increase metals strength 

due to strain hardening effect [61]. Thus, dislocation strengthening came up as another 
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approach to improve strength properties of the Al alloys. The discovery of age 

hardening effect in Al-Cu alloys nearly century ago gave another efficient strategy to 

improve strength in age-hardenable alloys via precipitation effect [1]. The size, shape, 

volume fraction, and coherency of second phase precipitates determine the 

precipitation hardening of an alloy. These parameters usually depend on the 

concentration of solute atoms in the matrix, aging temperature and aging time. Hall and 

Petch in [62] and [63] established a relationship between grain size and yield strength 

in metallic materials showing an increase of strength with decreasing grain size. So 

grain size hardening appeared as a new strategy to improve strength of metallic 

materials. Extensive research on texture and anisotropy of mechanical properties 

yielded texture strengthening as an effective mechanism in metallic materials with HCP 

lattice [64]. This section shortly describes the strengthening mechanisms acting in the 

ultra-fine grained metallic materials as well as their contribution to strength. 

Superposition of different strengthening mechanisms in the ultra-fine grained metallic 

materials is also discussed at the end of this section. 

1.3.1. Grain size hardening 

In metallic materials, grain boundaries act as obstacles to the movement of dislocations 

which pile up near the grain boundaries. Therefore, the distance travelled by a glissile 

dislocation before reaching grain boundary decreases with decreasing grain size 

resulting in higher strength. This effect is referred to as grain size hardening (or 

strengthening). The yield strength (σy) as a function of grain size (d) is described by the 

well-known Hall-Petch relation [62,63] (Equation 6), where σo is the Peierls stress and 

K is the Hall-Petch coefficient. The K coefficient is usually determined experimentally, 

though it can be also calculated according to Equation 7, where M is the Taylor factor, 

τCRSS the critical resolved shear stress, and r the distance from the nearest dislocation 

piled-up to the dislocation source in the adjacent grain [62,63,65,66].  

࢟࣌   ൌ   ો૙ ൅ ૚ି܌۹ ૛⁄  Equation 6

 ࡷ  ൌ   ૚/૛ Equation 7࢘ࡿࡿࡾ࡯૛τࡹ
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Significant body of experimental research has shown that grain size hardening is the 

most effective strengthening mechanism in the UFG and NS metallic materials [67]. 

However, it should be noted that inverse Hall-Petch behavior can be observed in 

nanocrystalline metals as was reported for nanocrystalline Cu and Pd [68]. 

Investigations showed that in the NS metals with grain size below ~100 nm, grain 

boundary mediated mechanisms may start to play an important role in the plastic 

deformation degrading the grain size strengthening. So, the Hall-Petch slope K in 

Equation 7 is generally expected to decrease in metallic materials when grains are 

smaller than ~100 nm. This effect has been referred to as a negative deviation from the 

Hall-Petch law [65]. 

1.3.2. Solid solution hardening 

The introduction of solute atoms into a crystal lattice invariably increases the strength of 

the material. The solid solution hardening is a result of an interaction between the 

mobile dislocations and the solute atoms. The most relevant mechanisms for 

substitutional alloying of metal are the elastic interactions due to [61]: 

I. The size misfit, where the size of the solute atom differs from the size of the matrix 

atoms and creates a strain field around the atom 

II. The modulus misfit, where the difference in binding force between the solute atoms 

and the matrix atoms results in a hard or soft “spot” in the matrix. 

However, the interaction works, the presence of solute atoms increases the initial yield 

stress and reduces the dynamic recovery rate of dislocations. This results in a higher 

dislocation density, a higher work hardening rate and in a different dislocation structure. 

The solute strengthening, ∆σss, is defined as function of solute atoms concentration, C 

(Equation 8) where H and n are constants. The parameter n can be in the range of 0.5-

0.75 (Equation 8) [69]. 

࢙࢙࣌∆ ൌ Equation 8 ࢔࡯ࡴ

It should be noted that Equation 8 might easily break down in the UFG and NS metals 

since it has been experimentally demonstrated that solute atoms tend to form 

segregations and clusters in these materials [70]. These clusters cause even more 
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distortion in lattice increasing internal energy of alloy. The contribution of the clusters 

was estimated by Equation 9 where ȖSRO is the change in energy per unit area on slip 

planes, ∆HA−B, the enthalpy of the nearest neighbour bond, yA, the amount of A atoms 

in the co-clusters, yB, the amount of B atoms in the co-clusters, xA, the amount of A 

atoms in the Al-rich phase, xB, the amount of B atoms in the A-rich phase [71]. 

ࡻࡾࡿ࣎∆ ൌ ࢈ࡻࡾࡿࢽ ൌ ૜࢈࡮ି࡭ࡴ∆ ൈ ૝√૜ ൤૛૜ ሺ࡭࢟ ൅ ሻ࡮࢟ െ ൬૛૜ ࡭࢟࡮࢞ ൅ ૛૜ ࡮࢟࡭࢞ ൅ ૛࡮࢞࡭࢞൰൨ Equation 9

Segregation of solute atom clusters along grain boundaries of Cu and Al alloys during 

their SPD processing at low temperatures was experimentally demonstrated using 3D 

atom probe tomography technique [14,72,73,74]. These clusters of solute atoms might 

also inhibit dislocation nucleation at grain boundaries being another strengthening 

factor [75,76].  

1.3.3. Precipitation hardening 

Precipitation hardening has been widely used for strengthening of various alloys.  It is 

well known that fine precipitates retard dislocation movement since dislocations are not 

able to overcome precipitates unless there are sharp changes in curvature of 

dislocation line. Moreover, in the case of dislocation passed precipitate, higher stress 

level would be required to apply. The residual stresses field - attraction and repulsive 

interactions between glissile dislocations and semicoherent particles demonstrated by 

in-situ experiments [77] - contributes effectively to hinder dislocations motion. A 

homogeneous distribution of nanosized coherent, incoherent and semicoherent 

precipitates enables dislocation trapping and their accumulation in the grain interior, as 

well as contributes to thermal stabilization of UFG and NS microstructures [78]. 

Although precipitation strengthening usually involves loss of ductility, UFG Al and Cu 

alloys produced via SPD showed improved ductility [15,79,80] due to their increased 

strain hardening ability. It was demonstrated that a proper annealing treatment to a 

solutionised Cu-Cr-Zr alloy prior SPD processing enables the precipitation of nanosized 

Cr particles which are able to trap dislocations leading to a greater microstructure 

refinement [81].   

Aging time and temperature are key parameters for microstructural design in order to 

obtain optimal precipitation strengthening, since they determine size, shape and volume 
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fraction of precipitates. Contribution of precipitation strengthening can be calculated 

according Orowan equation (Equation 10) where L is the effective interparticle spacing, Ԃ  Poisson ratio, G shear modulus, D the planar diameter of the precipitate particles 

and b Burgers vector [82,83]. 

ࢉࢋ࢘࢖࣌∆ ൌ ૙. ૝ࡸ࣊࢈ࡳࡹ√૚ െ ࣖ ܖܔ ൬۲܊൰ 
Equation 10

It should be noted that precipitation kinetics of the UFG and NS alloys is different 

compared to that of their coarse-grained counterparts. For example, complex phase 

transformations can take place during SPD processing of Al alloys at room temperature 

and elevated temperatures, such as nucleation of second phase precipitates, their 

growth, fragmentation, or dissolution [80,84,85,86,87]. Microstructure formed during 

SPD is usually characterized by increased dislocation and vacancy density and 

increased volume fraction of grain boundaries leading to increased effective diffusion 

coefficient. This results in accelerated precipitation kinetic as the latter is controlled by 

diffusion of solute atoms [88]. Evolution of second phase precipitates during ECAP 

processing of the Al 7136 alloy at 200ºC was found to be 50 times faster than during 

conventional aging treatments at the same temperature [88]. The high density of mobile 

dislocations produced by ECAP promoted the dissolution of small metastable 

precipitates and the formation of large η precipitates by coalescence. It has been 

experimentally demonstrated that the precipitation kinetics during post-SPD aging is 

accelerated, as well [89,90,91]. Again, this effect has been related mainly to high 

dislocation density (where dislocations act as sites for nucleation of precipitates) and to 

enhanced diffusion accelerated by the high initial vacancy flux. The contribution of the 

precipitation hardening into strength of the UFG metallic materials can be significant. 

For instance, post-processing aging of a solution treated and cryo-rolled Al 2024 alloy 

at 100ºC for 100 h led to (i) a slight grain growth, (ii) a decrease of dislocation density 

due to recovery, (iii) formation of high density of nanosized S’-precipitates in the 

microstructure. Generation of these nanosized S´-precipitates not only compensated for 

the strength decrease caused by the grain growth and dislocation density decrease, but 

even further increased the strength by 12.4% [15]. 
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1.3.4. Dislocation strengthening 

Presence of a high density of dislocations in the grain/subgrain interior or from 

dislocation boundaries can also significantly increase strength of metallic materials. 

This type of strengthening is typical for SPD processed metallic materials with 

microstructure containing high dislocation density and high volume fraction of LAGBs. 

Such microstructures can be obtained via SPD processing to low strains, i.e. ECAP 

processing at room temperature for 1-2 passes [92,93,94], cryorolling [49,95]. For 

instance, it was demonstrated that ECAP processing by a single pass at room 

temperature of the solid-solution treated Al-Zn-Mg alloy increases its strength by ~10-

40% compared to the strength of the naturally aged non-processed material [92]. 

Strengthening contribution of dislocations can be estimated by Equation 11, where ρdis 

is the dislocation density accumulated in LAGB (i.e. geometrically necessary 

dislocations), ρ0 the density of dislocations between boundaries (i.e. statistically stored 

dislocations), b the Burgers vector, G the shear modulus, α a parameter and M the 

Taylor factor [96]. Likewise, density of geometrically necessary dislocations can be 

calculated using Equation 12, where Sv is the boundary area per unit volume and ș the 

boundary misorientation angle. 

࢙࢏ࢊ࣌ ൌ ࢕࣋ඥ࢈ࡳࢻࡹ ൅ Equation 11 ࢙࢏ࢊ࣋

࢙࢏ࢊ࣋ ൌ   ૚. ૞࢈ࣂ࢜ࡿ  
Equation 12

1.3.5. Texture strengthening 

SPD processing of metallic materials often leads to formation of a strong 

crystallographic texture since crystallographic planes are prone to orient towards 

direction of maximum strain during processing. The preferred orientation is strongly 

related to slip and twinning systems available as well as amount of strain imposed [97].  

Wires, rods and bars of a FCC metal develop a double fibre texture with both ۃͳͳͳۄ and ۃͳͲͲۄ directions parallel to the working axis. In the case of HCP metals (Ti and Mg) the 

basal plane mainly turns to be parallel to direction of extrusion. Mechanical, physical 

and chemical properties of metals depend on crystallographic orientation or in other 
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words they depend on the orientation of the main slip systems (Figure 14). This was 

demonstrated for pure Ti subjected to ECAP [32] or to a complex deformation route as 

ECAP, swaging and drawing [16] where ductility was found to be lower in the extrusion 

direction (Figure 14). The low yield stress is typically observed if the main slip system is 

oriented at 45º with respect to the loading axis resulting in the highest Schmid factor, 

S=0.5 [98]. The yield stress increases with increasing/decreasing angle and can reach 

maximum when the main slip plane is parallel or perpendicular to the loading axis that 

results in a very low Schmid factor [98].   

 

Figure 14. (a) Engineering stress - strain curves from tensile testing of UFG Ti (Grade 4) 

produced via complex SPD route (ECAP-swaging-drawing); (b) pole figures from texture 

measurements of the material. LD - longitudinal direction, TD - transverse direction. The 

images are reproduced from [16]. 

1.3.6. Superposition of strengthening mechanisms in the UFG metals and 

alloys 

Typically, a few strengthening mechanisms contribute to strength of the UFG metals 

and alloys. Contributions from different strengthening mechanisms are often taken to be 

additive assuming that they act independently, and the total strength of the UFG 

metals, σ, is estimated as Equation 13 [66,67,91] where σ0 is friction stress or, so-

called, Peierls-Nabarro stress.   

࣌ ൌ ૙࣌ ൅ ࡿࡳ࣌ ൅ ࢙࢏ࢊ࣌ ൅ ࡿࢀ࣌ ൅ ࡿࡿ࣌ ൅ Equation 13 ࢉࢋ࢘࢖࣌
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It might be wrongly assumed that each hardening factor contributes to the total strength 

separately. They are closely linked with each other and contribution of one of the 

hardening factors very often can increase only at the expense of contribution of other 

factors. An example is the aging of solution treated aluminium alloys that results in 

precipitation hardening whereas the contribution of solid solution hardening to strength 

decreases due to the migration of solute atoms from matrix into clusters and their 

further transformation into second phase nanoprecipitatates. The matrix softening is 

lower compared to the precipitation strengthening though. Maximum strength can be 

reached by the optimal combination of hardening factors via intelligent microstructural 

design. The idea is to generate microstructure which provides the maximum 

contribution from the most efficient hardening mechanisms at minimum/no sacrifice of 

other hardening mechanisms. A good example is the NS Al 7075 alloy produced via 

HPT in [5]. This solute solution with a nanosized grains having an average size of 22 

nm has a complex hierarchical microstructure which contains high density of 

dislocations, intragranular solute clusters and two types of intergranular solute 

segregations. High dislocation density along with contribution of grain boundaries, 

solute atoms, and their segregations provide 980 MPa yield strength. 

Physical understanding of interplay of strengthening mechanisms is essential for the 

proper microstructural tailoring of NS metallic materials. A body of research into 

synergetic effects in the superposition of strengthening mechanisms in metallic 

materials exists in literature [59,99]. The key conclusion of these works is that the 

different strengthening mechanisms can be additive only if they are fully independent 

for a given deformation mechanism [59]. 

1.4. Mechanisms of plastic deformation and their effect on ductility 

1.4.1. Overview of mechanisms operating during plastic flow in UFG 

metallic materials 

It is well known that strength and ductility of UFG metallic materials strongly depend on 

the mechanisms operating during plastic deformation. Conrad [100,101] classified 

deformation mechanisms in FCC metals (Au, Ag, Cu) into three regimens depending on 

grain size. For conventional CG metals (d>1µm) dislocation pile-up or twinning are the 

main deformation mechanism, so-called regime I. Grain boundary shear promoted by 
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the pile-up of dislocation can be the dominant mechanism in regime II ranged over UFG 

scale (1µm<d<100nm). Regime III (d<100nm) is defined by the lack of lattice 

dislocation activity and plastic deformation is mediated by shear of individual grain 

boundary atoms resulting in break down of the Hall-Petch law and grain softening 

(Figure 15). 

 

Figure 15. The Hall–Petch plot of the effect of grain size d on the flow stress of Au at 

300K and ´ε ≈10−5–10−3 s−1. Open symbols are for ε≤0.005, filled are for ε≈0.10–0.20 [102]. 

In regime I, dislocations glide along slip systems available in crystalline lattice. During 

plastic deformation, new dislocations are nucleated by whether Frank-Read sources 

within grains or at grain boundaries. Dislocation tangles are formed by interaction of 

dislocations on different slip planes. Dislocations also interact with grain boundaries 

promoting their pile-up on slip plane against grain boundaries as well as against 

second-phases and sessile dislocations. It should be noted that sessile dislocations 

only glide by diffusion of atoms or vacancies, and thus they are effective obstacles to 

mobile dislocations as well (namely, glissile dislocations at low homologue 

temperatures). This enables the dislocation dissociation into partials, and thus micro-

twins and stacking faults are formed. Of course, stacking fault energy has a strong 

influence on both deformation mechanisms and dislocation storage capacity in the UFG 

metals [103]. The Orowan model describes dislocation glide (Equation 14 - Equation 
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16), where ࢿሶ  is strain rate, ρm mobile dislocation density, ࣖ their velocity, ∆σH strength 

increase given by work hardening, ∆σR strength losses due to dislocation annihilation. 

An increase of dislocation density provides strain hardening (Equation 16). 

ሶࢿ ൌ Equation 14 ࣖ࢈࢓࣋ሻࡹሺࢻ

࣌ ൌ ૙࣌ ൅ ࡴ࣌∆ െ Equation 15 ࡾ࣌∆

ࡴ࣌∆ ן Equation 16 ࣖ࢈࢓࣋

Recovery processes can also take place during plastic deformation. Dislocations can 

annihilate during plastic deformation via climb according to the Weertman model [104]. 

Dislocations can be also annihilated by their arrangement resulting in formation of 

dislocation walls in the grain interior. Therefore, the already mentioned substructure of 

crystalline cells is formed. Further deformation, flux of dislocation along LAGB 

increases their misorientation resulting in formation of UFG microstructure with well-

defined HAGBs. These HAGBs often appear as non-equilibrium grain boundaries and 

they are characterized by high density of grain boundary dislocations which provide an 

excess energy. Twinning and dislocation pile-up are restrained for UFG microstructure 

[101] due to the absence of defects within grains that are able to trap dislocations. In 

fact, TEM observations often reveal that there are no lattice dislocations in the interior 

of ultra-fine grains [105] since dislocations move through the grain interior and are 

dissociated at the opposite grain or subgrain boundary. 

This excess of dislocations might promote slip and rotation of grains. This refers to the 

relative displacement of adjacent grains retaining their original shape and size. 

Therefore, (micro)-shear bands can be formed during plastic deformation. A (micro)-

shear band involves groups of grains that tend to reduce the misalignment through 

sliding and rotation across the grain boundaries [106]. It was experimentally 

demonstrated that activation of extensive microshear banding dramatically improves 

ductility of the UFG Al 6082 alloy [107].  

Atomic diffusion processes can significantly contribute to plasticity of UFG and NS 

metals by grain boundary diffusion or sliding even at low temperatures [108,109]. It is 

due to the nature of non-equilibrium grain boundaries that favours atomic shuffling and 

so-called athermal grain boundary diffusion [107,110]. Grain boundary sliding was 
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observed during plastic deformation of the NS Al 5083 alloy [111] and cryomilled Cu 

[112]. Study on uni-axial tensile deformation behaviour of nanocrystalline Cu 

demonstrated a near-perfect elastoplasticity of the material at room temperature when 

nanocrystalline Cu was deformed to large strains (~15%) without any work hardening 

and necking that was related to the pre-dominance of grain boundary mediated 

mechanisms [113]. Generally, for nanocrystalline metals with d<10 nm grain boundary 

sliding is considered as the main deformation mechanism providing high ductility [105] 

according to the MD simulations [114].  

Mechanisms operating during plastic deformation are usually identified using various 

experimental techniques such as TEM studies, analysis of surface relief of deformed 

samples, analysis of stress-strain curves, etc [115]. Another approach to analyze 

deformation mechanisms are so called transient tests where activation volume v* of 

plastic deformation can be estimated. It is generally accepted the activation volume 

brings considerable insight into the controlling mechanisms of dislocation movement. 

This parameter can be ascribed to the number of atoms involved in the thermally 

activated dislocation motion throughout localized obstacles on the slip planes. 

Consequently, each deformation process can be characterized by the activation volume 

value and its stress dependence which is described by Equation 17, where M is the 

Taylor factor, k Boltzmann’s constant and T testing temperature. The Seeger model is a 

geometrical definition of activation volume (Equation 18) where v* is directly 

proportional to obstacles spacing l, d obstacles diameter and b the Burgers vector. 

࢜ ൌכ ࢀ࢑ࡹ ࣔ ࢔࢒ ࣌ሶࣔࢿ  
Equation 17

࢜ ൌכ Equation 18 ࢈ࢊ࢒

It is suggested that deformation mechanism based on dislocation glide involves high 

activation volume and this value decreases when dislocation activity is restrained. For a 

conventional CG FCC metal, activation volume is typically larger than 1000 b3 at room 

temperature, whereas for nanocrystalline FCC metal, activation volume can be in the 

order of ~10 b3.  Atomic diffusion processes entail activation volume in the order of ~1 

b3. It was demonstrated that activation volume for an UFG Cu is almost 10 times lower 

than for the CG one [116]. These experimental data evidences the effect of 
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microstructure on plastic deformation where dislocation activity is progressively 

restricted with reduction of grain size.  

1.4.2. Low ductility of UFG metallic materials and main strategies to 

improve it 

Yield stress is defined as the stress required for nucleating dislocations from grain 

boundaries in an UFG metal [76]. On the other hand, ductility is usually supplied by 

dislocation glide which is able to accommodate the strain imposed. SPD methods for 

refining microstructure induce high density of defects promoting strengthening, but 

ductility is dramatically reduced due to dislocation motion restriction.  

In the coarse-grained metals, the uniform strain is usually in good agreement with the 

well-known Considère criterion [66], which is a geometric criterion stating that when the 

work hardening rate ሺࣕࢊ/࣌ࢊሻ decreases to the level of the flow stress, σ, macro-

localization of plastic deformation (necking) should occur resulting in a specimen failure 

(Equation 19). 

ሺࣕࢊ/࣌ࢊሻ ൌ Equation 19 ࣌

The UFG FCC metals are usually characterized by increased strain rate sensitivity even 

at low temperatures compared to their coarse-grained counterparts [117]. Therefore, 

the Hart criterion [118] has been employed to predict their uniform elongation. The Hart 

criterion defines the appearance of localized deformation under tensile load taking into 

account strain hardening rate n and strain rate sensitivity m (Equation 20). Strain 

hardening rate refers to dislocation accumulation rate into microstructure (Equation 21). 

High strain hardening ability of the material delays the appearance of plastic instabilities 

during tensile deformation. Increased strain rate sensitivity delays onset of localization 

of plastic flow (necking) (Equation 22). 

࢔ ൅ ࢓ ൒ ૚ Equation 20

࢔ ൌ ૚࣌  ࢿࣔ࣌ࣔ
Equation 21
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࢓ ൌ ࣔ ࢔࢒ ࣔ࣌ ࢔࢒ ሶࢿ  Equation 22

Low strain hardening rate is observed in the UFG metals [119]. Although dislocation 

activity is still operative, this low value might be due to restricted dislocation 

accumulation, dislocation absorption into grain boundaries and dislocation density 

saturation. On the other hand, ductility is enhanced while strain level is increased for an 

UFG CP Cu subjected to up to 16 ECAP passes. It is explained by the higher ability of 

the UFG microstructure to strain hardening that prevents the premature failure 

promoting uniform deformation. Therefore, the unique UFG microstructures generated 

by SPD methods can promote high strength and enhanced ductility. The change of 

deformation mechanisms in the UFG regime is the predominant cause of this paradox. 

Otherwise, increasing grain boundary misorientation by lattice rotation or absorption of 

dislocation into non-equilibrium grain boundaries does not lead a high strain hardening 

coefficient [108].  

When grain is reduced into nanocrystalline regime, grain boundary diffusion can 

dominate plastic deformation especially at low strain rates. Plasticity mediated by 

diffusion processes might be the key for achieving enhanced ductility in the NS 

materials [113].  

Ductility enhancement of UFG and nanocrystalline materials keeps on being a scientific 

challenge. In following section, proposed methods for ductility enhancement will be 

explained in detail. 

1.4.2.1. Strategies to improve ductility 

It has been demonstrated that tailoring microstructure can enable a simultaneous 

increase of strength and ductility [30,108,119,120,121].  

Dislocation density is close to saturation in a severe deformed metal due to high 

imposed stress. Therefore, UFG and NS metals undergo some strain hardening just at 

the onset of plastic deformation. Unfortunately, this is not extended to the larger strains. 

Besides there are several dislocation sources, steady state of dislocation density is 

reached; plastic deformation is localized and the neck is formed. Consequently, a 

milestone is to increase the strain hardening ability of the UFG or NS metallic materials 

so it supplies profuse dislocation activity for carrying plasticity. 
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One of the strategies for promoting uniform tensile deformation is a tailored 

microstructure composed by homogeneous distribution of micron-sized grains in the 

ultra-fine grained matrix. This bimodal microstructure can be obtained by short-time 

annealing of the SPD processed material resulting in partial recrystallization. Such 

microstructures can be also successfully generated combining cryomilled NS powder 

with unmilled microstructured powder and their further consolidation [122]. Larger 

grains provide strain hardening, thus improving ductility, whereas ultrafine grains 

provide enhanced strength [120]. 

Another strategy to improve strain hardening ability of the UFG materials and thus their 

ductility is to introduce nanoprecipitates in the grain interior which act as effective 

obstacles for dislocations and thus promote accumulation of dislocations in the grain 

interior. Cheng et al. [15] proposed optimization of both the strength and ductility of the 

age-hardenable UFG Al2024 alloy by nanoprecipitation after cryo-rolling and 

subsequent artificial aging. It should be noted that these nanoprecipitates not only 

increase strain hardening rate but also provide additional precipitation hardening 

(Figure 16).  

 

Figure 16. Engineering stress-strain curves for the CG, NS, and NS+P (nanostructured 

with very small second-phase particles) Al 7075 alloy [50]. 



Formability of ultra-fine grained metallic materials 

 

29 

Although dislocations can slip across twin boundaries, such a process requires very 

high stress. Therefore, twin boundaries are also effective barriers for blocking and 

accumulating dislocations. In addition, twin boundaries can also act as dislocation 

sources and effectively emit dislocations. Therefore, UFG microstructure with high 

density of twins should produce both high strength and high ductility. The pre-existing 

twins can be produced in bulk UFG Cu via SPD methods in combination with cryogenic 

deformation, for example by ECAP followed by cryogenic drawing and cryogenic rolling 

to introduce twins in the grains [123]. As it was shown, the cryogenic process after 

ECAP increased both the strength and ductility of the UFG Cu sample because of the 

twins introduced in the microstructure. 

In the case of UFG materials that do not have either twins or second-phase particles, 

others options to increase the ductility of UFG materials are related to enhanced strain 

hardening rate or strain rate sensitivity. Since strain hardening rate is a balance 

between nucleation and annihilation of dislocations, it can also be increased by 

decreasing recovery rate. For suppressing recovery, the material should be deformed 

at low temperatures and/or high strain rates. Deforming at cryogenic temperatures 

avoids dynamic recovery and the thermally activated cross slip and climb of 

dislocations. Therefore, dislocation density is effectively increased promoting higher 

uniform elongation. Deforming at high strain rates involves similar effects on plastic 

deformation.  

Following the Hart criterion (Equation 20), ductility can be enhanced by increasing 

strain rate sensitivity of metal. A metal with increased strain rate sensitivity index, m, 

should be able to maintain higher uniform elongation as well as elongation to failure 

due to gradual and progressive necking [113].  Strain rate sensitivity index is related to 

activation volume by Equation 23. This is an inverse relationship where restraining 

dislocation motion increases m. 

࢓ ൌ √૜࢜࣌ࢀ࢑ כ  
Equation 23

Strain rate sensitivity index is almost negligible for CG metals at RT (m~0.003 for the 

CG Al 6082 alloy in [27]). It follows upward trend as grains are refined in FCC metals. 

For example, m~0.03 was reported for UFG Al 6082 alloy in [27]. It should be noted 



Introduction 

E.C. Moreno-Valle 

that this strategy cannot be applied to bcc metals since they undergo a decrease of m 

while grain size is reduced as was reported for NS Fe and Ta [124]. This opposite 

behavior with respect to FCC metals might be due to kink-pairs nucleation mechanism 

which still takes place in the UFG microstructure where the effect of screw dislocations 

on plastic deformation is almost insignificant. Athermal contribution to flow stress 

related to internal stresses of metal is dramatically increased by the Hall-Petch effect. 

Therefore, bcc metals are not temperature and strain rate sensitive. 

One of the structural features that often exist in UFG materials produced by SPD is 

their high-dislocation density and LAGBs. The high dislocation density limits the strain 

hardening during tensile deformation, whereas it is hard to isolate the precise influence 

of LAGBs. Recent reports suggest that accumulated redundant plastic strain introduced 

during material processing could reduce the dislocation density thereby altering 

mechanical behaviour. For example, increasing the ECAP strain was found to increase 

the ductility of CP Cu [108]. In [125], ARB was used to process pure Al and significant 

increase in both strength and ductility with increasing ARB strain was found.  

1.5. Fracture behavior of UFG metallic materials 

In materials science, fracture toughness is a property which describes the ability of a 

material containing a crack to resist fracture and is one of the most important properties 

of any material for many design applications. Fracture failure criteria are closely related 

to surface energy or energy to overcome the cohesive force of the atoms to create new 

crack surfaces. Macroscopically, fracture is usually referred as ductile or brittle fracture 

depending on the stable or unstable character of crack propagation, respectively. Brittle 

cleavage fracture is a consequence of direct separation of crystallographic planes by 

simple atomic de-bonding while ductile fracture is defined by formation, growth and 

coalescence of micro-voids. Cleavage fracture is typically observed in bcc metals as 

tungsten, molybdenum, chromium or HCP metals as magnesium, zinc and beryllium. 

FCC metals do not exhibit this brittle behaviour under conventional circumstances.   

In spite of the growing interest to the UFG metallic materials, experimental research on 

their fracture properties is limited. However, first steps to a deep understanding of their 

fracture behaviour have been already taken. A degradation of fracture toughness of CP 

Ti after ECAP processing due to the limited ductility of the UFG microstructure was 
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reported in [126]. In UFG Ni processed via HPT remarkable fracture toughness in 

combination with very high strength was found [127]. Additionally, a significant 

anisotropy of the fracture behaviour was observed. Anisotropy of fracture behaviour 

was reported in a pearlitic steel after HPT processing since a NS composite consisting 

of ferrite and cementite or cementite like amorphous layers aligned to shear direction 

was developed during HPT processing [128,129]. A strong deterioration of fracture 

toughness was observed when tested along shear direction while fracture properties 

remained high in other directions. Subsequently annealing treatments led to 

microstructure transformation to bimodal one consisting of globular UFG ferrite and 

spherical cementite dispersoids which fractured in a micro-ductile way [130]. In fact, 

homogeneously distributed fine precipitates and dispersoids combine high strength and 

high fracture toughness since formation of micro-voids was avoided thus the 

undesirable fracture failure was delayed [131]. Another example found in literature is a 

peculiar tailored microstructure composed of micro-sized grains embedded into a matrix 

of ultrafine grains of CP Al nanopowder consolidated by hot isostatic pressing. In this 

case, crack propagation was impeded by profuse dislocation slip while deformation 

mechanism in the UFG matrix was based on cooperative grain boundary sliding [132]. 

1.6. Commercialization of UFG metals 

Metals as aluminium, titanium and their alloys are widely used in structural applications 

above all in automotive and aerospace engineering due to their good corrosion 

resistance, light weight-strength relationship and their easy machinability. Their 

mechanical and physical properties are found to be dramatically improved by 

manipulating the microstructure. Following the Hall-Petch equation, reducing grain size 

involves an increase in strength and fatigue properties. However, the main researching 

stone is to find out a processing method that also enables an enhancement of ductility. 

This is actually viable with a proper microstructure design i.e. a NS metal with high 

volume fraction of HAGBs and uniform distribution of nanosized second-phase particles 

[121]. Moreover, large bulks or UFG and NS semi-products can be easily manufactured 

by some SPD processes such as ECAP-based techniques and HE [17]. 

An example where UFG metals benefits are actually appealing is pure copper. Copper 

has been widely used in electric and electronic devices due to its low cost and excellent 
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thermal and electrical conductivity. In fact, pure copper screws for electrical contact are 

mechanized by cold forming, Deringer-Ney Company (USA). The main obstacle to 

wider application of pure copper is its very low mechanical strength. Alloying of pure 

copper, strain hardening, or precipitation strengthening can be employed to increase 

mechanical strength of pure Cu, but all these strategies lead to dramatic degradation of 

its electrical conductivity since it is determined by the scattering of electrons due to 

disturbances in the crystal structure including thermal vibrations, impurities, and defects 

[133]. For instance, the electrical conductivity in some of Cu alloys ranges from 10% to 

70% of IACS (International Annealed Copper Standard) [134]. It has been recently 

demonstrated that intelligent microstructural design based on grain refinement down to 

ultra-fine or nano scale via SPD can be a good strategy to increase dramatically 

mechanical strength of pure Cu at no expense of its electrical conductivity 

[133,134,135,136]. The UFG Cu would be also an ideal material for MEMS (micro-

electro-mechanical systems)  having geometrical features of a few micrometers since 

the average grain size in the micro-parts should be smaller than the smallest dimension 

of the structural features in order to ensure their reliable property control [137,138].  

Several commercial applications of NS and UFG materials have been found in 

literature. For example, micro bolts of UFG titanium or carbon steel are used in aircraft 

industries. As well, there is a recent progress on the fabrication of hard magnetic 

devices as permanent magnet because hysteresis properties are significantly improved 

after SPD processing [139]. 

Sub-micron grained Al and Cu sputtering targets processed by ECAP are already 

commercialized by Honeywell Electronic Materials and Praxair Electronics (Figure 17 b) 

[140,141]. These targets are effective tools for fabricating advanced uniform thin 

deposition films materials for semiconductor and photovoltaic markets. Lifetime and 

performance consistency of these targets have been significantly improved by grain 

refinement.  

Ti-6Al-4V alloy is a common material for fabrication of medical implants as well as 

surgery devices. Alloying of pure Ti by other elements effectively improves its 

mechanical strength but reduces its corrosion resistance. Moreover, the Ti-6Al-4V alloy 

is toxic for human body because of the presence of vanadium. Recently, a standard 

dental implant made from the Ti alloy has been replaced by one made of fully 
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biocompatible NS pure titanium [142]. Not only mechanical properties of dental implant 

have been significantly improved, but also its diameter was reduced by 32% causing 

less damage in the jaw during operation (Figure 17 a).  

 

Figure 17 (a) Dental implants Ø 3.5 mm Timplant® (top) and  Ø 2.4 mm Nanoimplant®; (b) 

Flat 300 mm monolithic ECAP processed Al-0.5Cu target. The images are reproduced 

from [141,142]. 

Nowadays, simple mechanizing as turning and drilling are the most common methods 

for metal-forming of final products from a nanocrystalline UFG or NS materials. A good 

example is a novel dental implant described above which is produced from rods of NS 

pure Ti having a diameter of ~5 mm. However, metalforming processing methods are 

required for fabrication of the complex shape products. It should be noted that there is 

no industrial application for complex shape parts/tools made from the UFG and NS 

metallic materials made via metalforming up to date. 
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2.  MOTIVATION AND OBJECTIVES 

As it is seen from the Introduction section, most of the studies on mechanical properties 

and ductility of UFG and NS metallic materials were carried out using uni-axial tensile 

testing. Figure 18 represents a tri-axial stress state in a cell unit where hydrostatic 

stress and mean stress are defined by following equations (Equation 24, Equation 25). 

The ratio of mean stress to hydrostatic stress represents stress triaxiality which is equal 

to 1/3 under uni-axial tensile testing (since both σ2 and σ3 are zero). Necking during 

tensile testing leads to increase of this factor [143]. It has been experimentally 

demonstrated that in UFG and NS metallic materials, mechanisms operating during 

plastic deformation in the necking area might be different from those operating during 

uni-axial homogeneous tensile deformation. For example, activation of extensive 

microshear banding along with cooperative grain boundary sliding in the necking area 

was observed in the UFG Pd and UFG Pd [144]. From these experimental data, it can 

be concluded that there is an effect of stress state on deformation mechanisms of 

plastic deformation. Moreover, it is well know that ductility of UFG metallic materials is 

determined by the mechanisms operating during plastic deformation. Therefore, there 

should be effect of stress state on ductility/formability of UFG metals. Since the metals 

in metalforming typically undergo plastic deformation under complex stress state (in 

multi-axial mode), the UFG metals deformed along complex strain path might show 

higher ductility compared to that in the case of the uni-axial tensile testing.  

By the beginning of my work on this PhD thesis in 2010, there were no publications 

focused on formability of the UFG metallic materials in bi-axial stretching and on a 

fundamental understanding between the microstructure, stress state, and 

ductility/formability in the UFG metallic materials. Thus, the major goal of this work was 

to gain fundamental understanding between the microstructure, stress state, and 

formability in the UFG metallic materials. 
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Figure 18. Schematic draw of tri-axial stress state where principal stresses are 

represented as σ1, σ2, σ3. 

࢓࣌ ൌ ૚࣌ ൅ ૛࣌ ൅ ૜૜࣌  
Equation 24 

ࢗࢋ࣌ ൌ ૚√૜ ඥሺ࣌૚ െ ૛ሻ૛࣌ ൅ ሺ࣌૚ െ ૜ሻ૛࣌ ൅ ሺ࣌૛ െ  ૜ሻ૛࣌
Equation 25 

ࢀ ൌ  ࢗࢋ࣌࢓࣌
Equation 26 

Thus, the main objectives of the present work were: 

I. To fabricate a range of UFG metallic materials via various SPD techniques; 

II. To investigate the effect of SPD processing on the microstructure; 

III. To study mechanical behaviour and mechanical properties of UFG metallic materials 

deformed in uni-axial (stress triaxiality 1/3) and bi-axial (stress triaxiality 2/3) tensile 

mode; 

IV. To understand the microstructure - stress state - deformation mechanisms – 

formability relationship in UFG metallic materials. 
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3. MATERIALS AND EXPERIMENTAL PROCEDURES 

This section describes the materials and provides justification for their choice, SPD 

processing methods and processing parameters applied to the materials are described 

in detail, along with the experimental methods and techniques used for the 

microstructural, mechanical characterization of the processed materials as well as for 

analysis of their mechanical behaviour. 

3.1. Materials and processing 

CP Cu, CP Ti, and an Al2024 alloy were chosen as materials for this investigation. 

Such a choice is rationalized based on the objective of this work to explore the effect of 

microstructure on formability of UFG metals. CP Cu was chosen to study purely the 

effect of grain size on the formability of FCC metals. Since HCP metals can show 

significant anisotropy of their mechanical behaviour depending on their texture, CP Ti 

was selected to analyze the combined effect of grain size and texture on formability of 

HCP metal. Finally, the Al2024 alloy provides us with opportunity to evaluate the effect 

of grain size and precipitates/dispersoids on formability of a FCC alloy.  

3.1.1. Commercially pure Cu  

CP Cu having a purity of 99.9% was received in form of bars having diameter of 20 

mm. The as-received copper was subjected to annealing at 600oC for 2h. The annealed 

material shows a homogeneous microstructure with an average grain size of ~50 μm. 

Hereafter, this material condition will be referred to as coarse-grained (CG) CP Cu. 

The diameter of the annealed bars was reduced down to 18 mm. These bars with a 

length of 100 mm were subjected to ECAP processing at room temperature for 2 and 

12 passes. The ECAP die had the internal channel angle φ = 90º and the outer arc 

curvature angle ψ = 0º (Figure 1). The processing route Bc  was employed where the 

bar is rotated by 90o around the pressing direction after each ECAP pass since it leads 

to the most efficient grain refinement in metallic materials  [26,27,30,31]. The selection 

of the number of passes was rationalized by the previous works where the 

microstructure effect on deformation behaviour under uni-axial tensile testing was 

analyzed [30]. The strain produced in each pass was about 1, so the cumulative strain 

the specimens underwent as a result of the ECAP processing were about 2 and 12, 
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respectively [3]. Hereafter, these material conditions will be referred to as 2P Cu and 

12P Cu, respectively.  

As it was demonstrated in section 1.2.1, the ECAP processing is usually applied for 

fabrication of large billets. The processed Cu billets can be used for fabrication of high 

strength tools (as large conductive screws) or their further processing for manufacturing 

of parts for micro-electro-mechanical systems (MEMS). 

3.1.2. An Al2024 alloy  

An Al2024 alloy was received in form of billets having a diameter of 50 mm. The as-

received material was in the hot extruded condition. In order to evaluate the grain size 

effect in addition to dispersoids and second phases’ role in deformation behaviour, a 

commercial aluminium alloy was chosen as material for this investigation. Al2024 is an 

excellent candidate because of its extended use in engineering field. For instance, 61% 

of structure of A380 aircraft from AIRBUS is made of aluminium alloys. Lower cover of 

wings where high fracture toughness is required is made of this Al-Cu alloy. Their 

excellent strength-weight ratio besides of good workability enables their use as 

fuselage frames. Other numerous applications of aluminium alloys are gears, bolts, 

computer parts, couplings, hydraulic valve bodies, missile parts, munitions, nuts, 

pistons, fastening devices, veterinary and orthopaedic equipment, structures, etc.  

Chemical composition of the selected alloy is detailed in Table 2. The as-received 

material was subjected to solution treatment at 490ºC for 10 hours after being annealed 

at 450ºC for 10 hours. 

Table 2. Chemical composition of the Al2024 alloy.  

 Si Fe Cu Mn Mg Cr Zn Ti Zr+Bi others Al 

% ≤0.50 ≤0.50 
3.80-
4.90 

0.30-
0.90 

1.20-
1.80 

0.10 ≤0.25 ≤0.15 ≤0.20 ≤0.15 balance

 

The billets of the Al2024 alloy were subjected to single-pass hydrostatic extrusion at 

room temperature using a 45º die in order to refine their microstructure. The strain rate 

was 3.54 s-1 which corresponds to the linear extrusion speed above 5.9 mm/s. The total 
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true strain induced into sample was 1.19. The parameters of hydrostatic extrusion 

applied to material are presented in Table 3. 

Hydrostatic extrusion is usually accompanied by significant adiabatic heating which 

might significantly affect the microstructure developed during processing [145]. The 

temperature rise due to adiabatic heating was estimated by the commonly accepted 

Equation 27 [145,146] where p is the extrusion pressure, c the specific heat, ρ the 

density, and ȕ denotes the fraction of the plastic work converted into heat during 

deformation. For HE with good lubrication, ȕ~0.9 [145]. The calculated ∆T-value is also 

given in Table 3. 

ࢀ∆ ൌ ࢼ Equation 27 ࣋ࢉ࢖

Table 3. Processing parameters during hydrostatic extrusion of Al2024 alloy. 

 
Solution 
treatment 

Entry 
die 

angle 
(º) 

Reduction 
ratio 

True 
strain 

Linear 
extrusion 

speed 
(cm/s) 

Pressure 
(MPa) 

Strain 
rate at 

exit (s
-1

) 

Adiabatic 
heating, 
∆T (ºC) 

HE-
Al2024 

490ºC/10h 
water 

quenching 
45 3.29 1.19 5.9 727 3.54 284 

 

This work was carried out by UNIPRESS, Institute of High Pressure Physics of the 

Polish Academy of Sciences, (Warsaw, Poland) as a part of European LIMEDU project. 

Figure 11 describes HE process [145]. Different combinations of lubricant paste based 

on ~60% MoS and refined oil, copper and PTFE aerosols and aluminium layer 

superimposed by physical vapor deposition (PVD) were tried as lubricants. The rods 

after hydrostatic extrusion showed smooth surface without any (micro)-cracks. 

It should be noted that high strength HE rods Al 2024 alloy can be used in construction 

engineering.  
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3.1.3.  Commercially pure Titanium 

CP Ti (Grade 3) with specification corresponding to the ASTM B348-09 standard [147] 

was received in form of billets having a diameter of 50 mm.  Equiaxed grains with 

average size of 42 µm are observed in the microstructure of the as-received titanium 

bars. Hereafter, this material condition is referred to AR-Ti.  

Large bars of CP titanium were subjected to HE processing at room temperature using 

a 45º die in order to refine their microstructure. This work was carried out by the project 

partners from UNIPRESS, Institute of High Pressure Physics, the Polish Academy of 

Sciences as part of the European LIMEDU project. Different combinations of lubricant 

paste based on ~60% MoS and refined oil, copper and PTFE aerosols and aluminum 

layer superimposed by physical vapor deposition (PVD) were tried as lubricants. The 

rods after HE processing showed smooth surface without any (micro)cracks. 

Table 4 summarizes the HE processing parameters (diameter reduction percentage, 

the final diameter, number of extrusion passes, cumulative extrusion ratio and 

cumulative strain) of CP Ti. Extrusion pressure was in the range of 827-1092 MPa. The 

strain rate was 10 s-1 which corresponds to the linear extrusion speed of 60.6 mm/s. 

Additionally, rotary swaging (RS) was imposed into some rods after HE processing.  

Adiabatic heating during HE processing was calculated using Equation 27. For c = 

0.523 Jg-1K-1 and ρ = 4.5 gcm-3 this estimation leads to ∆T = 240-400 oC. 

The HE processed rods are perfect semi-products for further manufacturing of micro-

parts for fabrication of dental implants with minimum waste of expensive material. 
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Table 4. Processing parameters during hydrostatic extrusion of CP Ti and additional 

rotary swaging.  

 
Diameter 
reduction 

(%) 

Final diameter 
(mm) 

Number of 
extrusion 

steps 

Cumulative 
extrusion 

ratio 

Cumulative 
strain 

AR-Ti 0 50 0 0 0 

HE0.7-Ti 50.2 10 1 2.01 0.70 

HE1.30-Ti 71.9 10 1 3.56 1.30 

HE3.24-Ti 40.6 10 4 25.41 3.24 

HE3.7-Ti 84 8 3 41.64 3.7 

HE-RS-Ti 84 8 3 39.16 3.67 

3.2. Mechanical testing 

3.2.1. Uni-axial tensile testing 

Uni-axial tensile testing is one of the most widely used methods for mechanical 

characterization of metallic materials [66]. Mechanical tensile strength and tensile 

ductility as well as strain hardening ability of the metallic materials can be quantitatively 

estimated using this technique.  

3.2.1.1. Uni-axial tensile testing of CP Cu 

Tensile specimens with a gauge length of 7.5 mm, gauge width of 1.5 mm and a 

thickness of 1 mm were machined from the CG and ECAP processed Cu bars. The 

tensile axis of the specimens coincided with the pressing direction. The surface of the 

specimens was polished to the mirror-like surface for further surface relief analysis. 

Tensile tests were carried out using Kammrath&Weiss module at room temperature 

with constant cross head speed corresponding to the initial strain rate of 10-3 s-1. At 

least three specimens were tested for each materials condition and the results were 

found to be reproducible.  

3.2.1.2. Uni-axial tensile testing of CP Ti and Al2024 alloy 

Tensile specimens with a gauge length of 3.2 mm, a gauge width of 0.8 mm, and a 

gauge thickness of ∼0.8 mm were machined from the longitudinal (L) and transversal 
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(T) sections of both as-received and hydrostatically extruded bars (Figure 19). The 

tensile axis of T-specimens was perpendicular to the bar axis and L-specimens was 

parallel to the bar axis, as indicated in Figure 19. These tensile specimens were 

mechanically polished to mirror-like surface using colloidal silica solution at the final 

stage. Tensile tests were carried out at room temperature using a Kammrath&Weiss 

testing module. Tensile specimens were deformed to failure with constant cross-head 

speed corresponding to the initial strain rate of 10-3 s-1. At least three tensile specimens 

were tested for each material’s condition and the results were reproducible. 

 

Figure 19. (a) Rod axis, transversal and longitudinal planes in the extruded rod; (b) 

schematic drawing of specimen dimensions. 

3.2.2. Small-punch testing 

In last decades, small-punch testing has been widely used for assessment of the 

damage level over repair-welded and heat affected areas of steel pipes for energy and 

thermal facilities [148,149,150,151]. European Committee of Standardization 

coordinated by the European Pressure Equipment Research Council set a code of 

practice for application and use of small-punch tests as a tool for prediction of creep 

failure and toughness and properties of in-service materials [152]. Similar die-punch 

designs are common in literature for evaluating bi-axial stretching formability of 

miniaturized thin specimens. 

Flat specimens for small punch testing were cut from the T-section of the ECAP 

processed CP Cu billets and in both T- and L-sections of the HE processed rods of the 

Al2024 alloy and CP Ti as indicated in Figure 19. Both sides of the flat specimens were 

grinded and polished to mirror-like surfaces using colloidal silica at the final stage. The 
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final thickness of specimens was 0.4 mm. Small-punch tests were carried out at room 

temperature. Schematic diagram of the test is represented in Figure 20. A flat thin 

specimen is clamped between upper and bottom parts of the die and it is deformed 

using a well-lubricated hemispherical, rigid punch having a diameter of 2.4 mm (Figure 

21). The cross-head speed during small punch testing was 0.5 mm/min. Readings from 

punch load (F) and central deflection (h) were taken during testing.  

 

Figure 20. Schematic drawing of small punch testing. 

 

Figure 21. Experimental set-up for small-punch testing. 
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Figure 22 shows the typical punch load-central deflection curve where all deformation 

stages are marked [149]. Elastic bending is the first stage marked as I. This stage is 

related to the local surface micro-yielding. Plastic flow begins and spreads through 

punch-specimen contact area during plastic bending, stage II. Stage III corresponds to 

membrane (bi-axial) stretching. A flat specimen transforms into dome-shaped cup 

following the punch profile during this stage. It is considered that uniform deformation 

takes place along an annular section of specimen. Once maximum load is reached, 

unstable plastic flow onsets leading to formation of cracks and specimen failure.  

 

Figure 22. Typical punch load-displacement curve for 0.4 mm thickness small-punch 

specimen [149].  

At least 3 specimens for each material condition were deformed up to the appearance 

of plastic instabilities. Uniform true strain was estimated taking into account the initial 

thickness, t0 and the final thickness, tf (Equation 28) over the area deformed in bi-axial 

stretching. This area was found to be placed at 20-60º with respect to the punch axis 

(Figure 20).  

ࢿ ൌ ࢔࢒ ቆ࢚૙ࢌ࢚ቇ 
Equation 28
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3.2.3. Fracture characterization 

An important limitation for fracture testing of most of SPD processed UFG and NS 

samples is their small size. Therefore, a novel technique to evaluate fracture toughness 

of miniaturized samples was successfully developed [127,128,130,153] 

Compact tension specimens for fracture characterization were extracted with two 

different crack plane orientations from the HE processed bars of the Al2024 alloy and 

CP Ti. Nomenclature of specimens depends on the crack propagation direction where 

C-R specimens are mechanized as disc-shaped compact specimens with crack 

propagation direction perpendicular to the extrusion axis. In the R-L specimens, crack 

propagates in the extrusion direction (Figure 23). 

 

Figure 23. Orientation of fracture specimens.   

 

Figure 24. Drawing of fracture specimens: (a) R-L specimen; (b) C-R specimen. 

Specimen thickness is B=3.7 mm. 
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Figure 25. (a) and (b) SEM images of corresponding regions on both R-L specimen 

halves of the HE processed CP Ti; (c) Profiles through a fracture surface element at the 

moment of local failure. 

A sharp fatigue pre-crack was introduced before fracture testing (Figure 26). Initial 

crack length was a0 ~3.4 mm (a0=W/2) (Figure 24). Fracture tests were performed at 

room temperature according to the ASTM standards (Figure 24) [154]. At least 3 

specimens were tested for each material condition and the results were reproducible. 

A fracture surface of broken compact tensile specimens was analyzed using an 

automatic fracture surface analysis system [126,155]. This system generates a digital 

elevation model (DEM) of surface in a stereoscopic image from two images taken in 

scanning electron microscope (SEM) LEO EVO MA 15 by tilting the specimen 5º. The 
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software automatically finds homologue points in SEM images taken at two different 

angles and computes the three-dimensional coordinates of the surface points, thus 

reconstructing the fracture surface (Figure 25). Fracture surfaces profiles can be 

extracted from the DEM in order to automatically evaluate the surface roughness 

parameters and the fractal dimensions. The system has been widely used for 

experimental study of fracture surfaces of diverse metallic materials [127,128,156]. The 

crack profiles can be drawn over the stereoscopic images of both halves in such a way 

that the crack propagation can be reconstructed. 

Crack tip opening displacement (CTOD) and crack opening angle (COA) are the 

measurements of local fracture initiation toughness and total crack growth resistance, 

respectively. CTOD is estimated by separating the crack profiles from each other until 

the coalescence point of the first pore with the fatigue pre-crack is reached (Figure 25 

c).  The CTOD-value is related to the J-integral which characterizes the intensity of 

elastic-plastic crack-tip field and is understood as the difference of potential energy 

between two identically loaded specimens with different crack length. The total crack 

growth resistance (Rtot) is calculated according to Equation 29-Equation 31 where b is 

the ligament length (b = W - a), dN is a dimensionless parameter depending on the 

strain hardening exponent (n), yield stress (σ0) and elastic modulus (E) and Ș is a pre-

factor to calculate J from the area below load versus load-line displacement curve 

[153,154]. The Rtot-value can be calculated using Equation 32 and Equation 33. 

 

Figure 26. Set-up for the fracture testing of a C-R specimen. 
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ࡶ ൌ ૚ࡺࢊ  ࡰࡻ࡯૙࣌
Equation 29

ࡺࢊ ൌ ,࢔ሺࢌ ૙࣌ ⁄ሻࡱ  Equation 30

࢚࢕࢚ࡾ ൎ ሻࢇ∆ሺࢊࡶࢊ  ࣁ࢈
Equation 31

࢚࢕࢚ࡾ ൌ ࣁ܊ܡોܕ  ࡭ࡻ࡯
Equation 32

࢓ ൌ ࢅ࣌ࡿࢀࢁ࣌ ሻሺ૚࢔ሺܘܠ܍ ൅  ࢔࢔ሻ࢔
Equation 33

3.2.4. Nanoindentation 

 Instrumented nanoindentation technique allows to measure hardness and elastic 

modulus of a material from load-displacement curves obtained by indenting small 

volumes of material with a diamond tip and recording force and displacement with 

resolutions of <30 nN and <1 nm, respectively. 

However, an elastoplastic material usually exhibits pile-up or sink-in phenomenon 

around imprint and the measured area by the nanoindenter as a function of the depth 

could be unrealistic. Therefore, it is advisable to image the imprint in order to check the 

validity of the calculated elastoplastic properties from the load-displacement curves. 

The strain hardening ability of the material entails a strong influence on pile-up/sink-in 

behaviour [157] i.e. materials with lower strain hardening coefficient tend to form larger 

pile-up of material around the imprint. 

Another influential factor to take into account is the size effect. As indenter penetrates 

into material, dislocations are generated and advance along grain interior toward grain 

boundaries and dislocation density increases with indenter penetration. In the NS 

materials the proximity between dislocations source (indenter) and sink (boundaries, 

nanosize precipitates, etc.) leads to the appearance of this so-called size effect [158].  

Figure 27 is an example of a load–displacement curve where Pmax is the peak 

indentation load, hmax is the displacement at peak load and hf is the final depth of the 
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contact impression after unloading [159]. A portion of the contact area under load may 

not be plastically deformed since there is some elastic recovery of material after 

unloading. The contact area of imprints for elastoplastic materials is usually estimated 

following Oliver and Pharr’s model where the contact area is measured from the 

measured depth of penetration assuming elastic unloading response [159]. S is the 

contact stiffness which is calculated from the derivate of load with respect to 

displacement at the maximum displacement point (the slope at the beginning of 

unloading curve) and A is the projected area of the elastic contact, calculated from the 

area function of the indenter tip A=f(hc) which relates area with contact depth, hc. For 

non-rigid indenters, the resultant modulus is defined as reduced elastic modulus, Er 

since it includes the contribution of the indenter to the measured stiffness. The Yong’s 

modulus can be obtained from Equation 35, where E and Ԃ are the Young’s modulus 

and the Poison ratio for the specimen and Ei and Ԃi are the same parameters for the 

indenter. As mentioned, this model has some limitations regarding pile-up or sink-in 

effect as contact area is calculated accounting elastic correction but it does not reflect 

the influence of the strain hardening coefficient.  

࢘ࡱ ൌ ࡭√૛࣊√  ܁
Equation 34

૚࢘ࡱ ൌ ሺ૚ െ ࣖ૛ሻࡱ ൅ ሺ૚ െ ࢏ࡱ૛ሻ࢏ࣖ  
Equation 35

ࡴ ൌ ࡭࢞ࢇ࢓ࡼ  
Equation 36
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Figure 27. Schematic representation of load – nanoindenter displacement curve. 

Nanohardness measurements with a Berkovich (pyramidal) indenter were performed at 

room temperature onto longitudinal HE processed specimens (HE3.24-Ti) and (HE-RS-

Ti) before and after bi-axial stretching at 300ºC. Small-punch specimens were firmly 

stuck over a wedge of 30º using adhesive based on cyanocrylate, as bi-axial stretching 

areas are found to be located at 25-60º with respect to the dome axis. At the same 

time, this wedge was placed on a metallic disc that was fixed to the stage (Figure 28).  

 

Figure 28. Experimental set-up for nanoindentation test. 
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Preliminary load-partial unload nanoindentation cycles were performed at maximum 

load of 700 mN in order to estimate the contribution of the frame (instrument plus 

mounting set-up) stiffness to the measured contact stiffness for setting the real stiffness 

since domes are not fully supported by a rigid substrate (specimens are hollow). 

Afterwards, at least 10 nanoindentations for each material condition were performed at 

room temperature and at constant loading with loading, holding and unloading times of 

10 s, 5 s and 5 s respectively and maximum load of 500 mN using high load 

HYSITRON nanoindentation system T1950®.  

3.3. Techniques for microstructural analysis 

3.3.1. Optical microscopy 

Optical microscopy observations were carried out using an Olympus BX-51 light 

microscope equipped with a digital camera. Quantitative characterization of the 

microstructure of the CG materials as well as shape and thickness of the small-punch 

specimens was performed using the ANALYSIS software.  

3.3.2. Transmission electron microscopy 

To study the microstructure in details, transmission electron microscopy (TEM) studies 

were carried out. The samples for TEM study were cut from the L-sections of the ECAP 

processed Cu samples and HE processed Al2024 alloy and CP Ti rods and then 

thinned down to the thickness of ~100 µm.  

The Cu samples were prepared by twin jet electropolishing with electrolyte (25% 

orthophosphoric acid, 25% ethanol, and 50% distilled water) at 20ºC at a voltage of 9-

10 V. TEM study of the Cu specimens was performed using a JEOL-2000 microscope 

operating at 200 kV. Observations were made in both bright and dark field imaging 

modes. Selected area electron diffraction (SAED) patterns were recorded from the 

areas of interest using an aperture of 1 μm nominal diameter. 

The Al2024 specimens were prepared by twin jet electropolishing in TENUPOL 5 using 

1:2 solution of nitric acid in methanol. Electropolishing was performed at -25ºC at 

voltage of 12V. TEM analysis of the Al2024 specimens was carried out in a TECNAI-

20-FEG microscope operated at 200 kV by the research group of Carlos III University of 
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Madrid in frames of the LIMEDU project. Observations were made in both bright and 

dark field imaging modes. Selected area electro diffraction (SAED) patterns were 

recorded from the areas of interest.  

The Ti specimens were prepared by electropolishing in a TENUPOL 5 twin-jet polisher 

using a 1:4 solution of nitric acid in methanol at T~-30ºC. Part of samples was 

characterized by the research group of Carlos III University of Madrid with a TECNAI-

20-FEG microscope operated at 200 kV. Most of the samples were characterized by 

myself using a JEOL-2000 microscope operating at 200 kV. Observations were made in 

both bright and dark field imaging modes. SAED patterns were also recorded from the 

areas of interest.  

3.3.3. Scanning electron microscopy 

Examination of surface relief of the tested samples was performed using SEM EVO MA 

15 SEM operating at 20kV. Surface relief of deformed tensile specimens was analyzed 

in the area of homogeneous plastic deformation and in the necking area. In the case of 

small-punch specimens, inspections were carried out over areas deformed by bi-axial 

stretching.  

Fracture surface characterization was performed after fracture test of miniaturized 

specimens. The SEM images consisting of 1024x768 pixels at 256 gray levels were 

taken in the SEM at 0º and 5º tilting angles. 

3.3.4. Atomic force microscopy 

Atomic force microscopy enables to study the surface morphology of a material with a 

lateral precision depending on the tip radius, which is in the range 2-10 nm. 

A quantitative characterization of surface relief of small-punch specimens of Cu over 

the area deformed by bi-axial stretching was carried out using atomic force microscopy, 

Park XE150 AFM Instrument. Three-dimensional (3D) topography images of the 

scanned areas were generated using WSxM Develop 5.2 software developed by 

Nanotec. At least 10 profiles were analyzed for each material condition in order to 

estimate dimensions of microshear bands. Local volume fraction of shear bands was 
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calculated as a ratio of length of the kinked profile (corresponding to the shear bans) to 

the total length of the profile. 

Imprints from nanoindentation tests were scanned using AFM technique. Dimensions of 

at least 5 imprints were measured for each material condition for a proper 

nanohardness estimation of the small-punch specimens. Photoshop® software was 

used for selecting and measuring areas over a picture.  

3.3.5. Texture measurements 

Texture is the distribution of crystallographic orientations of a polycrystalline sample. A 

sample in which these orientations are fully random is said to have no texture. If the 

crystallographic orientations are not random, but have some preferred orientation, then 

the sample has a weak, moderate or strong texture. Texture measurements were 

performed at the CAI DRX using a Phillips Xpert’PRO diffractometer furnished with a 

PW3050/60 goniometer. Measurements were taken in a range of Psi angles from 0° to 

75° at 3° steps.  

For the Al2024 alloy after HE processing, the pole figures for the planes (111), (200), 

(222) and (311) were plotted. Crystallographic planes in a cubic system are 

schematically presented in Figure 29. For pure Ti after HE processing, the pole figures 

for the planes (0001), (10-10), (10-11), (10-12), (10-13), and (10-20) were plotted. 

Basal plane (0001), prismatic plane (10-10), and pyramidal plane (10-12) in the HCP 

lattice are schematically presented in Figure 30. 

 

Figure 29. Planes and slip directions in the face centered cubic crystal structure of Al. 
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Figure 30. Planes and slip directions in the hexagonal close packed crystal structure of 

α-Ti. 
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4. RESULTS AND DISCUSSIONS 

4.1. Effect of SPD processing on microstructure of the studied materials 

4.1.1. Evolution of microstructure in CP Cu during ECAP processing 

Figure 31 illustrates evolution of microstructure during ECAP processing of CP Cu. The 

as-received and annealed CP Cu shows homogeneous microstructure with the average 

grain size of ~50 µm (Figure 31 a, d). Two ECAP passes lead to formation of a complex 

inhomogeneous microstructure consisting of lamellaes and subgrains having a size of 

250-650 nm. Small areas consisting of ultra-fine grains having size of 150 to 300 nm 

are also observed (Figure 31 b, e). Shear bands formed during ECAP processing have 

a width of 200…300 nm and are inclined at 40…50º to the pressing direction. ECAP 

processing for 12 passes results in formation of a homogeneous UFG microstructure 

consisting mainly of equiaxed ultra-fine grains having a size of 100…250 nm. The 

interior of most of the grains is free of dislocations. It should be noted that these 

microstructural observations are in a very good accordance with the results presented 

earlier in numerous manuscripts focused on the microstructure evolution during ECAP 

processing of pure Cu [30,108,160,161]. 
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Figure 31. Microstructure of CP Cu: (a, d) Optical images of coarse grained Cu; (b, e) 

bright field TEM images and SAED pattern of CP Cu after 2 ECAP passes; (c,f) bright and 

dark field TEM images and SAED pattern of CP Cu after 12 ECAP passes. 

4.1.2. Effect of HE processing on the microstructure and texture of the 

Al2024 alloy. 

HE processing results in formation of complex microstructure consisting of elongated 

grains having a high dislocation density and subgrains (Figure 32 a). The grains have a 

length of 500-750 nm and a width of 200-500 nm. Homogeneous fine dispersion of rod-

like Al20Cu2Mn3 precipitates indentified as T-phase was found (Figure 32 b) as well as 

coarse and elongated particles of Al-Cu-Mg so-called S’-phase. It should be noted that 

similar microstructures were also observed in the Al2024 alloys subjected to low 

deformation strain via cryorolling [15]. 
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HE processing introduces high dislocation density. Dislocations interaction promotes 

the formation of dislocation tangles and formation of subgrains with increasing 

deformation ratio. 

Figure 33 shows pole figures for the transversal section of the HE processed Al2024 

alloy. It is clearly seen that HE processing promotes the development of a very strong 

fiber texture with the <111> direction parallel to the extrusion axis. Similar textures were 

reported for the extruded Al alloys in [162,163].         

 

Figure 32. Bright field TEM images of: (a) microstructure of HE Al2024 alloy; (b) higher 

magnification of T-phase (courtesy of Carlos III University). 

 

Figure 33. Pole figures for the transversal section of hydrostatically extruded Al2024 

alloy. 
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4.1.3. Evolution of microstructure in CP Ti during HE processing 

Figure 34 shows representative optical micrograph of longitudinal section of the as-

received CP Titanium samples. It is seen that the microstructure of the CG CP Ti 

consists of homogeneous equiaxed coarse grains with an average size of 42 µm 

(Figure 34 a). Detailed examination of the microstructure of the processed samples 

showed that hydrostatic extrusion leads to the microstructure refinement and enables 

the formation of elongated grains/subgrains in form of lamellas aligned along extrusion 

direction (Figure 34 b, Figure 35). Lamellae width decreases as cumulated strain 

increases from 800 nm after ε=0.70 (Figure 34 b) to values below 100 nm after ε=3.24. 

After ε=3.24, microstructure consists of lamellae having a length of up to 1 µm and a 

width ranging from 50 to 150 nm (Figure 35 a, b). A high density of dislocations is 

observed in the lamellae interior and the formation of equi-axed grains/subgrains 

having a size of 100…200 nm is also seen (Figure 35). They present straight 

boundaries intersecting at high angles with neighbour lamellae. The grain boundaries 

are ill-defined and SAED patterns are spread indicating non-equilibrium character of 

grain boundaries [70,164]. The fraction of equiaxed grains increases with increasing 

cumulative strain to 3.7 (Figure 35 c, d). Combination of hydrostatic extrusion with 

rotary swaging with cumulative strain of 3.67 leads to very similar microstructure 

(Figure 35 e, f).  

 

Figure 34.  (a) Optical microscopy images of microstructure of the as-received CP Ti; (b) 

Bright field TEM images of CP Ti after HE to up to ε=0.70 (HE0.7-Ti). Courtesy of Carlos III 

University. 
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Figure 35. Bright field TEM images and SAED pattern of CP Ti subjected to SPD to up to 

(a, b) ε=3.24 (HE3.24-Ti); (c, d) ε≈3.7 (HE3.7-Ti); (e, f) after hydrostatic extrusion and 

additional rotary swaging ε≈3.67 (HE-RS-Ti). 

The formation of these microstructures can be related explicitly to twinning and 

dislocation glide operating in the material during hydrostatic extrusion/rotary swaging. 

Despite hydrostatic extrusion results in significant adiabatic heating of metallic materials 

[145], the temperature of adiabatic heating in our hydrostatically extruded pure Ti 
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estimated using (Equation 27) is well below the recrystallization temperatures of 620-

760oC (Table 4) reported for severely deformed pure Ti [165,166]. Moreover, it should 

be noted that the samples during hydrostatic extrusion are heated only in the local 

deformed area just less 1 s followed by immediate cooling down to room temperature, 

that is not sufficient neither for recrystallization nor for significant recovery of the 

developed microstructure [165,166]. It should be noted that HE processing was more 

efficient for microstructure refinement in CP Ti than in the Al2024 alloy. This can be 

related to the higher melting point of CP Ti compared to that of the Al2024 alloy [59]. 

Figure 36 illustrates pole figures for the transversal section of the CG and HE 

processed Ti bars at various cumulative strains. The as-received CG Ti shows a weak 

texture similar to that developed in the hot rolled Ti (Figure 36 a) [64,167]. It is seen that 

α-fibre texture is developed during hydrostatic extrusion with the <10-10> direction and 

the basal plane (0001) parallel to the rod axis. Such fibre texture is typical for CP Ti 

subjected to extrusion, drawing or swaging [168]. The intensity of the texture 

component tends to increase dramatically with increasing cumulative strain. The 

maximum intensity on the (10-10) pole figure increases from ~4 for CP Ti after 

deformation with cumulative true strain of 0.7 up to ~18 in the rod after deformation with 

cumulative true strain of 3.24. A saturation of crystallographic texture after deformation 

to this strain is observed. A significant anisotropy of mechanical properties and 

deformation behaviour in longitudinal and transverse directions is expected in the 

material due to such strong crystallographic fibre texture.  
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Figure 36. Pole figures for the transversal section of the as-received and the HE 

processed CP Ti: (a) As received Ti; (b) HE Ti to ε= 0.7 (HE0.7-Ti); (c) HE Ti to ε=1.30 

(HE1.30-Ti); (d) HE Ti to ε=3.24 (HE3.24-Ti). 
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4.2. Uni-axial behavior of studied materials 

This section focuses on the microstructure and texture effect on uni-axial tensile 

behaviour of the studied materials. 

4.2.1. Grain size effect on tensile mechanical properties of CP Cu 

Typical engineering stress - engineering strain curves obtained from tensile tests of the 

CG Cu and ECAP-processed Cu are represented in Figure 37. Data on mechanical 

properties determined from tensile tests (0.2% proof strength, σ0.2, ultimate tensile 

strength, σUTS, strain hardening coefficient, n, uniform elongation, εu and elongation to 

failure εf) are listed in Table 5. It is clearly seen that grain refinement leads to increase 

of mechanical strength properties following the Hall-Petch law [62,63], whereas both 

uniform elongation and elongation to failure dramatically drop with decreasing grain 

size (Table 5). The strain hardening exponent drops in CP Cu after ECAP processing 

due to lower ability of the processed material to accumulate dislocations during plastic 

deformation (Table 5). It should be noted that similar effect of ECAP processing on 

mechanical properties and deformation behavior of pure Cu was reported earlier in 

[30,160,161] 

 

Figure 37. Engineering stress-engineering strain curves for CG Cu and CP Cu after 2 and 

12 ECAP passes. 
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Table 5. Mechanical properties of CG Cu, 2P and 12P Cu. 

 σ0.2 (MPa) σUTS (MPa) n εu εf 

CG Cu 61±2 206±8 0.40 0.437±0.031 0.465±0.049 

2P Cu 363±1 400±1 0.05 0.012±0.001 0.099±0.001 

12P Cu 359±3 410±1 0.03 0.026±0.001 0.119±0.007 

 

To analyze deformation behaviour of the CG Cu during tensile testing, a surface relief 

developed in the area of homogeneous plastic flow and in the necking area of the 

tested specimens was analyzed in SEM (Figure 38). Slip lines verify that dislocation slip 

is the main deformation mechanisms in the CG CP Cu (Figure 38 a). Necking does not 

affect significantly the morphology of surface relief of the CG CP Cu. No evidences of 

localization of plastic deformation were found on homogeneously deformed areas of the 

CP Cu after 2 and 12 ECAP passes. However, some localization of plastic flow in form 

of microshear bands is observed in the necking area of ECAP processed Cu (marked 

by white arrows in Figure 38 b, c). 

 

Figure 38. SEM images of surface relief in necking area of tensile specimens: (a) CG Cu; 

(b) 2P Cu; (c) 12P Cu. 
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4.2.2. Mechanical properties of the Al2024 alloy after HE processing 

Figure 39 shows engineering stress – engineering strain curves for the solution treated 

and naturally aged Al2024 alloy and the HE processed Al2024 alloy. The grain 

refinement leads to increase mechanical strength significantly at the expenses of the 

reduction of uniform elongation and elongation to failure. Mechanical properties 

extracted from tensile testing are listed below (Table 6). Anisotropy of tensile 

mechanical behaviour in the extrusion direction and transverse direction of the Al2024 

alloy is clearly observed which is related to the microstructure and crystallographic 

texture developed during HE processing: grains elongated along the extrusion direction 

and the second phase S’-precipitates aligned along the extrusion direction as well as 

the fibre texture where <111> direction is parallel to extrusion direction. Ductility in both 

testing directions is limited, less than 6% (Table 6).  

 

Figure 39. Engineering stress-engineering strain curves for the CG solution treated 

Al2024 alloy and longitudinal (L) and transversal (T) specimens of HE processed Al2024 

alloy.  
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Table 6. Mechanical properties of CG and HE processed Al2024 alloy from uni-axial 

tensile testing on transversal (T) and longitudinal (L) planes.  

σ
y
 (MPa) σ

0.2
 (MPa) σ

UTS
 (MPa) ε

u
 (%) ε

f
 (%) 

CG Al2024 238 265 440 18 22.3 

HE Al2024-T 390 450 550 4.4 5.3 

HE Al2024-L 490 570 640 4.1 4.4 

4.2.3. Grain size and texture effect on tensile mechanical behavior of the 

CP Ti 

As a result of experimental data from microstructure characterization of CP Ti, 

specimens for tensile testing were mechanized from the as-received and the HE 

processed bars to cumulative true strain of 3.24 (material condition called as HE3.24-Ti) 

as additional straining does not affect microstructure formation. At this material 

condition, the finest microstructure was obtained and the maximum intensity on the (10-

10) pole figures was reached. Hereafter, this condition will be presented as 

hydrostatically extruded material. 

Figure 40 illustrates the engineering stress - engineering strain curves from tensile 

testing at room temperature for longitudinal and transversal sections of the as-received 

and hydrostatically extruded Ti bars. Mechanical properties obtained from tensile 

testing are listed below (Table 7). Despite the as-received CG Ti specimens show a 

slight anisotropy of mechanical properties, pronounced anisotropy of mechanical 

behaviour is observed after hydrostatic extrusion. It is in good agreement with the 

literature data where strong mechanical anisotropy was observed for Ti billets 

processed via different SPD routes [16,169]. The T-specimens of the CG specimens 

tend to show somewhat higher mechanical strength and tensile ductility compared to 

the L-specimens due to the weak crystallographic texture (Figure 40). No significant 

effect of the sample orientation on the work hardening behaviour is observed (Figure 

40, Table 7). The mechanical strength of CP Ti dramatically increases after hydrostatic 

extrusion due to grain refinement whereas both uniform elongation and elongation to 

failure show an opposite trend. After HE processing, the L-specimens display very high 

0.2% proof strength of 915 MPa but low work hardening capacity, so the ultimate 

tensile strength of the material is 970 MPa. The T-specimens show much lower 0.2% 
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proof strength of 562 MPa, which is much higher compared to that of the as-received 

material though (Table 7). However, very high work hardening capacity of the T-

specimens from hydrostatically extruded material leads to very high ultimate tensile 

strength of 995 MPa which slightly exceeds that of the L-specimens (Table 7). 

 

Figure 40. Engineering stress-engineering strain curves for longitudinal (L) and 

transversal (T) specimens of the as-received CP Ti and hydrostatically extruded CP Ti.  

Table 7. Mechanical properties of the as-received and HE processed bars of CP Ti 

from tensile testing on transversal (T) and longitudinal (L) planes.  

 σy (MPa) σ0.2 (MPa) σUTS (MPa) εu (%) εf (%) 

AR-T 390±17 445±13 537±12 4.43±0.65 9.82±0.75 

AR-L 345±7 395±7 494±1 4.95±0.63 8.97±0.67 

HE3.24-T 420±29 495±35 995±7 2.65±0.07 5.95±0.07 

HE3.24-L 573±30 750±70 970±17 0.87±0.16 3.06±0.33 
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This anisotropy in mechanical properties of the extruded CP Ti may be rationalized 

based on the crystallographic macrotexture developed in the microstructure during 

processing. It is well known that dislocation glide and twinning are the main 

mechanisms operating during plastic deformation of CP Ti [170,171]. The main 

dislocation slip modes in CP Ti at room temperature are the prismatic <11-20>{10-10} 

slip system and the basal <11-20>{0001} slip system (Figure 30) having the lowest 

critical resolved shear stresses [170,172]. Additionally, dislocation glide on pyramidal 

systems <11-20>{10-11} and <11-23>{10-11} can be also activated. The operating 

systems are generally determined by the Von Misses criterion, the Schmid factors and 

the critical resolved shear stress. In the L-specimens, basal planes are suppressed 

since they are parallel to the tensile axis and two of the prismatic slip planes are 

suppressed since they are perpendicular to the tensile axis. The remaining four slip 

planes are inclined at 60º to the tensile axis and can be active. So, the high yield 

strength of the material can be related to the limited number of prismatic slip systems 

available. In the T-specimens, the c-axis of the HCP lattice of individual grains is 

randomly inclined with respect to the tensile axis. Thus, the microstructure will be 

formed by a combination of soft and hard grains, depending on the individual 

orientations. The grains that are most favourably orientated for prismatic and basal slip 

can be easily deformed at lower values of applied stress (soft grains). Localization of 

plastic slip within these grains results in local strain hardening, and, in turn, in an 

increase of the flow stress, and in the spread of plastic slip to grains that are less 

favourably oriented for prismatic and basal slip. This scenario leads to overall high work 

hardening capacity of the T-specimens. It should be also noted that a higher work 

hardening ability of these T-specimens delays macro-localization of plastic flow 

resulting in higher work uniform elongation (~2.7%) and higher elongation to failure 

(~6%) compared to those for the L-specimens (~0.9% and ~3.1%) according to the 

well-known Considère criterion [66]. 
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4.3. Bi-axial stretching and formability of studied materials 

This section focuses on bi-axial deformation behaviour and formability of the studied 

metallic materials in the coarse-grained and SPD processed conditions. The effect of 

microstructure and texture on bi-axial deformation behaviour and formability is 

analyzed. 

4.3.1. Grain size effect on formability of pure copper.  

The appearance of specimens of CG CP Cu and ECAP processed CP Cu after small 

punch testing is demonstrated on Figure 41. It is clearly seen that small punch testing 

led to formation of dome-shaped cups without specimen failure and the height of domes 

is not significantly affected by the processing condition. 

 

Figure 41. Small punch specimens after testing: left – CG Cu, centre – 2P Cu, right – 12P 

Cu.  

Figure 42 shows load – central deflection curves for all material’s conditions. Typical 

stages of formability curves can be easily identified in all curves and are marked for the 

2P Cu on Figure 42 (see Section 3.2.2). The results of small punch testing (maximum 

load Fmax, maximum central deflection at maximum load hmax, and uniform strain ε) are 

listed in Table 8. It is seen that the maximum values of load recorded for the 2P Cu and 

12P Cu are higher compared to that for the CG Cu. The highest value of the maximum 

central deflection in stable flow (near the maximum load) is shown by 2P Cu followed 

by CG Cu and 12P Cu (Table 8). 
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Figure 42. Punch load-central deflection curves for CG Cu and Cu subjected to 2 and 12 

ECAP passes. 

Table 8. Small punch testing results of CP Cu. 

Cu Fmax (N) hmax (mm) ε=ln(t0/t) 

CG 557±18 1.48±0.10 0.55±0.04 

2P 692±24 1.45±0.10 0.68±0.02 

12P 712±39 1.40±0.04 0.48±0.01 

 

Equivalent strain was estimated over areas deformed under bi-axial stretching using 

Equation 28. As it was pointed in experimental procedures (see Section 3.2.2), bi-axial 

stretching occurs in an annular section of the disc in tension. The areas deformed 

under bi-axial stretching were located at φ = 20 to 45 deg with respect to the vertical 

axis of the dome as illustrated in Figure 20. This area is characterized by constant 

reduction of thickness following the profile of the punch. The estimated values of true 

equivalent strain are 0.57, 0.66, and 0.47 for CG, 2P, and 12P Cu, respectively. As 
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seen, these values are in a good correlation with the data on maximum central 

deflection (Table 8). 

SEM observations over surface relief of dome-shaped cups might reveal key features to 

visualize deformation mechanisms under bi-axial loading. SEM inspections of surface 

relief on both top of domes and areas deformed by bi-axial stretching were performed 

(Figure 43 and Figure 44). It can be asserted that CG Cu is bi-axially deformed by 

dislocation slip the surface relief is similar to that developed during uni-axial tensile 

testing (Figure 38). Surface relief morphology of  the 2P and 12P specimens is 

somewhat similar to that observed in the necking area of tensile specimens though it 

shows much higher roughness compared to that of the surface relief in the necking 

area of the tensile specimens. Profuse microshear banding is observed over the 

surface of 2P Cu; some small surface areas free of microshear bands are also present. 

Quantitative analysis of the surface area of 280 x 180 µm2 showed that the areas free 

of microshear bands have a diameter up to 30 µm and their surface fraction is nearly 

35%. 
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Figure 43. SEM images of small punch specimens: (a) a view of CG Cu; (b) surface relief 

on the top of the dome in CG Cu; (c) a view of 2P Cu; (d) surface relief on the top of the 

dome in 2P Cu; (e) a view of 12P Cu; (f) surface relief on the top of the dome in 12P Cu. 
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Figure 44. SEM images of surface relief of the small punch specimens in the area of bi-

axial stretching for: (a) CG Cu; (b) 2P Cu; (c) 12P Cu. 

The very inhomogeneous character of surface relief after small punch testing was 

confirmed by results of the AFM analysis. Figure 45 shows 3D AFM topography images 

in the area of bi-axial deformation of the 2P and 12P Cu specimens after small punch 

testing. The results of the quantitative analyses of surface profiles through 3D AFM 

topography images are presented in Table 9. Surface relief of 2P Cu is characterized 

by a high density of step-like micro shear bands having average length in the range of 

7-25 µm and a width in the range 30-810 nm (Table 9). Their volume fraction is about 

34%. The surface relief of the 12P Cu specimen is inhomogeneous, as well (Table 9). 

The morphology and dimensions of the microshear bands are similar to those observed 
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in the 2P Cu specimen, though the 12P Cu has a lower volume fraction of microshear 

bands, 25%. 

 

Figure 45. Typical 3D AFM topography images in bi-axial stretching areas for (a) 2P Cu 

and (b) 12P Cu.  
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Figure 46. 2D AFM topography images and profiles for (a) 2P Cu; (b) 12P Cu. 

Table 9. Dimensions, local surface fraction of micro shear bands, and surface 

fraction of areas containing micro shear bands on surface relief for the as-ECAP 

processed CP Cu. 

Number 
of ECAP 
passes 

Dimensions of shear bands 
Average local 

volume fraction 
of shear bands 

(%) 

Surface fraction of 
areas containing 

shear bands 

(%) 

Length 

(µm) 

Width 

(nm) 

Step height 

(nm) 

2 7-25 30-810 50-280 34 96 

12 4-23 100-900 50-200 25 65 

 

Numerous publications have documented the appearance of shear bands in the UFG 

and NS materials [27,106,107,112,173,174,175,176,177,178]. It should be note that the 

contribution of this profuse microshear bands activity into plastic flow can be very 

significant [175,179]. For example, the contribution of microshear banding during uni-
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axial tensile deformation of the UFG AA6082 provided 9% out of 20% of uniform 

elongation, i.e. almost half of the total plastic deformation [179]. In the case of bi-axial 

stretching, the calculation of contribution of microshear banding into uniform elongation 

is a complex task and it has not been carried out in frames of this work. However, the 

qualitative analysis of the experimental results presented above clearly shows higher 

contribution of microshear banding into plastic deformation of the 2P Cu, thus, leading 

to its higher formability compared to that of the 12P Cu.  

What could be the reasons for such extensive microshear banding during bi-axial 

stretching of ECAP processed Cu at room temperature? The first most obvious reason 

could be related to the microstructure inhomogeneities that allow stress redistribution at 

the micro-scale and localization of plastic flow in form of microshear bands. Indeed, 2P 

Cu specimens show higher activity of microshear bands due to more inhomogeneous 

microstructure compared to that of 12P Cu. The second mechanism might be linked to 

the presence of microshear bands inserted in the microstructure during ECAP 

processing. Bi-axial stretching can trigger their further growth. This assumption is also 

well supported by a good correlation between width of microshear bands observed in 

the microstructure of 2P Cu and those observed on surface relief of the 2P Cu small 

punch specimens. A body of research has shown that cooperative grain boundary 

sliding might also trigger formation of microshear banding in the UFG metallic materials 

[144,178]. Clear evidences of grain boundary sliding were found on the surface relief of 

specimens after small punch testing so this mechanism of microshear banding 

formation might play an important role. 

It was reported that nanovoids and second phase precipitates often act as nucleation 

sites for microshear bands [106]. However these mechanisms can be ruled out since 

these microstructural features are not present in the ECAP processed CP Cu.  

An earlier study on uni-axial tensile deformation of nanocrystalline pure copper 

demonstrated near-perfect elastoplasticity of the material at room temperature [113]. 

Nanocrystalline Cu deformed uniformly up to high strains without any work hardening 

and necking. This was explained by grain boundary-mediated mechanisms. Our results 

reveal that UFG pure copper undergoes work hardening during uni-axial tensile 

deformation (Figure 37, Table 5). Work hardening is also seen in the load-central 

deflection curves during plastic bending and bi-axial stretching stages (Figure 42). Flow 
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stress is a function of load and some other parameters related to specimen and die 

geometry. Since all these parameters are common for all tested material conditions, 

flow stress should be linearly proportional to the load applied. In spite of grain boundary 

sliding does provide some slight contribution to the total plastic deformation, the 

predominance of grain boundary-mediated mechanisms during bi-axial stretching of the 

as-ECAP Cu can be ruled out as well.  

4.3.2. The effect of grain size and dispersoids on formability of the Al2024 

alloy 

Figure 47 shows typical punch load – central deflection curves of the longitudinal and 

transversal specimens of the extruded Al2024 alloy and for its coarse grained 

counterpart. The results of analysis of these tests are summarized in Table 10. It is 

clearly seen that the hydrostatic extrusion leads to significant reduction of maximum 

central deflection and true strain induced in the area of bi-axial stretching. In the 

hydrostatically extruded material, and effect of specimen orientation on both 

parameters can be noted. The T-specimens demonstrate somewhat higher load (515.7 

N), higher maximum central deflection (0.41 mm) and true strain (0.04) compared to 

those of the L-specimens (398 N), (0.40 mm) and (0.02), respectively.  

It should be noted that the coarse-grained Al2024 alloy shows much lower values of the 

maximum central deflection compared to that reported for this material in [180] (see 

Figure 47 and Figure 48). The same tendency can be noted for the hydrostatically 

extruded materials: the hmax-values are lower compared to those reported for the ECAP 

processed Al2024 alloy in [180]. The load-displacement curves from our tests (Figure 

47) and for the Al2024 alloy studied in [180] show that our material fails already at the 

stage of plastic bending not even having reached the stage of bi-axial stretching. 

Analysis of the surface relief of our specimens after small punch testing (Figure 49) 

shows that coarse dispersoids having a size of 10 µm act as nucleation sites for 

formation of micro-cracks: the cracks are easily formed at these dispersoids and grow 

into the matrix, thus, leading to specimen failure. Taking into account that hydrostatic 

extrusion resulted in cracking of coarse dispersoids as well as T-particles and formation 

of voids in the material, it can be suggested that no any further manipulation with the 

microstructure of the supplied Al2024 alloy after hydrostatic extrusion can lead to 

improvement of its formability. 
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Figure 47. Load – central deflection curves of longitudinal (L) and transversal (T) 

specimens for coarse grained and hydrostatic extruded Al2024 alloy.  

 

Figure 48. Results of small punch test for L-specimens machined along the longitudinal 

direction of over-aged aluminum 2024 alloy subjected to one, three and six ECAP passes 

at 150ºC. The curves are reproduced from [180]. 



Results and Discussions 

E.C. Moreno-Valle 

Table 10. Results of small punch testing of coarse grained (CG) Al2024 alloy and the 

HE processed Al2024 alloy in longitudinal (L) and transversal (T) sections. 

Sample Fmax (N) hmax (mm) ε 

CG 617±5 0.74±0.03 0.14 

HE-T 515±7 0.41±0.03 0.04 

HE-L 398±32 0.35±0.03 0.02 

CG alloy tested in [180] ~590 ~1.05 n/a 

 

Figure 49. SEM images of the surface relief for the small punch Al2024 specimens: (a) 

general view of the CG specimen; (b) crack at higher magnification for the CG condition; 

(c) general view of the HE-T specimen; (d) crack at higher magnification for the HE-T 

condition; (e) general view of the HE-L specimen; (f) crack at higher magnification for the 

HE-L condition.  
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Some anisotropy of bi-axial deformation behaviour in the HE processed Al2024 alloy 

can be related mainly to the microstructure developed in the material during hydrostatic 

extrusion, namely, (1) T-phase particles elongated along the extrusion direction and (2) 

grains/subgrains elongated along the extrusion direction. The micro-cracks formed (or 

already present) during small punch testing can easily grow along the grain boundaries 

in the L-specimens or, in other words, in the direction perpendicular to the punch axis 

along the extrusion direction forming long macro-cracks which lead to the material 

failure. It can be generally concluded that the formability of the studied Al2024 alloy is 

limited due to the presence of coarse dispersoids. No further manipulation of 

microstructure can lead an increase of formability unless the coarse dispersoids are 

dissolved.  

4.3.3. Grain size and texture effect on formability of CP Ti 

The appearance of the CG and hydrostatically extruded Ti specimens after small-punch 

testing is demonstrated on Figure 50. A visual inspection reveals that the dome height 

of the coarse-grained specimens is remarkably higher compared to that of the 

hydrostatically extruded material.  

 

Figure 50. Appearance of Ti specimens after small-punch testing: (a) the as-received L-

specimen; (b) the HE processed L-specimen; (c) the HE processed T-specimen. 

The load-central deflection curves from small punch testing of the as-received and 

extruded CP Ti are presented on Figure 51. The typical stages of formability behaviour 

are marked on the curve for the as-received specimens (see Section 3.2.2). The results 

of small punch testing are listed in Table 11. No anisotropy of the bi-axial deformation 

behavior is observed in the as-received CG material, it is seen that the load-central 

deflection curves for the L- and T- small punch specimens nearly coincide and have the 
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same maximum central deflection of ~1.3 mm (Figure 51) and true uniform strain of 

0.35-0.4 induced in the specimens during small punch testing. It is also seen that 

hydrostatic extrusion leads to significant increase of the load required for deformation of 

small punch specimens to the same central deflection as well as to significant reduction 

of the maximum central deflection leading to the lower values of the true strain which 

can be induced in the specimens during small punch testing (Table 11). The HE 

processed material shows anisotropy of bi-axial deformation behaviour. First, the load-

central deflection curves tend to show somewhat higher load required for bi-axial 

deformation of the L-specimens in the bi-axial stretching regime (Figure 51). Second, 

the L-specimens display lower maximum central deflection (~0.6 mm) and lower value 

of true uniform strain induced into sample during small punch testing (0.12) compared 

to those for the T-specimens (~0.8 and 0.06 mm, respectively) (Table 11). 

 

Figure 51. Punch load-central deflection curves for transversal (T) and longitudinal (L) 

sections of the as-received and the HE processed CP Ti. 

Table 11. Results of small punch testing for transversal (T) and longitudinal (L) 

specimens of the as-received and the HE processed CP Ti. 
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Sample Fmax (N) hmax (mm) ε 

AR-T 1243±47 1.3±0.05 0.4±0.01 

AR-L 1213±23 1.27±0.05 0.35±0.02 

HE3.24-T 1163±34 0.79±0.03 0.12±0.03 

HE3.24-L 910±59 0.60±0.02 0.05±0.008 

 

 

Figure 52. SEM images of surface relief on the coarse-grained CP Ti after small punch 

testing: (a) general view of the dome and (b) area at φ~30º of the T-specimen; (c) general 

view of the dome and (d) area at φ~30º of the L-specimen. 
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Figure 53. SEM images of surface relief on the hydrostatically extruded CP Ti after small 

punch testing (a) general view of the dome and (b) area at φ~30º of the T-specimen; (c) 

general view of the dome and (d) area at φ~30º of the L-specimen. 

 

Figure 54. SEM image of a primary crack on L-specimen at higher magnification. 

Surface analysis of the small punch specimens tested up to cracking showed a 

significant anisotropy in failure behaviour of the L- and T-specimens after hydrostatic 

extrusion. This anisotropy is not observed in the coarse-grained specimens (Figure 52) 

where dislocation and twinning activity are the mean deformation mechanisms in both 

planes of the CG Ti bars. The hydrostatically extruded T-specimens showed formation 
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of cracks at φ~60o (Figure 20) which are concentric to the dome (Figure 53 a). These 

cracks were formed in the symmetric manner with respect to the dome axis. Some 

evidence of microshear banding was observed in the area of bi-axial stretching and the 

length of microshear bands was in the range of 5-15 μm (Figure 53 b). Two types of 

cracks were observed in the L-specimens: primary long cracks were formed along the 

extrusion direction at φ~50...60o and their further growth to the length of 200...400 μm 

was accompanied by formation of secondary cracks which were perpendicular to the 

extrusion direction (Figure 53 c, d and Figure 54). The anisotropy in bi-axial 

deformation and failure behaviour of the hydrostatically extruded material can be 

related to (1) the lamellar-type microstructure and (2) to the very strong crystallographic 

fibre texture developed during hydrostatic extrusion. Indeed, in the T-specimens, the c-

axis and two prismatic planes of the HCP lattice are perpendicular and all basal planes 

are parallel to the punch axis, thus, resulting in homogeneous bi-axial plastic 

deformation in the area of bi-axial stretching followed by failure which is symmetrical 

with respect to the dome axis (Figure 55 a). In the L-specimens, the c-axis, basal 

planes, and prismatic planes are randomly inclined with respect to the punch axis 

(Figure 55 b). Therefore, combinations of grains with various crystallographic 

orientations can be present in the microstructure of the L-specimens. Some 

combinations of soft grains and hard grains can lead to formation of the quasi-cleavage 

facets [181] which, in turn, can easily lead to their quick growth along lamellae 

boundaries since SPD processed Ti tends to show a low crack growth resistance [16]. 

 

Figure 55. Schematic drawing of crystallographic texture of extruded CP Ti during small-

punch testing (a) of T-specimen; (b) of L- specimen. 
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4.3.4. Temperature effects on formability of CP Ti 

As it is seen from the previous section, the hydrostatically extruded Ti samples show 

very low formability compared to the CG material. How can one increase its formability? 

In [182], the SPD processed pure Ti rods were subjected to annealing treatments at 

350ºC for 6 h leading to recovery and change of grain boundary structure. The UFG 

pure Ti after this annealing treatment showed higher ductility and enhanced fatigue life 

without any loss of its strength. Moreover, it was demonstrated that in biaxial 

deformation, the annealed cryo-rolled pure aluminium showed relatively good 

elongations [183]. Therefore, the first approach could be to study the possibility of 

improvement of materials formability applying annealing treatments. 

It is well known that ductility/formability of metallic materials including Ti tends to 

increase with increasing temperature [184]. Therefore, the bi-axial stretching at 

elevated temperatures of the UFG pure Ti could be another strategy to increase its 

formability. Other deformation mechanisms such as enhanced diffusion and dislocation 

climb can be activated at elevated temperatures, thus, providing higher formability. 

However, one should be aware of the fact that UFG metals and alloys can easily 

undergo deformation induced grain growth and/or dynamic recrystallization during 

metalforming operations at elevated temperatures that can lead to significant decrease 

of their final mechanical strength. 

4.3.4.1. Annealing temperature effect  

To choose the correct temperature for annealing treatments, the HE processed 

samples (HE3.24-Ti) were subjected to annealing at 300ºC, 350ºC and 400ºC for 1 and 5 

h. the selection of this temperature range is rationalized based on the earlier work [182] 

as well as the fact that the annealing temperatures should be much less than 

recrystallization temperature in the SPD processed pure Ti which was reported to be in 

the range of 620-760ºC [165,166].  

Figure 56 illustrates the effect of annealing treatments on the microhardness of the 

specimens. It is clearly seen that the HE processed material retains its microhardness 

after annealing at 300ºC and 350ºC. However, it was observed the slight detriment of 

microhardness after annealing at 400ºC. Thus, the temperature of 350ºC appears as 

the most appropriate annealing temperature for this work. The TEM analysis of the 
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specimens annealed at 350ºC for 5 h has demonstrated that the annealing led to 

decrease of dislocation density in the grain/lamellae interior due to the climb of 

statistically stored dislocations and their annihilation or their absorption by grain 

boundaries acting as dislocations sinks (Figure 57). The grain boundaries became well 

defined as annealing leads to relaxation of non-equilibrium grain boundaries and to 

decrease of their excess energy (Figure 57) [70]. 

 

Figure 56. Microhardness values for the non-annealed and annealed (at different 

conditions) L-specimens of the HE processed CP Ti.  
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Figure 57. Bright field TEM images and SAED patterns of (a, b) hydrostatically extruded 

Ti and (c, d) hydrostatically extruded and annealed Ti at 350ºC for 5h. 

The uni-axial tensile behaviour of the annealed specimens was carefully analyzed. 

Engineering stress – engineering strain curves show that tensile strength and ductility 

properties are not significantly affected by this annealing treatment (Figure 58). 

However, a slight enhancement of work hardening and ductility for L-specimens is 

promoted and, in turn, it leads to a slight increase of the ultimate tensile strength.   



Formability of ultra-fine grained metallic materials 

 

93 

 

Figure 58. Engineering stress – strain curves for T- and L-specimens after hydrostatic 

extrusion and annealing treatments. 

The effect of annealing treatments on the appearance of the specimens after small 

punch testing is illustrated in Figure 59. Typical load – central deflection curves 

obtained from small punch testing of the annealed specimens are presented in Figure 

60. It is seen that the annealing leads to some decrease of load during small punch 

testing (Figure 60, Table 12). No any improvement of maximum central deflection and 
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true strain induced into specimens during bi-axial stretching is observed in the T-

specimens (Figure 60), whereas the L-specimens demonstrate an increase of these 

parameters (Figure 60), though the ability of the material to undergo bi-axial stretching 

in the L-plane still remains low compared to that on the T-plane. This small increase 

can be related to the higher ability of the annealed HE material to accumulate 

dislocations in the grain interior. Thus, it can be outlined that application of annealing 

treatments is not an effective way to improve formability of the UFB CP Ti produced via 

HE processing.  

 

Figure 59. Appearance of the small-punch specimens (a) from the T- section; (b) from L-

section of the CP Ti bars. From left to right: hydrostatically extruded specimen, 

hydrostatically extruded and annealed specimen at 300ºC for 5 h, at 350ºC for 1 h, at 

350ºC for 5 h and the as-received CG condition. 
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Figure 60. Load – central deflection curves for L- and T-specimens after hydrostatic 

extrusion and annealing treatments. 
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Table 12. Results of small punch testing for transversal (T) and longitudinal (L) of 

hydrostatically extruded and annealed CP Ti. 

Fmax (N) hmax (mm) ε 

HE3.24 

T 1163±34 0.79±0.03 0.12 

L 910±59 0.60±0.02 0.05 

HE3.24 & annealing at 300ºC for 5 h 
T 1120±10 0.78±0.02 0.12 

L 945±35 0.63±0.01 0.07 

HE3.24 & annealing at 350ºC for 1 h 
T 1073±12 0.76±0.06 0.1 

L 1030±26 0.67±0.01 0.07 

HE3.24 & annealing at 350ºC for 5 h 
T 1070±17 0.76±0.06 0.08 

L 1080±28 0.67±0.07 0.07 

 

Analysis of the surface relief of the small-punch specimens reveals that there is no 

significant effect of annealing treatments on the surface relief of hydrostatically 

extruded Ti (Figure 61). Transversal specimens deform and fracture in a symmetric 

way, while in the L-specimens, the primary and secondary cracks are found parallel and 

perpendicular to extrusion direction, respectively. 

 



Formability of ultra-fine grained metallic materials 

 

97 

 

Figure 61. SEM images of the surface relief of the HE processed specimens subjected to 

annealing at 350ºC for 5 h (a) view of dome of the T-specimen; (b) area at φ~30º of T-

specimen; (c) view of the dome of the L-specimen and (d) area at φ~30º of the L-

specimen. 

4.3.4.2. Testing temperature effect 

As well known, the strength of metallic materials tends to decrease with increasing 

temperature whereas their ductility increases. The same trend is usually demonstrated 

by the UFG and NS metallic materials. Therefore, the UFG metallic materials tested at 

elevated temperatures should demonstrate higher formability. However, the UFG 

metallic materials usually show a low thermostability. Grain growth or recrystallization 

during plastic deformation at elevated temperatures can significantly degrade their 

mechanical strength. Therefore, the testing temperature should be carefully chosen to 

prevent any grain growth and should be well below recrystallization temperature. 

Based on the results of the annealing treatments (see previous Section 4.3.4.1) 300ºC 

was chosen as the temperature for small punch testing. Figure 62 and Figure 63 

illustrate images of the specimens after small punch testing at 300ºC compared to 

those tested at room temperature. The load – central deflection curves for AR-Ti, 
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HE3.24-Ti and HE-RS-Ti samples are compared in Figure 64. Unlike load – central 

deflection curves for extruded bars at room temperature, curves at 300ºC follow the 

profile of those for the coarse grained specimens and formability stages can be clearly 

identified as in Figure 51. It is clearly seen that the HE3.24 and HE-RS specimens show 

the same level of formability as the AR counterpart at room temperature. The maximum 

central deflection and true strain induced into HE3.24 and HE-RS specimens are 

comparable to that of the AR material at room temperature (Table 13). Regardless 

cumulative strain of the processed specimens, the punch load at 300ºC at the stage of 

bi-axial stretching is significantly lower for the T-specimens compared to the L-

specimens (Table 13). It is also remarkable the significant increase of central deflection 

and uniform strain of L-specimens after small-punch testing at 300ºC in spite of the 

required punch load is retained with respect to the extruded L-specimens.  

 

 

Figure 62. Appearance of the HE3.24-Ti L-specimens of CP Ti after small-punch testing (a) 

at 300ºC and (b) at RT. 

 

Figure 63. Appearance of the HE-RS L-specimens of CP Ti after small-punch testing (a) 

at 300ºC and (b) at RT. 
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Figure 64. Punch load – central deflection curves at 300ºC and room temperature for L- 

and T- specimens of the as-received (AR) Ti and the HE processed (HE3.24-Ti) Ti and 

additional rotary swaging (HE-RS) Ti. 

Table 13. Results of small punch testing at 300ºC and room temperature (RT) for L- 

and T-specimens of the as-received and the HE processed CP Ti and additionally rotary 

swaged CP Ti. 

Sample Fmax (N) hmax (mm) ε 

AR RT-T 1243±47 1.3±0.05 0.4±0.01 

AR RT-L 1213±23 1.27±0.05 0.35±0.02 

HE3.24 RT-T 1163±34 0.79±0.03 0.12±0.03 

HE3.24 RT-L 910±59 0.60±0.02 0.05±0.008 

HE3.24 Ti 300ºC-T 798±10 1.25±0.03 0.39±0.01 

HE3.24 300ºC-L 912±53 1.17±0.05 0.37±0.01 

HE - RS RT-T 1053±40 0.78±0.01 0.11±0.01 

HE - RS RT-L 1150±10 0.73±0.06 0.07±0.01 

HE - RS 300ºC-T 800±20 1.27±0.02 0.37±0.1 

HE - RS 300ºC-L 963±120 1.14±0.11 0.32±0.01 
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Analysis of surface relief of specimens after small-punch testing at 300ºC confirms that 

microstructure anisotropy and the strong crystallographic texture developed during 

hydrostatic extrusion still play an important role in bi-axial deformation behavior (Figure 

65 and Figure 67). Evidences of profuse plastic deformation are easily found in 

specimens confirming that the T-specimens deform in a symmetric manner with respect 

to the dome axis while it is not the case for the L-ones. The high roughness in bi-axial 

stretching areas of both T- and L-specimens can be noted. Some microshear the 

banding is observed in bi-axial stretching areas (φ~30º) of T-specimens promoting 

larger uniform strain.  The length of microshear bands is in the range of 2-20 µm. At 

φ~60º from the punch axis, the primary and secondary cracks which are respectively 

parallel and perpendicular to the extrusion direction are identified on the surface relief 

of the L-specimens (Figure 66 a, b and Figure 68 a, b). This massive micro-localization 

of plastic flow might result in a significant increase of formability being comparable to 

those for the CG Ti at room temperature.  

 

Figure 65. SEM images of the surface relief of the HE3.24 specimens subjected to small-

punch test at 300ºC (a) the view of dome of the L-specimen; (b) area at φ~30º of the L-

specimen; (c) the view of the dome of the T-specimen and (d) area at φ~30º of the L-

specimen. 
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Figure 66. SEM images of the surface relief of the HE3.24 specimens after small punch 

testing at φ~60º for (a, b) L-specimens and (c, d) T-specimens. 

 

Figure 67. SEM images of the surface relief of the HE-RS specimens subjected to small-

punch test at 300ºC (a) the view of dome of the L-specimen; (b) area at φ~30º of the L-

specimen; (c) the view of the dome of the T-specimen and (d) area at φ~30º of the L-

specimen. 



Results and Discussions 

E.C. Moreno-Valle 

 

Figure 68. SEM images of the surface relief of the HE-RS specimens after small punch 

testing at φ~60º for (a, b) L-specimens and (c, d) T-specimens. 

4.3.4.3. Nanocharacterization of domes 

Table 14 summarizes the elastoplastic properties (hardness and modulus) extracted 

from nanoindentation curves of the HE3.24-Ti and HE-RS-Ti specimens before and after 

bi-axial stretching at 300ºC. These values were estimated taking into account the 

indenter shape function for hardness estimation as suggested by Oliver and Pharr [159] 

Table 14. Data on hardness and reduced Young’s modulus for extruded (HE3.24-Ti) 

and additionally rotary swaged CP Ti specimens (HE-RS-Ti) before and after bi-axial 

stretching at 300ºC. The average values from at least 10 nanoindentation curves are 

listed.  

Material 
condition 

Hardness (GPa) Er (GPa) 

Before bi-axial 
stretching 

Bi-axially stretched at 
300ºC 

Before bi-axial 
stretching 

Bi-axially stretched 
at 300ºC 

HE3.24 3.8±0.3 3.1±0.6 152.1±6.1 101.8±9.8 

HE- RS 3.7±0.3 3.7±0.5 144.6±7.1 132.2±9.7 
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In [185], a theoretical model for indentation of metals was developed and validated by 

experimental data, the model correlates hardness and tensile strength (Equation 37). 

The mean contact pressure, Pm, is directly proportional to tensile strength, Y, by the 

constrain factor, c, which is considered to be ≈2.8 for work-hardened metals. Based on 

our results, nanoindentation resulted in an overestimation of hardness values when 

compared to theoretical hardness values calculated from Equation 37.  Experimental 

hardness of the HE3.24 CP Ti is ≈3.8 GPa (Table 14) while Y is ≈ 1 GPa for this 

condition (Table 7), which corresponds to a theoretical hardness value of ~2.8 GPa. 

࢓ࡼ   ൌ Equation 37 ܇܋

This discrepancy can be related to the pile-up effect as well as the high surface 

roughness in bi-axial deformed specimens since the model used for computing 

hardness does not account for these effects for the calculation of the projected area. 

Pile-up was expected to occur due to the low strain hardening ability of UFG and NS 

metallic materials [157]. For these cases, Oliver and Pharr model tends to 

underestimate the projected area which results in an overestimation of the hardness 

values. Based on work done in [186], residual indentation imprints were scanned using 

AFM (Figure 69, Figure 70) and hardness was estimated by measuring areas directly 

from the AFM images (Equation 36, Table 15). The presence of pile-up around residual 

imprints is confirmed in the 3-D topography images and line cross-section profiles. It 

could be asserted that hardness slightly decreases due to the dynamic recovery and 

dislocation annihilation by climbing since recrystallization process had not taken place 

at such temperature as was demonstrated with TEM analysis (Figure 57).  
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Figure 69. 3D and 2D AFM topography images and line profiles of residual indentation 

imprints in (a) HE3.24 specimen; (b) bi-axially stretched HE3.24 specimen at 300ºC. 

 

Figure 70. 3D and 2D AFM topography images and line profiles of residual indentation 

imprints in (a) HE-RS specimen; (b) bi-axially stretched HE-RS specimen at 300ºC. 
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Table 15. Hardness results for HE3.24 and HE-RS specimens before and after bi-axial 

stretching at 300ºC. The data are extracted from indentation imprints analysis using 

AFM. 

Specimen Hardness (GPa) 

HE3.24 3.06±0.07 

HE3.24 bi-axially stretched at 300ºC        2.84±0.07 

HE-RS 3.10±0.07 

HE-RS bi-axially stretched at 300ºC 2.98±0.95 

4.4. Fracture behavior of HE processed Al2024 alloy and CP Ti 

4.4.1. Microstructure effect on fracture toughness of HE processed Al alloy 

Figure 71 corresponds to SEM images of fracture surfaces of C-R and R-L extruded 

Al2024 specimens. The fatigue pre-crack area and fracture surface can be easily 

identified on the images. It is clearly seen that material has undergone ductile fracture 

via formation of voids, their growth and coalescence resulting in formation of dimple 

fracture surface. The size of dimples is in the range of 5-15 µm. It is clearly seen that 

the dimples are somewhat elongated along the extrusion direction: i.e. they are 

elongated perpendicular to the crack front in the C-R specimens  (Figure 71 a, b) and 

parallel to the crack front in the R-L specimens (Figure 71 c, d). It can be concluded 

that the microstructure formed during HE processing plays an important role in fracture 

behavior of the material which shows a significant anisotropy.  
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Figure 71. SEM images of fracture surfaces on both halves of the broken specimens of 

the HE processed Al2024 alloy: (a, b) C-R specimen; (c, d) R-L specimen. The extrusion 

direction is marked by white arrow.  

Table 16 summarizes estimated fracture parameters (CTOD, COA, Ji-integral and crack 

growth resistance, Rtot) extracted from fracture testing using Equation 29 - Equation 33. 

Yield stress, σ0 was extracted from tensile testing results and the dimensionless 

parameter dN was calculated using an estimation of strain hardening exponent and 

following calculations for plane strain conditions [187]. Anisotropy of fracture behavior 

observed in the SEM images is supported by calculations. The average CTOD-value for 

the C-R specimens is ≈5.4 µm while the average CTOD-value for the R-L specimens 

less than 4 µm (Table 16). Thus, the COA- and Ji-values are higher for the C-R 

specimens, 2.5º and 4.9 kJ/m2 versus 1.8º and 3.4 kJ/m2 for the R-L specimens, 

respectively. It should be noted that it is given a qualitative value of Rtot due to the pre-

factor Ș (Equation 32) is independent of specimen orientation. The ratio of the Rtot-

value for both samples can be determined: the crack growth resistance of the C-R 

specimens is by a factor of 1.4 times higher compared to the R-L specimens.  
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Table 16. Results of fracture testing of C-R and R-L specimens for the HE processed 

Al2024 alloy. 

Specimen 
orientation 

σ0 (MPa) dN CTOD (µm) COA (º) Ji (kJ/m
2
) Rtot 

C-R Al2024 390 0.43 5.4±2.4 2.5±0.5 4.9±2.1 1.4R 

R-L Al24024 390 0.43 3.8±1.3 1.8±0.4 3.4±1.2 1R 

 

The anisotropic fracture behavior of the Al2024 alloy may be related to the elongated 

grains/subgrains and elongated second phase precipitates aligned along the extrusion 

direction. Interface between elongated and coarse dispersoids and metal matrix is a 

preferential site for dimples and nanovoids nucleation and their coalescence promotes 

crack propagation. Since the grains/subgrains are elongated along the extrusion 

direction, the crack growth resistance is lower in the extrusion direction due to the crack 

can easily grow along the grains/cells boundaries, whereas the crack growing in the 

perpendicular direction has to kink more often. Also, the length of dimples along the 

direction of crack propagation is larger in the R-L specimens compared to the C-R 

specimens. This is also supported by the estimated values of Ji and Rtot (Table 16). 

4.4.2. Microstructure and texture effect on fracture toughness of HE 

processed CP Ti 

Anisotropy of microstructure and texture also affects as well the fracture behavior of the 

HE processed CP Ti (Figure 72). Similar to the Al2024 alloy, elongated dimples having 

a size of 3-10 µm along extrusion direction are easily identified over fracture surfaces 

regardless specimen orientation indication ductile fracture mode. Again, the dimples are 

elongated along the crack propagation direction in the R-L specimens (Figure 72 a, b) 

and perpendicular to the of C-R specimens (Figure 72 c, d). This observation can be 

rationalized based on the lamellae-type microstructure developed during HE processing 

of the material (see Section 4.1.3). Quantitative analysis of the surface roughness 

parameters was performed and the CTOD- and COA-values were determined for both 

specimen orientations. The results are listed in Table 17. The Ji- and Rtot-values were 

calculated. 
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Figure 72. SEM images of fracture surface of both halves for (a, b) C-R specimen, (c, d) 

R-L specimen from the HE processed CP Ti bars. The extrusion direction is marked by 

black arrow.  

Table 17. Results of fracture testing of the C-R and R-L specimens for the HE 

processed CP Ti. 

Specimen 
orientation 

σ0 (MPa) dN CTOD (µm) COA (º) Ji (kJ/m2) Rtot 

C-R 420 0.2 2.6±0.5 2.2±0.7 5.2±0.9 1.5R 

R-L 420 0.2 2.3±0.3 1.5±0.6 4.7±1.0 1R 

 

Anisotropy of fracture properties in the HE processed CP Ti is similar to that observed 

in the Al2024 alloy. The C-R specimens show higher fracture initiation toughness and 

total crack growth resistance compared to the R-L specimens (Table 17). This effect 

can be related to the microstructure developed in the material during HE processing. 

The crack propagates easier along the lamellae boundaries in the direction of their 

elongation than in the perpendicular direction. 
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4.5. A recipe to increase bi-axial stretching formability of the UFG metals 

The results of this investigation clearly show that the deformation mode (stress state) 

does not affect the plastic deformation mechanisms, homogeneity of plastic flow, and 

mechanical properties of the CG metallic materials. However, an opposite trend can be 

observed in the UFG metallic materials. The homogeneity of plastic flow and the plastic 

deformation mechanisms in the UFG metals and alloys as well as their formability 

strongly depend on the initial microstructure, crystallographic texture and deformation 

mode during plastic deformation. The analysis of outcomes from this experimental work 

has lead to a general recipe how to improve formability of the UFG metallic materials 

which is presented below. 

I. Extensive microshear banding can play a very important role in the enhancement of 

bi-axial stretching formability of the UFG FCC metallic materials. The UFG FCC metals 

can show even higher bi-axial stretching formability than their coarse-grained 

counterparts if extensive microshear banding is activated. The mechanisms for 

activation of extensive microshear banding might include inhomogeneous 

microstructure containing ultra-fine grains/subgrains, cells, as well as appropriate 

choice of testing parameters for activation of grain boundary sliding. It should be noted 

that the positive effect of microshear banding on enhancement of uni-axial tensile 

ductility [107] and fatigue ductility [188] of FCC metals was already reported earlier. 

II. Formability of the UFG metallic materials is determined by crystallographic and 

metallographic texture developed during fabrication of these materials. Elongated 

grains/lamellae can significantly degrade bi-axial stretching formability if the material is 

deformed in the plane of elongated grains. Crystallographic texture can play a very 

important role during bi-axial stretching of HCP metals. The crystallographic texture 

symmetrical with respect to the applied stress does not seem to degrade the bi-axial 

stretching formability of the HCP metals, whereas combination of “soft” and “hard” 

grains in the “scenario” of the crystallographic texture unsymmetrical with respect to the 

applied stress can significantly degrade bi-axial stretching formability. A general 

approach to increase formability of the UFG materials is to generate UFG 

microstructures consisting of equiaxed ultra-fine grains with no preferred orientation of 

crystals.  
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III. Presence of coarse dispersoids or cracked particles in the microstructure can 

significantly degrade bi-axial stretching formability of the UFG metallic materials. The 

coarse dispersoids and/or cracked particles can act as nucleation sites for formation of 

microcracks and their further quick propagation. Thus, it is recommended to avoid 

presence of coarse dispersoids/particles and cracked precipitates in the microstructure 

of the UFG metallic materials. 

IV. High dislocation density in the interior of ultra-fine grains and/or non-equilibrium 

grain boundaries can also degrade formability of the UFG metallic materials since such 

ultra-fine grains have no any ability to accumulate dislocations. Generation of the UFG 

microstructures with grains free of dislocations could slightly improve bi-axial stretching 

formability. Such microstructures can be also obtained if the UFG material is subjected 

to annealing treatments in order to decrease dislocation density in the grain interior as 

well as to perform relaxation of the non-equilibrium grain boundaries. It should be noted 

that such strategy was successfully employed to increase uni-axial tensile ductility and 

fatigue life of the UFG Ti-based materials [182]. 

V. The UFG metallic materials can demonstrate enhanced formability at elevated 

temperatures and retain their high mechanical strength after metalforming. However, 

the testing (metalforming) temperature should be carefully chosen to prevent any grain 

growth or recrystallization during testing (metalforming) at elevated temperatures. 
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5. CONCLUSIONS 

Following conclusions can be drawn based on the analysis of the outcomes of this 

work. 

1. Equal channel angular pressing (ECAP) and hydrostatic extrusion (HE) can be 

utilized for grain refinement in commercially pure Cu, Ti and Al2024 alloy. ECAP for 2 

passes of pure Cu led to formation of inhomogeneous microstructure consisting of ultra-

fine grains and highly deformed coarse grains containing cells and shear bands, 

whereas ECAP for 12 passes resulted in formation of homogeneous ultra-fine grained 

microstructure with grain size of 100-250 nm. HE of pure Ti led to formation of ultra-fine 

lamellar-type microstructure having a very strong crystallographic fibre texture with the 

C-axis perpendicular to the extrusion axis and (10-10) direction parallel to the extrusion 

axis. Similar microstructure containing coarse dispersoids, T-particles and second 

phase precipitates was formed after hydrostatic extrusion in the Al2024 alloy. 

2. The ECAP processed Cu, HE processed pure Ti and Al2024 alloys demonstrated 

very high mechanical strength, but low tensile uniform elongation and elongation to 

failure. The transversal specimens showed much lower yield strength but much higher 

strain hardening capacity compared to those of the longitudinal specimens. Significant 

anisotropy of uni-axial tensile deformation behaviour of the HE processed pure Ti is 

related to its very strong crystallographic (10-10) fibre texture and specific 

microstructure developed during hydrostatic extrusion. Metallographic and (111) texture 

developed during HE of the Al2024 alloy led to anisotropy of its uni-axial tensile 

mechanical properties.  

3. Small punch testing showed that formability in bi-axial stretching of the ECAP 

processed Cu was comparable to that of the coarse-grained Cu. Inhomogeneous 

plastic flow in form of profuse microshear banding played an important role in bi-axial 

stretching of the ECAP processed Cu providing significant amount of plastic 

deformation and, therefore, formability. Activity of microshear banding and formability of 

the ECAP processed Cu can be controlled via microstructural design (choosing 

optimum processing parameters) and/or stress triaxiality. Other mechanisms active 

during bi-axial stretching of the ECAP processed Cu included dislocation glide and 

grain boundary sliding. 
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4. There is anisotropy of bi-axial deformation behaviour and failure during small punch 

testing of the HE processed pure Ti. A higher load is required for bi-axial deformation of 

the longitudinal specimens in the bi-axial stretching regime and the longitudinal 

specimens show lower maximum central deflection and lower value of true uniform 

strain compared to those for the transversal specimens. The transversal specimens are 

deformed and fail in symmetric manner with respect to the punch axis since all grains 

have symmetrical orientation. Combinations of grains with various crystallographic and 

metallographic orientations with respect to the punch axis can be present in the 

microstructure of the longitudinal specimens. Some combinations of soft grains and 

hard grains can lead to rotation of the quazi-cleavage facets which, in turn, can easily 

lead to their quick growth along lamellae boundaries, thus forming primary longitudinal 

cracks (parallel to the extrusion direction) and their growth followed by formation of 

secondary cracks (perpendicular to the extrusion direction). 

5. Annealing treatments of the HE processed pure Ti led to a slight increase of its bi-

axial stretching in the longitudinal plane at room temperature. At 300ºC, the HE 

processed Ti showed the same level of formability as the coarse-grained CP Ti at room 

temperature. 

6. Bi-axial stretching formability of the HE processed Al2024 alloy is limited by presence 

of coarse dispersoids and cracked T-particles which act as nucleating sites for 

microcracks. 

7. A recipe for improvement of bi-axial stretching formability of the UFG metallic 

materials includes: 

- activation of microshear banding via microstructural design; 

- generation of microstructures with equi-axed ultra-fine grains free of dislocations with 

no or minimum crystallographic texture; 

- absence of coarse dispersoids or particles in the microstructure; 

- metalforming operations at elevated temperatures provided that there is no 

recrystallization or grain growth during plastic deformation 
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7. APPENDIX 

7.1. Current research activities: Formability of ultra-fine grained Al-Mg-Si 

alloy 

The current research activities are focused on improvement of formability of the UFG 

heat-treatable Al-Mg-Si alloys with low content of alloying elements.  

Billets with a diameter of 18 mm and a length of 120 mm were machined from the Al-

0.6Mg-0.5Si alloy. They were subjected to solution treatment at 530°С for 2h and 

quenched in water. Hereafter, this condition will be referred to as CG material. The as-

quenched billets were subjected to equal channel angular pressing with parallel 

channels (ECAP-PC) at 100oC for 1 and 4 passes so the accumulative strain induced 

into the samples was 1.6 and 6.4, respectively. The angle of ECAP-PC die was 100o 

and the distance between axes of parallel channels, K, was 18 mm (Figure 73). Some 

billets after ECAP-PC processing were artificially aged at 130ºС for 24 hours. 

 

Figure 73. a) Schematic presentation of ECAP-PC processing die: d – diameter of 

channels, K – distance between axes of parallel channels, Ф – intersection angle 

between parallel channels and the connecting channel; b) ECAP-PC processing. 

Figure 74 illustrates typical microstructure of the Al-0.6Mg-0.5Si alloy after ECAP-PC 

processing at 100oC for 4 passes. Formation of a very homogeneous microstructure is 

observed. Elongated grains having a length of 560 nm and aspect ratio of ~2 are seen 

а b



 

 

on longitudinal section (Figure 74 a). On transversal cross section, ultra-fine grains 

having a length of 515 nm and aspect ratio of ~1.5 are observed. Nanosized spherical 

second phase precipitates having an average size of 10 nm are observed along the 

grain boundaries and in the interior of ultra-fine grains (Figure 74 a). According to the 

earlier studies on the SPD processed Al-Mg-Si alloys, these nanosized precipitates can 

be identified as β'-Mg2Si precipitates and they are formed due to dynamic aging [1,2]. 

Subsequent artificial aging leads to further decomposition of solid solution and 

formation of nanoscale needle-type β''-Mg2Si precipitates (Figure 75) 

 

Figure 74. Microstructure of the Al-0.6Mg-0.5Si alloy after ECAP-PC processing at 100oC 

for 4 passes: (a) longitudinal section, (b) transversal section. 

 



 

 
 
 

 

Figure 75. The needle-like β''- Mg2Si precipitates in the grain interior of the Al-0.6Mg-0.5Si 

alloy after ECAP-PC processing at 100oC for 4 passes followed by artificial aging. 

Appearance of small punch specimens after testing is shown in Figure 76. Figure 77 

illustrates punch load – central deflection curves for some conditions. Values for the 

maximum punch load, the central deflection at maximum punch load and uniform strain 

are listed in Table 18. It is clearly seen that refining the microstructure down to the ultra-

fine scale leads to the increase of the load required for bi-axial stretching of material, 

whereas the values of central deflection and uniform strain are significantly reduced. 

However, the alloy after 4 ECAP-PC passes and artificial aging demonstrates bi-axial 

stretching formability similar to that of the coarse-grained material (Table 18). This 

could be rationalized based on the increased strain hardening ability of the alloy due to 

the presence of the nanosized needle-like precipitates which are able to promote the 

dislocation accumulation in the grain interior [3].  

 

Figure 76. Small punch specimens of the Al-Mg-Si alloy after testing from left to right: 

CG condition, 1 ECAP passes and CR, 6 ECAP passes and CR and 4 ECAP-PP passes 

and artificially aged conditions.  



 

 

 

Figure 77. Load – central deflection curves of Al-Mg-Si alloy specimens for the coarse 

grained condition and ECAP-PC processing for 1 and 4 passes and subsequently 

artificial aging.  

Table 18. Results of small punch testing of coarse grained (CG) Al-Mg-Si and the 

ECAP-PC Al-Mg-Si alloy and after artificial aging (AA). 

Sample Fmax (N) hmax (mm) ε 

CG 370 1.25 0.47 

1ECAP-PC Pass  420 0.93 0.23 

4 ECAP-PC Passes & AA 500 1.18 0.40 

  

Therefore, the introduction of nano-scale precipitates in the ultra-fine grains can be 

considered as another approach to improve formability of the ultra-fine grained metallic 

materials. Current research activities have been focused on more detailed analysis of 

the processing-microstructure—formability relationship in the Al-0.6Mg-0.5Si alloy. 
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a b s t r a c t

Coarse-grained commercially pure (CP) Titanium is subjected to hydrostatic extrusion resulting in the

formation of ultrafine lamellar-type microstructure having very strong fiber texture. Uni-axial tensile

tests of longitudinal and transverse specimens are carried out to study anisotropy of uni-axial

deformation behavior of hydrostatically extruded CP Titanium. Small punch testing of longitudinal and

transverse specimens is performed to study the anisotropy of its bi-axial deformation behavior. It is

demonstrated that there is significant anisotropy of both uni-axial and bi-axial deformation of CP

Titanium after hydrostatic extrusion which is related to the specific microstructure and texture

developed in the material during hydrostatic extrusion.

& 2013 Published by Elsevier B.V.

1. Introduction

Commercially pure (CP) Ti has been widely used in various sectors

of engineering including biomedical industry due to its high corrosion

resistance and good biocompatibility [1]. However, CP Ti has relatively

low mechanical strength limiting its application [1]. Alloying can

significantly enhance mechanical performance of CP Ti, but some

alloying elements such as vanadium increase the toxicity and degrade

its corrosion properties [2]. Nowadays, development of severe plastic

deformation (SPD) techniques [3] has enabled formation of ultrafine-

grained (UFG) microstructure in CP Ti leading to its enhanced

mechanical strength. These SPD methods include equal-channel

angular pressing (ECAP) [4,5], ECAP in combination with extrusion

(or rolling, swaging, drawing) [6–8], high pressure torsion (HPT) [9,10],

cryo-rolling followed by annealing [11], cross rolling [12,13], etc.

Hydrostatic extrusion appears as one of the most promising SPD

methods for fabrication of UFG CP Ti since it has some advantages [14].

First, very long rods can be processed via hydrostatic extrusion and,

second, the method has a very high efficiency due to the very high

processing strain rates, usually 410 s�1 but can exceed 104 s�1.

A body of research on the microstructure and mechanical properties

of pure Ti after hydrostatic extrusion exists in the literature [15–18].

It was demonstrated that grain size can be successfully refined down

to the nanoscale if a strain of 5.47 is induced into rods during

hydrostatic extrusion, leading to a mechanical yield strength of

1245MPa in the longitudinal direction [15]. The effect of hydrostatic

extrusion temperature (in the temperature range of 20–450 1C) on the

microstructure, texture and mechanical properties of CP Ti was

analyzed in [17]. It was shown that extrusion at room temperature

leads to formation of a lamellar-type microstructure with the width of

lamellae in the range of 100–500 nm, whereas extrusion at 300–

450 1C results in formation of a bi-modal microstructure consisting of

packs of lamellae and ultrafine grains. Significant increase of mechan-

ical strength was observed after hydrostatic extrusion at all tempera-

tures. As is well known, being hcp metal, α-Ti can show significant

anisotropy of mechanical properties depending on the texture devel-

oped during materials processing [7,19]. However, no detailed studies

on the anisotropy of mechanical properties in the hydrostatically

extruded Ti rods have been performed yet. Fundamental understand-

ing of the effect of hydrostatic extrusion on the anisotropy of

mechanical behavior of pure Ti is necessary in order to predict the

performance of the final engineering components.

The objective of the present work is to study the effect of

hydrostatic extrusion on the microstructure, texture, and mechanical

properties of pure Ti with greater respect to the anisotropy of uni-axial

and bi-axial deformation behavior in the processed material. In most
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of metalforming operations, material is deformed in multi-axial mode

along complex strain path [20]. Therefore, understanding of anisotropy

of bi-axial deformation behavior of the extruded Ti is necessary if

metalforming operations will be required for fabrication of complex

shape parts from extruded Ti. It should be noted that research on

bi-axial deformation behavior of SPD processed metals is very limited

[21–23] and anisotropy of bi-axial deformation behavior of the SPD

processed metals has not been studied yet.

2. Material and processing

CP Ti (Grade 3) with specification corresponding to the ASTM

B348-09 standard [24] was supplied in the form of bars having a

diameter of 50 mm. The as-received bar was subjected to hydrostatic

extrusion at room temperature in four extrusion steps to the cumu-

lative strain of 3.24 using a 451 die. Detailed description of hydrostatic

extrusion process can be found in [25]. The strain rate at the last

extrusion step was 10 s�1 which corresponds to the linear extrusion

speed above 60mm/s. Different combinations of lubricant paste based

on �60%MoS and refined oil, copper and PTFE aerosols, an aluminum

layer deposited by physical vapor deposition (PVD) were tried as

lubricants. The parameters of hydrostatic extrusion are outlined in

Table 1. The rods after hydrostatic extrusion showed smooth surface

without any (micro)cracks.

Hydrostatic extrusion is usually accompanied by significant

adiabatic heating which might significantly affect the microstruc-

ture developed during processing [25]. The temperature rise due

to adiabatic heating was estimated by the commonly accepted

equation [25–27],

ΔT ¼ β
W

cρ
¼ β

p

cρ
ð1Þ

where W is the plastic deformation work per unit volume, c the

specific heat, ρ the material density, p the extrusion pressure, and

the dimensionless parameter β denotes the fraction of plastic work

converted into heat during deformation. For hydrostatic extrusion

with a good insulation by a lubrication layer around the work-piece

and high extrusion speed, β is taken as 0.9 [25]. For c¼0.523 J g�1 K�1

and ρ¼4.5 g cm�3, Eq. (1) gives a temperature increase, ΔT, in the

range of 240–400 1C.

3. Experimental procedures

The specimens for light optical microscopy studies were cut

from the extruded rods on the longitudinal L-section (parallel to

the rod axis/extrusion direction) and transverse T-section (per-

pendicular to the rod axis/extrusion direction), as shown in Fig. 1.

The specimens were grinded and polished to mirror-like surface

using standard metallographic technique. The final step was a

chemical–mechanical polishing with a mixture of colloidal silica

oxide polishing suspension (OPS) and 5% vol of H2O2. Optical

microscopes Nikon Eclipse LV150 and OLYMPUS BX 51 were

employed for the microstructural analysis.

The specimens for transmission electron microscopy (TEM)

studies were cut from the L- and T-sections of the processed rods.

The specimens were thinned by electropolishing in a TENUPOL 5

twin-jet polisher using a 1:4 solution of nitric acid in methanol at

T��30 1C. The TEM analyses were carried out in a TECNAI-20-FEG

microscope operated at 200 kV equipped with an X-ray energy

dispersive spectrometer. For Z-contrast measurements, a scanning

transmission electron microscopy (STEM) modulus with a dark-

field high angle annular detector (HAADF) was employed. Selected

area electron diffraction (SAED) patterns were recorded from the

areas of interest.

Texture measurements were performed at the CAI DRX at the

Complutense University of Madrid using a Phillips Xpert'PRO

diffractometer equipped with a PW3050/60 goniometer. Measure-

ments were taken in a range of Φ angles from 01 to 751 at 31 steps.

The pole figures for the planes (0001), (10�10), (10�11), (10�12),

(10�13), and (10�20) were plotted.

To study uni-axial tensile behavior of the material, specimens

for tensile testing were cut from the extruded rods so their tensile

axis was perpendicular to the rod axis (T-specimens) and parallel

to the rod axis (L-specimens), as shown in Fig. 1. Tensile specimens

of gauge length 3.2 mm and gauge width of 0.8 mm were

mechanically polished to mirror-like surface using colloidal silica

solution at the final stage. Tensile tests were carried out at room

temperature using the universal tensile/compression module

‘Kammrath&Weiss’. Tensile specimens were deformed to failure

with constant cross-head speed corresponding to the initial strain

rate of 10�3 s�1. The mechanical properties (0.2% proof strength

s0.2, ultimate tensile strength, sUTS, uniform elongation, εu, and

elongation to failure, εf) were determined from the obtained

engineering stress–strain curves. At least three specimens were

tested for each condition and the results were reproducible.

To study bi-axial deformation behavior of the material, flat

specimens for small punch testing were cut in the T- and

L-sections of the extruded rods (Fig. 1). Both sides of the flat

Table 1

Parameters of hydrostatic extrusion applied to CP Ti (Grade 3).

Number of

extrusion steps

Total cumulative

reduction ratio, Rcum

Total cumulative

true strain, εcum

Extrusion

pressure [MPa]

Linear extrusion

speed [mm/s]

Strain rate

[s�1]

Adiabatic

heating, ΔT [1C]

4 25.41 3.24 630–1050 24–60 6–10 240–400

Fig. 1. Rod axis, longitudinal and transverse planes and orientation of specimens in

the extruded rod.

Fig. 2. Schematic drawing of small punch testing.

E.C. Moreno-Valle et al. / Materials Science & Engineering A 588 (2013) 7–138



specimens were grinded and polished to mirror-like surfaces using

colloidal silica at the final stage. The final thickness of specimens

was 0.4 mm. A schematic diagram of a small punch testing is

illustrated in Fig. 2. A flat punch specimen is clamped between

upper and bottom dies. It is deformed at room temperature by a

well lubricated hemi-spherical rigid punch having a diameter of

2.4 mm. The die design is similar to that widely used for small

punch testing [28–33]. Punch speed during testing was 0.5 mm/

min. Load F and central deflection h readings were taken during

testing (Fig. 2). Small punch tests were stopped at the moment of

onset of plastic instability on the load–central deflection curve.

Fig. 3 illustrates appearance of specimens after small punch

testing. It is clearly seen that specimens are deformed into a dome

shaped cap. To estimate the equivalent strain induced in these

small punch specimens, final thickness was measured over areas

deformed under membrane (bi-axial) stretching. The true strain

was estimated as

ε¼ ln
t0
t

� �

ð2Þ

where t0 is the initial thickness and t the final thickness of the

small punch specimen. At least three specimens were tested per

each condition and the results were found to be reproducible.

Qualitative examination of surface relief after deformation of

small punch specimens was performed using an EVO MA 15 SEM

operating at 20 kV. Surface relief was analyzed in the area of bi-

axial stretching.

4. Results and discussions

4.1. Effect of hydrostatic extrusion on microstructure and texture

of CP Ti

Optical microscopy images of the as-received CP Titanium are

presented in Fig. 4a. A homogeneous microstructure consisting of

equiaxed grains having the average size of 42 μm is observed.

Fig. 4b shows a representative optical micrograph of a longitudinal

section of the CP Titanium samples after hydrostatic extrusion. It is

seen that hydrostatic extrusion led to fragmentation and elonga-

tion of grains along extrusion direction resulting in the complex

microstructure which cannot be clearly resolved with light optical

microscope. TEM examination of the samples showed that hydro-

static extrusion leads to a microstructure consisting of lamellae

aligned along the extrusion axis and having a length up to 1 μm

and a width ranging from 10 to 100 nm (Fig. 5a). A high density of

dislocations is observed in the lamellae interior and the formation

of equiaxed grains/subgrains is also seen (Fig. 5b). They present

straight boundaries intersecting at high angles with neighbor

Fig. 3. Appearance of specimens after small punch testing of CP Ti: (a) as-received T-specimen and (b) hydrostatically extruded T-specimen.

Fig. 4. Optical images of microstructure of CP Ti: (a) as-received; (b) hydrostatically

extruded (L plane). Extrusion direction is horizontal.
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lamellae. The formation of this microstructure can be related

explicitly to twinning and dislocation glide operating in the

material during hydrostatic extrusion. Despite hydrostatic extru-

sion results in significant adiabatic heating of metallic materials

[25], the temperature of adiabatic heating in our hydrostatically

extruded pure Ti estimated using Eq. (1) (Table 1) is well below the

recrystallization temperatures of 620–760 1C reported for severely

deformed pure Ti [35,36]. Moreover, it should be noted that the

samples during hydrostatic extrusion are heated only in the local

deformed volume within the die work-piece during milliseconds

and they are immediately cooled down (water quenched) to room

temperature, that is insufficient in case of CP Titanium neither for

recrystallization nor for significant recovery of the developed

microstructure [34,35].

Fig. 6 illustrates pole figures for the T-section of pure Ti before

and after hydrostatic extrusion. The as-received material shows a

weak texture somewhat similar to that demonstrated by hot rolled

pure Ti (Fig. 6a) [36]. Hydrostatic extrusion breaks up the initial

texture and leads to formation of very strong fiber texture with

〈10�10〉 direction parallel to the rod axis and basal planes (0001)

parallel to the rod axis (Fig. 6b). The maximum intensity on the

(10�10) pole figure increases up to �17. Such fiber texture is

typical for CP Ti subjected to conventional extrusion, drawing or

swaging [37].

4.2. Effect of hydrostatic extrusion on mechanical behavior and its

anisotropy

4.2.1. Uni-axial tensile behavior and its anisotropy

Fig. 7 shows the engineering stress–strain curves from tensile

tests at room temperature in the L- and T-directions of the as-

received and hydrostatically extruded CP Ti. Mechanical properties

are listed in Table 2. A slight anisotropy of mechanical properties is

observed in the as-received CP Titanium. The T-specimens tend to

show higher mechanical properties compared to the L-specimens

(Fig. 7, Table 2) due to the weak crystallographic texture present in

the as-received material (Fig. 6a). No significant effect of the

sample orientation on the work hardening capacity defined as

sUTS/s0.2 is observed (Fig. 7). The mechanical strength of CP Ti

dramatically increases after hydrostatic extrusion due to grain

refinement whereas both uniform elongation and elongation to

failure show an opposite trend (Table 2). Significant anisotropy

of uni-axial tensile mechanical behavior is observed. The

L-specimens display very high s0.2-value, 915 MPa, but low work

hardening capacity, so the sUTS-value of the material is 970 MPa

(Fig. 7, Table 2). On the other hand, the T-specimens show a much

lower s0.2-value, 562 MPa, but a similar sUTS-value, 995 MPa,

indicating a very high work hardening capacity of the

T-specimens (Fig. 7, Table 2). This anisotropy of mechanical

behavior can be rationalized based on the very strong crystal-

lographic macrotexture developed in the material during hydro-

static extrusion (Fig. 6b) [7,19]. It is well known that dislocation

glide and twinning are the main mechanisms operating during

plastic deformation of CP Ti at room temperature [37,38]. Defor-

mation twinning is suppressed in the UFG CP Ti [38,39]. The main

dislocation slip modes in CP Ti at room temperature having the

lowest critical resolved shear stresses are the prismatic 〈11�20〉

{10�10} slip system and the basal 〈11�20〉{0001} slip system

[38,40]. Additionally, dislocation glide on pyramidal systems

〈11�20〉{10�11} and 〈11�23〉{10�11} can be also activated [40].

The operating systems are generally determined by the Von Misses

criterion, the Schmid factors, and the critical resolved shear stress.

In the L-specimens, basal planes are suppressed since they are

parallel to the tensile axis and two of the prismatic slip planes

are suppressed since they are perpendicular to the tensile axis.

The remaining four prismatic slip planes are inclined at 601 to the

tensile axis and can be active. So, the high yield strength of the

material can be related to the limited number of prismatic slip

systems available. In the T-specimens, the c-axis of the h.c.p. lattice

of individual grains is randomly inclined with respect to the

tensile axis. Thus, the microstructure will be formed by a combi-

nation of soft and hard grains, depending on the individual

orientations. The grains that are most favorably oriented for

prismatic and basal slip can be easily deformed at lower values

of applied stress (soft grains). Localization of plastic slip within

these grains results in local strain hardening, and, in turn, in an

increase of the flow stress, and in the spread of plastic slip to

grains that are less favorably oriented for prismatic and basal slip.

This scenario leads to overall high work hardening capacity of the

T-specimens. It should be also noted that a higher work hardening

Fig. 5. TEM images of the microstructure of CP Ti after hydrostatic extrusion

(L plane).
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ability of these T-specimens delays macro-localization of plastic

flow resulting in higher uniform elongation (�2.7%) and higher

elongation to failure (�6%) compared to those for the L-specimens

(�0.9% and �3.1%) according to the well-known Considere

criterion [41].

4.2.2. Bi-axial deformation behavior and its anisotropy

Load–central deflection curves from small punch testing of the

as-received and extruded CP Ti are presented in Fig. 8. Typical

stages of formability behavior are marked on the curve for the

as-received specimens. The first stage corresponds to elastic bending

that is associated with local surface micro-yielding. During the second

stage, plastic bending, plastic flow begins and spreads within the

specimen-punch contact zone. Bi-axial deformation of flat specimen

into dome shaped cap occurs during the next stage, membrane

stretching [42]. Once maximum load capacity is reached, unstable

plastic flow begins resulting in the formation of cracks and specimen

failure. The results of small punch testing are listed in Table 3. No any

anisotropy of bi-axial deformation behavior is observed in the as-

received material, since the load-central deflection curves for the

L- and T- small punch specimens nearly coincide and have the same

maximum central deflection of �1.3 mm (Fig. 8) and true uniform

strain ε�0.3. Fig. 8 shows that hydrostatic extrusion results in a

significant increase of the load required for deformation of small

punch specimens to the same central deflection as well as to

significant reduction of the maximum central deflection leading to

the lower values of the true strain which can be induced in the

specimens during small punch testing (Table 3). The hydrostatically

extruded material shows anisotropy of bi-axial deformation behavior.

First, the load-central deflection curves show higher load required for

bi-axial deformation of the L-specimens in the membrane stretching

regime (Fig. 8). Second, the L-specimens display lower maximum

central deflection, �0.6 mm, and lower value of true uniform strain,

0.12, compared to those for the T-specimens, �0.8 mm and 0.05,

respectively (Table 3).

Surface analysis of the small punch specimens tested up to

cracking showed a significant anisotropy in failure behavior of the

L- and T-extruded specimens. The T-specimens showed formation of

cracks at φ�601 which are concentric to the dome as shown in

Fig. 9a. These cracks were formed in symmetric manner with respect

to the dome axis. Evidence of micro-shear band formation, with

deformation bands having a length in the range of 5–15 μm, is

observed in Fig. 9b. Two types of cracks were observed in the

L-specimens: primary long cracks were formed along the extrusion

direction at φ�50–601 and their further growth to the length of

200–400 μm was accompanied by formation of secondary cracks

Fig. 6. Pole figures for CP Ti: (a) in the as-received condition; (b) after hydrostatic

extrusion. Scale represents multiples of random distribution (mrd).

Fig. 7. Engineering stress–strain curves from tensile testing of CP Ti in the as-

received (AR) condition and after hydrostatic extrusion.

Table 2

Mechanical properties of CP Ti (Grade 3) in the as-received (AR) condition and after

hydrostatic extrusion. T indicates transverse section and L longitudinal section.

s0.2 [MPa] sUTS [MPa] εu [%] εf [%]

AR-T 39671 537712 4.4370.65 9.8270.75

AR-L 344714 49471 4.9570.63 8.9770.67

Extruded-T 562732 99577 2.6570.07 5.9570.07

Extruded-L 915770 970717 0.8770.16 3.0670.33

Fig. 8. Load–central deflection curves from small punch testing of CP Ti:

as-received (AR) material and hydrostatically extruded material.

Table 3

Results of small punch testing.

Sample Fmax [N] hmax [mm] ε

AR-T 1243747 1.370.05 0.32

AR-L 1213723 1.2770.05 0.30

Extruded-T 1163734 0.7970.03 0.12

Extruded-L 910759 0.6070.02 0.05
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perpendicular to the extrusion direction, as shown in Fig. 10. The

anisotropy in bi-axial deformation and failure behavior of the

hydrostatically extruded material can be related to (1) the lamellar-

type microstructure and (2) the very strong crystallographic fiber

texture developed during hydrostatic extrusion, though we suggest

that the latter effect plays the major role. In the T-specimens, the

C-axis and two prismatic planes of the hcp lattice are perpendicular

and all basal planes are parallel to the punch axis (Fig. 11a), thus,

resulting in homogeneous bi-axial plastic deformation in the area of

bi-axial stretching followed by failure which is symmetrical with

respect to the dome axis (Fig. 9a). In the L-specimens, the C-axis,

basal planes, and prismatic planes are randomly inclined with

Fig. 9. SEM images of surface relief on the hydrostatically extruded T-specimen after small punch testing: (a) general view of the tested specimen and (b) at φ�30º.

ED

primary crack 

secondary cracks 

Fig. 10. SEM images of surface relief on hydrostatically extruded L-specimen after small punch testing: (a) general view of the tested specimen, (b) at φ�301, (c) a primary

crack at higher magnification.

Fig. 11. Schematic drawings of crystallographic texture of extruded specimens during small punch testing: (a) L-specimen and (b) T-specimen.
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respect to the punch axis (Fig. 11b). Therefore, combinations of grains

with various crystallographic orientations can be present in the

microstructure of the L-specimens. Some combinations of soft grains

and hard grains can lead to formation of the quazi-cleavage facets

[43] which, in turn, can easily lead to their quick growth along

lamellae boundaries since SPD processed Ti tends to show a low

crack growth resistance [44].

5. Conclusions

1. Hydrostatic extrusion of CP Ti leads to the formation of ultrafine

lamellar-type microstructure having a very strong crystallographic

fiber texture with the C-axis perpendicular to the extrusion axis

and (10�10) direction parallel to the extrusion axis.

2. Hydrostatic extrusion of CP Ti leads to a significant increase of

mechanical strength at the expense of ductility. There is a

significant anisotropy of uni-axial tensile behavior of hydrosta-

tically extruded CP Ti. The T-specimens show much lower yield

strength but much higher strain hardening capacity compared to

those of the L-specimens due to the strong crystallographic

texture developed during hydrostatic extrusion.

3. There is anisotropy of bi-axial deformation behavior and failure

of the hydrostatically extruded CP Ti during small punch

testing. A higher load is required for bi-axial deformation of

the L-specimens in the membrane stretching regime and the

L-specimens show lower maximum central deflection and

lower value of true uniform strain compared to those for the

T-specimens. The T-specimens are deformed and fail in symmetric

manner with respect to the punch axis whereas the failure of the

L-specimens begins with formation of primary longitudinal cracks

(parallel to the extrusion direction) and their growth followed

by formation of secondary cracks (perpendicular to the extrusion

direction). This anisotropy is related to the specific microstructure

and texture developed in CP Ti during hydrostatic extrusion.
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Biaxial Deformation Behavior and Enhanced Formability
of Ultrafine-Grained Pure Copper

E.C. MORENO-VALLE, M.A. MONCLUS, J.M. MOLINA-ALDAREGUIA,

N. ENIKEEV, and I. SABIROV

Coarse-grained commercially pure Cu was subjected to equal channel angular pressing at room
temperature for 2 passes and 12 passes resulting in grain refinement down to the ultrafine scale.
Uniaxial tensile testing revealed that as-ECAP Cu samples have very high strength, but low
uniform elongation and elongation to failure, whereas small punch testing showed that strain in
biaxial stretching of the as-ECAP Cu specimens was comparable to that in the coarse-grained
Cu. Analysis of surface relief demonstrated extensive microlocalization of plastic flow into
microshear bands during biaxial stretching of the as-ECAP Cu specimens. The effect of
microstructure and stress state on formability of the material and the mechanisms governing its
plastic deformation are discussed. It is suggested that although the high strength as-ECAP Cu
exhibits poor ductility in uniaxial tension, in other strain paths such as biaxial stretching, it can
show high formability which is sufficient for metal-forming processes.
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I. INTRODUCTION

COPPER has been used in electric and electronic
devices due to its low cost and excellent thermal and
electrical conductivity and therefore appears as a good
candidate for application in micro-electro-mechanical
systems (MEMS).[1] The main obstacle to wider appli-
cation of pure copper is its very low mechanical strength.
Alloying of pure copper, strain hardening, or precipita-
tion strengthening can be employed to increase mechan-
ical strength of pure Cu, but all these strategies lead to
dramatic degradation of its electrical conductivity since
it is determined by the scattering of electrons due to
disturbances in the crystal structure including thermal
vibrations, impurities, and defects.[2] For instance, the
electrical conductivities in some of Cu alloys range from
10 to 70 pct of IACS (international annealed copper
standard).[3] It has been recently demonstrated that
intelligent microstructural design based on grain refine-
ment down to the ultrafine or nanoscale via severe plastic
deformation can be a good strategy to dramatically
increase mechanical strength of pure Cu at no expense to
its electrical conductivity.[2–5] The ultrafine-grained
(UFG) Cu would also be an ideal material for MEMS
having geometrical features of a few micrometers since
the average grain size in the microparts should be smaller
than the smallest dimension of the structural features in
order to insure their reliable property control.[6,7]

A problem arises in application of the high strength
UFG Cu. A significant body of literature related to
research on mechanical properties and deformation
behavior of UFG Cu exists.[8–19] It was demonstrated
that UFG Cu shows very low ductility.[8,9,14,15] Tensile
stress–strain curves attain peak stress at a small plastic
strain and then drop due to strain localization leading to
specimen failure. Thus, it has been suggested that low
tensile ductility of the UFG material can cause problems
with fabrication of complex shape parts due to its low
formability. Various strategies have been developed to
increase the ductility of the UFG and nanostructured
metallic materials as shown in the overviews.[20–22]

Those strategies are mostly based either on manipula-
tion with testing parameters (such as strain rate and/or
temperature[14]) or on intelligent microstructural design
(e.g., formation of bimodal microstructures,[15] intro-
duction of second phase precipitates,[23] etc.). All these
strategies lead to activation of mechanisms that lead to
increase in ductility and/or suppression of mechanisms
degrading ductility. However, not much attention has
been paid to the fact that in most of metal-forming
operations, material is deformed in the multiaxial mode
along a complex strain path.[24] Plastic deformation of
the UFG and nanostructured metallic materials in the
multiaxial mode (when mean stress is increased) might
lead to activation of other deformation mechanisms
such as grain boundary sliding and/or extensive micro-
shear banding, which are not active during plastic
deformation of these materials in the uniaxial mode.[25]

Activation of these mechanisms during plastic deforma-
tion in the multiaxial mode may also lead to improved
formability of the UFG and nanostructured metallic
materials. Therefore, the main objective of this work is
to study the effect of grain size on biaxial deformation
behavior of UFG Cu with respect to mechanisms
operating during plastic deformation as well as their
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effect on the material formability, which has not been
done so far.

II. MATERIAL AND EXPERIMENTAL
PROCEDURES

A. Material and Processing

Commercially pure (CP) copper (99.9 pct) was chosen
as a material for this investigation. The as-received
material was subjected to annealing at 873 K (600 �C)
for 2 hours. The annealed material shows a homoge-
neous microstructure with an average grain size of
~50 lm. Hereafter, this material condition will be
referred to as coarse-grained (CG) Cu. Bars with a
diameter of 18 mm and a length of 100 mm were
subjected to equal channel angular pressing (ECAP) at
room temperature in a die with the internal channel
angle u = 90 deg and outer angle w = 0 deg using
route Bc (bar is rotated by 90 deg around the pressing
direction after each ECAP pass). The bars were sub-
jected to 2 and 12 ECAP passes. The strain produced in
each pass was about 1, so the cumulative strain the
specimens underwent as a result of the ECAP processing
was about 2 and 12.[26] Hereafter, these material
conditions will be referred to as 2P Cu and 12P Cu.

B. Mechanical Tensile Testing and Small Punch Testing

Tensile specimens of gauge length 7.5 mm, gauge
width 1.5 mm, and gauge thickness ~1.2 mm were
machined from the CG Cu and ECAP-processed Cu
bars. The tensile axis of specimens was perpendicular to
the bar axis. These tensile specimens were mechanically
polished to a mirror-like surface using colloidal silica
solution at the final stage. Tensile tests were carried out
at room temperature using a 2 kN INSTRON 3384
universal testing machine (Instron, MA). Tensile spec-
imens were deformed to failure with constant cross-head
speed corresponding to the initial strain rate of 10�3 s�1.
Three tensile specimens were tested for each material
condition and the results thus obtained were found to be
reproducible.

Specimens for small punch testing were cut in the
transverse section of pressed bars. Both sides of the
disks were ground and polished to mirror-like surfaces
using colloidal silica at the final stage. The final
thickness of specimens was 0.45 mm. A schematic
diagram of small punch testing is illustrated in Figure 1.
The small punch specimen is clamped between the upper
and bottom dies. It is deformed at room temperature by
a well-lubricated hemispherical rigid punch having a
radius of 1.2 mm. Our die has a design similar to that
widely used for small punch testing.[27–33] The punch
speed during the test was 0.5 mm/min. Load F and
central deflection h readings were taken during testing
(Figure 1). Small punch tests were stopped at the onset
of plastic instability on the load–central deflection curve.
Figure 2 illustrates the appearance of specimens after
small punch testing, showing that specimens are
deformed into a dome-shaped cap. To estimate the

equivalent strain induced in these small punch speci-
mens, the final thickness was measured over areas
deformed under membrane (biaxial) stretching located
at u = 20 to 45 deg with respect to the vertical axis of
the dome as illustrated in Figure 1. The true strain was
estimated as

e ¼ ln
t0

t

� �
; ½1�

where t0 is the initial thickness and t is the final thickness
of the punch specimen. At least three specimens were
tested for each condition and the results were reproduc-
ible.

C. Microstructure Analysis

To study the microstructure, transmission electron
microscopy (TEM) was carried out using a JEOL-2000
microscope (JEOL, Tokyo, Japan) operating at 200 kV.
Samples for TEM study were prepared by twin jet
electropolishing with electrolyte (25 pct orthophos-
phoric acid, 25 pct ethanol, and 50 pct distilled water)
at room temperature at a voltage of 9 to 10 V.
Observations were made in both bright and dark field
imaging modes. Selected area electron diffraction
(SAED) patterns were recorded from areas of interest
using an aperture of 1.1 lm nominal diameter.
Qualitative examination of surface relief after defor-

mation of both tensile specimens and small punch
specimens was performed using an EVO MA 15 SEM
(Carl Zeiss, NY) operating at 20 kV. Surface relief of
deformed tensile specimens was analyzed in the area of
homogeneous plastic deformation and in the necking
area. Surface relief of deformed small punch specimens
was analyzed in the area of biaxial stretching. For
quantitative characterization of the surface relief in the
area of biaxial stretching, atomic force microscopy
(AFM) analysis was carried out using a Park XE150
AFM Instrument (Park Systems Corp., Suwon, Korea).
Three-dimensional (3D) topography images of the

Fig. 1—Schematical drawing of punch testing.

Fig. 2—Small punch specimens after testing: left—CG Cu;
center—2P Cu; right—12P Cu. Scale bar length is 5 mm.
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scanned areas were generated using WSxM Develop 5.2
software developed by Nanotec (Nanotec Electronica
S.L, Madrid, Spain).[34] At least 10 profiles were
analyzed for each material condition in order to estimate
dimensions of microshear bands. Local volume fraction
of shear bands was calculated as a ratio of length of the
kinked profile (corresponding to the shear bands) to the
total length of the profile.

III. RESULTS

A. Effect of ECAP Processing on Microstructure
of CP Cu

Figure 3 illustrates TEM images of ECAP-processed
Cu. It is seen that ECAP processing for two passes leads
to formation of inhomogeneous microstructure consist-
ing of coarse grains and small areas of ultrafine grains
having a size of 150 to 300 nm. This is confirmed by
SAED patterns where a mixture of low and high angle
grain boundaries is observed (Figure 3(a)). Coarse
grains contain shear bands having an average width of
200 nm and well-defined boundaries. These shear bands
are inclined at nearly 45 deg to the extrusion axis
(Figures 3(a) and (b)). Equiaxed subgrains of 250 to
650 nm are also observed within coarse grains. High
dislocation density walls are seen (marked with arrows
in Figure 3(a)). These defects promote the subgrain
division and breakdown, which further refined the
microstructure with increasing imposed strain.[10,11]

Homogeneous UFG microstructure with equiaxed
grains, of 100 to 250 nm in size and with well-defined
grain boundaries, is formed after 12 ECAP passes
(Figures 3(c) and (d)). Most grains are free of disloca-
tions due to dynamic recovery by dislocation rearrange-
ment during processing to large strains.[10,11] Analysis of
SAED patterns shows that a majority of grain bound-
aries in the microstructure are high angle grain bound-
aries. These microstructural observations are in very
good agreement with the results of microstructure
investigations of ECAP-processed CP Cu reported
earlier.[8–11,16]

B. Mechanical Tensile Behavior

Engineering stress–engineering strain curves from
tensile tests at room temperature for CG, 2P, and 12P
Cu are shown in Figure 4. Mechanical properties (flow
stress at the onset of plastic deformation re=0, 0.2 pct
proof strength r0.2, ultimate tensile strength rUTS, strain
hardening exponent n, uniform elongation eu, and
elongation to failure ef) are listed in Table I. It is clearly
seen that grain refinement leads to significantly en-
hanced strength properties following the well-known
Hall–Petch relationship.[35,36] However, the strength
properties decrease very slightly with increasing the
number of ECAP passes from 2 to 12 (Table I). This
was rationalized based on dynamic recovery by disloca-
tion rearrangement during processing to a larger num-
ber of ECAP passes.[10,11] ECAP processing leads to
significant reduction of both uniform elongation and

elongation to failure. Both eu and ef values somewhat
increase with increasing number of ECAP passes
(Figure 4; Table I).
It should be noted that the mechanical behavior of

UFG copper has been studied in depth and numerous
publications can be found in References 9, 10, 16. The
results of our analysis of the mechanical behavior of the
ECAP-processed Cu are in very good accordance with
the data available in the literature.

C. Mechanical Behavior During Small Punch Testing

Figure 5 shows load–central deflection curves for all
material conditions. Typical stages depicting the behav-
ior of material during forming are marked on the curve
for the 2P Cu specimen and can also be easily identified
on other curves. The first stage, elastic bending, is
associated with local surface microyielding. During the
second stage, plastic bending, plastic flow begins and
spreads within the specimen-punch contact zone. Biaxial
deformation of a flat specimen into a dome-shaped cap
occurs during the next stage, membrane stretching.[37]

Once maximum load capacity is reached, unstable
plastic flow begins leading to formation of cracks and
specimen failure. The results of small punch testing are
listed in Table II. It is seen that the maximum values of
load recorded for the 2P Cu and 12P Cu are higher
compared to that for the CG Cu (Table II). The highest
value of the maximum central deflection in stable flow
(at maximum load) is shown by CG Cu followed by 2P
Cu and 12P Cu.
Equivalent strain was estimated over areas deformed

under membrane stretching using Eq. [1]. Membrane
stretching occurs in an annular section of the disk in
tension.[37] This area is characterized by constant reduc-
tion of thickness following the profile of the punch. The
estimated values of true equivalent strain are 0.55, 0.68,
and 0.48 for CG, 2P, and 12P Cu, respectively.

D. Surface Relief Analysis and Homogeneity
of Plastic Flow

To study homogeneity of plastic flow at the micro-
scale and mechanisms operating during plastic defor-
mation, the surface relief of tested tensile specimens and
small punch specimens was carefully inspected in SEM.
These observations reveal that CG Cu is deformed by
dislocation slip under both uniaxial and biaxial defor-
mation (Figures 6(a) and 7(a)). Necking in tensile CG
Cu specimens also does not significantly affect mor-
phology of surface relief (Figure 6(a)). No evidence of
localized plastic flow was observed in the area of
homogeneous plastic deformation of 2P Cu and 12P
Cu tensile specimens. However, some localization of
plastic deformation in the form of microshear banding is
observed in the necking area of 2P and 12P Cu tensile
specimens (Figures 6(b) and (c)). Surface relief observed
in the area of biaxial stretching of small punch 2P and
12P Cu specimens is somewhat similar to those in the
necking area of tensile specimens, though the surface
relief has much higher roughness in both materials
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(Figures 7(b) and (c)). Profuse microshear banding is
observed over the surface of 2P Cu (marked with arrows
in Figure 7b); some small surface areas free of micro-
shear bands are present as well. Quantitative analysis of
the surface area 280 9 180 lm2 showed that the areas
free of microshear bands have a diameter up to 30 lm

and their surface fraction is just ~4 pct. A similar
surface relief is also seen in the 12P Cu small punch
specimen. However, the areas free of microshear bands
have a larger diameter up to 60 lm and their surface
fraction is nearly 35 pct (shear bands are marked with
arrows in Figure 7(c)).

Fig. 3—Microstructure of Cu after ECAP processing: (a, b) bright field image and SAED pattern of 2P Cu; (c, d) bright field image and SAED
pattern of 12P Cu.
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Figure 8 illustrates 3D AFM topography images of
surface relief in the area of biaxial deformation of the 2P
and 12P Cu small punch specimens after testing. The
results of quantitative analyses of surface profiles
through 3D AFM topography images are presented
in Table III. The 3D AFM topography image
(Figure 8(a)) and the surface profile (Figure 9(a)) con-
firm a very inhomogeneous character of surface relief in
the 2P Cu specimen. It is characterized by a high density
of step-like microshear bands having an average length
in the range 7 to 25 lm and a width in the range 30 to
810 nm (Table III). Their volume fraction is about
34 pct. The surface relief of the 12P Cu specimen is
inhomogeneous as well (Figures 8(b) and 9(b)). The
morphology and dimensions of microshear bands are
similar to those observed in 2P Cu specimen, though the
12P Cu has lower volume fraction of microshear bands,
25 pct (Figure 7; Table III).

IV. DISCUSSION

A. Mechanisms Governing Plastic Deformation
in Uniaxial and Biaxial Mode

The results of this investigation clearly show that the
deformation mode does not affect the plastic deforma-
tion mechanisms and mechanical properties of CG Cu
much. The material is deformed mainly by dislocation
glide and shows nearly the same ductility in both
uniaxial and biaxial deformation modes (Tables I and
II). At the same time, the homogeneity of plastic flow
and the plastic deformation mechanisms in the 2P Cu
and 12P Cu as well as their formability strongly depend
on the initial (as-ECAP) microstructure and deforma-
tion mode (or stress state) during plastic deformation.

1. Effect of microstructure on homogeneity of plastic
flow and mechanisms operating during plastic deformation
An analysis of experimental results shows that there is

significant effect of microstructure on microshear band-
ing activity in the as-ECAP Cu specimens. Numerous
publications have documented the appearance of shear
bands in theUFGandnanostructuredmaterials.[17,18,38–44]

What could be the main mechanism(s) leading to
extensive microshear banding in the as-ECAP Cu during
its biaxial stretching at room temperature? The first
mechanism could be related to the microstructure
inhomogeneities leading to significant stress redistribu-
tion at the microscale and, therefore, localization of
plastic flow as was demonstrated earlier in Reference 38.
Indeed, higher activity of microshear banding in the
2P Cu (Section III–D) having a more inhomoge-
neous microstructure compared to that of 12P Cu
(Section III–A) supports this mechanism. The second
mechanism could be related to the presence of micro-
shear bands in the as-ECAP microstructure (which were
induced during ECAP processing) before small punch
testing since biaxial plastic deformation can trigger their
further growth.[39] The presence of numerous micro-
shear bands in the as-ECAP 2P Cu (Section III–A)
showing a higher activity of microshear banding as well

Table I. Mechanical Properties of CG Cu, 2P Cu, and 12P Cu

Cu re=0 (MPa) r0.2 (MPa) rUTS (MPa) n eu ef

CG 27 ± 1 61 ± 2 206 ± 8 0.40 0.437 ± 0.031 0.465 ± 0.049
2P 255 ± 7 363 ± 1 400 ± 1 0.05 0.012 ± 0.001 0.099 ± 0.001
12P 240 ± 14 359 ± 3 410 ± 1 0.03 0.026 ± 0.001 0.119 ± 0.007

Table II. Results of Small Punch Testing

Cu Fmax (N) hmax (mm) e

CG 557 ± 18 1.48 ± 0.10 0.55 ± 0.04
2P 692 ± 24 1.45 ± 0.10 0.68 ± 0.02
12P 712 ± 39 1.40 ± 0.04 0.48 ± 0.01

Fig. 5—Load–central deflection curves for CG Cu, 2P Cu, and 12P
Cu. Stages of deformation are marked for 2P Cu.

Fig. 4—Engineering stress–engineering strain curves for CG Cu,
2P Cu, and 12P Cu.
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as a good correlation between the width of microshear
bands in the as-ECAP 2P Cu (Section III–A) and 2P Cu
after biaxial stretching (Section III–D) do support this
assumption. Finally, activation of extensive microshear
banding due to cooperative grain boundary sliding can
be also considered as a mechanism responsible for
formation of microshear bands[40,44] since cooperative
grain boundary sliding can be active in UFG pure Cu at
room temperature.[40] The evidence of cooperative grain
boundary sliding observed in the 2P Cu specimen after
punch testing is presented in Figure 10. Other mecha-
nisms based on initiation of microshear bands at
nanovoids and/or second phase precipitates[43] can be
ruled out since these microstructural features are not
present in the as-ECAP Cu (Section III–A).

As was demonstrated in the earlier works, the
contribution of microshear banding to plastic deforma-
tion can be very significant.[38,44] For instance, micro-
shear banding provided 9 pct out of 20 pct of uniform
elongation during uniaxial tensile deformation of the
UFG AA6082, which was almost half of the total plastic
deformation.[44] We have not estimated quantitatively
the contribution of microshear banding into total
deformation in the as-ECAP Cu during biaxial stretch-
ing as it is a very complex task. Nevertheless, high
volume fractions of microshear bands and their dimen-
sions, comparable to those observed earlier in other
materials,[38,44] clearly indicate significant contribution
of microshear bands into the total strain of biaxi-
ally stretched 2P and 12P Cu specimens. Obviously,

Fig. 6—SEM images of surface relief in necking area of tensile speci-
mens: (a) CG Cu, (b) 2P Cu, and (c) 12P Cu.

Fig. 7—SEM images of surface relief in area of biaxial stretching for
(a) CG Cu, (b) 2P Cu, and (c) 12P Cu.
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microshear banding should provide higher contribution
to plastic deformation of the 2P Cu small punch
specimens due to higher volume fraction of microshear
bands in this material condition (Table III).[44]

An earlier study on uniaxial tensile deformation
behavior of nanocrystalline Cu demonstrated near-
perfect elastoplasticity of the material at room temper-
ature.[19] Nanocrystalline Cu was deformed to large
strains without any work hardening and necking, which
was related to the predominance of grain boundary-
mediated mechanisms. Analysis of our experimental
results showed work hardening during tensile testing of
the 2P and 12P pure Cu (Figure 4; Table I). From the
character of the load–central deflection curves for the
2P and 12P Cu specimens (Figure 5), it is also seen that
there is work hardening during plastic bending and
biaxial (membrane) stretching before the onset of
plastic instability. As known, the flow stress in the
specimen during small punch testing is proportional

to the load F and some parameters depending on the
specimen and die geometry.[29,31] These parameters
should be the same for all tested material conditions
and, therefore, the flow stress in all three material
conditions should be linearly proportional to the load
applied (Figure 5). Thus, predominance of grain bound-
ary-mediated mechanisms during biaxial stretching of
the as-ECAP-processed Cu can be ruled out as well. On
the other hand, cooperative grain boundary sliding does
provide some slight contribution to the total plastic
deformation (Figure 10).

2. Effect of deformation mode on homogeneity
of plastic flow in the as-ECAP copper
Microlocalization of plastic deformation in necking

areas of the UFG specimens is not a novel observation
and has been already demonstrated on a range of UFG
metallic materials.[18,25] For instance, the AFM study of
the surface topography in the necking area of tensile

Fig. 8—Typical 3D AFM topography images of surface relief in area of biaxial stretching for (a) 2P Cu and (b) 12P Cu.

Table III. Dimensions, Local Surface Fraction of Microshear Bands, and Surface Fraction of Areas Containing Microshear Bands

on Surface Relief for As-ECAP Cu

Number of
ECAP Passes

Dimensions of Shear Bands Average Local
Volume Fraction of
Shear Bands (pct)

Surface Fraction
of Areas Containing
Shear Bands (pct)Length (lm) Width (nm) Step height (nm)

2 7 to 25 30 to 810 50 to 200 34 96
12 4 to 23 100 to 900 50 to 200 25 65
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specimens made from UFG pure Pd and UFG
Pd-Ag alloys showed extensive microshear banding
due to cooperative grain boundary sliding.[25] It can be

hypothesized that the stress triaxiality T (a ratio of mean
stress to hydrostatic stress) plays an important role in
plastic deformation of UFG and nanostructured metal-
lic materials. Increased stress triaxiality T in the necking
area (T> 1/3) triggers some microshear banding,
whereas this effect does not occur during homogeneous
tensile deformation (T = 1/3). In the area of biaxial
stretching of small punch specimens, T equals 2/3 which
exceeds that T-value in the necking area of tensile
specimens, thus leading to even higher surface roughness
due to profuse microshear banding.

B. About Formability of Ultrafine-Grained and
Nanostructured Metallic Materials

The results of the present investigation clearly show
that high strength UFG Cu processed via ECAP can
show very high formability in biaxial deformation at
room temperature even though it has low tensile
ductility. The enhanced formability is related to profuse
microshear banding during biaxial deformation provid-
ing significant amount of plastic strain. The formability

Fig. 9—2D AFM topography images and profiles for (a) 2P Cu and (b) 12P Cu.

Fig. 10—3D AFM topography image of surface relief of 2P Cu in
the area of biaxial stretching: evidence of cooperative grain bound-
ary sliding.
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of the UFG material in the multiaxial mode can be
controlled via microstructural design (Section IV–A–1)
and/or strain path (stress triaxiality) (Section IV–A–2).
It should be noted that similar results have been very
recently reported for UFG interstitial free steel fabri-
cated by accumulative roll bonding[33] and UFG pure Al
processed via cryorolling followed by recovery anneal-
ing.[45] Both materials showed very good stretch form-
ability sufficient for metal-forming operations. Thus, it
can be outlined that complex shape parts can be
potentially fabricated from the UFG and nanostruc-
tured metallic materials via metal-forming operations
for applications in various sectors of engineering.

V. CONCLUSIONS

(1) ECAP for 2 passes of pure Cu led to the formation
of inhomogeneous microstructure consisting of
ultrafine grains and highly deformed coarse grains
containing subgrains and shear bands, whereas
ECAP for 12 passes resulted in the formation of
homogeneous UFG microstructure with a grain
size of 100 to 250 nm.

(2) The ECAP-processed Cu demonstrated very high
strength, but low uniform elongation and elonga-
tion to failure. Small punch testing showed that
formability in biaxial stretching of the ECAP-pro-
cessed Cu was comparable to that of the coarse-
grained Cu.

(3) Inhomogeneous plastic flow in the form of profuse
microshear banding plays an important role in
biaxial stretching of the ECAP-processed Cu pro-
viding a significant amount of plastic deformation
and, therefore, formability. The activity of micro-
shear banding and formability of the ECAP-pro-
cessed Cu can be controlled via microstructural
design and/or stress triaxiality.

(4) Other mechanisms active during biaxial stretching
of the ECAP-processed Cu include dislocation
glide and grain boundary sliding.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of
the Spanish Ministry of Science and Innovation
(MAT2009-14396) and the Comunidad de Madrid
through the program ESTRUMAT (S2009/MAT-
1585). IS gratefully acknowledges the Spanish Ministry
of Science and Innovation for financial funding
through the Ramon y Cajal Fellowship. NE gratefully
acknowledges financial support by the RFBR (11-08-
12098-ofi-m-2011).

REFERENCES

1. ASM Handbook: Volume 2. Properties and Selection: Nonferrous
Alloys and Special Purpose Materials, ASM, 1990.

2. X.H. Chen, L. Lu, and K. Lu: J. Appl. Phys., 2007, vol. 102,
pp. 0837081–88.

3. N. Takata, S.H. Lee, and N. Tsuji: Mater. Lett., 2009, vol. 63,
pp. 1757–60.

4. Y. Zhang, Y.S. Li, N.R. Tao, and K. Lu: Appl. Phys. Lett., 2007,
vol. 91, pp. 2119011–13.

5. D.V. Shangina, N.R. Bochvar, and S.V. Dobatkin: J. Mater. Sci.,
2012, vol. 47, pp. 7764–69.

6. Y. Champion and Y. Brechet: Adv. Eng. Mater., 2010, vol. 12,
pp. 798–802.

7. R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. Hoppel, Y.
Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage, and
T.G. Langdon: Adv. Eng. Mater., 2007, vol. 9, pp. 527–33.

8. R.Z. Valiev, I.V. Alexandrov, T.C. Lowe, and Y.T. Zhu: J. Mater.
Res., 2002, vol. 17, pp. 5–8.

9. F.H. Dalla Torre, E.V. Pereloma, and C.H.J. Davies: Acta Mater.,
2006, vol. 54, pp. 1135–46.

10. C. Huang, S. Wu, S. Li, and Z. Zhang: Adv. Eng. Mater., 2008,
vol. 10, pp. 434–38.

11. N. Lugo, N. LLorca, J.J. Sunol, and J.M. Cabrera: J. Mater. Sci.,
2010, vol. 45, pp. 2264–73.

12. J. Gubicza, N.Q. Chinh, J.L. Lábár, S. Dobatkin, Z. Hegedus, and
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A coarse-grained (CG) Al6061 alloy after solution treatment is subjected to high pressure torsion at room

temperature resulting in the formation of a homogeneous ultra-fine grained (UFG) microstructure with

average grain size of 170 nm. Tensile tests are performed at room and liquid nitrogen temperatures for both

CG and UFG conditions. Analysis of the surface relief of the tested specimens is performed. The effect of

microstructure on the mechanical properties and on the deformation behavior of the material is discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The 6xxx Al alloys are widely used in aerospace engineering due to

their good corrosion resistance and low cost, along with good

formability and weldability [1]. It is now realized that a better

understanding of strengthening and flow properties of the Al alloys of

the 6xxx series by manipulating the grain refinement processes can

enable more effective exploitation of these alloys. It was demonstrat-

ed that severe plastic deformation can be successfully utilized for

grain refinement in the Al alloys down to ultra-fine scale [2]. Despite a

significant body of experimental research into the plastic deformation

of the UFG 6xxx Al alloys at room temperature [3,4] and elevated

temperatures [5,6], their deformation behavior at cryogenic temper-

atures has not been widely studied so far. However, these alloys in the

UFG condition have a significant potential for application in

engineering at temperatures well below zero. The objective of this

work is to study the effect of grain refinement on the mechanical

behavior of an Al6061 alloy at room and cryogenic temperatures.

2. Material and experimental procedures

Commercial grade Al–Mg–Si alloy of composition (in wt.%) 1.00

Mg, 0.61 Si, 0.12 Cu, 0.38 Cr, 0.60 Fe, 0.02 Ti, and balance Al was

chosen for this investigation. Disks with a diameter of 20 mm and a

thickness of 1 mm were solution treated at 530 °C for 2 h and water

quenched. The average grain size of the Al6061 alloy after solution

treatment and natural aging for aweek (T4 condition)was found to be

of ~100 μm. The Al6061 alloy in T4 condition also contains clusters of

Mg and Si solute atoms homogeneously distributed in the micro-

structure [7].

Water quenched disks were subjected to high pressure torsion

(HPT) for 10 turns at room temperature under a pressure of 6 GPa.

Then the samples were naturally aged for a week. To study the

microstructure, transmission electron microscopy (TEM) was carried

out using a JEOL 2100 microscope. Observations were made in both

the bright and the dark field imaging modes, and selected area

electron diffraction (SAED) patterns were recorded from several areas

of interest. At least 300 grains were analyzed by the lineal intercept

method to estimate the average grain size. Tensile specimens of gage

length 6 mm, gage width 1.5 mm, and thickness ~0.8 mm were

machined from both CG and HPT processed disks. The central axis of

the tensile specimens was located at a distance of 4.5 mm from the

disk center. Tensile specimens were deformed to failure with the

initial strain rate of 10−3 s−1 at room temperature (298 K) and liquid

nitrogen temperature (77 K). At least three specimens were deformed

at each condition and the results were found to be reproducible.

3. Results and discussion

3.1. Microstructure of the Al6061 alloy

HPT results in formation of a homogeneous UFG microstructure

consisting of equiaxed grains (Fig. 1). The histogram of grain size

distribution is presented in Fig. 2. The average grain size is 170 nm.
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Analysis of the SAED patterns shows that most of the boundaries are

high angle grain boundaries (Fig. 1a); some low angle grain

boundaries are also observed (Fig. 1c). Such microstructure is typical

of HPT processed metallic materials [2]. Atom probe tomography

studies performed on this material after HPT processing revealed

massive segregations of the Mg, Si, and Cu solute atoms along grain

boundaries [8].

3.2. Effect of grain size on mechanical behavior of the Al6061 alloy

Fig. 3 illustrates the engineering stress–engineering strain curves

for both the CG and the UFG material. Data on the mechanical

properties of the material (stress at the onset of plastic deformation

σo, 0.2% proof stress σ0.2, ultimate tensile strength σUTS, uniform

elongation εu, and elongation to failure εf) are listed in Table 1. It is

seen that HPT results in a significant increase of strength properties of

the material at both testing temperatures. However, the ductility

decreases significantly. A decrease of the testing temperature results

in a significant increase of σo, σ0.2, and σUTS in both CG and UFG

samples. It should be noted that the ratio σo
77K/σο

298K is higher for the

CG condition than for the UFG condition (Table 1). A similar trend can

be also noted for the ratio σ0.2
77K/σ0.2

298K. The uniform elongation of the

CG material increases slightly with decreasing temperature while the

Fig. 1. TEM images of the Al6061 alloy after solution treatment and HPT processing:

a) bright field image and SAED pattern; b) dark field image; c) bright field image.

Fig. 2. Histogram of the grain size distribution for the Al6061 alloy after solution

treatment and HPT processing.

Fig. 3. Engineering stress–engineering strain curves for both CG and UFG Al6061 alloys:

a) at 298 K and b) at 77 K.
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UFG material follows the opposite trend. The elongation to failure of

the CG material slightly increases whereas in the UFG alloy this

parameter increases dramatically. To estimate the strain hardening

coefficient n, the true stress–true strain curves were fitted by a single

power-law [9]

σ

σo

= α
ε

εo

� �

n

ð1Þ

where εo=σo/E and α is a dimensionless coefficient. It should be

noted that for the UFG material, only the strain hardening coefficient

at the early stage of plastic deformation can be determined due to its

low uniform elongation. It is seen that grain refinement results in a

significant decrease of the n-value at both temperatures (Table 1). A

decrease of the testing temperature leads to a slight increase of the

n-value in both CG and UFGmaterials. This can be related to increased

ability of coarse grains and ultra-fine grains to accumulate disloca-

tions due to the suppression of dislocation annihilation at 77 K that

can stabilize the material against failure [10].

A dramatic increase of the material strength after HPT can be

mainly attributed to the formation of the homogeneous UFG

microstructure that provides a significant strengthening according

to the Hall-Petch law [2]. Segregations of solute atoms induced by HPT

should also provide some additional strengthening [8]. It can be

outlined that these segregations play a key role not only in the

formation of the UFG microstructure during HPT as was suggested in

[8], but also in the deformation behavior of the UFG Al6061 alloy.

Indeed, its deformation behavior at room temperature (Fig. 2) is very

different to that reported earlier for UFG pure Al by Miyamoto et al.

(see Fig. 1 in [11]). These authors demonstrated that the UFG pure Al

tested at 298 K at strain rate of 1.6×10−3 s−1 has a viscous nature:

the material is homogeneously deformed to high strains up to ~0.15–

0.2without strain hardening [11]. A similar effect was also observed in

pure nanocrystalline (NC) Cu [12]. In both works, the authors

explained the observed effect by the predominance of grain boundary

diffusion-like mechanisms during plastic deformation of the UFG Al

and NC Cu at room temperature [11,12]. Unlike pure Al and pure Cu,

the HPT processed Al6061 alloy is a super saturated solid solution

containing massive segregations of solute atoms along grain bound-

aries, as was experimentally demonstrated earlier (see Fig. 3 in [8]).

These segregations located along grain boundaries could significantly

reduce the self-diffusion of the Al atoms along grain boundaries [13]

suppressing activation of grain boundary diffusion mechanisms

during plastic deformation at room temperature.

There is a body of experimental research on the deformation

behavior of pure metals at cryogenic temperatures [10,11,14]. Ultra-

high yield strength at 77 K was observed in NC Ni (1237 MPa) and NC

Co (1711 MPa) [14]. It was demonstrated that the ratio σy
77K/σy

298K is

significantly larger for the NC pure metals than for their CG

counterparts. For instance, for the NC Ni this ratio was found to be

1.47, whereas for the CG Ni it was 1.20 [14]. This effect was related to

the activity of the grain boundary dislocation nucleation as the

thermally activated deformation mechanism in NC grains. However,

the UFG Al6061 alloy shows the opposite behavior: the ratio

σy
77K/σy

298K is larger for the CG material than for the UFG one

(Table 1). This observation can be rationalized as follows. A

temperature drop down to 77 K could induce local thermal residual

stresses in the material due to the difference in thermal expansion

coefficient between the Al matrix and areas with the massive

segregations of solute atoms. As well known, the yield strength of

the UFGmetallic materials is determined by the stress required for the

emission of dislocations at grain boundaries [15]. In the UFG Al6061

tested at liquid nitrogen temperature, dislocations could be generated

at a lower applied stress compared to that in the UFG pure metal due

to the local thermal residual stresses already induced at grain

boundaries due to the temperature drop.

4. Conclusions

HPT processing can be successfully applied for the fabrication of

the UFG Al6061 alloy with a grain size of 100–200 nm. The UFG

Al6061 alloy shows higher strength at both 298 K and 77 K. A decrease

of the testing temperature results in improved strength of both the CG

and the UFG material, increased strain hardening coefficient, and

enhanced elongation to failure. However, the deformation behavior of

the UFG Al6061 alloy is very different to that of the UFG and NC pure

metals. Unlike in pure metals, the ratio σy
77K/σy

298K is larger for the CG

material (1.47) than for the UFG one (1.23). These effects could be

related to the presence of segregations of solute atoms along grain

boundaries.
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Table 1

Mechanical properties of the coarse-grained and ultra-fine grained Al6061 at 298 K and

77 K.

σo (MPa) σ0.2 (MPa) σUTS (MPa) εu (%) εf (%) n

CG 298 K 160 170 300 21 25.7 0.22

77 K 235 245 430 26.8 28.3 0.26

σ
77K/σRT 1.47 1.44

UFG 298 K 430 545 630 1.5 1.8 0.07

77 K 530 605 705 1.2 6.3 0.09

σ
77K/σRT 1.23 1.11
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