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Abstract

This paper introduces an extension of the p-median problem and its ap-

plication to clustering, in which the distance/dissimilarity function between

units is calculated as the distance sum on the q most important variables.

These variables are to be chosen from a set of m elements, so a new combina-

torial feature has been added to the problem, that we call the p-median model

with distance selection. This problem has its origin in cluster analysis, often

applied to sociological surveys, where it is common practice for a researcher

to select the q statistical variables they predict will be the most important in

discriminating the statistical units before applying the clustering algorithm.

Here we show how this selection can be formulated as a non-linear mixed

integer optimization mode and we show how this model can be linearized in

several different ways. These linearizations are compared in a computational

study and the results outline that the radius formulation of the p-median is
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the most efficient model for solving this problem.
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1. Introduction

This paper studies the following clustering problem: suppose that we are

given a set U = {ui}
n
i=1 of statistical units that are measured through a set

of quantitative or qualitative features F = {fk}
m
k=1. These units and features

are collected in a data matrix V = [vik], where vik is the value that feature fk

takes for unit ui. Our goal is to partition this set U into clusters such that

the units classified in the same cluster are as similar as possible.

Clustering is one of the most common techniques of multivariate and

exploratory data analysis and its principles can be found in many text books

(for example, [9, 10]). The most common methods for clustering consist

of two steps: in the first step, a dissimilarity measure or distance dij is

established for every pair of units (ui, uj); in the second step, a clustering

algorithm is applied to obtain the data partition. The most common methods

are hierarchical partitions ([4]), or the application of the k-means method

([18]), and its variants (see [15]). One of these methods is based on the

classical p-median problem ([14]), a model whose application to clustering

is recorded in several studies ([20, 19, 16, 23, 1, 17]). More precisely, this

model establishes the best clustering as the partition that after having chosen

p representative elements (medians), then minimizes the total sum of the

distances (equivalently, average distance) between each unit and its closest

median. The model can be expressed in combinatorial terms as follows:
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min
P ⊆ U

|P | = p

∑

ui∈U

min{d(ui, uj) / uj ∈ P}.

The model that we introduce in this paper assumes that the set F is large:

not all statistical variables are relevant for clustering. In other words, some

of them are useless or irrelevant to cluster membership, and including them

in the distance function would only blur the distance/dissimilarity measure

dij with redundant or irrelevant information. This situation is common when

working with large databases as, for example, in large opinion polls or in cen-

sus data, where the features F are more than hundreds. For example, the

surveys contained in the World Value Survey repository ([24]) contain sam-

ples in which each statistical unit constitutes the answer to a questionnaire

of more than 200 questions (i.e.,m > 200).

The most important aspects that describe the differences between units

are often unclear. For example, we do not know a priori which social variables

affect religious versus secular attitudes, or how righ-wing/left wing voters

are characterized. As a consequence, the researcher reduces the database

dimension considering small subsets of statistical variables: Q ⊆ F . Then,

for every chosen subset Q, the researcher defines the distance function dQ,

solves a p-median model and observes the clustering result. In practice,

this choice is often arbitrary: Q is selected by rule of thumb (for example,

with the support of some descriptive statistics). However, since the number

of subsets Q grows exponentially with the size of F , the researcher would

benefit from a method of automatic pattern recognition.

In this paper, we propose a model that simultaneously selects the best
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set Q, the optimal medians P and the optimal partition. This model is

an extension of the p-median problem, but in which the computation of

the distances depends not only on the medians P ⊆ U but also on the

selected features Q ⊆ F . In combinatorial terms, the problem is formulated

as follows:

min
P ⊆ U, |P | = p

Q ⊆ F, |Q| = q

∑

ui∈U

min{dQij / uj ∈ P},

As can be seen, we have retained the p-median (and k-means) clustering

approach that optimal partitions are characterized by the min-sum objec-

tive function and we call this problem the p-median problem with distance

selection.

In some applications, the distance dQij is (or can be turned into) a linear

function, so the problem is more tractable from a computational point of

view. This is the case when we use the Manhattan distance (instead of the

Euclidean, for example). In the applications that motivated this paper, we

dealt with qualitative or ordinal data, coming from opinion polls or ranking

assessments (see [2, 3, 24]). Qualitative data are expressed in the 0/1 binary

scale, corresponding to the presence/absence of a feature, while ordinal data

may represent an A-B-C quality assessment, or the 1-5 range of a Likert

scale (1=“Strongly disagree”, 2=“Disagree”, 3=“Neither agree nor disagree”,

4=“Agree”, 5=“Strongly agree”). For this kind of data, the most natural

distance function is the Manhattan distance, for which dij =
∑

k |vik − vjk|

and, therefore, dQij =
∑

k∈Q |vik − vjk|.

As will be shown in Section 2, the p-median model can be directly ex-

tended to consider the decision variables Q ⊆ F too, but this extension leads
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to a quadratic non-convex problem. Instead of developing new solution tools

for this particular non-linear model, our approach is to study different re-

formulations as a mixed integer linear problem and to determine which is

the most efficient. The first formulation is a direct linearization of the ini-

tial quadratic model, and the second looks like an extension of the classic

p-median formulation introduced in [21]. Two alternative formulations are

then obtained through an arithmetic manipulation of these models, with the

aim of reducing their size. Finally, the last model is the extension of the so-

called radius formulation of the p-median problem: initially proposed in [5]

for the uncapacitated facility location problem, this idea was employed in

the following twenty-five years only in very few papers ([22, 6]), until re-

cently, when it was used to solve the p-center problem ([8]). In recent years,

the main advantage of this formulation (a reduced number of variables and

constraints) has been exploited successfully to solve the p-median problem

([7, 11]) and the p-hub median problem ([12]). This paper follows this stream

of reasearch, showing that the radius formulation is the most efficient way to

solve the p-median problem with distance selection.

The rest of the paper is organized as follows. The p-median problem

with distance selection is formulated in Section 2. The five different linear

formulations are proposed in Section 3 and a computational study is carried

out in Section 4. Finally, some conclusions are given in Section 5.

2. Model formulation

Assume that we are given a sample U = {ui}
n
i=1 of statistical units. For

every unit i, the set F = {fk}
m
k=1 of statistical variables (i.e., features) is
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measured. We assume that, as is common in opinion polling or attitude

surveys, variables fk are represented by qualitative or ordinal data. If the

data are qualitative, they are represented by 0-1. If the data are ordinal with

g occurencies, or they are represented by a Likert scale with a finite number g

of tiers, then we will refer to g as the dimension of the scale.

Let vik be the record of variable k for unit i. The distance, or difference,

between unit ui and unit uj with respect to the feature fk is dijk = |vik−vjk|

and the overall distance between ui and uj is the 1-norm:

dij =
m
∑

k=1

dijk =
m
∑

k=1

|vik − vjk|.

Suppose now that only a subset Q ⊆ F of statistical variables are con-

sidered relevant for the analysis and that, as a consequence, the differences

between the units are calculated using Q only. The distance formula is thus

expressed using the incidence vector z of subset Q:

dij =
m
∑

k=1

dijkzk,

where zk = 1 if fk ∈ Q and zk = 0 otherwise.

Data must be clustered using the p-median model and the min-sum cri-

terion, so that its outcome consists of p clusters and its median is the most

representative element, i.e., the cluster archetype. We define binary vari-

ables yj, j = 1, . . . , n, that take value 1 if unit j is a median (and 0 other-

wise), and binary assignment variables xij, i, j = 1, . . . , n, that take value 1

if unit i is assigned to the cluster j (and 0 otherwise). The model that we

obtain is the following:

(F0) min
n
∑

i=1

n
∑

j=1

(

m
∑

k=1

dijk

)

xij
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s.t. xij ≤ yj, i, j = 1, . . . , n,

n
∑

j=1

xij = 1, i = 1, . . . , n,

n
∑

j=1

yj = p,

xij ≥ 0, i, j = 1, . . . , n,

yj = {0, 1} , j = 1, . . . , n.

Note that the assignment variables xij need not be declared binary because

for fixed values of y there is always an optimal integral assignment.

If we now impose that only a subset Q ⊆ F of variables is to be used, we

introduce new binary variables zk, k = 1, . . . ,m, that stand for the incidence

vector of Q, i.e., zk = 1 if fk ∈ Q (and zk = 0 otherwise). Then, the previous

model is enlarged with the new variables zk:

(F1) min
n
∑

i=1

n
∑

j=1

(

m
∑

k=1

dijkzk

)

xij

s.t. xij ≤ yj, i, j = 1, . . . , n,

n
∑

j=1

xij = 1, i = 1, . . . , n,

n
∑

j=1

yj = p,

m
∑

k=1

zk = q,

xij ≥ 0, i, j = 1, . . . , n,

yj ∈ {0, 1}, j = 1, . . . , n,

zk ∈ {0, 1}, k = 1, . . . ,m.
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This formulation is non-linear because of the quadratic terms in the objective

function. Moreover, the objective function is non-convex because the distance

matrix is not positive semidefinite (the terms dijk can be arranged in such

a way that the matrix is composed of zeros on the main diagonal and has

positive or null terms elsewhere). Since the potential to solve to optimality

large instances of a non-convex quadratic model is quite low, our goal is to

linearize this formulation (F1).

3. Integer linear formulations of p-median with distance selection

In this section, we propose five different ways to reformulate model (F1)

as a mixed integer linear problem.

3.1. Direct linearization of the quadratic variables

Formulation (F1) is a mixed integer quadratic problem that can be turned

into a linear mixed integer problem by introducing the new variables

wijk = xijzk, i, j = 1, . . . , n, k = 1, . . . ,m.

Observe that variables wijk represent the 0-1 assignment of unit i to median j

using variable k. Then, we need to add the inequalities

wijk ≤ xij, i, j = 1, . . . , n, k = 1, . . . ,m, (1)

wijk ≤ zk, i, j = 1, . . . , n, k = 1, . . . ,m, (2)

wijk ≥ xij + zk − 1, i, j = 1, . . . , n, k = 1, . . . ,m,

xij ∈ {0, 1}, i, j = 1, . . . , n,

zk ∈ {0, 1}, k = 1, . . . ,m.
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Although we are imposing that variables xij must be binary, we can see

that this condition can be replaced by xij ≥ 0. Since we are considering a

minimization problem, distances dijk are positive, and variables zk and yj are

binary, there is a continuous optimal assignment xij that is binary. Besides,

inequalities (1) and (2) are not necessary because they are satisfied at every

optimal solution of the following model that linearizes formulation (F1):

(F2) min
n
∑

i=1

n
∑

j=1

m
∑

k=1

dijkwijk

s.t. xij ≤ yj, i, j = 1, . . . , n,

n
∑

j=1

xij = 1, i = 1, . . . , n,

n
∑

j=1

yj = p,

m
∑

k=1

zk = q,

wijk ≥ xij + zk − 1, i, j = 1, . . . , n, k = 1, . . . ,m,

wijk ≥ 0, i, j = 1, . . . , n, k = 1, . . . ,m,

xij ≥ 0, i, j = 1, . . . , n,

yj ∈ {0, 1}, j = 1, . . . , n,

zk ∈ {0, 1}, k = 1, . . . ,m.

This formulation contains n2(m+1)+n+2 constraints and n2(m+1)+n+

m variables, n+m of which are binary. It must be remarked that, for fixed

values of z, this is basically a p-median problem.
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3.2. A p-median style formulation

An alternative formulation using only variables wijk, yj and zk is the

following:

(F3) min
n
∑

i=1

n
∑

j=1

m
∑

k=1

dijkwijk

s.t.
m
∑

k=1

wijk ≤ qyj i, j = 1, . . . , n, (3)

n
∑

j=1

wijk = zk i = 1, . . . , n, k = 1, . . . ,m, (4)

m
∑

t=1,
t 6=k

wijt ≥ (q − 1)wijk i, j = 1, . . . , n, k = 1, . . . ,m, (5)

n
∑

j=1

yj = p,

m
∑

k=1

zk = q,

wijk ≥ 0, i, j = 1, . . . , n, k = 1, . . . ,m,

yj ∈ {0, 1}, j = 1, . . . , n,

zk ∈ {0, 1}, k = 1, . . . ,m.

Constraints (3) impose that unit i can be allocated to unit j only if this unit is

chosen as a cluster median. Note that this is an aggregation of the constraints

wijk ≤ yk: they are equivalent but the aggregated version (3) performed

slightly better than the disaggregated form. Constraints (4) establish that,

for fixed i and k, unit i must be allocated to some cluster median using

variable k if, and only if, this variable k is selected. Finally, inequalities (5)

guarantee the correct synchronization of the assignments: if unit i is allocated
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to median j using variable k, then it must be allocated to the same median j

using the other q − 1 selected variables.

This model has n2(m+1)+nm+2 inequalities and n2m+m+n variables,

n +m of which are binary. Observe that wijk need not be declared integer

as, for fixed values of y and z, there is always an optimal binary assignment.

3.3. Arithmetic reformulations

The following two reformulations are two attempts to reduce the size of

the problem. As will be seen, there is no combinatorial property that is used,

but only some mathematics are involved in the computation of the allocation

cost that allow some form of reduction. This is the reason why we call them

arithmetic reformulation.

Both of the previous formulations have O(n2m) variables. Now, we get a

third formulation with only O(n2) variables:

(F4) min
n
∑

i=2

i−1
∑

j=1

hij

s.t. xij ≤ yj, i, j = 1, . . . , n,

n
∑

j=1

xij = 1, i = 1, . . . , n,

n
∑

j=1

yj = p,

m
∑

k=1

zk = q,

hij +Mij(1− xij − xji) ≥
m
∑

k=1

dijkzk, 1 ≤ j < i ≤ n, (6)

hij ≥ 0, i, j = 1, . . . , n, j < i,

11



xij ∈ {0, 1}, i, j = 1, . . . , n,

0 ≤ yj ≤ 1, j = 1, . . . , n,

0 ≤ zk ≤ 1, k = 1, . . . ,m.

In this formulation, hij represents the assignment cost of pair (i, j), either

of assigning unit i to median j or of assigning unit j to median i (at most

one of these two events will happen), and it takes value zero if none of these

two assignments happens. We do not need hij if j ≥ i because dijk = djik

and diik = 0. In order to define correctly constraints (6), it is enough that

Mij ≥
∑q

k=1 dij(n−k+1), where dij(t) is the t-th largest dijk value (i.e., Mij is

at least the sum of the q largest distances associated to (i, j)).

Although it has only O(n2) constraints and O(n2) variables, this formu-

lation has the disadvantage of having n2 binary variables. Contrary to the

other two formulations, F4 does not require yj or zk to be binary: since vari-

ables xij are binary, then there is an optimal solution where variables yj take

values either zero or one. Concerning variables zk, just note that the right

hand side of constraints (6) will be as small as possible because we are in a

minimization problem and, as a consequence, these variables will take value

either zero or one at an optimal solution.

Finally, one further observation is that variables hij can be reduced to

just hi, that is, the measured distance for unit i. The new formulation is:

(F5) min
n
∑

i=1

hi

s.t. xij ≤ yj, i, j = 1, . . . , n,

n
∑

j=1

xij = 1, i = 1, . . . , n,
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n
∑

j=1

yj = p,

m
∑

k=1

zk = q,

hi +Mij(1− xij) ≥
m
∑

k=1

dijkzk, i, j = 1, . . . , n,

hi ≥ 0, i = 1, . . . , n,

xij ∈ {0, 1}, i, j = 1, . . . , n,

0 ≤ yj ≤ 1, j = 1, . . . ,

0 ≤ zk ≤ 1, k = 1, . . . ,m.

3.4. Radius formulation

Last, we propose a totally different model: a radius formulation as intro-

duced in [5] and recently applied very successfully to the p-median problem

in [11]. Given a statistical unit ui and a statistical feature fk, we have that,

since the statistical features are expressed in the Likert scale with g degrees,

many units are located at the the same distance, i.e., within a given radius.

In order to obtain the radius formulation, we first proceed as follows:

Step 1: Given a customer i, sort distances {di1k, di2k, . . . , dink} in increasing

order and remove multiplicities to obtain Gik different values. Let Dik1

be the smallest cost, Dik2 the second smallest cost and so on:

0 = Dik1 < Dik2 < . . . < DikGik
.

Step 2: Define binary variables rikt that take value one if, when feature k is se-

lected, unit i is allocated at distance at least Dikt (and zero otherwise).
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It is quite easy to see that

Gik
∑

t=2

(Dikt −Dik,t−1)rikt =
n
∑

j=1

dijkwijk,

and, as a consequence, the objective function is

n
∑

i=1

m
∑

k=1

Gik
∑

t=2

(Dikt −Dik,t−1)rikt.

The resulting model uses also variables yj, xij and zk defined as in the pre-

vious models:

(F6) min
n
∑

i=1

m
∑

k=1

Gik
∑

t=2

(Dikt −Dik,t−1)rikt

s.t. xij ≤ yj, i, j = 1, . . . , n,

n
∑

j=1

xij = 1, i = 1, . . . , n

n
∑

j=1

yj = p,

m
∑

k=1

zk = q,

rikt +
∑

{j / dijk<Dikt}

xij ≥ zk, i = 1, . . . , n,

k = 1, . . . ,m, t = 2, . . . , Gik, (7)

rikt ≥ 0, i = 1, . . . , n, k = 1, . . . ,m, t = 2, . . . , Gik,

xij ≥ 0, i, j = 1, . . . , n,

yj ∈ {0, 1}, j = 1, . . . , n,

zk ∈ {0, 1}, k = 1, . . . ,m.
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Given a unit i, a feature k and a distance level Dikt, constraint (7) imposes

that, if feature k is selected (zk = 1), then either i is allocated to a median j

such that this median is at distance dijk < Dijt, or, if this is not possible, it

is allocated to at least distance Dikt (rikt = 1). Note also that, since we are

minimizing and the distances are positive, there exists an optimal solution

such that variables xij are zero/one. It is also immediate to see that we do

not need to require variables rikt to be binary because they will have values

either zero or one at an optimal solution.

Finally, observe that the number of variables of this model is n+m+n2+
∑n

i=1

∑m
k=1Gik, where n+m variables are binary. Since Gik ≤ g, where g is

the dimension of the scale that we are using for the answers (e.g., g = 2 if

the answers are binary and g = 5 if we are using a 1-5 Likert scale), then the

number of variables is upperly bounded by n+m+ n2 + nmg. Particularly,

in our application, g is the number of tiers of the Likert scale and it is always

a small number (i.e., O(1)).

In Table 1 we can see a comparison of the number of constraints and

variables of the different formulations (in the case of model F6, the given

value is an upper bound). In Table 2, we compare the order of these sizes.

We can see that the radius formulation has always the best order in the

number of constraints and variables (while the other models are always worse

in either constraints or variables).

4. Computational experience

In this section we show an exhaustive computational study to analyze the

performance of the formulations proposed in the previous section.
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Formulation Constraints Variables Binary

F2 n2(m+ 1) + n+ 2 n2(m+ 1) + n+m n+m

F3 n2(m+ 1) + nm+ 2 n2m+m+ n n+m

F4
3n2−n

2 + 2 3n2+n
2 +m n2

F5 2n2 + n+ 2 n2 + 2n+m n2

F6 n2 + n(mg + 1) + 2 n2 + n(mg + 1) +m n+m

Table 1: Number of variables and constraints.

Formulation Constraints Variables Binary

F2 O(n2m) O(n2m) O(n+m)

F3 O(n2m) O(n2m) O(n+m)

F4 O(n2) O(n2) O(n2)

F5 O(n2) O(n2) O(n2)

F6 O(n2) O(n2) O(n+m)

Table 2: Order of variables and constraints.

4.1. Instances generation

Models are tested on artificial data, with different values of n and m for

the data dimension (they are the number of statistical units and statisti-

cal variables, respectively) and different values of p and q for the parameter

specification (the number of clusters and statistical variables to select, respec-

tively). Besides, we also simulated two kinds of answers, corresponding to

two types of Likert scales: one scale has g = 2 and simulates a questionnaire

composed of 0/1 binary variables, the second scale has g = 5 and represents
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agreement levels with tiers ranging from strongly disagree to strongly agree.

The simulated data are built following two steps. In the first step we

fixed p∗ (correct number of clusters), d∗ ( number of relevant variables), and

the structure of the medians. In the second step we compiled the whole

survey based on these hidden features.

In step 1, the ideal archetypes of each cluster, i.e., the cluster medians, are

reported in a matrix F ∈ R
p∗,d∗ , where fij is the value of feature j in median i,

p∗ is the number of medians and d∗ is the number of the relevant features.

Particularly, when g = 2, instances of type L1A contain two medians with

four relevant features with the following structure:

L1A =





1 1 1 1

0 0 0 0



 ,

and instances of type L1B contain four medians with six features as follows:

L1B =

















1 1 1 1 1 1

0 0 0 0 0 0

1 0 1 1 0 1

1 0 0 0 0 1

















When g = 5, instances of type L5A contain two hidden medians with four

features like this:

L5A =





4 4 4 4

2 2 2 2



 ,

and instances of type L5B have four medians and six features as in the

following matrix:
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L5B =

















4 4 4 4 4 4

2 2 2 2 2 2

3 4 4 5 5 5

3 2 2 1 1 1

















.

The second step is to simulate artificial surveys, which take the form of a

matrix V ∈ ℜn,m where vij is the answer of unit i to question j. We generate

the instances in such a way that m = 2d∗, that is, half the features determine

the cluster and the other half are useless. Then, two types of instances are

considered. The first kind of instances, which we call deterministic instances

and have the suffix “H” in their name, are compiled in such a way that

units are the same as one median with respect to the correct d∗ features.

Every unit i is assigned randomly to a median j, and then vik = fjk for

k = 1, . . . , d∗, while the other values vik for k = d∗ + 1, . . . ,m, are uniform

random numbers. The second type of instances, that are called probabilistic

instances and have the suffix “P” in their name, simulates surveys with more

variability. In this case each unit i is assigned randomly to one median j,

its feature vik = fjk with probability 0.8, uniform random with probability

of 0.2 for k = 1, . . . , d∗. The other values vik for k = d∗ + 1, . . . ,m, are

uniform random numbers.

4.2. Test results

Instances are generated and solved by combining the following values of

the different parameters:

• n = 30, 50, 80.
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• m = 8 (instances A) or m = 12 (instances B).

• Parameters p and q have the following values:

– Instances A: p = 2, 4, 6, and q = 2, 4, 6.

– Instances B: p = 2, 4, 6, and q = 3, 6, 8.

• Type of data: deterministic (H) or probabilistic (P).

• Number of medians: 2 or 4.

• Scale: binary (L1) or Likert (L5).

Therefore, we have 3 × 2 × 3 × 3 × 2 × ×2 = 216 different instances,

each of which we tested on the five different models introduced in the pre-

vious section (F2, F3, F4, F5, and F6). We carried out the computational

study on a Pentium IV computer with two processors (3.2 and 3.2 GHz)

and 2 GB RAM. For each formulation and instance, the time limit was set

to 3600 seconds of CPU time. The models were solved using the academic

license of CPLEX 12.3.

In Tables 3a (deterministic instances) and 3b (probabilistic instances),

we summarize the results of our computational study. In each table, for

a given scale (L1/L5), type of data (A/B) and nature of data (determin-

istic/probabilistic) we have compacted the information that corresponds to

the 27 instances that we have when we consider the different numbers of sta-

tistical units (n = 30, 50, 80) and the nine different pairs (p, q). For example,

L1AH stands for the information of the 27 instances for scale L1, data A and

deterministic case. The information that we provide is the following:
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• Average: average time in CPU seconds. We consider solved instances

and instances that reach the time limit, but not those instances that

run out of memory.

• Median: median of the CPU times as before.

• SR60: number of instances solved to optimality in less than 60 seconds.

• Solved: number of instances solved to optimality before the time limit.

• Not solved: number of instances that reach the time limit without

optimality.

• Out of memory: number of instances for which the computer runs out

of memory.

What is clear from these tables, no matter which measure we consider, is

that the radius formulation is by far the best model. Next, if we compare for-

mulation F2 (the direct linearization) with formulation F3 (the p-median style

one), we cannot see a clear superiority of one over the other: in some cases

F2 is better and in some other occasions F3 is (although, in global, F2 seems

to be slightly better than F3). Finally, if we look at formulations F4 and F5,

then we see that their behaviour is more erratic: in some cases they reach

optimality quite fast (as it can be seen from the medians of instances L1AH

and L5AH), but in the other they perform extremely bad. Anyway, both

of them are the worst models. From the tables, we can see that instances

of type A are more difficult to solve than instances of type B, but this is

is something natural because these last instances involve more features (i.e.,

the problems are larger).
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In Table 4 we show the same information than before, but now it has been

blocked in the three different sizes (n = 30, 50, 80), which means that there

are 72 instances per block. In this new classification, the superiority of the

radius formulation keeps consistent through the three sizes of instances. The

main reason for this success is that model F6 combines a reduced formulation

with a small number of binary variables. Particularly, it is quite important

the fact that, given a unit i and a feature k, there are very few different

values dijk and, thus, there are not too many rikt variables.

Finally, detailed information for every instance is given in Tables 5-12.

Here, we show the information of formulations F2, F3 and F6. The other

formulations (F4 and F5), performing extremely bad, are of no interest. The

first three columns are the number of statistical units (n), number of medians

(p) and number of relevant features used to measure the distances between

units (q). Then, for each of the three shown formulations, we have the CPU

time in seconds (T), best lower bound (BLB), best upper bound (BUB) and

gap between these two values (Gap). A gap of zero means that the instance

has been solved to optimality and this fact is highlighted by showing the best

upper bound in boldface. We can see here more clearly than formulation F6

performs extremely well when compared with formulations F2 and F3: the

radius formulation is the best for all the considered instances. However, there

are some particular hard instances, mainly probabilistic instances of type B

with n = 80, that not even this best formulation can solve (but, even so, it

is still the one that performs the best).
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5. Conclusions and further research

Motivated by an application to clustering in sociological surveys, we have

introduced in this paper a new extension of the p-median model where the

distances between statistical units are calculated using only q out of m possi-

ble variables. Five different models are introduced to determine the optimal

data partition and are compared: the computational experience shows that

the radius formulation outperforms clearly any of the other proposed models.

Note that, although formulation F6 performs the best, there are several

instances that not even this formulation can solve. As a consequence, the

next step of our research will be to analyze this formulation and look for

some special properties that allow us to develop efficient solution algorithms

to solve very large instances (for example, in the line of the methods de-

veloped in [11] and [12]). An improvement to the model may come from

taking advantage of the equivalence between the radius formulation and the

Hammer-Beresnev pseudo-boolean representation of the p-median problem.

As noted in [13], the equivalence shows how many variables can be fixed to

0 and 1 before applying the optimization solver, reducing considerably the

computational times. Whether those techniques can be extended to the case

of variable selection will be an issue of future research.
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F2 F3 F4 F5 F6

n=30 Average 275 899 2100 2236 20

Median 96 158 3600 3600 9

SR60 29 25 21 21 64

Solved 72 62 28 28 72

Not solved 0 10 34 40 0

Out of memory 0 0 10 4 0

n=50 Average 1595 1868 1897 2016 171

Median 1193 1600 3600 3600 60

SR60 14 17 19 20 36

Solved 54 43 20 23 72

Not solved 18 29 22 28 0

Out of memory 0 0 30 21 0

n=80 Average 2650 2569 2553 2647 1196

Median 3600 3600 3600 3600 434

SR60 13 12 11 9 22

Solved 25 26 19 21 58

Not solved 47 46 42 44 14

Out of memory 0 0 11 7 0

Table 4: Summary statistics by size.
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F2 F3 F6

n p q T BLB BUB Gap T BLB BUB Gap T BLB BUB Gap

30 2 2 1 0.00 0.00 0.00 3 0.00 0.00 0.00 1 0.00 0.00 0.00

30 2 4 25 0.00 0.00 0.00 2 0.00 0.00 0.00 1 0.00 0.00 0.00

30 2 6 125 22.00 22.00 0.00 87 22.00 22.00 0.00 5 22.00 22.00 0.00

30 4 2 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 4 4 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 4 6 99 10.00 10.00 0.00 301 10.00 10.00 0.00 4 10.00 10.00 0.00

30 6 2 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 6 4 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 6 6 28 2.00 2.00 0.00 73 2.00 2.00 0.00 9 2.00 2.00 0.00

50 2 2 49 0.00 0.00 0.00 9 0.00 0.00 0.00 1 0.00 0.00 0.00

50 2 4 542 0.00 0.00 0.00 76 0.00 0.00 0.00 3 0.00 0.00 0.00

50 2 6 885 34.00 34.00 0.00 541 34.00 34.00 0.00 29 34.00 34.00 0.00

50 4 2 5 0.00 0.00 0.00 4 0.00 0.00 0.00 1 0.00 0.00 0.00

50 4 4 5 0.00 0.00 0.00 4 0.00 0.00 0.00 1 0.00 0.00 0.00

50 4 6 398 13.00 13.00 0.00 1166 13.00 13.00 0.00 37 13.00 13.00 0.00

50 6 2 5 0.00 0.00 0.00 4 0.00 0.00 0.00 1 0.00 0.00 0.00

50 6 4 5 0.00 0.00 0.00 4 0.00 0.00 0.00 1 0.00 0.00 0.00

50 6 6 341 5.00 5.00 0.00 618 5.00 5.00 0.00 29 5.00 5.00 0.00

80 2 2 39 0.00 0.00 0.00 26 0.00 0.00 0.00 15 0.00 0.00 0.00

80 2 4 43 0.00 0.00 0.00 26 0.00 0.00 0.00 18 0.00 0.00 0.00

80 2 6 3600 0.00 68.00 100.00 3600 25.20 72.00 65.00 130 68.00 68.00 0.00

80 4 2 32 0.00 0.00 0.00 25 0.00 0.00 0.00 5 0.00 0.00 0.00

80 4 4 36 0.00 0.00 0.00 26 0.00 0.00 0.00 7 0.00 0.00 0.00

80 4 6 3600 0.00 30.00 100.00 3600 5.00 30.00 83.33 185 27.00 27.00 0.00

80 6 2 30 0.00 0.00 0.00 25 0.00 0.00 0.00 3 0.00 0.00 0.00

80 6 4 34 0.00 0.00 0.00 26 0.00 0.00 0.00 6 0.00 0.00 0.00

80 6 6 3600 0.00 7.00 100.00 3600 0.00 19.00 100.00 222 7.00 7.00 0.00

Table 5: Instances L1AH (m = 8).
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F2 F3 F6

n p q T BLB BUB Gap T BLB BUB Gap T BLB BUB Gap

30 2 2 26 6.00 6.00 0.00 410 6.00 6.00 0.00 14 6.00 6.00 0.00

30 2 4 189 24.00 24.00 0.00 2167 24.00 24.00 0.00 18 24.00 24.00 0.00

30 2 6 201 41.00 41.00 0.00 244 41.00 41.00 0.00 7 41.00 41.00 0.00

30 4 2 2 0.00 0.00 0.00 3 0.00 0.00 0.00 1 0.00 0.00 0.00

30 4 4 81 12.00 12.00 0.00 513 12.00 12.00 0.00 28 12.00 12.00 0.00

30 4 6 155 28.00 28.00 0.00 443 28.00 28.00 0.00 7 28.00 28.00 0.00

30 6 2 3 0.00 0.00 0.00 2 0.00 0.00 0.00 1 0.00 0.00 0.00

30 6 4 63 6.00 6.00 0.00 344 6.00 6.00 0.00 27 6.00 6.00 0.00

30 6 6 76 20.00 20.00 0.00 199 20.00 20.00 0.00 5 20.00 20.00 0.00

50 2 2 218 12.00 12.00 0.00 3600 0.00 12.00 100.00 154 12.00 12.00 0.00

50 2 4 1845 37.00 37.00 0.00 3600 1.75 37.00 95.28 127 37.00 37.00 0.00

50 2 6 2202 73.00 73.00 0.00 1914 73.00 73.00 0.00 41 73.00 73.00 0.00

50 4 2 7 0.00 0.00 0.00 32 0.00 0.00 0.00 2 0.00 0.00 0.00

50 4 4 782 22.00 22.00 0.00 3600 4.84 24.00 0.00 154 22.00 22.00 0.00

50 4 6 1901 51.00 51.00 0.00 1782 51.00 51.00 0.00 41 51.00 51.00 0.00

50 6 2 9 0.00 0.00 0.00 11 0.00 0.00 0.00 1 0.00 0.00 0.00

50 6 4 732 13.00 13.00 0.00 3281 13.00 13.00 0.00 232 13.00 13.00 0.00

50 6 6 1145 39.00 39.00 0.00 3600 20.72 41.00 49.47 32 39.00 39.00 0.00

80 2 2 3208 22.00 22.00 0.00 3600 0.00 30.00 10.00 594 22.00 22.00 0.00

80 2 4 3600 0.00 118.00 100.00 3600 0.00 165.00 10.00 1398 61.00 61.00 0.00

80 2 6 3600 0.00 128.00 100.00 3600 70.46 116.00 39.26 227 113.00 113.00 0.00

80 4 2 84 0.00 0.00 0.00 94 0.00 0.00 0.00 13 0.00 0.00 0.00

80 4 4 3600 0.00 66.00 100.00 3600 0.00 213.00 10.00 1066 36.00 36.00 0.00

80 4 6 3600 0.00 79.00 100.00 3600 38.68 109.00 64.52 258 79.00 79.00 0.00

80 6 2 32 0.00 0.00 0.00 66 0.00 0.00 0.00 12 0.00 0.00 0.00

80 6 4 3600 0.00 23.00 100.00 3600 0.00 226.00 100.00 491 23.00 23.00 0.00

80 6 6 3600 0.00 66.00 100.00 3600 26.31 65.00 59.53 224 62.00 62.00 0.00

Table 6: Instances L1AP (m = 8).
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F2 F3 F6

n p q T BLB BUB Gap T BLB BUB Gap T BLB BUB Gap

30 2 3 93 6.00 6.00 0.00 2234 6.00 6.00 0.00 22 6.00 6.00 0.00

30 2 6 620 28.00 28.00 0.00 3600 7.77 28.00 72.26 49 28.00 28.00 0.00

30 2 8 1468 47.00 47.00 0.00 3070 47.00 47.00 0.00 35 47.00 47.00 0.00

30 4 3 1 0.00 0.00 0.00 14 0.00 0.00 0.00 1 0.00 0.00 0.00

30 4 6 6 0.00 0.00 0.00 40 0.00 0.00 0.00 1 0.00 0.00 0.00

30 4 8 291 18.00 18.00 0.00 3600 13.10 18.00 27.20 17 18.00 18.00 0.00

30 6 3 4 0.00 0.00 0.00 10 0.00 0.00 0.00 1 0.00 0.00 0.00

30 6 6 19 0.00 0.00 0.00 44 0.00 0.00 0.00 1 0.00 0.00 0.00

30 6 8 283 10.00 10.00 0.00 1512 10.00 10.00 0.00 18 10.00 10.00 0.00

50 2 3 1386 7.00 7.00 0.00 3600 0.00 15.00 100.00 258 7.00 7.00 0.00

50 2 6 3600 12.00 38.00 68.42 3600 0.00 198.00 100.00 237 38.00 38.00 0.00

50 2 8 3600 19.00 75.00 74.67 3600 31.91 245.00 86.97 142 75.00 75.00 0.00

50 4 3 113 0.00 0.00 0.00 60 0.00 0.00 0.00 1 0.00 0.00 0.00

50 4 6 2413 0.00 0.00 0.00 474 0.00 0.00 0.00 3 0.00 0.00 0.00

50 4 8 3600 22.33 39.00 42.74 3600 2.78 50.00 94.44 199 39.00 39.00 0.00

50 6 3 9 0.00 0.00 0.00 65 0.00 0.00 0.00 2 0.00 0.00 0.00

50 6 6 9 0.00 0.00 0.00 289 0.00 0.00 0.00 2 0.00 0.00 0.00

50 6 8 3600 12.00 23.00 47.83 3600 1.38 30.00 95.42 142 23.00 23.00 0.00

80 2 3 3600 0.00 62.00 100.00 3600 0.00 68.00 100.00 2023 16.00 16.00 0.00

80 2 6 3600 0.00 136.00 100.00 3600 0.00 136.00 100.00 3600 40.41 72.00 43.87

80 2 8 3600 0.00 193.00 100.00 3600 27.21 213.00 87.23 1382 132.00 132.00 0.00

80 4 3 1804 0.00 0.00 0.00 425 0.00 0.00 0.00 17 0.00 0.00 0.00

80 4 6 2678 0.00 0.00 0.00 2720 0.00 0.00 0.00 17 0.00 0.00 0.00

80 4 8 3600 0.00 165.00 100.00 3600 0.00 213.00 100.00 3600 45.62 63.00 27.59

80 6 3 128 0.00 0.00 0.00 202 0.00 0.00 0.00 7 0.00 0.00 0.00

80 6 6 735 0.00 0.00 0.00 2207 0.00 0.00 0.00 14 0.00 0.00 0.00

80 6 8 3600 0.00 80.00 100.00 3600 0.00 356.00 100.00 1398 37.00 37.00 0.00

Table 7: Instances L1BH (m = 12).
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F2 F3 F6

n p q T BLB BUB Gap T BLB BUB Gap T BLB BUB Gap

30 2 3 189 10.00 10.00 0.00 3600 0.00 10.00 100.00 35 10.00 10.00 0.00

30 2 6 1083 34.00 34.00 0.00 3600 6.57 34.00 80.67 95 34.00 34.00 0.00

30 2 8 2059 55.00 55.00 0.00 3600 53.18 55.00 3.31 50 55.00 55.00 0.00

30 4 3 170 3.00 3.00 0.00 2229 3.00 3.00 0.00 75 3.00 3.00 0.00

30 4 6 714 22.00 22.00 0.00 3600 10.83 23.00 52.91 73 22.00 22.00 0.00

30 4 8 1227 38.00 38.00 0.00 3600 24.34 38.00 35.94 42 38.00 38.00 0.00

30 6 3 54 0.00 0.00 0.00 740 0.00 0.00 0.00 5 0.00 0.00 0.00

30 6 6 567 15.00 15.00 0.00 3600 9.38 15.00 37.50 39 15.00 15.00 0.00

30 6 8 476 27.00 27.00 0.00 3600 14.23 27.00 47.30 61 27.00 27.00 0.00

50 2 3 2877 23.00 23.00 0.00 3600 0.00 43.00 100.00 319 23.00 23.00 0.00

50 2 6 3600 13.00 76.00 82.89 3600 1.62 82.00 98.03 1200 72.00 72.00 0.00

50 2 8 3600 17.50 108.00 83.80 3600 48.80 195.00 74.97 411 108.00 108.00 0.00

50 4 3 1386 8.00 8.00 0.00 3600 0.00 17.00 100.00 618 8.00 8.00 0.00

50 4 6 3600 0.00 47.00 0.00 3600 0.00 70.00 100.00 571 46.00 46.00 0.00

50 4 8 3600 0.00 75.00 100.00 3600 22.82 185.00 87.67 344 75.00 75.00 0.00

50 6 3 1444 1.00 1.00 0.00 3600 0.00 3.00 100.00 472 1.00 1.00 0.00

50 6 6 3600 4.63 30.00 84.58 3600 0.00 60.00 0.00 473 30.00 30.00 0.00

50 6 8 3600 6.00 57.00 89.47 3600 15.43 83.00 81.37 1390 56.00 56.00 0.00

80 2 3 3600 0.00 43.00 100.00 3600 0.00 104.00 100.00 2725 43.00 43.00 0.00

80 2 6 3600 0.00 130.00 100.00 3600 0.00 238.00 100.00 3600 26.49 134.00 80.23

80 2 8 3600 0.00 222.00 100.00 3600 52.31 322.00 87.23 3600 129.20 191.00 32.36

80 4 3 3600 0.00 36.00 100.00 3600 0.00 148.00 100.00 3600 0.00 20.00 100.00

80 4 6 3600 0.00 109.00 100.00 3600 0.00 316.00 100.00 3600 8.12 89.00 90.89

80 4 8 3600 0.00 180.00 100.00 3600 13.41 323.00 95.85 3600 46.74 140.00 66.62

80 6 3 3600 0.00 7.00 100.00 3600 0.00 148.00 0.00 3600 0.00 6.00 100.00

80 6 6 3600 0.00 100.00 100.00 3600 0.00 313.00 0.00 3600 34.00 68.00 50.00

80 6 8 3600 0.00 15.00 100.00 3600 2.72 312.00 99.13 3600 8.24 118.00 93.01

Table 8: Instances L1BP (m = 12).
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F2 F3 F6

n p q T BLB BUB Gap T BLB BUB Gap T BLB BUB Gap

30 2 2 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 2 4 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 2 6 124 59.00 59.00 0.00 59 59.00 59.00 0.00 4 59.00 59.00 0.00

30 4 2 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 4 4 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 4 6 198 38.00 38.00 0.00 70 38.00 38.00 0.00 4 38.00 38.00 0.00

30 6 2 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 6 4 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00

30 6 6 61 25.00 25.00 0.00 56 25.00 25.00 0.00 3 25.00 25.00 0.00

50 2 2 15 0.00 0.00 0.00 6 0.00 0.00 0.00 2 0.00 0.00 0.00

50 2 4 167 0.00 0.00 0.00 11 0.00 0.00 0.00 3 0.00 0.00 0.00

50 2 6 1207 109.00 109.00 0.00 402 109.00 109.00 0.00 18 109.00 109.00 0.00

50 4 2 8 0.00 0.00 0.00 5 0.00 0.00 0.00 1 0.00 0.00 0.00

50 4 4 224 0.00 0.00 0.00 15 0.00 0.00 0.00 2 0.00 0.00 0.00

50 4 6 1620 67.00 67.00 0.00 449 67.00 67.00 0.00 22 67.00 67.00 0.00

50 6 2 7 0.00 0.00 0.00 6 0.00 0.00 0.00 1 0.00 0.00 0.00

50 6 4 216 0.00 0.00 0.00 13 0.00 0.00 0.00 1 0.00 0.00 0.00

50 6 6 547 47.00 47.00 0.00 434 47.00 47.00 0.00 21 47.00 47.00 0.00

80 2 2 50 0.00 0.00 0.00 30 0.00 0.00 0.00 18 0.00 0.00 0.00

80 2 4 56 0.00 0.00 0.00 31 0.00 0.00 0.00 29 0.00 0.00 0.00

80 2 6 3600 101.00 193.00 47.67 3048 193.00 193.00 0.00 71 193.00 193.00 0.00

80 4 2 43 0.00 0.00 0.00 30 0.00 0.00 0.00 8 0.00 0.00 0.00

80 4 4 45 0.00 0.00 0.00 30 0.00 0.00 0.00 17 0.00 0.00 0.00

80 4 6 3600 9.00 121.00 92.56 2501 117.00 117.00 0.00 162 117.00 117.00 0.00

80 6 2 35 0.00 0.00 0.00 30 0.00 0.00 0.00 3 0.00 0.00 0.00

80 6 4 39 0.00 0.00 0.00 31 0.00 0.00 0.00 11 0.00 0.00 0.00

80 6 6 3600 54.50 82.00 33.54 2841 82.00 82.00 0.00 138 82.00 82.00 0.00

Table 9: Instances L5AH (m = 8).
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F2 F3 F6

n p q T BLB BUB Gap T BLB BUB Gap T BLB BUB Gap

30 2 2 31 8.00 8.00 0.00 70 8.00 8.00 0.00 12 8.00 8.00 0.00

30 2 4 103 37.00 37.00 0.00 98 37.00 37.00 0.00 8 37.00 37.00 0.00

30 2 6 212 93.00 93.00 0.00 72 93.00 93.00 0.00 6 93.00 93.00 0.00

30 4 2 17 2.00 2.00 0.00 96 2.00 2.00 0.00 6 2.00 2.00 0.00

30 4 4 79 21.00 21.00 0.00 85 21.00 21.00 0.00 14 21.00 21.00 0.00

30 4 6 257 69.00 69.00 0.00 89 69.00 69.00 0.00 9 69.00 69.00 0.00

30 6 2 7 0.00 0.00 0.00 3 0.00 0.00 0.00 3 0.00 0.00 0.00

30 6 4 80 13.00 13.00 0.00 117 13.00 13.00 0.00 19 13.00 13.00 0.00

30 6 6 120 52.00 52.00 0.00 76 52.00 52.00 0.00 7 52.00 52.00 0.00

50 2 2 432 24.00 24.00 0.00 2443 24.00 24.00 0.00 124 24.00 24.00 0.00

50 2 4 1178 62.00 62.00 0.00 863 62.00 62.00 0.00 50 62.00 62.00 0.00

50 2 6 3441 168.00 168.00 0.00 560 168.00 168.00 0.00 42 168.00 168.00 0.00

50 4 2 1082 11.00 11.00 0.00 803 11.00 11.00 0.00 64 11.00 11.00 0.00

50 4 4 1431 47.00 47.00 0.00 1044 47.00 47.00 0.00 159 47.00 47.00 0.00

50 4 6 3587 135.00 135.00 0.00 625 135.00 135.00 0.00 62 135.00 135.00 0.00

50 6 2 167 7.00 7.00 0.00 997 7.00 7.00 0.00 44 7.00 7.00 0.00

50 6 4 652 36.00 36.00 0.00 925 36.00 36.00 0.00 110 36.00 36.00 0.00

50 6 6 815 110.00 110.00 0.00 3600 96.00 110.00 12.73 38 110.00 110.00 0.00

80 2 2 2824 47.00 47.00 0.00 3600 4.34 47.00 90.78 2574 47.00 47.00 0.00

80 2 4 3600 0.00 157.00 100.00 3600 96.69 261.00 62.95 460 119.00 119.00 0.00

80 2 6 3600 45.00 286.00 84.27 3375 286.00 286.00 0.00 234 286.00 286.00 0.00

80 4 2 3600 0.00 71.00 100.00 3600 0.00 34.00 100.00 1377 22.00 22.00 0.00

80 4 4 3600 0.00 234.00 100.00 3600 53.26 163.00 67.32 1062 85.00 85.00 0.00

80 4 6 3600 6.33 235.00 97.30 3600 209.14 235.00 11.00 362 235.00 235.00 0.00

80 6 2 1308 14.00 14.00 0.00 3600 0.00 14.00 100.00 443 14.00 14.00 0.00

80 6 4 3264 71.00 71.00 0.00 3600 41.89 147.00 71.50 526 71.00 71.00 0.00

80 6 6 3600 31.00 211.00 85.31 3600 176.26 202.00 12.74 523 202.00 202.00 0.00

Table 10: Instances L5AP (m = 8).
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F2 F3 F6

n p q T BLB BUB Gap T BLB BUB Gap T BLB BUB Gap

30 2 3 57 13.00 13.00 0.00 570 13.00 13.00 0.00 10 13.00 13.00 0.00

30 2 6 225 52.00 52.00 0.00 322 52.00 52.00 0.00 16 52.00 52.00 0.00

30 2 8 526 113.00 113.00 0.00 489 113.00 113.00 0.00 15 113.00 113.00 0.00

30 4 3 6 0.00 0.00 0.00 9 0.00 0.00 0.00 1 0.00 0.00 0.00

30 4 6 28 0.00 0.00 0.00 3 0.00 0.00 0.00 1 0.00 0.00 0.00

30 4 8 343 60.00 60.00 0.00 328 60.00 60.00 0.00 10 60.00 60.00 0.00

30 6 3 1 0.00 0.00 0.00 3 0.00 0.00 0.00 1 0.00 0.00 0.00

30 6 6 15 0.00 0.00 0.00 2 0.00 0.00 0.00 1 0.00 0.00 0.00

30 6 8 261 40.00 40.00 0.00 506 40.00 40.00 0.00 16 40.00 40.00 0.00

50 2 3 639 20.00 20.00 0.00 3600 2.84 20.00 85.78 76 20.00 20.00 0.00

50 2 6 2662 80.00 80.00 0.00 3034 80.00 80.00 0.00 75 80.00 80.00 0.00

50 2 8 3600 42.50 192.00 77.86 2915 186.00 186.00 0.00 68 186.00 186.00 0.00

50 4 3 368 0.00 0.00 0.00 107 0.00 0.00 0.00 9 0.00 0.00 0.00

50 4 6 266 0.00 0.00 0.00 25 0.00 0.00 0.00 6 0.00 0.00 0.00

50 4 8 2806 104.00 104.00 0.00 2592 104.00 104.00 0.00 58 104.00 104.00 0.00

50 6 3 12 0.00 0.00 0.00 21 0.00 0.00 0.00 4 0.00 0.00 0.00

50 6 6 12 0.00 0.00 0.00 23 0.00 0.00 0.00 3 0.00 0.00 0.00

50 6 8 2455 77.00 77.00 0.00 1417 77.00 77.00 0.00 100 77.00 77.00 0.00

80 2 3 3600 0.00 161.00 100.00 3600 2.14 97.00 97.79 524 0.00 34.00 100.00

80 2 6 3600 0.00 542.00 100.00 3600 102.38 542.00 81.11 424 136.00 136.00 0.00

80 2 8 3600 0.00 692.00 100.00 3600 212.31 752.00 71.77 409 307.00 307.00 0.00

80 4 3 393 0.00 0.00 0.00 1079 0.00 0.00 0.00 28 0.00 0.00 0.00

80 4 6 3600 0.00 68.00 100.00 155 0.00 0.00 0.00 37 0.00 0.00 0.00

80 4 8 3600 0.00 278.00 100.00 3600 88.82 1240.00 92.84 276 163.00 163.00 0.00

80 6 3 2723 0.00 0.00 0.00 181 0.00 0.00 0.00 20 0.00 0.00 0.00

80 6 6 1969 0.00 0.00 0.00 159 0.00 0.00 0.00 24 0.00 0.00 0.00

80 6 8 3600 0.00 226.00 100.00 3600 45.87 146.00 68.58 2135 128.00 128.00 0.00

Table 11: Instances L5BH (m = 12).
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F2 F3 F6

n p q T BLB BUB Gap T BLB BUB Gap T BLB BUB Gap

30 2 3 240 36.00 36.00 0.00 888 36.00 36.00 0.00 66 36.00 36.00 0.00

30 2 6 1631 104.00 104.00 0.00 1614 104.00 104.00 0.00 64 104.00 104.00 0.00

30 2 8 1526 166.00 166.00 0.00 897 166.00 166.00 0.00 31 166.00 166.00 0.00

30 4 3 178 22.00 22.00 0.00 986 22.00 22.00 0.00 59 22.00 22.00 0.00

30 4 6 1220 74.00 74.00 0.00 1942 74.00 74.00 0.00 114 74.00 74.00 0.00

30 4 8 785 129.00 129.00 0.00 1659 129.00 129.00 0.00 53 129.00 129.00 0.00

30 6 3 119 13.00 13.00 0.00 1007 13.00 13.00 0.00 22 13.00 13.00 0.00

30 6 6 467 58.00 58.00 0.00 1932 58.00 58.00 0.00 76 58.00 58.00 0.00

30 6 8 507 109.00 109.00 0.00 3600 96.28 109.00 11.67 53 109.00 109.00 0.00

50 2 3 3600 17.00 62.00 72.58 3600 12.00 81.00 85.19 717 59.00 59.00 0.00

50 2 6 3600 29.75 206.00 85.56 3600 108.52 192.00 43.48 337 166.00 166.00 0.00

50 2 8 3600 27.40 296.00 90.74 3600 227.95 308.00 25.99 234 285.00 285.00 0.00

50 4 3 1838 33.00 33.00 0.00 3600 0.47 60.00 99.22 660 33.00 33.00 0.00

50 4 6 3600 4.75 118.00 95.97 3600 76.68 179.00 57.16 375 103.00 103.00 0.00

50 4 8 3600 7.20 220.00 96.73 3600 145.74 228.00 36.08 330 219.00 219.00 0.00

50 6 3 1466 21.00 21.00 0.00 3600 0.00 28.00 100.00 300 21.00 21.00 0.00

50 6 6 3600 27.00 99.00 72.73 3600 54.37 119.00 54.31 251 84.00 84.00 0.00

50 6 8 3600 62.73 181.00 65.34 3600 129.25 194.00 33.37 261 179.00 179.00 0.00

80 2 3 3600 0.00 163.00 100.00 3600 9.89 231.00 95.72 3600 1.16 107.00 98.91

80 2 6 3600 0.00 488.00 100.00 3600 147.55 786.00 81.23 2548 284.00 284.00 0.00

80 2 8 3600 0.00 713.00 100.00 3600 342.62 978.00 64.97 1146 465.00 465.00 0.00

80 4 3 3600 0.00 157.00 100.00 3600 0.00 331.00 100.00 3600 17.71 68.00 73.96

80 4 6 3600 0.00 340.00 100.00 3600 103.31 844.00 87.76 2163 190.00 190.00 0.00

80 4 8 3600 0.00 435.00 100.00 3600 268.37 1070.00 74.92 3194 369.00 369.00 0.00

80 6 3 3600 0.00 61.00 100.00 3600 0.00 331.00 100.00 3600 12.34 47.00 73.74

80 6 6 3600 0.00 270.00 100.00 3600 77.46 844.00 90.82 3600 130.52 167.00 21.84

80 6 8 3600 0.00 403.00 100.00 3600 209.44 1070.00 80.43 2302 330.00 330.00 0.00

Table 12: Instances L5BP (m = 12).
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