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Optimal reinsurance under risk and uncertainty

ALEJANDRO BALBAS,*BEATRIZ BALBAS,"RAQUEL BALBAS*AND ANTONIO HERASS

Abstract. This paper deals with the optimal reinsurance problem if both insurer and
reinsurer are facing risk and uncertainty, though the classical uncertainty free case is also
included. The insurer and reinsurer degrees of uncertainty do not have to be identical.
The decision variable is not the retained (or ceded) risk, but its sensitivity with respect to
the total claims. Thus, if one imposes strictly positive lower bounds for this variable, the
reinsurer moral hazard is totally eliminated.

Three main contributions seem to be reached. Firstly, necessary and sufficient opti-
mality conditions are given. Secondly, the optimal contract is often a bang-bang solution,
1.e., the sensitivity between the retained risk and the total claims saturates the imposed
constraints. For some special cases the optimal contract might not be bang-bang, but there
is always a bang-bang contract as close as desired to the optimal one. Thirdly, the optimal
reinsurance problem is equivalent to other linear programming problem, despite the fact
that risk, uncertainty, and many premium principles are not linear. This may be impor-
tant because linear problems are easy to solve in practice, since there are very efficient
algorithms.

KEY WORDS. Risk and Uncertainty, Moral Hazard, Optimal Reinsurance and Opti-
mality Conditions, Bang-Bang Solution, The Optimal Reinsurance Linear Problem.
A.M.S. CLASSIFICATION SUBJECT. 91B30, 90C48.

JEL CLASSIFICATION. G22.

1. INTRODUCTION

Since Borch (1960) and Arrow (1963) published their celebrated seminal papers, the
optimal reinsurance problem has been addressed by many authors and under many
different risk measurement methods and premium principles. Recent approaches are,
amongst many others, Kaluszka (2005), Cai and Tan (2007) and Chi and Tan (2013).

*University Carlos III of Madrid. CL. Madrid 126. 28903 Getafe (Madrid, Spain). alejan-
dro.balbas@uc3m.es

TUniversity of Castilla la Mancha. Avda. Real Fébrica de Seda, s/n. 45600 Talavera (Toledo,
Spain). beatriz.balbas@uclm.es

tUniversity Complutense of Madrid. Department of Actuarial and Financial Economics.
Somosaguas-Campus. 28223 Pozuelo de Alarcén (Madrid, Spain). raquel.balbas@ccee.ucm.es

§University Complutense of Madrid. Department of Actuarial and Financial Economics.
Somosaguas-Campus. 28223 Pozuelo de Alarcén (Madrid, Spain). aheras@ccee.ucm.es



OPTIMAL REINSURANCE UNDER RISK AND UNCERTAINTY 2

Usually, researchers consider the insurer point of view, though the reinsurer viewpoint
may be also incorporated (Cai et al., 2012, Cui et al., 2013, etc.). An interesting
survey about the State of the Art in 2009 may be found in Centeno and Simoes
(2009).

All the papers above assume that the statistical distribution of claims is known.
Nevertheless, measurement errors or lack of complete information may provoke dis-
crepancies between the real and the estimated probabilities of the states of nature,
generating uncertain (also called ambiguous) frameworks. Actuarial and financial lit-
erature is recently paying significant attention to those cases where the probabilities
of the scenarios are not totally known. Interesting examples are, among many others,
portfolio management (Zhu and M. Fukushima, 2009), equilibrium in asset markets
(Bossaerts et al., 2010) and optimal stopping (Riedel, 2009).

The first objective of this paper is to incorporate ambiguity in the optimal rein-
surance problem, though many results will be also new in the uncertainty free setting.
Both insurer and reinsurer may be ambiguous, but their degrees of ambiguity do not
have to be identical. Since the reinsurer information about the reinsured set of policies
could be lower than the information of the insurer, it seems natural to assume that
the reinsurer ambiguity is higher, but we will not impose this hypothesis because
we will not need it. According to the empirical evidence and the famous Ellsberg
paradox, agents usually reflect ambiguity aversion, so we will accept this assumption
in our analysis. Though there are other recent approaches (Maccheroni et al., 2006),
the worst-case principle properly incorporates the ambiguity aversion (Gilboa and
Schmeidler, 1989), and therefore our analysis will deal with this principle when con-
sidering the insurer expected wealth, the insurer global risk (integrating uncertainty
too) and the reinsurer premium principle. Actually, all of the papers above deal with
ambiguity by means of a worst-case approach.

Stop-loss or closely related contracts frequently solve the optimal reinsurance
problem. These solutions have been often criticized by both theoretical researchers
and practitioners. In practice, reinsurers will rarely accept these solutions due to the
lack of incentives of the insurer to verify claims beyond some thresholds. Our second
objective will be to overcome this caveat. Consequently, the insurer decision variable
will be the (almost everywhere) mathematical derivative of the retained risk with re-
spect to the global claims, rather than the retained risk itself. With this modification
we can impose positive lower bounds to this decision variable, and therefore contracts
reflecting spreads with null derivative (flat behavior of the retained risk with respect
to the global claims) become unfeasible. In other words, the usual reinsurer moral
hazard is eliminated with this approach.

The paper is organized as follows. Section 2 will present the general framework,
the set of priors, the properties of the insurer risk measure (integrating uncertainty),
the properties of the reinsurance premium principle (which may incorporate the rein-
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surer uncertainty) and the general optimal reinsurance problem we are going to deal
with. We will point out how our approach contains most of the usual cases and ex-
tends them all if ambiguity arises. Section 3 will be devoted to dealing with two dual
approaches. Theorems 4 and 5 will provide us with two alternative dual problems,
as well as two different families of necessary and sufficient optimality conditions. It
is worth to point out that one of the duals is linear.

The optimality conditions will generate two different ways permitting us to lin-
earize the optimal reinsurance problem. The first one is the introduction of a linear
optimization problem generated by a dual solution. This method will allow us to
prove Theorem 7 in Section 4, which will show that the optimal contract is in the clo-
sure of a set composed of convex combinations of bang-bang contracts, i.e., contracts
such that the derivative of the retained risk with respect to the total one saturates
the imposed constraints. A clear consequence is that in many classical approaches
one must find stop-loss or closely related optimal contracts. In our less restrictive
framework the optimal retention will be often a bang-bang solution.

Section 5 explores a second linearization procedure. In order to simplify the
exposition the focus is on the Robust Conditional Value at Risk (robust CVaR) as an
insurer risk/ambiguity measure and a reinsurer instrument to generate the premium
principle. The method applies for much more situations, but selecting one important
case we significantly shorten the paper. Furthermore, the CVaR is becoming more
and more popular among researchers and practitioners due to its interesting properties
(Ogryczak and Ruszczynski, 2002).

Since one of the two duals of Section 3 is linear, we will construct the double-
dual (dual of the dual) optimal reinsurance problem in Section 5, which is linear.
We will prove that the solution of the double-dual will directly lead to the optimal
reinsurance contract. This seems to be a very important property because there
are many efficient algorithms solving linear problems in both finite-dimensional and
infinite-dimensional frameworks (Anderson and Nash, 1987). Besides, linear problems
often lead to extreme solutions, which explains why the non linear optimal reinsurance
problem may be solved by a bang-bang retention.

The last section of the paper summarizes the most important conclusions, em-
phasizing the two main novelties (uncertainty introduction and moral hazard elimina-
tion) and the three main contributions (necessary and sufficient optimality conditions,
bang-bang solutions and double-dual linear problems).

Throughout the paper we will need several mathematical notions about topolog-
ical spaces, Banach and Hilbert spaces, strong and weak convergences, etc. Some
of them will be briefly summarized, but further discussions may be found in Luen-
berger (1969), Kelly (1975), Rudin (1973) and (1987), or Anderson and Nash (1987),
amongst others.
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2. THE OPTIMAL REINSURANCE PROBLEM

Let (2, F) be a measurable space, 2 denoting the set of states of nature at a future
date T'. Assume that the insurer is ambiguous (or reflects uncertainty) with respect
to the probabilities of the states, so we cannot select a unique probability measure
on F. Let the F—measurable function (random variable) yo : 2 — R represent the
total cost (claims) that the insurer will pay within the period [0,7]. It is obvious
that gy cannot achieve negative values. Since the existence of an upper bound M
for 1o is obvious (claims cannot be higher than the value of the insured goods) v is
[0, M| —valued. Moreover, every probability measure on F consistent with the insurer
ambiguity will generate a probability measure on the Borel o—algebra B of [0, M].
Thus, the role of yo may be played by the identity function I : [0, M] — [0, M|, and
the uncertainty level will be given by a set Pf, of probability measures (or set of
priors) on B.

2.1. The set of priors. Next, let us give the main properties that P will have to
satisfy. Denote by P the set of probability measures on B and fix Py € P. Consider
the Hilbert space L? (IPy), which is composed of those random variables z whose
square has finite expectation with respect to IPy and which is endowed with the norm

leley = [ 2@ aPo )] . 2 e L2 (Py). o

Similarly, consider the usual Lebesgue measure on [0, M] and the classical Hilbert
space L? [0, M], whose well-known norm is given by

:| 1/2

lell, = [ o a* () d 0], @ e 12(0,M). (2)

We will assume the existence of R € L?(IPy), R > 1, such that

dp
P {pGP, 0< ap, = R} : (3)

dd—lfo denoting the Radon-Nikodym derivative of p with respect to IPy. If IE, (.) denotes
mathematical expectation with respect to a probability measure p, and, in particular,
[Ep, (.) denotes mathematical expectation with respect to Py, the set of priors (3) may
be also given by

Py ={f€L’(P);0<f<R, Ep,(f) =1}, (4)

since we can obviously identify every IPo—continuous probability measure pePf, with
its Radon-Nikodym derivative f = dd?po. In other words, the insurer uncertainty will
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be identified with a subset of the interval [0, R] C L?(IPg). Though it is an abuse of
language, we will also say the (4) is the set of the insurer priors.

The set of priors (3) is very general. Firstly, if R = 1 then the non-ambiguous
(or uncertainty free) case will be included in our framework, because P, = {IPy}
(or Py = {1}) will become a singleton, and the probabilities of the states of nature
will be known. Secondly, if R # 1, then [P, may be interpreted as a estimated
probability measure containing possible errors, which makes the insurer incorporate
the “spread” R > 1 indicating the estimation accuracy (the accuracy increases as
R — 1 > 0 decreases). Thirdly, for some ¢ € [0, M] and some p € P we have that
t ¢ Sp(p) may hold, Sp (p) denoting the support of p. Hence, ¢t would not be possible
if p were the real probability measure. In other words, we allow the insurer to be
ambiguous with respect to both the probabilities of the states of nature and the set
of states of nature too.

Notice that Py C [0, R] is convex, closed and bounded, which implies that Py is a
convex and weakly-compact subset of L? (IPy) (Alaoglu’s Theorem and Hahn-Banach
Theorem). Actually, the most important results of this paper would remain true if we
considered a more general framework and allowed Py to be an arbitrary convex and
weakly-compact subset of L? (IPy), but the choice of (4) simplifies the mathematical
exposition.

2.2. The decision variable and the problem constraints. Next let us in-
troduce an auxiliary functional which will be useful in order to guarantee that the
insurer and reinsurer risks are comonotonic. Consider J : L? [0, M] — L*(IPy) given
by

J(@)(t)= fyx(s)d(s), xeL2[0,M], te0,M]. (5)

It is easy to see that J (z) is a real-valued continuous function on [0, M] for every
x € L?[0, M], so J (x) is bounded and therefore J (x) € L? (IPy). Actually, one can
also find many classical references showing that, out of Lebesgue null sets, = is the
first order derivative of J (z).

Proposition 1. The functional J : L* [0, M] — L? (IPy) is linear and continuous.

Proof. J is trivially linear, so let us see its continuity. We only have to prove the
existence of k£ > 0 with

1T (@)l 2.pg) < K Izl (6)
for every x € L? [0, M]. Obviously,

T (@) (] < fyle()ld(s) < Jy |z ()] d(s) = |lz]],
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for every x € L? [0, M] and every t € [0, M], ||.||, representing the usual norm of the
Banach space L' [0, M| D L?[0, M]. Hence,

M M
Jo T @) ()2 dPo (1) < [l fy dPo (1) = ||},
which, according to (1), leads to
17 (@)l 2 pg) < lllly (7)

for every x € L?[0, M]. Since the natural inclusion of L? [0, M] in L' [0, M] is contin-
uous, there exists £ > 0 such that

llly < &l (8)
for every x € L?[0, M]. Thus, (6) trivially follows from (7) and (8). O

An important role will be also plaid by the linear and continuous functional J* :
L? (IPy) — L?[0, M], adjoint of J. If

< xz,1 == fOMJ: (t) 2’ (t) dt
and (9)

|EP0 ( 7 ///) _ foM 2 (t) ///( )leO( )

for z,2’ € L?[0, M] and z”,z” € L*(IPy) represent the usual bilinear products in
L*]0, M] and L? (IPy) respectively, it is known that J* is characterized by

Ep, (J(z)2) =<z, J" (2) = (10)

for every x € L? [0, M] and every z € L? (IPy). Thus,
Ep, (7 () 2) = J;" T (2) (8) 2 () Py (£) = [ (Jy = () ds) = (£) AP (1)
— Mz (s) ( Sz (1) diPg (t)) d(s)= [y @ () J* (2) (s)d (s) =< @, J* (2) =,

which leads to
J*(2) (s) = fst (t)dIPo (t), z€ L*(Py), s€[0,M]. (11)

The identity function I : [0, M] — [0, M] trivially satisfies I = J (1), 1 denoting
the obvious constant function on [0, M]. As said above, I represents the total claims
within the time interval [0,7]. Suppose that a reinsurance contract divides these
claims according to the amounts y € L?(IPy) (retained risk) and I —y € L? (IP)
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(ceded risk). There are two usual constraints in the literature. Firstly, 0 <y < I and
0 < I—y < I must hold. Secondly, I, y and I —y must be comonotonic, since otherwise
the insurer /reinsurer could be facing moral hazard. In order to guarantee that both
restrictions hold, we will represent the reinsurance contract with the variable x €
L?[0, M]. Once the insurer selects x, the retained risk will be y = J (x) € L? (IPy),
while the ceded risk willbe [ —y =T — J(z) = J(1 —x) € L?(IPy) (see (5)). If
0 <z <1 (and therefore 0 < 1—x < 1) then the retained risk J (x) and the ceded risk
J (1 — z) will trivially satisfy the two required constraints. Indeed, out of Lebesgue
null sets, x is the first order derivative (sensitivity) of J (z) with respect to the total
claims, and 1 — z is the derivative of J (1 —x). Thus, I, J(x), and J (1 —z) are
obviously comonotonic because they are non decreasing functions (their first order
derivatives are non negative). = 0 leads to the full reinsurance (the whole risk is
ceded) and = = 1 leads to the null reinsurance (the whole risk is retained).

Ideas above allows us to address a classical caveat often pointed out by several
authors. A stop-loss contract, or a closely related one, frequently solves the optimal
reinsurance problem. Thus, the reinsurer faces moral hazard once global claims be-
come higher than a contract threshold. More generally, the reinsurer could consider
that z (t) = 0 in some interval [a, b] C [0, M] might provoke moral hazard again, since
the retained risk y = J (z) will remain constant in [a, b]. This drawback may be over-
come by imposing the constraint H < x, where 0 < H < 1 is a measurable function
representing the lowest sensitivity (first order derivative) between the retained risk
and the total claims that the reinsurer can accept. We could also accept H = 1 in
some [a,b] C [0, M], which means that the reinsurer will not accept to pay claims
within the spread [a, b].

Bearing in mind all the ideas above, the feasible set of the optimal reinsurance

problem will be
F={zel?0,M];H <z<1},

x representing sensitivity between retained risk and claims, and H € L2?[0, M], 0 <
H < 1 representing the lowest acceptable sensitivity.

2.3. The risk function. Let us follow the approach of Artzner et al. (1999) and
Rockafellar et al. (2006) in order to introduce the notion of risk function. Thus,
throughout this paper a risk measure will be a function p : L? (IPy) — IR such that
there exists a convex and weakly-compact subset A, of L* (IPy) with

p(y) = Max {— Ep, (y2); z € A} (12)

for every y € L? (IPy). If (12) holds then it may be proved that A, is unique, and
z € A, if and only if
—Ee, (y2) < p(y)
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for every y € L?(IPy). Furthermore, (12) holds if and only if p is continuous,
sub-additive (p (y1 +vy2) < p(y1) + p(y2) for y; € L*(IPy), i = 1,2) and homoge-
neous (p(A\y) = Ap(y) for A > 0 and y € L?(IPy)). We will also impose p to be
E,—translation invariant for some E, € R (p(y +k) = p(y) — E,k if k € R and
y € L*(IPy)). Tt is equivalent to the fulfillment of

Ep, (=) = £, (13)
for every z € A,. Summarizing, we have:

Definition 1. Let E, € R be a real number. p : L?(IP) — IR is said to be a
Ep—trans]ation invariant risk measure if the two equivalent conditions below hold;
a) p: L?(Py) — R is norm-continuous, E,—translation invariant, sub-additive
and homogeneous.
b) There exists a convex and weakly-compact set A, C L?(IPy) such that (12)
holds for every y € L* (IPy) and (13) holds for every z € A,,. O

We will not prove the equivalence between Conditions a) and b) above because
analogous proofs may be found in several papers (for instance, see Balbds et al.,
2013). Notice that (12) implies that p is weakly lower semi-continuous.

There are many risk measures in practice. Actually, every expectation bounded
risk measure and every deviation measure (Rockafellar et al., 2006) satisfy Definition
1 above with E =1 and E = 0, respectively. The coherent rlsk measures of Artzner
et al. (1999) also satisfy Deﬁmtlon 1 with E, = 1. As said in the introduction,
the Ellsberg paradox indicates the presence of ambiguity aversion, which may be
incorporated by dealing with the worst-case principle (Gilboa and Schmeidler, 1989).
A consistent way to consider this principle is to define “the robust extension of a
risk measure relative to the set of priors Pp,”. For instance, the robust CVaR with
confidence level 0 < p1 < 1 relative to the set of priors PJ; will be given by

RCVaR(PgM) (y) := Max {CVaR(p,#) (y); pe 738} (14)

for every y € L* (IPy), CVaR, ) (y) denoting the usual CVaR of y if p is the selected
probability measure and p is the level of confidence. Theorem 2 below shows that
this definition is consistent.

Theorem 2. Suppose that 0 <y < 1. Then, CVaR,,) (y) exists for every p € Py
and every y € L*(IPy), the maximum in (14) exists for every y € L*(IPy), and
RCVaR(Pg ) satisfies Definition 1b) with ERCVQR(PO ) =1 and

) Uk

ARCVCLR(PO M) -
U

(15)

o

{z€L2(IP0);IEp0(z):1cdeIfePU withogzgl%},
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In particular, (12) leads to
( RC’VaR(p[o]’M) (y) = Maz — Ep, (yz)

Ep, (f) = 1
Ep, (z) =1 (16)
0<z< ﬁ, f<R

z € L?(Py) and f € L*(IPy) are decision variables

\

for every y € L? (IPy).

Proof. First let as prove that the set Agrcvar given by (15) is convex. Indeed,

0
suppose that z; and z, belong to this set and take 0 < A<1. If fi and f5 are the
obvious measurable functions given by (15), then z = Az; + (1 — ) 22 and [ =
Af1+ (1 = X) fp trivially satisfy the conditions guaranteeing that z € Agcvaer (P)’
Ut
R

ARcvar (7h.1) is norm-bounded. Indeed, (15) implies that |[z[[,p,) < ||1=

Dok -
(P8

for every z € Agrcvar
ARCVaR (75.0) closed. Indeed, suppose that the sequence (z,).-; C Arcvar
PU.,,u

(2,Po)

. (Pn)
(700)° et (fn)rey C

L% (IPy) the obvious sequence. Since (f,,)’ -, C Py and this set is weakly compact,
there exists f € Py which is a weak agglomeration point. Thus (z, f) is a weak
agglomeration point of (z,, f,,),—, and therefore 0 < z < f , [ < R trivially follow

from 0 < 2, < 5 f” , fn < R for every n € IN.

ARrcvar (70 1s weakly compact. Indeed, Arcvar o is weakly closed because it
Ut Ut
is closed and and convex (Hahn-Banach Theorem), so the Alaoglu’s Theorem implies

that Arcvar (7h.) is weakly compact because it is norm-bounded.
0,

ARCVaR o being convex and weakly compact, we have that the maximum in
U s

the right hand side of (16) obviously exists. Denote by p (y) this maximum. It is
known (Rockafellar et al., 2006) that for p € P

converges to z in L?(IPy) and let us prove that z € Agrcvar

—p
holds whenever ¥ is integrable with respect to p. If y € L? (IPy) then |y| R is integrable
with respect to Py and

M M d M
Es (Jv]) =/ Iyldpz/ Y| d?leo / ly| RdPy < oo
0 0 0

1
CVaRg ) (y) = Max {—lEp (y2); Ep(2) =1, 0< 2 < 1—} (17)
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for every p € Py, so y is integrable with respect to p and CVaR, ) (y) exists.
The theorem will be obviously proved if we show that p (y) equals the right hand
side of (14). Denote by RC’VaR(Pg ) (y) < oo the supremum in the right hand side

of (14). If p € PY (17) implies the existence of 0 < z < ﬁ with

and

. _dp
CV@R(ZW) (y) = —IE, (yz) = —Ep, (Y25 | -
dIPg
dp

o because f = o satisfies the required conditions. Hence,
Pk

C’VaR(p,u (y) = —IEp, (y2z) < p(y) and therefore RC’VaR(Pg’H) (y) < p(y).

The opposite inequality also holds. Indeed, if p(y) = —IEp, (yz) with z €
ARcvar (7hu) then take the obvious f and the probability measure dp = fdIP, sat-
Ut

z = Z € Arcvar

isfies p € PY. Moreover, Z = % (take 8 = 0) satisfies 0 < Z < ﬁ and

M M M
|Ep (2) = /0 Edp = /0 2fdP0 = /0 ZG]PO = |Ep0 (Z) = 1,

SO
RCVCLR(P&M) (y) > CVaR (y) > —IE, (y2) = fo yzZdp =
— [y yEfdPy = — [ yzdPy = —Ep, (y2) = p(y).
O
Remark 1. The constant random variable z = 1 belongs to Agrcvaer because

PO
f = 1 satisfies the conditions of (15). Hence, (16) shows that RCVaR( ) (y) >
—Ep, (y) for every y € L?(IPy), i.e., RC’VaR(ngy) is expectation bounded in the
sense of Rockafellar et al. (2006). O

Remark 2. 2 € ACVQR(PO o = % € ARrcvar because f = 1 satisfies the

(P%»)
required conditions. Moreover, If R > 1 is constant then

R 1

0<:<-d  f<r—o0<:< =

1—pn 1l—p 1—1p

with i =1 — ( 1). Therefore, (16) and (17) trivially lead to

CVaRpy (y) < ROVaRp ) (y) < CVaRewe, (4).-
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It is easy to see that 0 < 1 —% < @ <1 and ji > pu. In other words, if R > 1 is
constant then the robust C'VaR lays within the spread of two C'VaRs. U

Remark 3. Similarly, one can define a robust extension relative Pf, of many co-
herent or expectation bounded risk measures, such as the Wang measure, the power
transform, the weighted C'V aR, etc. All of them will satisfy Definition 1 with Ep =1.
Robust deviations satisfying Ep = 0 may be also defined. For instance, the robust
absolute deviation will be given by

RADpy (y) := Maz {E, (ly —E, (y)]); p € Ph},

and the robust standard deviation will be

RS Dpy () 1= Max {6, (= € 0)F); e PE |

We will not analyze the deviations above because they can be studied with the meth-
ods of Theorem 2. O

2.4. The premium principle. If z € L?[0, M] is the retained risk and 1 — x €
L?[0, M] is the ceded one, then reinsurance price of will be given by

Reinsurance  Price =Y (J (1 —x)), (18)

T : L?(IPy) — R being a Ey—translation invariant risk measure for some Ey € R
(Definition 1). Notice that (18) contains the usual premium principles. Indeed, for a
linear principle

T(J(1—2)=FEp, (J(1—2)c), (19)
with ¢ € L? (IPg) and ¢ > 0, it is obvious that T satisfies Definition 1b) with Ay =
{—c} and Fy = —[Ep, (c). In particular, the Expected Value Premium Principle

(EVPP)
Reinsurance Price = (1 + a) Ep, (J (1 —x)),

a > 0 being the loading rate, is a linear principle with ¢ = 1 + «, and therefore it
is included in (18). As said above, every deviation measure and every expectation
bounded or coherent risk measure p satisfies Definition 1, and therefore so does

T(J(1—2))=akp, (J(1—x))+0p(=J (1 -x)), (20)

a, 3 >0, with
Ay ={—a— Bz z€ A,} (21)
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and Ey = —a — BE, (see (13)). Consequently, many classical non-linear premium
principles are included in (18) (Wang Principle, Standard Deviation Premium Prin-
ciple, etc.). More importantly, (18) also includes premium principles involving the
reinsurer ambiguity since, for instance, robust extensions of the C'VaR, the weighted
CVaR, the Wang measure or the standard deviation may play the role of p in (20).
Moreover, T may be related to the ambiguity level of the reinsurer, which does not
necessary equal the insurer ambiguity level. For instance, it may make sense to as-
sume that the reinsurer ambiguity level is higher, and therefore it is characterized by

the set of priors {f € L2 (Py);0< f <R, Ep, (f) = 1} with R > R (see (4)).

2.5. The global problem. The presence of ambiguity aversion and the worst-
case principle (Gilboa and Schmeidler, 1989) may also justify the introduction of “the
robust expectation relative to the set of priors Py” below

Ep, (W) :=Min {E,(W); pe Py} =Min {Ep, ( Wf); f€Pu} (22

where W € L2 (IPg) is the (uncertain) insurer wealth at T, Py is the set of feasible
priors and [E, (W) = [Ep, (W f) is the expectation of W under dp = fdP,. Notice
that the minimum in (22) exists because

L?(IPy) > f — Ep, (Wf) € R

is a weakly continuous function for every W € L? (IPy) and Py is a weakly compact
set (Weierstrass Theorem). Obviously, (22) leads to

—Ep, (W)= Max {—-IE,(W); pe P} =Max {—Ep, Wf); fePy}, (23

for every W € L? (IPg). In other words, —[Ep, also satisfies Definition 1 with E_EPU =
1 and A,EPU =Py.

Suppose that A denotes the income generated by the sold insurance policies.
Bearing in mind the reinsurance contract and (18), the insurer wealth at 7" will be

A—J(@) =T (J(1—1)). (24)

The insurer may select a risk measure p (Definition 1) in order to control the
risk of (24). The optimal reinsurance problem will maximize the robust expected
wealth [Ep, (which is equivalent to the minimization of —IEp, ) and will minimize p.
Thus, bearing in mind the properties of —IEp, and p (Definition 1), the optimization
problem becomes

Min p(A—J(x) =T (J (1 =) = p(=J (2)) + B, (J (1 —2)) — E,A
Min — Ep, (A= J (2) = T (J (1—2)) = —Ep,, (—J (2)) + T (J (1 —a)) — A .
H<z<I1
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x € L?[0, M] being the decision variable. Since £, and A are constant we can remove
EPA and A in the vector optimization problem above without altering the Pareto
solutions. Moreover, since (12) and (23) show that —IEp and p are convex functions
on L?(IPy), every proper Pareto optimum may be obtained by minimizing a scalar
objective

p(=J () + E, X (J (1 =) +w(~Ep, (=7 (x)) + T (J (1 - 2))),

w > 0 being a “weight” for —IEp, (Nakayama et al., 1985). Actually, w indicates the
relative importance of the robust expected return with respect to the risk (the higher
the value of w the higher the importance of [Ep, for the insurer). Manipulating, the
objective function becomes

p (=T (@) +w (~Ep (=] (@) + (B +w) T(J (1 - )
and the optimal reinsurance problem will be

{ Min p (=7 (2)) +w (~Ep, (=] @) + (B, +w) YT =) o
H<z<1

x € L?[0, M] being the decision variable.

3. DUAL APPROACH

Let us introduce an instrumental “Mean Value Theorem” whose proof is omitted
because a similar one may be found in Balbés et al. (2009).

Lemma 3. Suppose that Y is a Banach space, Z is its dual, and K C Z is a convex
and o (Z,Y) —compact set. Suppose that v is an inner regular probability measure on
the Borel o—algebra of K endowed with the o (Z,Y) —topology. Then, there exists
a unique k, € K such that

/ <y, z = dv(z) =<y, k, =
K

holds for every y € Y. 0

Let us introduce two dual problems for (25), as well as necessary and sufficient
Karush-Kuhn-Tucker like optimality conditions. Standard duality theory does not
guarantee the absence of duality gap if infinite-dimensional problems are involved.
Duality gaps may occur even in linear programming (Anderson and Nash, 1987). In
order to overcome this caveat, first of all we will give a concave dual satisfying the
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Slater qualification (Luenberger, 1969) which guarantees the absence of duality gap.
Then, we will give a linear dual not satisfying the Slater qualification. Nevertheless,
the absence of duality gap with the concave dual will allow us to prove the absence
of duality gap with the linear one too.

Theorem 4. Consider Problem

,

— (Ep—l—w) < 1,J%(v) =
Mazx +-<H,J*<z+wf+(Ep+w>7>+>-

- =<1,J* (z+wf+(£77p+w>7>_>
(| f€Py, z€A,, v€ Ay

(f*,2*,7") € Py x A, X Ay being the decision variable."! Then:

a) The minimum of (25) and the maximum of (26) are finite, attainable and
identical.

b) Suppose that «* is (25)-feasible and (f*, z*,~*) is (26)-feasible. Then, x* solves
(25) and (f*, z*,~*) solves (26) if and only if, out of Lebesgue null sets of [0, M],

(Ep, (J (2*) f*) = Ep, (J (%) f) | VfePy
[Ep, (J (z*) 2*) > [Ep, (J (z*) 2), Vze A,
Ep, (J (1 —x*)7*) < Ep, (J (1 —2*)7), Vy €Ay
z*(t)=H (t), J (2w + (E, +w)y*) (t) >0
() = 1, J (2 +wf 4 (E, +w) ) (t) <0

27)

Proof. Let us prove that (25) is solvable. Indeed the feasible set H < x < 1 is
weakly-compact because L? [0, M| is a Hilbert space and therefore reflexive (Alaoglu’s
Theorem), and the objective function of (25) is weakly lower semi-continuous because
it is a composition of the o (L?[0, M], L?[0, M]) — o (L* (IPy) , L* (IPy))-continuous
function J and the o (L* (IPy) , L? (IPy))-lower semi-continuous functions p, —|Ep and
Y. Therefore, (25) attains an optimal value (Weierstrass’ Theorem).

'As usual, ¢7 (t) = Max; {¢(t),0} and ¢~ (t) = Max; {—¢ (t),0} for very ¢ € L?[0, M] and
every 0 <t < M. Tt is easy to see that ¢ = ¢ — ¢~ and ¢*, ¢~ € L?[0, M]. Similar notations may
be used in similar situations.
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Expressions (12) (which also applies for T under the obvious modifications) and
(23) show that Problem (25) is equivalent to Problem

¢

Min 01 + wls + (E +w> 05

91>|Ep0( (z)2), Vz e A,
> [Ep, (J () f), VfePy (28)
> Ep, (J (z —1)7), Vy € Ay

L HS.ZCSl 91,92,93€|R

(01,01,03,7) € R x R x IR x L?[0, M] being the decision variable. The first, second
and third constraints of (28) are valued in the spaces of continuous functions on the
weakly compact spaces K = A,, K = Py and K = Ax respectively. Following
Luenberger (1969), the associated dual variables (vq,vs,v3) must be inner regular
non-negative measures on the Borel c—algebras of the compact sets above, and the
Lagrangian function is

L(01,01, 04, 2,01, Vs, v3) = 0, (1 s, dul) +
wly (1 — fPU dyg) + (Ep + w) 05 <1 — fAT dy3> +
Ja, Epo (J (2) 2) vy (2) +w [, Ep, (J (2) f)dva (f) +
(By+w) Ja, Bry (J () ) dvs () = (Bp+ ) [, ey ( (1) 1) ds (7).
Since (v1, Vs, v3) is dual-feasible if and only if
Inf {L£(01,01,0s3,2,v1,v9,v3); H<x<1, 0,0,05,€ R} >—00

(Luenberger, 1969), v, v and v3 must be probability measures (total mass equal to
one), and the dual objective becomes (see (10))

( Ja, Epy (J (2) 2) dvy (2) + w [ Epy (J () ) dvs (f) +
g { (Bt w) fs, Eeg ( () 7) dvs (7)

B (Ep n w) s, Epq (J (1)) dvs (7)
| H<x <1

As in Balbds et al. (2009), Lemma 3 with Y = Z=L? (IPy) guarantees that the dual
solution is achieved in a vector of three Dirac Deltas, so the dual variable may simplify
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to (2, f,7) € A, x Py x Ay, and the dual objective becomes (see (9), (10) and (11))

6 (2 £:7) = = By +w) + Ep, (J (1)7) +
Infrener {IEPO (J () 2) + wEp, (J () f) + (E,, + w) Ep, (J (2) 7)}

=— (Ep - w) Ep, (J(1)7)+
Infrcoe: {< 2, J*(2) = +w <, J* (f) = + (E,, —|—w> <, T () >}

_ (Ep+w) ST () = AT freser {x,J* <z+wf+ (Ep+w) 7) >}-
(30)

{ (ZafafY)EApX'PUXAT (31)

The absence of duality gap between (25) (or (28)) and (31) and the solvability of
(31) hold due to the Slater condition (Luenberger, 1969), which is trivially fulfilled
by (28).

The infimum of (30) is obviously achieved at

The dual problem is

H(t), if J*(z+wf+ E’p+w v) (t) >0
c(t)= Ht)<z@t)<1, if J*(z+wf+ (E,+w)v)({#) =0 (32)
1, if 7 (z4+wf+ (E,+w)y) () <0

and equals

/ <HJ* (z+wf+<]§7p+w)7))dt+

J* (4w f+(Eptw)y) (£)>0
J* (z +wf+ (Ep + w) ’y) dt-+
T*(mwpt( Eptw)m) (<0
—< H,Maz,{J* (z +wf + (Ep +w> 7) (t) ,0} -
— <1, Maz, { - <z+wf+ (Ep—l—w) 7> (t),o} -

Thus, (30) and (31) lead to the dual objective given in (26) and a) is proved.
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In order to prove b), owing to (32) the necessary and sufficient primal and dual
optimality conditions for (28) become (Luenberger, 1969)

(01 = Ep, (J(27) 2")
07 > Ep, (J (z%) 2), Vze A,
0= Ko, (7 (")
05 > Ep, (J (z*) f), VfePy
05 = Ep, (J (2" = 1)) :
6; > |Ep0 (J (x* — 1) ’}/) , V’}/ € Ay
o (t) = H (1), if T (2t +wf + (E,+w)v*) () >0
z*(t) =1, if (2 +wf + (E,+w)v) (1) <0

and (27) becomes obvious. O

Remark 4. Despite the fact that (25) is convex but not linear, we will see that it is
closely related to several linear problems. Firstly, let us see that (26) may be easily
transformed into a linear problem, at least for appropriate choices of Py, p and Y. It
is important for two reasons. Firstly, there are many algorithms to solve in practice
both finite-dimensional and infinite-dimensional linear problems (Anderson and Nash,
1987). Secondly, linear problems often present extreme (or bang-bang) solutions x*
such that z* (t) = H (t) or z* (t) = 1 much hold out of Lebesgue null sets. This could
explain why the stop loss reinsurance, satisfying x* (t) = 0 or z* (t) = 1, frequently
solves (25) if H = 0. O

Theorem 5. Consider Problem
Max < H Mg — <1, A\ = — (Ep+w> <1, J%(v) -
J*<z+wf—|—<Ep—|—w)7>—)\d+)\u:0 (33)
)\d 2 07 )\u Z 0
fE€Py, z€ AN, vE Ay, \g € L*[0,M], A\, € L*[0, M]
(f, 2,7, Ads Au) € Py x A, x Ay x L?[0, M] x L* [0, M] being the decision variable.
a) The minimum of (25) and the maximum of (33) are finite, attainable and
identical.

b) Suppose that x* is (25)-feasible and (f*,z*,v*, A\, \;,) is (33)-feasible. Then,
they solve (25) and (33), respectively, if and only if

IEPO (J (.T*) f*) > IEPO ('] (33*) f) ) VfePy

Ep, (J (%) z*) > [Ep, (J (2*) 2), Vze A,

Ep, (J(1—2")7") < Ep, (J(1—2")7), Vv €Ay (34)
N(x*—H)=0

A, (1—2%)=0
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Proof.  Asin the proof of Theorem 4, (28) is equivalent to (25). The Lagrangian of
(28) may also incorporate the multipliers Ay, A, € L? [0, M], Ay > 0, A, > 0, related
to the constraints H < x < 1. In such a case the Lagrangian becomes

ﬁl (91701703Jx7yl7y27y37)\d7 )\u) -
L(Ql,ﬁl,eg,x,yl,yg,yg)—i— =< H—{L‘,)\d -+ <x— ]_,)\u -,

where L is given by (29). Besides, the dual variable may be simplified again due to
Lemma 3 (see (30)), and the Lagrangian of (28) becomes (see (9), (10) and (11))

£/(, 2 f9 24 M) = = (B +w) Bey ((1)7) + Epy (J () 2) +
wEe, (J (2), ) + (B, +w) Bey (J (2),7) + < H— 2= + < 2= 1,2, =
:—(Ep+w> <LJ () = — < LA =+

<z, J* <z+wf+<Ep+w)7—Ad+Au> -+ < H M\ > .

The infimum of £’ (z,, 2, f,7, g, \u) for & € L?[0, M] is obviously finite if and only
if the first constraint of (33) holds, in which case it equals

—(Ep+w> <L J () ==<LA >+ =<HM >

Thus, (33) is a dual problem of (28) and (25) (Luenberger, 1969). The Slater quali-
fication does not hold because constraints H < z and z < 1 are valued in L? [0, M],
and the positive cone of this space has void interior. Thus, a duality gap between
(25) and (33) might exist, and the supremum of (33) might be strictly lower than the
(25)-optimal value. Nevertheless, if we prove that the optimal values of (25) and (33)
are reachable and coincide, then the duality gap will vanish, and the solutions of (25)
and (33) will be characterized by the complementary slackness conditions (Anderson
and Nash, 1987). As in the proof of Theorem 4, the complementary slackness condi-
tions between (28) and (33) coincide with (34), so it only remains to prove that (33)
achieves its optimal value and it coincides with the (25)-optimal value. Consider a
solution z* of (25) and a solution (f*, z*,7*) of (26) (whose existence is guaranteed
by Theorem 4a). Consider

Ny =J" <z*—|—wf*+ (Ep~|—w> *y*>+

and

Ay =J" <z*+wf*—|— <Ep—|—w> fy*)
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Obviously, (f*, z*,v*, Ay, \) is (33)-feasible, and the dual objective becomes

u

< H N, - — <1\ > —(Ep+w> <1, J%(v") =
=< H, Maz §J* <Z*+wf*+(Ep+w>7*);0}>
— <1, Mazx {—J* (z*—irwf*—l— (Ep+w> ’Y*> ,0} + (Ep+w> J* () =,

which coincides with the (25)-optimal value because there is no duality gap between
(25) and (26) (Theorem 4). Hence, since the (25)-optimal value is an upper value
for the (33)-objective (Anderson and Nash, 1987), (f*, z*,~v*, A}, A») solves (33) and
there is no duality gap between (25) and (33). O

Remark 5. Theorem 5 implies that for appropriate Py, p and Y the dual solution
(f*, 2%, 7", Ay, \y,) of (33) may be obtained in practice by linear programming methods,
which is a very good new because interesting algorithms to solve these problems are
available in both, finite and infinite dimensions (Anderson and Nash, 1987). Once
the dual solution was computed, the optimal retention J(xz*) may be obtained by
(34), which is much easier to apply once we know (f*, z*,v*, A3, A+). Besides, if (25)
has a linear dual, then this problem should be “almost linear” too. Sections 4 and
5 will show two different methods linearizing Problem (25) (see Problems (36) and

(40) below). O

4. ON THE EXISTENCE OF BANG-BANG SOLUTIONS

The literature about the optimal reinsurance problem frequently obtains stop-loss or
closely related solutions such as stop-loss contracts with an upper bound, given by

J(A=a")(t)=(t-a)’ = (t-0)",

0<t< Mand0<a<b< M? Obviously, the (Lebesgue almost everywhere)
derivative of J (z*) is given by

s ) L ift<aort>0b
v (t){(), ifa<t<b

and Lemma 6 below will show that this is an extreme point of the (25)-feasible set
if H = 0. A natural question is how general this result is. Let us prove Theorem
7 below showing that some extreme points are “good approximations” of the (25)-
solution for general choices of H and general uncertainty levels for both the insurer
and the reinsurer.

2Balbds et al. (2009) and (2011) obtain stop-loss optimal contracts even for many problems
without comonotonicity restrictions.
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Lemma 6. Suppose that x is (25)-feasible. Then, the conditions below are equiva-
lent:

a) x is a extreme point of the (25)-feasible set H < x < 1.

b) There exist a Borel-measurable partition [0, M| = AU B such that x (t) = H (t)
ifte Aandx(t)=1ift € B.

Henceforth, the feasible solution x above will be called bang-bang retention.

Proof. b) = a) is obvious, so let us prove the converse implication. Suppose that
a) holds. Consider C'={0 <t < M;H (t) < z(t) <1} and

n n

C’n:{0§t§M;H(t)+l<m(t)<1—l}

for n € IN. Obviously, C' = U2 ,C,,. If L is the Lebesgue measure then £ (C) =

Limy, L (C,) because (Cy,), .y is an non decreasing sequence. Hence, £ (C) = 0 if
L (C,) = 0 for every n. If for some n we have £ (C,) >0 then H (t) <z (t) — + <1
and H (t) <z (t) + = <1 for ¢t € C,, so functions

r(t)=a(t) =5, wa(t) =2 (t) + 5
for t € C,, and x, (t) = 22(t) = x(¢t) for t ¢ C,, are both (25)-feasible. Thus,

T = %xl + %332 contradicts a). O

Theorem 7. Suppose that E, +w > 0. If 2* solves (25) then for every n € IN
there exists a bang-bang feasible retention x such that the objective function of (25)
satisfies

p (=T (2%)) + w (~Ep, (=] () + (B, +w) T (J (1 = "))

. (35)
<p (=T (@) +w (~Bpy (=7 (@) + (B, +w) T(J (1= 23)) +

3=

Proof.  Let (f*,z*,v*) solve (26). Then, (12), (23), (18) and (27) show that

p(=J (z¥)) = Ep, (J (z7) 2%)
—Ep, (=J (z")) = Ep, (J (z*) f*)
T(J(1—a")=—Ep, (J(1—x)7").

The (25)-feasible set is weakly-compact, and therefore, according to the Krein-Milman
Theorem, if n € IN then the linear optimization problem

{ Min Ep, (J (x) ) +w (Ep, (J () ) = (B, +w) Ep, ( (1 = 2)7") (36)
H<zr<1
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satisfies the existence of an extreme point (i.e., a bang-bang retention, see Lemma 6)
H < 7 <1 such that

Ep, (J (z*) 2%) + w (Ep, (J (z*) f ( o+ ) Ep, (J(1—2%)7) <
Ep, (7 (23) 2*) + w (Ep, ( )= (By+w) Ep, (J(1=23)7") + 2
(Anderson and Nash, 1987). Hence, (12), (23) and (18) trivially lead to

Ep, (J () 2%) + w (Ep, (J (23) £)) + (B, +w) Ep, (J (1= 23) (—7°))
< p (=T (23)) +w (~Epy (=T () + By +w) T (T (1= 23))

and (35) becomes obvious. O

Remark 6. Condition Ep +w > 0 will frequently hold. For instance, according to
Remark 3, it holds for expectation bounded risk measures, deviation measures, and
their robust extensions.

Theorem 7 guarantees that appropriate bang-bang retentions will be as close as
desired to the optimal solution. The existence of a bang-bang optimal retention can be
proved if the linear problem (36) has an extreme solution. Anderson and Nash (1987)
show that this extreme solution can be guaranteed under adequate assumptions. For
example, if (25) (or (36)) is a finite-dimensional problem, which holds, for instance,
if the total mass of Py is concentrated on a finite subset of [0, M]. O

Remark 7. (Numerical experiments). Conditions (27) of Theorem 4 were useful to
prove the existence of bang-bang solutions, and they will be also useful to in order to
see that we cannot go beyond Theorem 7 and give closed expressions for sets

A={t;z*(t) = H (t)} and B ={t;x*(t) =1},

J(x*) denoting the optimal contract. Under more classical approaches J(z*) is a
stop-loss reinsurance or a closely related one. For a stop-loss contract there exists
M, € [0, M] such that

A= (Mo,M) and B = (O,M())

Nevertheless, in our setting A and B critically depend on the ambiguity set Py and
the risk functions p and Y, and many different situations may arise. Let us show this
fact with simple illustrative examples. Notice that these examples also apply in the
non-ambiguous and linear case.

Suppose that M = 5, the support of IPq is {1,2,3,4,5} and Py (i) = 0.2, i =
1,2,3,4,5. Suppose that R = 1 (non-ambiguous case) and therefore Py only contains
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the zero-variance random variable f = 1. Suppose finally that p and T are linear, A,
only contains the element z = 1 (so E, = 1) and Ay only contains v = —c € L? (IPy)
with ¢ > 0 (so Y is given by (19)). Denote ¢; = ¢ (i) > 0, i = 1,2,3,4,5, and take
w =3 in (25).

Since E, = 1 and Py (2* +wf* = 4) = 1, Expression (11) implies that®

( s<1= J* Ep+w c :0.62f:10i, J* (2 +wf*) =12
l<s<2= J((E,+w)c)=063",c. J* (2 +wf*) = 9.6
§<2<3= J* ~p+w c :0.62?:3@, J (2 wfr) =72
s<3<4= J((E,4w)c)=06(cs+cs), J(z¥+wf*)=48
4<s= J*((E,+w)c) = 0.6¢s, J (" +wfr) =24

\

Thus, (27) leads to the bang-bang optimal solution z* (t) characterized by

(t<1,06Y0 jci<12= o =H
t<1, 060 ¢ >12= =1
1<t<2 063 ,¢,<96= z*=H
1<t<2 063 ,¢>96= a*=1
2<t<3,0630 ,c;<72= a*=H
2<t<3, 0630 ,¢;>72= a*=1

3<t<4,06(c4+c5)<48= x*=H
3<t<4,06(cq4+c5)>48= z*=1
4 <t, 0.6c5<24= r*=H
| 4<t, 0.6c; >24= =1

Suppose that ¢; = 6,1 = 1,2,3 and ¢; = 2.5, i = 4,5. Then, (37) leads to z* = 1 if
t <2 and x* = H ift > 2 which becomes the stop-loss contract J(1 —z*) = (t — 2)"
in the classic scenario H = 0. Nevertheless, the opposite situation may also solve
(25). In fact, if the reinsurer uses a variable loading rate « (t) penalizing high claims
such as ¢; = 1.05, i = 1,2,3, and ¢; = 5, i = 4,5, then (37) leads to z* = H if
t <3 and 2* = 1 if t > 3 which becomes J(z*) = (t — 3)" in the classic case H = 0.

Snotice that J* ((EP + w) c) (¢) and J* (z* + wf*) (i) are not relevant for ¢ = 1,2, 3,4, 5, since
the Lebesgue measure of this set vanishes and J* ((Ep + w) c) J I (2F +wfr) e L2[0, M.
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Finally, more complex bang-bang solutions are also feasible. For instance, if ¢; =7,
ca=1,¢c3=06,c4=1and c; =6, then x* = H fort € (1,2) U (3,4) and z* = 1 for
te(0,1)uU(2,3)U(3,5).1 O

5. THE OPTIMAL REINSURANCE LINEAR PROBLEM

Asindicated in Remark 5, Theorem 5 implies that for appropriate Py, p and T the dual
solution (f*, z*,7*, \j, A7) of (33) may be obtained in practice by linear programming
methods. Once (f*, z*,v*, A}, A.) is known, the linear problem (36) may lead to the
optimal retention J (z*) (see the proof of Theorem 7). Nevertheless, there is second
method allowing us to linearize (25), and this is the focus of this section.

Suppose that the sub-gradients of p and T are given by linear constraints (robust
CVaR, robust absolute deviation, many cases of the robust weighted C'VaR, etc., see
Theorem 2 and Remark 3). Then, we can give a linear dual of (33) (Anderson and
Nash, 1987), which is the double-dual of (25) and could lead to the optimal retention
too. In other words, the optimal retention could be directly obtained by solving a
linear problem. In order to shorten the exposition let us focus on the robust CVaR,
but these ideas apply in much more frameworks.

Suppose that p = RCV@R(P{}W) and T (y) = alEp, (y) + BRCVaR(ﬁgﬂ) (—y),

a, 8> 0 (see (20)), where the uncertainty level of the reinsurer PY is generated by
the set of priors

pU:{heL2(|PO);0§h§R, Ep, (h)=1}7 (38)

where R € L?(IPy) and R > 1. As already said, if R > R then the reinsurer
uncertainty will be higher than the insurer one. This is a quite natural assumption
because the the reinsurer information about the involved policies may be lower, but
we will not impose it. In general, we will not need any relationship between R and
R. Similarly, we will not impose any relationship between the confidence levels 1 and
fi. Furthermore, for R = 1 (R = 1) we include the non-ambiguous insurer (reinsurer)
in the analysis, and, analogously, for R=1,a>1and 8 =0 we include the EVPP

as a particular case.

Take C' = (1 4+ w) alEp, (J (1)). Proposition 1, Expression (11), Theorem 2, Ex-

4 Notice that the solution of this example is in the line of those solutions found by Cui et al. (2013)
for risk functions and premium principles given by distortions. The interpretation of Theorem 7
is that this type of general solution still applies in ambiguous frameworks with risk functions and
premium principles incorporating both risk and ambiguity aversion, as well as imposing a lower
bound H which totally eliminates the reinsurer moral hazard.
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pressions (20) and (21), and Theorem 5 imply that (33) becomes
Max <HXN»=—=<1L A >=+1+w)pB<1J(y) = +C

(

( {J*(Z+wf—(1+w)ﬁv)—kd+Au
= (1 +w)aJ (1) ( Ep, (9) =1
Ep, (f) =1 g R
f<R Ep, (7) =1
Ep, () = 1 v < s (39)
et | Ep, (h) =1
h<R

<
Ay Ay € L2[0, M], f,2,9,7,h € L*(IPy)
>\d7)‘u7f7zaga/7/7h Z 0

Since this problem is obviously linear, we can construct its linear dual (Luenberger,
1969, or Anderson and Nash, 1987), which will be called double-dual of (25) and is
given by
" C— (1+w)alEp, (J (A1) + Ao+ Ep, (RA3) + \4
Y s+ Epy (RA7) + As + Ao + Ep, (R/\n)

H—)\lfo (1+w)ﬁj(1—)\1)—)\8—)\9§0
A —1<0 7 — Ao — A <0 (40)
s.t. wJ (>\1) — X2 — A3 <0 A € L? [O,M] , )\2, )\4, )\6, )\8, Ao € R
J()\1> - )\4 - /\5 S 0 )\37 )\57 )\77 )\97 )\11 € L2 (IPO)
ﬁA5_)\6_)\7§0 )\37)\57)\77)\97)\11 ZO
The complementary slackness conditions between (39) and (40) are
( ')\2}()\* H)—O (s + A —(1+w)BJ(1—=X)=0
0w i) =0 N ((f*”_ B0 )
2 ( *+/\* (A*)) 0 )\z ) g*_
. (A*“* %%):0 \ (= #5) =0 (41)
([ Xy~ B) =
X (v - £5) =0
| )\11<h —R) ~0

The constraints of (39) and (40), along with (41), characterize the dual and the
double-dual solutions

D= (Mg A /75259777, 1) (42)
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and
S = (XL)‘;7)‘37)‘Zv)‘;7)‘27)‘;7)‘27)‘37)‘;07)"{1) (43)

if (40) is solvable and there is no duality gap between (39) and (40) (Anderson and
Nash, 1987). Conversely, if there exist (39)-feasible and (40)-feasible solutions of (41)
then (40) is solvable and there is no duality gap between (39) and (40). In general,
the solvability of (40) and the absence of duality gap can not be guaranteed.

Needless to say, it is important to see that the solution of (40) leads to the optimal
solution z* of (25) and the optimal retention .J (z*). Proposition 8 below shows that
the absence of duality gap plays a critical role.

Proposition 8. Suppose that the double-dual problem (40) is solvable and has no
duality gap with the dual problem (39). Suppose that (43) solves the double-dual
(40). Then, x* = A\] solves the optimal reinsurance problem (25).

Proof. Consider the solution (42) of (39), whose existence is guaranteed by The-
orem 5. According to Theorem 5 we must prove that (34) holds for A\] and (42).
The proposition assumptions imply that (41) holds and therefore the fourth and fifth
conditions in (34) hold too. Thus, it only remains to see that the first, second and
third conditions in (34) hold. Since the three inequalities have a similar proof, let us
show that

Ep, (J(A])27) > Ep, (J (A]) 2) (44)
holds for every z € A,, and let us omit the two remaining cases. The fourth equation
of (41) implies that J (A]) z* = z* (A} + AZ). The ninth equation (41) implies that
J(N]) 2% = 2" M) + %/\g. The fifth equation leads to J (A]) z* = 2*A\] + ¢*\§ + g* A%,
and the tenth one finally leads to J (A])z* = 2*A} + ¢*A\g + RA;. Hence, since
Ep, () = Ep, (9") = 1,

Ep, (J (A]) 2%) = AL+ A% + Ep, (RAD) . (45)

Suppose that z € A,. The constraints of (39) imply the existence of g € Py (see
(4)) such that z < $£-. Hence, J (A]) 2 < z (A} + A;) due to z > 0 and the fourth
constraint of (40). J(A])z < 2Ay + {4 A5 due to 2 < 14 and A5 > 0. J(A])z <
2A; + gAg + gA; due to g > 0 and the fifth constraint of (40). Finally, J (\])z <
2A; + gAg + RAS due to g < R and A\; > 0. Hence, Ep, (z) = [Ep, (g) = 1 leads to

Er, (7 (X)) < \j 4+ X + Ep, (RA]). (46)
(45) and (46) imply (44). O

Proposition 8 is useful in practice because it makes the optimal reinsurance prob-
lem become linear, but the absence of duality gap between (39) and (40) must be
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guaranteed. Theorem 10 below will show that this is the case if H, R and R are
simple functions. Recall that simple functions are given by the general expression
Yoiiaixg,, [0,M] = ByUByU ..U B, being a measurable and disjoint partition,
ai,as, ....a, being real numbers, and x . being the indicator of B;, i = 1,2, ...,n. Ob-
viously, constant functions (such as the usual ones H = 0, R = R = 1) are included.
Moreover, recall the the set of simple functions is dense in L? [0, M] and L? (IPy), and
for general H, R and R one can always build “good simple approximations”.

In order to prove Theorem 10 we will need some concepts and instrumental results
which will be briefly summarized. If By C B is a sub-o—algebra of the Borel o —algebra
B of [0, M], then, with obvious notations, L? [0, M, By] is a closed subspace of L? [0, M]
and L? (IPy, By) is a closed subspace of L? (IPy). The orthogonal projection of L? (IP)
over L? (IPy, By) is given by the conditional expectation

L2<|Pg) — LZ(IP(),BO)
Yy - IEPO (y|BO)

and it is known that
Ep, (y192) = Ep, (Ep, (y1|Bo) y2) (47)

for every y; € L?*(IPg) and every y, € L?(IPy,By). Besides, if £ is the Lebesgue
measure then ﬁ is a probability, the orthogonal projection

L2[0,M] - L2[07M7BO]
Y - |Eﬁ(y|80)

is also given by the by a conditional expectation, and (47) becomes

Ez (i) = Eg (Ez (111Bo)w:). (48)
If Jy is the composition of J and the orthogonal projections above,
J() = |Ep0 (— |BO) oJo |Eﬁ (— |Bo) s

then, bearing in mind that every orthogonal projection is self-adjoint, one has that

*

Ji = (Epy (= 1Bo) 0 J o g (~|Bo))
=E. (—[By)" o J* o Ep, (—|Bo)"
= IE% (— |Bo) e} J* o) IEP() (_ ’BO) .

In other words, if Jy : L? [0, M] — L?(IPy) is given by

Jo (y) = Ep, (J (IEﬁ (y yBO)) |BO) (49)
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then J; : L? (IPg) — L*[0, M] is given by
Jo (y) = B2 (J" (Ep, (y]Bo)) [Bo) - (50)

Lemma 9. Let (B,,).", be a filtration of sub-c—algebras of B.

a) Let (u,);, C L*(Py) (respectively, (u,),-, C L?[0,M]) be a martingale
adapted to the filtration (B,), . If (u,),_, is norm bounded, then there exists u €
L?(IPy) (respectively, u € L?[0, M]) such that (u,),-, converges to u both in norm
and almost everywhere. Moreover, u, = [Ep, (u|B,,) (respectively, u, = [E c (u|B,))
for every n € IN.

b) If there exists u € L? (IPy) (respectivelyu € L? [0, M]) such that u,, = Ep, (u|B,)
(respectively, u, = E (u|B)) and B = o (U2, B,,) coincides with the o—algebra
generated by U2 B, then (u,),-, converges to u both in norm and almost every-
where.

¢) Suppose that B = o (U2, B,). Suppose that u € L?(IPy) and consider the

o0

set A = {IEp, (u|B,);n € N} U{u}. Then, <IEﬁ (—[By) o J*) converges to J*

n=1

uniformly in A.

Proof.  a) and b) are consequences of the Doob’s Martingale Convergence Theorem
(Durrett, 2010), so let us prove c). Assertion b) implies that A C L? (IPy) is a compact
set. Besides

HIEPO (= |B) o JH < HIEPO (= |B,)

1< 1]

o

implies that <IE £ (—|Bn)oJ *) is bounded and therefore equi-continuous. Thus,

n=1
the Ascoli’s Theorem implies that <|E c (—|Bn)oJ *) converges to J* uniformly in
n=1

o

A if (IEﬁ (J*(v) |l§'n)>n:1 converges to J*(v) for every v € A, which holds due to b)

(Dieudonné, 1988). O

Theorem 10. Suppose that ;1 > 0 and ji > 0. If H, R and R are simple functions
then the double-dual problem (40) is solvable and has no duality gap with the dual
problem (39).

Proof. It is known than the topology of [0, M] is generated by a countable basis of
relative open sets (Kelly, 1975), so the Borel c—algebra B is generated by a countable
sequence (B,) >, C B. Consider the o—algebra B, = o (B, Bs, ..., B,) for every
n € IN. It is obvious that every B,, has a finite number of elements, and the filtration
(B,,);, satisfies

B=o (Uviozllgn) . (51)



OPTIMAL REINSURANCE UNDER RISK AND UNCERTAINTY 28

Since H, R and R are simple functions we have that they generate a o—algebra
o (H , R, R) with finitely many measurable sets. Thus, by replacing B,, with

o <BnUO' <H,R,R>),

we obtain a new filtration, still denoted by (B,,),-,, which also satisfies that every

o—algebra in the filtration has finitely many elements. Moreover, (51) still holds, and
H, R and R are B,—measurable for every n € IN.

Consider the linear optimization problem (39—n) (respectively, (40—n)) similar
to (39) (respectively, (40)) if one replaces (see (49) and (50)) J, J*, L*[0, M] and
L? (IPy) with J,, = Ep, (— |B,)oJo E. (—|Bn), Jf = Ec (—|B,)oJ*cEp, (—|B,),
L?[0, M, B,] and L*(IPy,B,). It is easy to see that (40—n) is the dual problem of
(39—n). Furthermore, since both problems obviously have feasible solutions, they
are bounded. Finally, since B, only has finitely many elements, (39—n) and (40—n)
are finite-dimensional problems (L2 [0, M, B,] and L? (IPy, B,,) are finite-dimensional
spaces), so they are solvable and their optimal values coincide for every n € IN.
Denote by ¢, the optimal value of (39—n) and (40—n), by

D, = (Az,mAZ,n?f;’Z;’g;7727h:L) (52)
a solution of (39—n) and by
)\*

6,n°

* * * * *
Sn = (Al,n7 )\2,n7 )\3,n7 )\4,717 A

* * * * *
5,n )\7,n7 )\8,n7 )\9,n7 )\10,n7 All,n)

a solution of (40—n). They satisfy the constraints of (39—n) and (40—n), which are
those of (39) and (40) with the obvious modifications, and they also satisfy (41—n),
which coincides with (41) under straightforward modifications too. Consider the
solution D (see (42)) of (39) and denote by ¢ the optimal value of this problem (they
exist owing to Theorems 2 and 5).

(1) ¢, < @pi1 < @ for every n € IN. Indeed, let us see that ¢, < . (52) is clearly
(39)-feasible if (Aj,,, A, ) is replaced by

A= (T (2 +wf — (L+w) (B — )"
Ao = (S (2 +wf* — (1+w) By —a)) .

Since H is B, —measurable and y — E ¢ (y|B,) is increasing, (48) leads to
< H, Ag === H, |Eﬁ ()\d ‘Bn) b—
< HEe ((J (2 +wfy — 1+ w) (87, — )" [Ba) =

+
>< H, (Eg (J* (s +wf; — 1+ w) (375 — @) [Ba)) === H.Aj, -
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Similarly, — < 1, A, => — < 1, A7 >, and (48) implies that

» Muyn

< LT () === LEe (J7(7) [Ba) = -

Hence, ¢, << H, A\g = — < 1, A\, = + < 1,J"(7v*) =< ¢. The inequality ¢, < ¢,
may be proved with a similar method.
(ii) (,,)o-, converges to ¢. Indeed, consider the solution (42) of (39) and denote

(a5 290 v ) = By ((F7, 27,9597, h7) [By) -
If

i = (In G wfr = (L+w) By —a)”
Ao = (o G+ wfyr = (L +w) (B — @)
then
(A** A** f**7 Z:L*,g:;*7fy:l*7 h:;*)

dn) Mund Jn

is (39—n)-feasible, so the (39—n)-objective ¢, at this point satisfies ¢,, < ¢,,. Then,
it is sufficient to see that ().~ converges to . Lemma 9 implies that

(f;*a Zr*z*7 g:z*’ ’7:1*’ hjz*)fzozl

converges to (f*, z*,g*,7v*, h*) and (IEﬁ (—1B,) o J*) converges to J* uniformly
n=1

kk kk 3k %k k%) OO
on (fr* 2% g ~& h**)> . Hence,

n n

L (N) = i, (T3 (25 + w5 = (1) (57 — )"
= Limyons (E (7 (25" + w3 — (14 w) (53— a))) B))
(7 (= wf = (1) (37— )
Analogously,
Limao(Nit) = (( (2 wf* = (L w) (57" — )

Consequently, bearing in mind that < 1, J(y%*) ==< 1,J*(7:*) > converges to
<L, J(y7) - (see (48)),

Limy—oo(@) = Limpoo (< H A = — < LAY =+ (14+w) 5 <1, J5(vr) = +C)
=< H,((J*' (" +wf* = (1+w) (87" = )" >
— < L((J* (" +wf* = (1+w) (By* — ) >

+(14+w)p<1,J(") = +C = p.
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(49i) The sequence (A}, )p%,

imply that (A],)p2, C [H,1].

(iv) A5, > 0 for every n € IN. Indeed, if \;, = —V < 0 the (40—n)-constraints
would lead to 0 < V' < wJ (A],,) — A3, < A3, and (41—n) would imply f; = R.
Thus, R > 1 and [Ep, (R) = [Ep, (f) = 1 would imply R = 1. If this equality does
not hold then we will have a clear contradiction. If R = 1 holds then it is easy to see

that

is norm-bounded because the constraints of (40—n)

/\é,m /\;,m A;,n’ Ag,n’ )‘To,n’ )‘xl(l,n) (53)
is (40—n)-feasible and and the objective function remains the same, i.e., (53) still
solves (40—n) and its second component is non-negative.

(v) A1, = 0 and Ag, > 0 for every n € IN. Indeed, both cases have a similar

proof, so let us deal with A\ . If \} , = —V < 0 the (40—n)-constraints would lead
to 0 <V < J(A,) — A, < Af,, and (41—n) would imply z; = %. Then 1 =

(AL

0, /\g,n -V )‘Z,n’ As

5,n

1

Ep, (2}) = Ep, <19_—M> = ﬁ would generate the contradiction p = 0.
(vi) Ag,, = 0 and Ajy, > 0 for every n € IN. Indeed, both cases have a similar
proof, so let us deal with Ag . If \g,, = —V < 0 the (40—n)-constraints would lead
to0 <V < ﬁ)\zn — X < A7y and (41-n) would imply gy = R. The rest of the
proof is similar to (iv).
(vii) The sequence (A3, Al s Ag s Agns Mo, )eer 18 bounded. Indeed, it is sufficient
to see that there is an upper bound. (7) shows that

2 5
@ = C (14 w) ok, (Ja (M) = D Ery (RA3 1) = Bey (B1) 2 D X
i=1 i=1
Hence, 37, Ep, (RA3i10) + Ep, (E’Xfln) > 0 and A7, <1 lead to

p—C+(1+w)aEp, (J, (1) =¢—C+(1+w)aEp, (J(1) =D A5,

(viii) The sequence (A3, A5 15 A7 s s Ag s Al1p )y i norm-bounded. Indeed, the

restrictions and objective function of (40—n) clearly imply that
Ny = (WTo (A) = N) " < wd (VL) < wid, (1)
M= (T (V) = M) T < 3 (M) < a (1)
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The sequence (J,, (1))~ converges to J (1) (Lemma 9b)) and therefore it is norm-
bounded.

(iz) The sequence (S,);~, is norm-bounded. Indeed, it immediately follows from
(ii) — (viid).

(x) There exists a weakly agglomeration point S** of (S,,)
trivial consequence of (iz) and the Alaoglu’s Theorem.

(xi) The agglomeration point S** is (40)-feasible and the objective of this problem
achieves the optimal value ¢ of (39) at S**. Indeed, first, let us see that S** is (40)-
feasible. Constraints of (40) not involving J are obvious. There are three constraints
involving J, but they can be analyzed with similar methods. Thus, let us show that
J(AT) = A — A" <0. Fix ng € IN. If ng < n then

)
n=1"

Indeed, this is a

Jn ()\;‘;1) - )\Z,n - /\;,n <0= Jn ()\Z,l) < )\Z,n + A;,n

Since Jn, = B, (= [Byy) © Ju, we have Jy, (An1) < E,, (Mo [Bno) + E,, (N5 1Buo )
and therefore J,, (\T") <, (A" By, ) + E, (A5 |By, ). Thus, Lemma 9b) leads to

JOV) = Limug—oudny () <
LMooy (N5 Bug) + Lty —coEp, (A5 |Bag )
=N+ A
Next, let us show that the (40)-objective equals ¢ at S**. Indeed, Ep, (J, (X)) =
Er, (Ey, (7 (M1) B.) ) = Ep, (7 (X;.,)) implies that
¢, =C— (1+w)aEp, (Jo (A1) + Ano+ Ep, (RA,5) + A4
F s+ Bry (RN 1) + Arg + Ao + [y (BA1;) =
C— (1+w)aEp, (J (A1) + Xoo+ Epy (RAn5) + Ay
s + Bey (RXo7) + N+ X + ey (B ) -

The left hand side of the equality above converges to ¢ (see (ii)), so it must equal
every agglomeration point of the right hand side. In other words,

¢ =C — (1+w)aEp, (J (M) + A5+ Ep, (RAS) + AL
FA o+ Epy (BAY) + AL + AT + Ep, (Rx;’;) .

(xii) Finally, since the (40)-objective at S** equals the (39)-objective at D, both
linear optimization problems are solvable and there is no duality gap between them

(Anderson and Nash, 1987). O
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6. CONCLUSIONS

This paper has dealt with the optimal reinsurance problem if both insurer and rein-
surer are facing risk and uncertainty, though the classical uncertainty free case is also
included. The levels of uncertainty of insurer and reinsurer do not have to be identi-
cal. As a second novelty, the decision variable is not the retained (or ceded) risk, but
its sensitivity (mathematical derivative) with respect to the total claims. Thus, if one
imposes strictly positive lower bounds for this variable, the reinsurer moral hazard is
totally eliminated. This may be an important property because stop-loss and closely
related (often optimal) contracts have been criticized. Indeed, the reinsurer would
not accept these solutions in practice due to the lack of incentives of the insurer to
verify claims beyond some thresholds.

Three main contributions seem to be reached. Firstly, necessary and sufficient
optimality conditions are given, and they apply in all the cases contained in the gen-
eral setting above. Secondly, the optimal contract is often a bang-bang solution, 7.e.,
the sensitivity between the retained risk and the total claims saturates the imposed
constraints. This finding also explains why stop-loss or related contracts are often
optimal if appropriate constraints are not imposed. For some special cases the opti-
mal contract might not be a bang-bang one, but there is always a bang-bang contract
as close as desired to the optimal one (the optimal reinsurance is in the closure of a
set described by bang-bang solutions). Thirdly, the optimal reinsurance problem is
equivalent to other linear programming problem (the double-dual problem), despite
the fact that risk and uncertainty (and many pricing principles) cannot be repre-
sented by linear expressions. This may be an important finding for two reasons. On
the one hand, linear problems are easy to solve in practice, since there are very ef-
ficient algorithms in both finite and infinite dimensions. On the other hand, linear
problems often lead to extreme solutions, which explains why the non linear optimal
reinsurance problem may be solved by a bang-bang reinsurance.
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