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a b s t r a c t

A new methodology based on artificial neural networks has been developed to study the high velocity

oblique impact of spheres into CFRP laminates. One multilayer perceptron (MLP) is employed to predict

the occurrence of perforation of the laminate and a second MLP predicts the residual velocity, the obliq

uity of trajectory of the sphere after perforation and the damage extension in the laminate. In order to

train and test the networks, multiple impact cases have been generated by finite element numerical sim

ulation covering different impact angles and impact velocities of the sphere for a given system sphere/

laminate.

1. Introduction

Fiber reinforced composite (FRP) materials are used increas

ingly in many applications due to their high strength and stiff

ness, high resistance to corrosion and fatigue, and low density.

The aviation and space industries make extensive use of these

materials, since any slight reduction of the total mass of the struc

ture means a saving of power and of fuel. The impact between

any of those structural materials and solids is inevitable and crit

ical. Hail ice, birds, debris, and fragments from tyres or turbine

blades may strike the composite laminate at high velocities. In

most of these cases, the impact is more likely to be oblique rather

than purely normal. FRPs are well known to be extremely vulner

able to damage from foreign objects due to the brittleness of the

polymeric phase and the poor translaminar properties. The resid

ual strength of the laminate decreases and the risk of structural

failure under service rises. As a result the threat of impact is a

significant design consideration and foreign object damage must

be predictable.

The traditional method to analyse and design FRPs that may re

ceive high velocity impacts during its service life is the empirical

one, which consists of performing real test to composite specimens

[1 3]. This methodology is costly as testing under this high speed

conditions requires sophisticated facilities and equipment. It be

comes even more costly when the aim of the test goes beyond

the discovery of the resistance quality of the target; to gather infor

mation on the deformation of the target or on the position of the

projectile during penetration, ultra rapid cameras are required.

An increasingly frequent trend to upgrade cost efficiency is to re

duce the experimental testing by using analytical or numerical

simulation. Numerical codes solve the variational equations of

the Mechanics of Continuous Media by means of finite element

or finite difference methods. Some works on numerical simulation

of ballistic impacts in FRPs appear in [4 6]. Although less expen

sive than experimental testing, they also entail a high cost because

of the price of the codes and the long computational time. For a

quick prediction of the performance of the laminate, analytical

models have been also proposed [7 10]. These are derived from

a qualitative understanding of the macroscopic phenomena. The

main drawback of this methodology is the limited applicability of

a given model to a short range of impact conditions (type of FRP

and projectile, impact regime).

Consequently, a design engineer needs a low cost tool that

would enable an impact problem to be solved in the shortest pos

sible time, that would be easy to use, and that would give the re

quired precision. This would permit the simulation of a large

number of impact problems in the early design stages. In the mul

tidisciplinary framework in which engineering is being developed

nowadays, and with the huge advance in artificial computation

techniques, artificial neural networks (ANN) are providing fast re

sults to mechanical problems. Their advantages become manifest

when the problem is characterized by a high nonlinearity, as it oc

curs in the case of high velocity impact on FRPs laminates. In the

field of composite materials, numerous authors have developed

techniques based on ANN, coupled with FEM numerical simulation

or experimental approaches. Although most of the works
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published in this field are related to damage detection [11 15],

some papers deal with the analysis of static, crushing, dynamic,

creep or tribological behaviour of composites, using different ANNs

(see the work due to Mahdi and El Kadi [16] or the complete re

view presented by El Kadi [17]). Focusing on the field of high speed

impact, a few works using ANNs can be found: Chandrashekhara

et al. [18] have studied the contact force for low velocity impacts

on laminated composite plates and Fernandez Fdz et al. [19] have

predicted the ballistic behaviour of composite ceramic metallic ar

mors against high velocity impact of solids.

This work presents the results from using an ANN as an alterna

tive to classical methods in the prediction of the performance of

thin CFRP woven laminates against high speed oblique impacts

of spheres. In a first phase, a number of impact cases are randomly

generated, varying the values of the parameters which define the

impact problem. After simulation of each case using a finite ele

ment code (validated with experimental results), the above men

tioned parameters and the results of the simulation (residual

velocity, obliquity of trajectory of the projectile after perforation,

damage extent in the laminate) are used respectively as input

and output data to train and validate the neural network. The re

sults of the ANN are reliable and the tool shows a great handling

simplicity as well as low computational cost.

2. Neural network approach

2.1. Architecture of the multilayer perceptron

Multilayer perceptron (MLP) is the ANN most commonly ap

plied in Mechanics although other topologies such as radial basis

function network (RBFN) have been successfully used in this field

[20,21]. The massively parallel structure of ANNs can be under

stood from the behaviour of one simple processing element or arti

ficial neuron. In feedforward networks such as the MLP, an artificial

neuron (Fig. 1a) receives signals xj from the previous neurons in

the network structure; these signals are multiplied by synapse

weights uji. The neuron is activated if the sum of the weighted sig

nals is greater than an activation threshold bi. In this case the neu

ron output vi will be determined by the expression

vi fi
X

K

j 1

ujixj bi

 !

ð1Þ

being fi the activation function. Most common functions are logistic,

hyperbolic tangent, linear and threshold functions (Fig. 1b). The

choice of fi is made according to the problem to be solved (different

functions must be trained) and according to the kind of layer where

the neuron is to work (input, hidden or output layer) [22].

The architecture of a MLP (Fig. 2) is characterized by grouping

neurons in the input, hidden and output layers. Connections are

made from the input to the output layer, mapping a N component

vector x containing the input variables in a M component vector y

containing the output variables, so that a MLP defines a nonlinear

continuous function F from RN to RM

y Fðx;U; bÞ ð2Þ

U and b being the set of weights and thresholds. These values must

be adjusted during the training process to minimize the error

resulting from the MLP when predicting an output y corresponding

to an input x.

2.2. Training algorithm

The patterns ðx; yÞs form the variability spaceR of the excitation

and response of the studied system (Fig. 3a). During the training

process the MLP derives the characteristics of the system from a re

duced set of training patterns K fðx; yÞKs js 1; . . . ;Kg � R in

which both inputs and outputs are known, which is randomly

divided in the subset of learning L fðx; yÞLs js 1; . . . ; Lg � K

and the subset of cross validation V fðx; yÞVs js 1; . . . ;Vg � K.

The first set is used to calculate the values of U and b through an

a

Fig. 1. (a) Processing element: artificial neuron. (b) Most common activation functions.

Fig. 2. Architecture of a multilayer perceptron: feedforward network with back-

ward propagation error. Two hidden layers (4-3-2-3).
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algorithm called Backpropagation (abbreviation of ‘‘Backwards

propagation of the errors”). The algorithm iteratively modifies

the initial values of weights and thresholds to arrive at the mini

mum value of a function which measures the predictive error of

the network, following the direction of the gradient descent of this

function. Although there are many definitions of the error, the

most common is the mean squared one

MSE
1

P

X

P

s 1

eðsÞ ð3Þ

eðsÞ being the squared error for a pattern s

eðsÞ 1

2

X

M

i 1

ðy�i ðsÞ yiðsÞÞ2 ð4Þ

where y�i ðsÞ and yiðsÞ are respectively the desired and predicted out

puts for parameter i in the output pattern s (of dimension M). A

commonly adopted procedure to correct the values of U and b is

the stochastic gradient descent, which uses the error of a pattern

eðsÞ, instead of a global measure of the error, according to the

expressions

ujiðsþ 1Þ ujiðsÞ n
oeðsÞ
ouji

ð5Þ

biðsþ 1Þ biðsÞ n
oeðsÞ
obi

ð6Þ

n being the learning rate. The training process can be summarized

as follows:

� Weights and thresholds are randomly initialized.

� The input xLð1Þ (from first learning pattern) is propagated, an

output y(1) is determined and error e(1) is computed.

� The Backpropagation algorithm is applied and weights and

thresholds are incremented in negative direction of the error

gradient.

� The two previous steps are repeated for the rest of the learning

patterns ðx; yÞLs , updating U and b each time.

� The global learning error MSEL is computed completing an

epoch (learning cycle).

� Consecutive epochs are repeated until a stable value of MSEL is

reached (Fig. 3b).

The cross validation subset V of training patterns is used dur

ing the application of the Backpropagation algorithm to prevent

overlearning of the MLP. This spurious effect consists in an accurate

prediction of the output belonging to the patterns of the learning

subset L but not for independent inputs. Thus, the cross valida

tion global error MSEV is obtained at the end of each epoch and

the learning algorithm is stopped when this error starts to increase

(Fig. 3b). Once the training algorithm has finished, the testing set

T fðx; yÞTs js 1; . . . ; Tg � R is used to test the predictive ability

of the MLP with patterns independent from those employed during

training.

3. Data generation from numerical simulations

3.1. Numerical simulation tool

A finite element model has been used to generate the data used

to train the neural network. With this numerical procedure the

high velocity impact of spherical projectiles against carbon fiber

epoxy matrix laminates has been simulated. A woven laminate

was selected for this study which is widely used in the aeronautical

and aerospace industries for panels subjected to torsion or to shear

stresses.

The numerical simulations were performed using the code ABA

QUS/Explicit [23]. The material model used in this work is a mod

ification of that proposed by Hou et al. [24], which was developed

for tape plies; hence some modifications were necessary due to

this different laminate architecture. In particular, only two damage

mechanisms were considered, but with three damage parameters

(two related to fiber failure and one to delamination). This damage

parameter could adopt a value between 0 and 1; when its value

reaches 1, some of the stress components are set to zero, simulat

ing the lack of resistance due to breakage.

Fiber failure: this failure mechanism must be extended in both

in plane directions, to model possible breakage in felt and warp fi

bers. The two equations describing this failure are:

df1

r11

XT

� �2

þ r2
12 þ r2

13

S2f

 !

P 1 ð7Þ

df2

r22

XT

� �2

þ r2
12 þ r2

23

S2f

 !

P 1 ð8Þ

the constants XT and Sf are the tensile strength and the shear

strength in the fiber direction respectively [4,25]. On fiber failure,

some coefficients of the stiffness tensor are set to zero so that the

stress components appearing in the corresponding equation are null

at the integration point.

Delamination: since the interlaminar surface is the weakest one

in a woven laminate, delamination failure needs to be considered.

The delamination failure criteria remains the same way as in the

Hou et al. model [24] for laminates made with tape plies. The equa

tion for this breakage mechanism is:

dd

r33

ZT

� �2

þ r23

S23

� �2

þ r13

S23

� �2

P 1 with r33 P 0 ð9Þ

in which ZT is the tensile strength in the through thickness direc

tion, and S23 is the shear strength in the transverse and through

thickness plane. When dd 1;r33; r13 and r23 are set to zero.

Fig. 3. (a) Variability space R of (x, y): sets of patterns used in training ðKÞ and testing ðTÞ the network. (b) Stop criterion employed in the training algorithm: MSEV vs.

iteration number (epoch).
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To avoid mesh distortion an element removal criterion was de

fined. At each time increment, the longitudinal strain is evaluated

in each fiber direction of the ply; if one of these reaches an ultimate

value, the element is removed.

3.2. Model validation

In order to validate the above mentioned numerical model,

experimental tests were conducted. The laminate was provided

by SACESA (Spain) from woven AS4=3552 prepegs manufactured

by HEXCEL, with a volumetric fibre content of 60%. The stacking se

quence was ½0�10, with a total thickness of 2.2 mm. The elastic mod

uli and strength properties are given in Table 1. The specimen size

was 80 � 80 mm2.

For the impact tests a tempered steel projectile of 1.73 g mass

was used; its shape was spherical to avoid scattered results due

to changes in the yaw angle. The projectile material was hard en

ough to behave elastically during impact. A SABRE gas gun

(Fig. 4) was used to launch the spherical projectiles. It uses helium

gas at a pressure of 300 bar to impel the fragment at velocities up

to 550 m/s. This experimental device has two photoelectric cells

that detect the passage of the projectile, from which the impact

velocity is determined.

For the validation of the numerical model, two variables were

selected: residual velocity of the projectile and damaged extent

of the laminate. In case of perforation, the residual velocity was

measured by high speed cameras placed beside the impact cham

ber to photograph the projectile after perforation. Knowing the

frame rate and the displacement of the projectile between two

frames, the residual velocity was immediately calculated. For the

measurement of the damaged extent, the specimens were analysed

using the non destructive technique C scan, which draws a clear

map of the damaged zone; the damage was quantified by treating

these maps with an image processing software. Tests were made

at velocities of between 60 and 550 m/s, at two different impact

angles, 0° and 45°. Comparisons of experimental test and numeri

cal results gave very good correlations [4,10,25].

3.3. Impact cases generation

Different cases were simulated to create the data for the neural

network. The simulations covered a wide range of velocities, be

tween 60 and 550 m/s, and 4 different impact angles: 0°, 30°, 45°

and 60°. A total number of 65 cases (defined by an impact angle

and velocity) were simulated. Table 2 shows the impact velocities

simulated for each impact angle; the increment in the impact

velocity is smaller for values close to the ballistic limit, in order

to obtain a more precise value of this parameter. Fig. 5a shows

the numerical values of the residual velocity V r as a function of

the impact velocity V i for the different impact angles considered.

It’s worth to note that at high impact velocities, the four curves

converge. Since inertial effects are prevalent at high velocities

and the cylindrical volume of laminate (plug) pushed by the pro

jectile is independent of the obliquity angle [10,25], no differences

are observed in these curves. This can be also noticed by plotting

the relation between the normal and tangential components of ini

tial velocity (V in and V it respectively) and the normal and tangen

tial components of the residual velocity (V rn and V rt respectively)

defined in Fig. 5: at high velocities the curves corresponding to

the different impact angles coincide (Figs. 5b and c). As the impact

velocity decreases, the relation between normal velocities is still

coincident for the different impact angles, even at the ballistic limit

ðV in � 100 m=sÞ, since the path covered by the projectile in the

normal direction is not affected by the obliquity. However, the

curves corresponding to tangent velocities diverge when the initial

velocity approaches the ballistic limit (Fig. 5c), since the path cov

ered by the projectile in the tangent direction is strongly affected

by the obliquity. At low velocities, the work done by the projectile

to crush the material starts to play a role [10], and an increase in

the length covered by the projectile in the tangent direction leads

to a higher decrease in the residual velocity. Consequently, the bal

listic limit increases with the obliquity angle h (Fig. 5a and c).

Table 1

Material ply properties and critical values of the strain for element deletion, provided

by the manufacturer

Property Value

Resin content % 40

E1 (GPa) 68.5

E2 (GPa) 68.5

G12 (GPa) 3.7

m12 0.11

Xt (MPa) 795

Xc (MPa) 860

Y t (MPa) 795

Yc (MPa) 860

St (MPa) 98

ZT (MPa) 55

S23 (MPa) 64

e1c 0.02

e2c 0.02

e3c 0.03

Fig. 4. Gas gun used in the experimental test.

Table 2

Set of impact velocities (m/s) and impact angles considered for numerical simulation

0° 30° 45° 60°

62 75 75 75

75 88 88 88

88 100 100 100

100 112 112 112

112 125 125 125

125 137 137 137

137 150 150 150

150 162 162 162

162 184.5 175 175

175 200 200 200

200 300 250 212

300 400 300 225

400 450 400 250

500 500 450 300

600 550 500 400

600 550 500

600 600
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Moreover, this effect is amplified by the deviation of the trajec

tory suffered by the projectile at velocities close to the ballistic lim

it, due to the unbalanced force exerted by the laminate (Fig. 6). As

can be seen in Fig. 5d, the exit angle u increases sharply as the im

pact velocity approaches the ballistic limit.

This also influences the slope of V i V r curves at the ballistic

limit: the length of the laminate penetrated by the projectile is

L
h

cos h
ð10Þ

h being the thickness of the laminate. Differentiation of L

dL
htgh

cos h
dh ð11Þ

shows how a variation of L with h is highly influenced by the value

of the obliquity. Then, at high obliquity impact angles, a slight in

crease in V i just above the ballistic limit leads to a large decrease

in u and L, and to high increase in V r (Fig. 5d).

4. Multilayer Perceptron Development

Two MLP were developed employing the neural network simu

lation code NeuroSolutions for Excel v4.21 [26]. The first one

(MLP1) is used to determine the occurrence of the CFRP perfora

tion. This involves a classification task, where the network decides

whether an impact case, defined by an input pattern, results in the

perforation of the laminate or in projectile arrest. The second one

(MLP2) solves a regression problem where the network predicts

residual velocity, angle of the projectile and damaged extent of

the laminate in case of perforation. In both cases, the procedure

to develop the network can be summarized as follows:

� Determine the optimum variables that should form the input

pattern vector x.

� Randomly select the learning, cross validation and test sets of

patterns from the available data generated by numerical

simulation.

� Train the network varying the number of neurons in the hidden

layer Nh to determine the optimal topology.

� Test the best network obtained during the training process.

4.1. Input variables

The input variables that define the problem are the impact

velocity V i and the impact angle h; the output variables are the

damaged area in the laminate Ad and, in the case of perforation,

the residual velocity V r and residual angle u. It is not obvious

which input variables (or combinations of them) are the best toFig. 6. Unbalanced force exerted by the laminate.
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choose in order to improve the predictive ability of the perceptron.

ForMLP1 the following method to select the input variables, devel

oped by the authors, was used to minimize the classification error.

Let xi be the input variable analysed, �xperfi and x̂perfi , its mean and

standard deviation in the set of patterns corresponding to laminate

perforation; �xpari and x̂pari , its mean and standard deviation in the set

of patterns corresponding to projectile arrest. The relative distance

between both means dxi is defined as

dxi 2
j�xperfi

�xpari j
�xperfi þ �xpari

ð12Þ

Defining the normalized standard deviation associated with the in

put variable xi as

x̂i
x̂perfi þ x̂pari

�xperfi þ �xpari

ð13Þ

One can define an uncertainty parameter X i associated with the in

put variable xi dividing Eq. (13) by Eq. (12)

Xi
x̂i
dxi

ð14Þ

Xi can be used as an estimate of the classification error when a pat

tern is classified employing the input variable xi. Large values of X i

correspond to small distances between means and/or large standard

deviations, xi revealing great uncertainty for the prediction of the

occurrence of laminate perforation. According to the values shown

in Table 3 the two optimum variables V i and V in (bold typed in the

table) were adopted as input for MLP1.

For the determination of the best input variables for the MLP2 a

correlation analysis between input and output variables (or combi

nations of them) was performed. Table 4 shows the regression

coefficient R2
ij for the best regression (linear or potential) associated

with each combination of variables ðxi; yjÞ. The best global correla

tions were made for V i and V in as input variables (coinciding with

MLP1) and V r;V rt;V rn and Ad as output variables. As a consequence

of the low values of regression coefficients associated with the im

pact angle h, this was not considered as an input. It is noteworthy

also to note that the angle after impact u can be determined more

precisely from the predicted values of V r and V rn than from consid

ering it as an output variable of the perceptron.

4.2. Networks training and testing

Linear functions have been used as activation functions in the

input layer, and hyperbolic tangent functions in the hidden and

output layers. For the convergence of the training algorithm, a

learning rate n 1 has been used in the hidden layer and

n 0:1 in the output layer. Sixty patterns were employed for the

training (55 for the learning and 5 for the cross validation) and

a set of five patterns, completely foreign to the training data,

was employed to test the accuracy of the network. Both networks

were trained varying the number of neurons in the hidden layer

Nh to determine its optimum value. An initial estimate for Nh

can be determined by Nh NM
p

;N and M being the number of

neurons in the input and output layer respectively [27]. This for

mula leads to 2 hidden neurons for the first perceptron and 5 hid

den neurons for the second. However, higher values of Nh were

also tried: Nh1 2;3;4 for MLP1 and Nh2 3;4;5;6 for MLP2. Table

5 shows the mean squared error obtained for the learning set

MSEL when the stop criterion is reached (the cross validation er

ror MSEV is minimum).

The final architecture of both MLPs is shown in Fig. 7. The out

put variables for MLP1 are redundant and complementary, that is,

if one is true (value 1) the other is false (value 0). The decomposi

tion of a symbolic variable having p categories in p numeric ones is

Table 3

Uncertainty parameters Xi to determine optimum input variables (bold typed) for

MLP1

xi Xi

Vi 0.497

V it 1.119

Vin 0.457

V itV in 0.734

V it=V in 1.603

h 1.756

Table 4

Values for the correlation coefficient R2
ij between input variable xi and output variable

yj

ðxi; yjÞ V r V r/V i V rt V rn Ad u

V i 0.987 0.696 0.567 0.819 0.481 0.015

V it 0.786 0.544 0.968 0.512 0.298 0.019

V in 0.883 0.832 0.154 0.996 0.848 0.027

h 0.023 0.013 0.472 0.046 0.150 0.707

Table 5

MSEL for different values of Nh in both MLPs when training algorithm has converged

(minimum MSEV)

MLP1 MLP2

Nh1 MSEL Nh2 MSEL

2 0.0454 3 0.0516

3 0.0663 4 0.0433

4 0.0712 5 0.0405

6 0.0491

For each MLP, optimum values are typed in bold letters.

Fig. 7. (a) MLP1 to predict the occurrence of perforation in the laminate. (b) MLP2 to predict damaged area and, in case of perforation, residual velocity. Architectures

optimised after training.
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a routine in data preprocessing and reinforces the learning of the

network [22]. In this case p 2, perforation or arrest.

After training, the MLPs were tested with the independent data

of the testing set of patterns. MLP1 has correctly classified all the

impact cases and MLP2 has provided an averaged relative error of

EVr 6:12%; Eu 5:97% and EAd
4:44% for residual velocity,

residual angle and damaged extent, respectively. This error has

been calculated as

Ei 100
1

T

X

T

s 1

yTi ðsÞ yiðsÞ
yTi ðsÞ ; ð15Þ

where yTi ðsÞ and yiðsÞ are respectively the desired and predicted

outputs for variable i in the output pattern s.

5. Results and discussion

Once the MLPs have been tested, they can be employed as a pre

dictive tool, obtaining output data (production data) in real time,

for impact cases that are defined in the range of variability where

the nets have been trained. Although the networks have been

trained with data from cases having impact angles of 0°, 30°, 45°

and 60°, results can be obtained for interpolated angles as is shown

in Figs. 8 and 9.

Fig. 8 shows the output of MLP1 ‘‘PERFORATION YES” versus the

impact velocity for five different impact angles. In the training step

this output has been supplied to the net having binary values (1 for

perforation, 0 for detention) but the MLP obtains continuous values

between 0 and 1. This output may be interpreted as a probability of

laminate perforation defined as likeliness, for a pair of data ðV i; hÞ to
belong to the laminate perforation group. The sigmoid shape of

these curves is similar to that of the probability of perforation

curves obtained experimentally. These experimental curves permit

to define for a system projectile/laminate the ballistic limit V50,

that is, the impact velocity having a 50% of probability of

perforation.

One can see in Fig. 8 how the width of the uncertainty band

DvU of these curves, defined as the impact velocity range where

0 < ‘‘PERFORATION YES” < 1, increases with the impact angle.

Table 6 shows the values of the uncertainty band for the different

impact angles. This is consistent with the increase in the slope of

the V i V r curves at the ballistic limit observed at high

obliquities (Fig. 5a). A sharp increase in V r with V i would lead

to a higher dispersion of the experimental results close to the bal

listic limit.

Fig. 9 shows the output of MLP2: residual velocity and damaged

area versus the impact velocity for five impact angles, some of

them (15°, 40°, 50°) different from those employed in the training

of the MLP. Fig. 9a shows how the damaged area is maximum for

an impact angle of 0° and how it increases with the angle at higher

impact velocities. This result is also consistent with the experimen

tal observations [25]. Fig. 9b shows how the ballistic limit in

creases with the impact angle. Additionally the values obtained

for this parameter with MLP2 are similar to those obtained with

MLP1 (Fig. 8). At higher velocities, the curves tend to merge and

the influence of the impact angle is negligible, as observed in

experimental and numerical results.
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Table 6

Width of the uncertainty band ðDvUÞ as a function of the impact angle h

h 0° 15° 30° 40° 50°

DvhU (m/s) 44 44 52 60 72
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6. Conclusions

As a summary of the work, the following main conclusions can

be drawn:

� The application of MLPs is effective in the prediction of occur

rence of perforation and damaged area of the laminate, residual

velocity and residual angle of the projectile. Accurate results

have been obtained in the testing phase. Moreover, in the case

examined, a simple network topology was able to give satisfac

tory results.

� The network has shown a remarkable interpolation ability, pre

dicting reasonable results for impact angles different from those

used to train the neural network.

� The value of the parameter ballistic limit, of great interest for the

study of the behaviour of systems against impact of solids, may

be obtained by different network architectures and using differ

ent input data, and similar results are obtained in both cases.

We conclude that the MLP may be considered as an alternative

to the traditional methods to design CFRP laminates against high

velocity impact of solids. The real time operation and the low cost

of the MLP make it specially interesting during the first steps of the

design, when is necessary to evaluate many different configura

tions in the minimum time. Further development have to be done

to include other input parameters such as laminate thickness and

material properties.
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