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Abstract. We address the question as to whether relativistic effects have any influence on 
localization phenomena in disordered systems. Starting from the Schradinger and Dirac 
equations for Kronig-Penney potentials, we derive their discrete counterparts within the 
framework of the linear combination of atomic orbitals and tight-binding approaches. As a 
specific example we subsequently focus on substitutional binary alloys. We show that taking 
relativity into account leads to many important differences with respect to the results obtained in 
the non-relativistic approximation. The predicted behaviour of localization length can be very 
relevant in several experimental contexts. 

1. Introduction 

During the last few decades a considerable amount of work has been devoted to the 
study of relativistic effects in one-dimensional (ID) condensed-matter physics [\-10]. 
In fact, the proper treattnent of electronic states in systems consisting of heavy atoms, 
whether crystalline or disordered, requires a substantial revision of the usual, non-
relativistic approaches. Very recently, Roy and Basu [10] have considered the possible 
impact of relativistic effects on electrical conduction in disordered systems by means of 
a generalization of the Landauer approach [11] to the relativistic case. In this way, 
the relationship between transmission properties of relativistic electrons and electrical 
conduction in ID systems has been accomplished. On the other hand, transntission of 
particles through ID disordered systems can be related to the localization of quantum states, 
which is known to occur even for an infinitesimal amount of uncorrelated disorder. On the 
contrary, Kronig-Penney models with correlated disorder present a band of delocalized states 
[\2]. The treattnent of electron localization in disordered systems has so far been carried 
out on a non-relativistic footing. Nevertheless, the necessity of fully relativistic treattnents 
has become widely recognized in recent years, as it has been shown that the introduction of 
relativity may lead to quantitatively as well as qualitatively new features. In particular, this 
work aims at a comparative study of relativistic and non-relativistic electron-localization 
phenomena, thus also expanding the available knowledge Oil this problem [10]. 
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The rest of the paper is organized as follows. In section 2, we derive non-relativistic 
and relativistic discretized Hamiltonians by means of a linear combination of atomic orbitals 
(LCAO), within the tight-binding approximation (TBA). In section 3 we present a specific 
example to apply our general results and discuss our findings on localization-length effects 
arising from relativity. Finally, we summarize our conclusions and comment on the possible 
experimental relevance of this work. 

2, General model 

Tbe system we study is a periodic lattice, in which a fraction v of host atoms (called 
A) is replaced by impurity atoms (called B), randomly distributed over the sample. For 
simplicity, we suppose that interatomic distances remain unchanged in this substitutional 
alloy, although this is not essential in our calculations and more complex situations can be 
easily handled. 

We first consider a non-relativistic electron of mass m under the action of a one-
dimensional potential and assume that this potential is the superposition of atomic potentials 
Vj(x). Hence we are concerned with the Schriidinger equation (we use units such that 
m = n = c = 1 throughout the paper), 

( 
1 d

2 
) - --2 + L Vj(x - ja) W(x) = EW(x) 

2dx j 
(1) 

where a is the nearest-neighbour atomic distance. In order to solve (1), we shall take atomic 
potentials of the form Vj(x) = -Aja(x). In fact, this replacement is not so restrictive; it has 
been recently demonstrated [14] that the ID SchrMinger equation for an arbitrary potential 
can be mapped onto a ID Schrodinger equation for an array of a-function potentials, and 
that this assertion also holds for the ID Dirac equation. Hereafter we restrict ourselves to 
attractive potentials (Aj > 0). Then we express the electron wavefunction as a LCAO of the 
form 

W(X) = L Ck(!>k(x - ka) (2) 
k 

where <Pk(X) = ..jXk exp( -Aklx[) is the nonilalized eigenfunction for a single a-function 
potential. Neglecting the overlap between different orbitals and assuming that only nearest-
neighbour interactions are significant '(this may be accomplished by considering large a), 
we obtain the following tight-binding equation for the amplitudes: 

(E - erR)Ck = tr.f+1 CHI + tr.L Ck _ 1 
where the on-site energies and hopping integrals are given by 

tNR __ " e-("+,,.,)·/2 
k.k:l:l - Ak Ak:l:l . 

(3) 

(4) 
For convenience, we introduce the superscript NR, meaning non-relativistic approach. in 
order to facilitate the comparison with the corresponding relativistic expressions. Notice 
that in our approach on-site energies and hopping integrals are mutually related and depend 
on the nature of neighbouring atoms. This means that these matrix elements are calculated 
ab initio and no semi-empirical approximations are required. 

Now we consider a relativistic electron obeying the Dirac equation 

[ - iCTx~ + CT, + L Vj(x - ja)]W(X) = (E + l)W(x) 
dx j 

(5) 
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where now q, is a two-component spinor, and O'x and 0', stand for the Pauli matrices. It 
should be mentioned that the electron energy E does not include the rest-mass energy, so 
that the relativistic energy is actually E + 1. We may directly compare this energy E with 
non-relativistic values. To solve (5), we also assume a LCAO solution similar to (2). Taking 
atomic potentials of the form Vj(x) -+ -A/l(x), the corresponding atomic orbitals are given 
by [15] 

~ ( COS(A,/2») . (h(x) = V sm A, i sin(Ak/2)sgn(x) exp( -Ixl smA,). (6) 

Following the LCAO-TBA as before, one obtains 

(E - ef)C, = tf,'+ICk+1 + tf,k-1C'-1 (7) 

where now 
e~ = -(1- COSl...k) t%'k±l =---..sinAk sin Ak±le-(sinA.I:+sinAk:l:I)a{2 (8) 

where the superscript R means relativistic approach. As expected, the values of ef and 
tk~k±1 reduce in the weak-coupling limit to the non-relativistic expressions (4), obtained by 
directly solving the SchrOdinger equation. This is clearly seen by expanding (8) in powers 
of the potential strength. Up to first-order corrections, one gets 

eR = eNR(1 _ A~) 
" 12 

(9a) 

R NR ( A~ +~~±I) t'.k±1 = tk.k±l I - 6 . (9b) 

In the case of a perfect lattice A, "" A, equation (9b) leads to the following ratio r 
between relativistic and non-relativistic bandwidths in the weak-coupling limit (recall that 
the bandwidth is proportional to the corresponding hopping integral): 

A2 
r=I--. 

3 
(10) 

Hence, for small values of A, the non-relativistic bandwidth is larger than the relativistic one. 
The occurrence of this shrinkage of allowed bands when relativity is taken into account 
is also found in more elaborate ID models, e.g. the treatment of the Mathieu potential 
by the Dirac equation [14J. In addition, this shrinkage is in qualitative agreement with 
experimental and relativistic augmented plane-wave calculations in crystalline solids [16]. 
We would like to mention that such a shrinkage of the relativistic electronic spectrum is 
not restricted to periodic lattices. It is also found in quasi-periodic [7] and disordered [17J 
lattices. 

The tight-binding equations of motion, (3) and (7), can be cast in the form 

t,C'_1 + (e, - E)C, + t'+1 CHI = O. (11) 

Here we have rewritten tk+I.' = t'.'+1 == tHI, and a superscript R or NR should be 
understood in all expressions. To compute the localization length for relativistic and non-
relativistic electrons in disordered systems we follow the method proposed by Roman and 
Wiecko [13]. These authors found that the localization length I is given by 

I = lim (Sn) (12) 
n~oo 

where ( ... ) denotes ensemble average and the symbol· 
n 

Sn==--
In lanl 

(13) 
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is introduced for a convenient discussion of results. This parameter is recursively evaluated 
from the knowledge of an using 

en -E 
an = -an_I-- + bn_1 (14a) 

In 
tn+l bn = -an_l- (14b) 

In 
supplemented by the initial conditions bo = 0 and ao = -11. This recursive expression can 
be used to obtain both non-relativistic and relativistic localization lengths, which we will 
denote by INR and IR' respectively. 

3. Substitutional alloy 

In orderto elucidate the extent of relativistic impact on localization length from a quantitative 
point of view, we consider a substitutional alloy in which a fraction nu of host atoms have 
been replaced by impurity atoms. For this system Ak takes on two values, AA and AB, 
representing, respectively, the potential of host atoms and impurity atoms. The ratio AB/AA 
measures, in fact, the degree of chemical diversity of the alloy (the more distant from unity, 
the more different the chemical species). In addition, the interatomic distance is taken to 
be a = 2 in our calculations. With these parameters, the non-relativistic allowed band for 
the perfect A lattice for AA = 1 is [-0.770, -0.229], whereas the corresponding relativistic 
allowed band is [-0.723, -0.196]. We will average over ensembles comprising a number 
of 50 realizations. We have checked that this number suffices to ensure a satisfactory 
convergence of the computed mean values of the localization length. 

In figure 1 we show the variation of (Sn) with the number of atoms in the chain n, 
for both the non-relativistic and relativistic cases, at a fixed electron energy (E = -0.5), 
two different concentrations of impurity atoms (10 and 20%), AA = 1.0 and AB = 1.2. 
The graphs in figure I clearly show that (Sn) starts becoming nearly constant beyond a 
certain value, nm, of the system size. The localization length can then be taken as (Sn)n~n.' 
according to (12). We have observed that, for a wide range of relevant system parameters 
(AA, AB, concentration of impurity atoms), the values of nm for the relativistic and non-
relativistic cases are nearly the same. 

Figure 2 shows INR and IR over a wide range of energy, for the same system parameters 
as in figure 1 and a system size of 10 000. From a comparison of curves I and n, it is apparent 
that both INR and IR decrease upon increasing the impurity concentration, as expected. The 
most salient aspect of this figure appears in comparing INR and IR for the same concentration 
of impurities: there exists a critical energy for which both relativistic and non-relativistic 
localization lengths take the same value. The exact value of this critical energy depends 
slightly on the impurity concentration and, for the system parameters we have considered, is 
located at about E = -0.65 (see figure 2). As a consequence, relativistic electrons become 
less localized than non-relativistic ones for a wide range of energies (E > -0.65) whereas 
in the range E < -0.65 the situation is completely reversed. The physical implications of 
this result should be clear: if the Fermi energy is below the critical energy, the conductance 
of the sample should decrease as soon as relativistic effects become to be important. On the 
contrary, if the Fermi level is above the critical energy, the conductance should be enhanced. 
Looking again at figure 2, we observe that non-relativistic states with energies close to -0.5 
(the energy of the unperturbed A atom levels) are more localized than neighbouring states, 
in agreement with non-relativistic tight-binding calculations in binary alloys with diagonal 
disorder [18]. It is known, however, that off-diagonal disorder yields infinite localization 
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Figure 1. Variation of (Sn) with n for AA = 1.0, AB = 1.2 and E = -0.5 for relativistic (broken 
curves) and non-relativistic (full curves) electrons. The con~entration of impurity atoms in the 
alloy are v = 0.1 and 0.2. 

length at the middle of the band [19]. Since our results clearly show an absence of reduction 
of the localization length at the middle of the band in the relativistic case, it seems that our 
relativistic discrete Hamiltonian (7) is more similar to off-diagonal ones. 
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Figure 2. Variation of INR and lR with energy E for the same system parameters indicated in 
figure 1. 

Localization length as a function of the ratio AB/AA is shown in figure 3, for two 
different values of AA, electron energy E = -0.7, and impurity concentration v = 0.2. 
The non-relativistic as well as the relativisitic localization length diverges as AB/AA -* I 
(perfect lattice), whereas they tend to decrease on increasing the chemical diversity of the 
alloy. We can observe that iR is smaller than iNR in almost the whole range of this ratio 
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for AA = 1.0. The contrary is found fQr AA = 1.2. Tnerefore, we conclude that relativistic 
effects on the conductance at zero temperature depend not only on the Fermi energy but also 
on the potential strength of individual atoms. This gives rise to a rich variety of conductance 
behaviour when relativistic effects are taken into account in disordered systems. 
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Figure 3. Variation of IR (dashed lines) and INR (full lines) as a function of AS/AA. with 
AA = 1.0 (curves I) and AA = 1.2 (curves II). The electron energy is E == -0.7 and the 
impurity concentration is v = 0,2. 

4. Concluding remarks 

To conclude, we have compared Kronig-Penney models with and without relativistic effects 
via the SchrOdinger and Dirac equations, respectively. We have shown how, in both cases, 
the same tight-binding equation is obtained in the LCAO approximation, but with different 
parameters that indicate the shrinkage of the bands when relativity is taken into account. 
We have then particularized our results for the substitutional alloy to obtain specific results 
on this comparison. We have found that relativistic effects show up in a variety of ways 
that depend generally on most parameters of the system, but predominantly on the electron 
energies and the on-site energies. Actually, which the localization length is larger, the 
relativistic or the non-relativistic one, depends crucially on the on-site energy. 

Although we have only considered one particular model, it seems reasonable to believe 
that other systems that can be described by equations similar to those we deal with here 
will show a comparable richness of behaviour depending on the relevance of relativity 
to them. The conductance and transport properties, in general, of a given system will 
then be rather different, as they are directly related to localization phenomena. Complete, 
three-dimensional calculations for the purpose of relativistically investigating electron 
localization is expected to involve enormous intricacies. Therefore, analytical results in 
one dimension acquire an additional importance, as they may be the only ones available 
without prohibitively cumbersome calculations. This importance may only be ascertained 
by comparison with experimental results. In this respect, we would like to suggest that 
materials like amorphous semiconductors with heavy atoms (pbTe is a particular example), 
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often found in practice for application purposes, can be the suitable ones to test the validity 
of our calculations, and to decide whether it is actually necessary to go to three-dimensional 
calculations to correctly compare with physical systems. We hope this paper will encourage 
experimental effort in that direction. 
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