

DIEGO PINEDO ESCRIBANO
ANALYSIS OF THE DEVELOPMENT OF CROSS-PLATFORM
MOBILE APPLICATIONS
Master of Science Thesis

Examiner: Professor Tommi Mikkonen
Examiner and topic approved by the
Faculty Council of Computing and
Electrical Engineering on 9th May
2012

 I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
PINEDO ESCRIBANO, DIEGO: Analysis of the development of cross-platform
mobile phone applications
Master of Science Thesis, 46 pages, 33 Appendix pages
June 2012
Major subject: Software Engineering
Examiner: Professor Tommi Mikkonen
Keywords: mobile application, cross-platform, Android, iOS, Appcelerator Titani-
um, native application, Web based application

The development of mobile phone applications is a huge market nowadays. There are

many companies investing lot of money to develop successful and profitable applica-

tions. The problem emerges when trying to develop an application to be used by every

user independently of the platform they are using (Android, iOS, BlackBerry OS, Win-

dows Phone, etc.). For this reason, on the last years many different technologies have

appeared that making the development of cross-platform applications easier.

In this thesis one of these technologies, Appcelerator Titanium, will be analysed. During

the analysis process we will explain what a mobile phone application is. Also will be

explained what a cross-platform mobile application is and what their features are. Final-

ly, Appcelerator Titanium is introduced, presenting the features this technology pro-

vides.

 In order to show the results on a more visual way, a cross-platform mobile phone appli-

cation that will be installed natively on Android and iOS platforms will be developed. It

will contain the most important features that a mobile phone application should have.

The general conclusions extracted from this thesis and the application is that cross-

platform mobile applications have some advantages compared with the regular mobile

applications, but the development process depends on frameworks that are not mature

enough.

 II

To my parents, because they have always been when I needed them.

To my brother, who always supported me.

To Martin, Carlos, Javi, Aitor and all my colleagues, which made me

become the person I am.

To my tutor Tommi Mikkonen, who gave me the opportunity to write

this thesis and always kept a positive and understanding attitude.

To Javier Blas, who allowed me to write my thesis abroad.

To the department of architecture at the TUT for giving me access to

their resources.

To Heidi Fordell and the whole team of the International Office, be-

cause they always helped me and they allowed me to extend my ex-

change period.

To Hernan, who helped me with the corrections.

“If you think you cannot do it, don’t worry, you will not”

Carlos Antonio Rodriguez Mecha. Vancouver, 2010

 III

TABLE OF CONTENTS

1. Introduction ... 1

2. Mobile Applications .. 2

2.1. Types of mobile phone applications... 2

2.2. Components .. 3

2.2.1. Graphical user interface ... 3

2.2.2. Application logic and interfaces .. 5

2.3. Cross-platform application ... 7

2.3.1. Cross-platform development frameworks .. 7

3. Appcelerator Titanium .. 9

3.1. Introduction .. 10

3.1.1. Implementing the application... 11

3.1.2. Compilation of the code ... 13

3.1.3. Pack the application ... 14

3.2. Elements ... 14

3.2.1. Navigation .. 15

3.2.2. Controls .. 18

3.2.3. GPS and Maps .. 23

3.2.4. Camera ... 27

3.2.5. Audio .. 28

3.2.6. Storage ... 29

4. Analysis of a cross-platform mobile application .. 31

4.1. Use Case: Travel Guides application ... 31

4.2. Analysis of the requirements .. 32

4.3. Application design.. 34

4.3.1. UI module .. 35

4.3.2. lib module .. 36

4.3.3. app module ... 37

4.3.4. Screenshoots... 37

4.4. Evaluation of the framework .. 42

5. Conclusions ... 45

References ... 47

A. Use case implementation... 50

 1

1. INTRODUCTION

The development of mobile phone applications is a huge market nowadays. There are

many companies investing lot of money to develop successful and profitable applica-

tions. The problem rise when trying to develop an application to be used by every user

independently of the platform they are using (Android, iOS, BlackBerry OS, Windows

Phone, etc.). The traditional way to deal with this problem has always been to hire more

experts and split the development process into different flows, each one taking care of

one target. However these solutions may seem inefficient for a small company that can-

not afford to hire an expert.

For this reason, in the last years many different solutions have appeared that make the

development of cross-platform applications easier. These solutions are usually based on

a framework with specific tools that allows the user to program under one middleware

technology and as a result one can obtain an application that runs on different platforms

(the ones the specific solution allows to develop for).

The goal of this thesis is to analyse cross-platform mobile applications and specifically,

the ones produced using the framework Appcelerator Titanium. In order to achieve this

goal Appcelerator Titanium will be analysed and other frameworks will be reviewed.

During the analysis process we will explain what a mobile phone application is, estab-

lishing the difference between the two existing types of applications, native applications

and Web applications. Also will be explained what a cross-platform mobile application

is and what their features are. Finally, Appcelerator Titanium is introduced, presenting

the features this technology provides, analysing the homogeneity of the applications

produced by the framework, its problems and possible solutions. In order to show the

results in more visual way, a cross-platform mobile phone application that will be in-

stalled natively on Android and iOS platforms will be developed. It will contain all the

most important features that a mobile phone application should have.

This thesis is divided into four chapters. In Chapter 1 there is an introduction to the the-

sis. In Chapter 2 we will explain what a mobile application is, types of applications and

after that we will focus on what is a cross-platform mobile application. In the Chapter 3

we will analyse the Appcelerator Titanium framework. The Chapter 4 will explain how

to develop a cross-platform application using Appcelerator. An entire mobile applica-

tion will be developed. Finally, Chapter 5 we will expose the conclusions of this thesis.

 2

2. MOBILE APPLICATIONS

A mobile handheld application is software developed to be used on any kind of mobile

devices such as smartphones or tablets. These kinds of applications could be stand-alone

applications or they could be distributed applications spread around different devices,

networks and/or servers. Nowadays almost all the applications are developed for

smartphones and tablets that offer very good and powerful tools and frameworks to de-

velop this software.

2.1. Types of mobile phone applications

There are two types of mobile phone applications: native applications and applications

based on web technologies. A native application is the one that was designed to be in-

stalled on a specific operating system (iOS, Android, Symbian, etc.) and it is also de-

pending of the device’s firmware. In order to have an application running in different

devices or models small or big changes will be needed. Web based applications are de-

veloped using Web technologies such as HTML or JavaScript, and should be interpreted

by the Web browsers of the different operating systems.

There are several differences between native and web applications. Each of them has its

own advantages and disadvantages. Based on the results obtained by the Global Intelli-

gence Alliance paper [1] and the analysis made by Worklight [2] it is possible to extract

the key points that make the difference between native applications and web applica-

tions. The first point is the user experience; this is one of the most important factors to

consider when deciding what kind of application is going to be developed. The results

extracted from the study shows that native applications have the ability to build a supe-

rior user interface, thus the experience of the user is better on the native applications

than with web based applications. This improvement is reflected by the fact that “twice

as many publishers saw higher user adoption and usage volume over native applica-

tions.” In particular “30% respondents with both interfaces see over double usage vol-

ume over the native application”. [1 p. 16]

The other important difference remarked on the research is that the access to the main

device features is still better in native applications, but the evolution of the technologies,

particularly HTML5, is balancing the scales with the Web applications. It is a matter of

time that web technologies have access to the device camera, GPS, contacts, calendar,

file system, accelerometer, and so forth.

 3

The next feature remarked by Global Intelligence Alliance is that with Web applications

the developers have full control over the application and they have direct control over

own distribution, without need to seek 3rd-party vendor approval. In some cases this is

an advantage because it is possible to obtain full profit from sales or advertisements

within the application. On the other hand, 3rd-party vendors like the Apple App Store or

the Google Android Market provide a powerful marketing tool to promote and distribute

the applications.

And finally, the last feature that makes a difference is the ability to distribute the appli-

cation on as many devices as possible. This time, the Web applications has an advantage

over the native applications, because, as it is mentioned on the conclusions of the paper,

“Web apps offer an architectural advantage when targeting a cross-device launch, where

significantly less platform migration is required as compared to native applications” [1

p. 6]. It means that in the case of willing to develop for many devices it is a better op-

tion to use a Web application.

To summarise the information extracted from both studies, on the Figure 2.1 there is a

direct comparison between native and Web based applications.

Figure 2.1 Comparison between Native and Web apps from Worklight [2]

2.2. Components

A mobile application can be divided into graphical user interface (GUI), and application

logic and interfaces to device’s peripherals.

2.2.1. Graphical user interface

The graphical user interface is the access point where the user will control the behaviour

of the application. It includes all the graphical elements and the information that will be

shown to the user. This is one of the most important elements of a mobile application

 4

because it is the one that defines the user experience. How the user interacts with the

application will be the difference between a successful application and the others.

Both Android and iOS have separated modules to create and customize the user inter-

faces. Android uses a hierarchical structure of elements (Figure 2.2) defined in a XML

file [3]. In this file there are elements called views that are inserted within other ele-

ments called viewGroups. Different elements like buttons or text boxes could be added

inside the views. Each element of the hierarchy will become a Java class where certain

behaviour will be implemented. Moreover, viewGroups can be nested.

Figure 2.2 Hierarchical structure of an Android UI

On the other hand, iOS uses a service called Cocoa Touch [4], which is a framework

that abstracts some functionalities of the operating system to provide the tools needed to

develop the user interface.

Android and iOS provide many different elements to build the user interfaces. Many of

those elements are the same, implemented with different technologies, but some of them

are exclusive of the platforms. It is important to remark this fact, because when one is

developing a cross-platform application it is necessary to know what could be imple-

mented in every platform and what cannot. It is possible to find more information about

the whole set of elements each platform provides on the developer pages of Android [5]

and iOS [6]. The elements provide by both platforms can be categorised in two groups:

Containers and content. In Table 1 this division is displayed.

 5

Table 1 Shared elements between Android and iOS

Containers

Windows: A window is an empty drawing surface or container. Windows can be opened and

closed.

Tabs: The tabs, usually grouped over a tab group, are one way to organise different windows

with the same hierarchy.

Layouts: These elements are used to specify how the content will be displayed on the con-

tainer.

Content

Buttons Date and time pickers List pickers

Switchers Progress bars Text labels and inputs

Alert dialogs Table views Search bars

Sliders Images Scrollers

2.2.2. Application logic and interfaces

Application logic is the part of the program that defines the behaviour of the applica-

tion. It will determine what actions will be executed in response to different kind of

stimulus like the user interaction, phone calls, internal schedulers, etc. This part will

interact with the software installed in the operating system to be able to access different

features like the camera, Internet, the agenda and every other feature that the operating

system of the device allows to access.

For the scope of this thesis, just the following features that Android and iOS provide

will be studied: Camera, Audio, GPS, Maps and Storage.

Camera. Both Android and iPhone provide interfaces for accessing the camera of the

device. With this interface it is possible to take pictures and shoot videos, zoom in or

out or change the configuration of the camera. Both platforms also provide the tools to

build a specific camera application and access to the most basic and low level features,

accessing to the raw information captured by the camera.

Audio. Every mobile phone has a microphone and a speaker and almost every mobile

operating system provide access to them. With those tools Android and iPhone offers a

way to reproduce (play, stop, and move) and record audio in several formats. More

about the recording and reproducing process in those platforms is provided in [7], [8]

and [9].

 6

GPS and localization. Nowadays every mobile device is provided with a GPS. The

operating systems are responsible for providing an access interface to this service to

offer the possibility to build localization based services [10]. The GPS was originally

thought to use just satellites signals. But the huge amount of devices equipped with this

system may affect its speed and accuracy for mobile applications. For this reason many

operating system like Android [11] or iPhone [12] complement this system with locali-

zation based on Wi-Fi and mobile networks (Figure 2.3). Those methods could be

transparent for the application developer and for the final user but both of them have the

chance to select which method to use. The most common data extracted from a GPS and

that can be used by the application developers are longitude, latitude, altitude, speed and

time. Those data have a precision depending on the quality of the GPS signal and the

rest of techniques mentioned before.

Figure 2.3 A timeline representing an Android application waiting for location updates.

Maps. There are several map systems that can be used by a mobile OS. The most fa-

mous are Google Maps [13] used by Android and iOS, Bing Maps [14] used by Win-

dows Phone, Nokia Maps used by Symbian or OpenStreetMaps. All those systems are

based on the existence of a map service stored on the company servers who provides an

API to interact with it. The most common features those services provides are to visual-

ize a map of an specific area, move the map, zoom in and zoom out, create pins and add

them to the map to mark places, create routes between places or look for information

(addresses, places, etc.) in the map.

Storage of information. The persistence of the application is needed in order to keep its

own state and to store the information collected or generated during the life time of the

application. There are several ways to store this information but can be split in two

groups: the techniques that use the local resource to store the information and the others

that use Internet to do it. The local storage could be used in many ways.

One way to do it is to store the information on the device’s file system. It could be done

over the memory of device or over external storage devices such as SD cards. Every

operating system offers an API to access to the file system to create many types of files.

 7

This API is very similar to the one that can be found in every PC operating system, so

there are services to create, delete, move, and edit files and directories.

One specific type of file frequently used to store information is XML file format [15].

Mobile operating systems usually define a specific module within the API to manage

this kind of files.

Another system to store information on the device is using data bases. Both Android

and iOS offer the possibility to use the data base manager SQLite [16]. This is transac-

tional SQL database engine that can work without any previous installation and configu-

ration and this made this tool suitable to work in many kind of devices.

2.3. Cross-platform application

A cross-platform application is a software developed to run on different platforms with-

out behaviour or visual changes. There are several levels of cross platform applications.

In one side of the scale, there are the full cross-platform applications like a Java applica-

tion where no changes are needed in the code to be able to run it over any platform like

MacOS, Windows or Linux. In the middle, there are applications that need small modi-

fications inside the code to be running in different platforms but almost all the codifica-

tion is the same. One example could be a web application written in HyperText Markup

Language (HTML), Cascading Style Sheets (CSS) and Javascript. While these are

standards by the World Wide Web Consortium [17], every different Web browser im-

plements them in a different way. Thus a modification of the codification is needed in

order to have a cross-platform (in this case, a cross-browser) application. On the oppo-

site side of the scale, there are the applications that are designed once and programmed

several times, one implementation per platform. With this technique an application is

created, which is not truly cross-platform, but for the end user it looks like.

When we are dealing with cross-platform mobile applications, the most common type

are the second and the third type. The second type, the one-time implementation plus

modifications per platform, is mostly used by the web based applications. In the other

hand, the third type is totally linked with the native applications.

2.3.1. Cross-platform development frameworks

As it was mentioned in the previous section, there are two kinds of mobile phone appli-

cations, natives and web applications. Because of this separation, the different frame-

works already existing on the market will be divided. There are frameworks that pro-

duce native applications and there are frameworks that produce web based applications.

In the first group we have frameworks like Titanium Appcelerator or PhoneGap. These

frameworks are open source and all of them are using web technologies like JavaScript

or HTML as the main programming language.

 8

Titanium Appcelerator [18] is an open source framework that uses JavaScript syntax

and his own libraries to create cross-platform native applications. With this platform

Android and iOS applications can be developed so far. To develop for Android, Win-

dows XP, Windows 7, MacOS or Linux is required. To develop for iPhone and iPad a

MacOS computer is required due to the impossibility to obtain the XCode compiler for

any other platform.

PhoneGap [19] is an open source platform that uses JavaScript, HTML and CSS to de-

velop cross-platform native applications for iOS, Android, Blackberry, Windows Phone,

WebOS and Symbian. Using the same logic than Appcelerator, to develop for iPhone,

PhoneGap running over a MacOS computer is needed. To develop for Android, WebOS

or Symbian every platform can be used, namely, Windows, MacOS and Linux. To de-

velop for Windows Phone 7, Windows 7 or Windows Vista is are required. Finally, to

develop for Blackberry, Linux cannot be used.

Both platforms claim to allow the access to the main important features of a native ap-

plication: the GPS, the camera, the audio, the gallery, the contacts, and so on. On the

other hand, we have frameworks that produce applications thought to be executed by

Web browsers, the Web applications. There are several frameworks to develop this kind

of applications but the most important and used nowadays are Sencha Touch and jQuery

mobile.

Sencha Touch [20] is a framework used to create HTML5 Web applications for iPhone,

Android, and BlackBerry. It uses an extended version of JavaScript library called ExtJS.

In order to access the different services the device provides (Camera, GPS, contacts,

etc.), the application must be wrapped in a native shell.

jQuery mobile [21] is a framework that uses HyperText Markup Language 5

(HTML5), Cascading Style Sheets (CSS), and JavaScript to create Web application for

a big amount of operating systems (iOS, Android, Windows Phone, Blackberry, Palm

WebOS, Meego, Kindle and much more). jQuery is a tool to create web versions for

mobile devices rather than mobile phone applications with complex functionality.

Appcelerator Titanium will be used because of the following rationale. The first reason

is because it produces a full native application. It was already explained on a previous

section why a native application is preferred. The other reason is that Titanium Studio,

the framework used by Titanium Appcelerator, is based on the Eclipse framework

which is commonly familiar among developers. And the last but not the least, Appceler-

ator has a big community of developers to provide support, which makes solving prob-

lems an easy task.

 9

3. APPCELERATOR TITANIUM

Appcelerator Titanium [18] is an open source platform that provides the tools to devel-

op cross-platform mobile device applications using JavaScript [22] as the core technol-

ogy. Titanium allows users to program native and web based applications for iOS and

Android platforms.

To interact with Titanium, the framework Appcelerator Studio [23] is required. This

framework is based on the Eclipse IDE [24] so it allows the users to do the same things

they can do with the original Eclipse project, namely coding, testing, deployment, and

versioning. It also includes the possibility to install the application directly on the device

to test it and debug it. This is particularly interesting because there are features like the

camera, the audio recorder or the accelerometer that are not accessible with the emula-

tors that XCode or Android SDK provides.

Titanium acts like a bridge between the different implementations of a mobile phone

application components made by the different operating systems (Android and iOS) and

the JavaScript programming code. The corresponding diagram is shown on the right

side of Figure 3.1.

Figure 3.1 Titanium Mobile architecture

 10

All the Appcelerator features that will be explained have been tested with an iMac with

MacOS 10.X, Xcode 4.2.1, Android SDK v3.1, and Appcelerator Titanium 1.8.1

framework. The application has been tested on MOTOROLA Xoom tablet with an An-

droid operating system. For iOS platform the application has been tested on the iPhone

Emulator that XCode provides.

3.1. Introduction

The development of a mobile application using Titanium has several steps. The first

thing that has to be done is to create a Titanium Mobile Project (Figure 3.2) and specify

the name and the company name of the application (always starting with “com.”). In

addition, the target platforms will also be listed.

Figure 3.2 Creation of a new project

Figure 3.3 Structure of the project

Once the project is created, Titanium creates a structure of folders and files that helps to

organize the project. Figure 3.3 shows this structure. On the root folder we can find an

XML file called TiApp.xml. This file contains the configuration of the application and

information that it will be used to generate the native resource. Because each platform

we are going to use (Android and iOS) need different parameters to configure their ap-

plications, we will include platform related information in this file. More information

about this file can be found on the Wiki of the project [25]. In the root folder we can

also found the i18n directory that will be used to store the string files needed for the

internationalization of the app. We can also find some other files which content is not

relevant for the development on an application.

The actual code of the application is localised into the Resources folder. Here we can

find the main file that will be used as starting point of the app, the app.js. Under this

folder one can also find particular folders like the android or the iPhone folder. Inside

 11

this one can find information related to each platform like images configured with the

specific resolutions each platform demands or every resource that will be used by the

specific operating system.

The last elements to analyse are the JavaScript files that define the logic of the applica-

tion. The code of the application will be written on those files with extension .jess and

they will use the API that Titanium SDK provides [26].

Once the code of the application is ready, the framework provides two options. The first

one is to run the application within an emulator of any of the platforms or run it into a

connected device. The second option is to pack the application for distributing it over

the different platform channels. In both cases the source is compiled into binary code

and the Android APK [27] or iPhone IPA [28] is generated.

3.1.1. Implementing the application

As was mentioned above, the coding is done using JavaScript syntax and an extensive

API is provided in order to cover as much functionality as possible. In the documenta-

tion of the Titanium project [29] one can find all the list of features available to create a

mobile application. The most important and the most relevant items for this thesis are

the following:

 Support for all native platform UI controls.

 Support for geo-location.

 Support for camera: taking photos, playing and recording video.

 Support for streaming and recording audio using the microphone.

 Support for native maps.

 Support for file system (reading and writing files and folders).

JavaScript is a powerful tool that allows the programmer to use this language in many

different ways, from a more object oriented paradigm to a procedural code. Despite this

fact, Titanium Appcelerator suggests that, in order to design strong, reusable and fast

applications, some techniques have to be used and obtain a high modularity degree.

There are some tools that can be used to have a modular application. The most im-

portant are the includes, the requires, the URL property and the self-invoking functions.

Include: The first facility is using the Titanium.include(). This function extracts the

code from the given JavaScript file and inserts it within another file. This way big code

files can be splitted into several parts to be able to manage them efficiently. The prob-

lem of this technique is that the code within the included file will be part of the global

 12

scope. It means that the variables and the name of the functions are part of the same

namespace and there could be repeated variables.

The first step to use includes inside an application is divide the application. In this ex-

ample the application will be divided in two parts, one will contains the definition of a

window and the other will contain the content of the window.

windowDefinition.js:

…

var window = Titanium.UI.createWindow();

Titanium.include(‘windowContent.js’);

…

windowContent.js:

…

var label = Titnaium.UI.createLabel({

 text: ‘I am included content’

});

window.add(label);

…

Finally, the compiler extracts the code from windowContent.js file and inserts it where

the include function was called. The windowContent name space is inserted in the win-

dowContent’s one. Thus, the code within windowContent file can access to the varia-

bles of windowDefinition.

Require: The next facility Appcelerator provides in order to have a modular application

is the use of the CommonJS [30] function require(). This function execute the code

within the required file and generates an API with the functions defined within. This

API is exported as a variable so whenever the user want to access the functionality of

one particular file, a simple call over that variable is needed. The variables and func-

tions within the required file belongs to its own name space so the global scope is not

saturated. The following code shows how this function has to be used:

windowDefinition.js:

…

var window = Titanium.UI.createWindow();

var content = require(‘windowContent’);

var label = content.newLabel();

window.add(label);

…

windowContent.js:

…

exports.newLabel = function (){

 var label = Titnaium.UI.createLabel({

 text: ‘I am a included content’

 });

 return label;

}

 13

URL property: The last modularity facility is to use the URL property of a Titani-

um.UI.Window object. This property allows the programmer to define the content of a

window object on a different file keeping the variables and the namespace locally.

Self-invoking functions: Another technique to be used in a modular JavaScript applica-

tion is the self-invoking functions. The primary motivation behind self-invoking func-

tions is to create their own scope. In JavaScript, only functions have scope. The varia-

bles defined outside of a function are dumped into the global object. The following ex-

ample code explains the features mentioned above:

windowDefinition.js:

…

var window = Titanium.UI.createWindow({

 url:’windowContent.js’,

 mycolor: ‘red’

});

…

windowContent.js:

…

var win = Titanium.UI.currentWindow;

var label = Titnaium.UI.createLabel({

 text: ‘I am a included content’

 color: win.mycolor;

});

win.add(label);

…

Using these four techniques (includes, requires, URLs and self-invoking functions) in-

side an Appcelerator applications the final results will easier to debug, to maintain, and

to re-use.

3.1.2. Compilation of the code

There are two types of code that we will need to compile, static and dynamic code. The

static source is analysed to find references to Titanium modules and the localization

strings included into the xml files, the metadata included into tiapp.xml and density spe-

cific images are generated following the platform specifications. After this phase, the

process is forked depending on the platform:

Android. First of all, an Eclipse project for Android is generated and setting up with the

metadata mentioned before. After that the JavaScript code is compiled to Java byte code

using the JavaScript framework Rhino JSC compiler [31]. The final step is to use the

Android SDK tools to creates the final APK file. It is out of the scope of this thesis to

'windowContent.js

 14

explain how the Android SDK creates the APK file from the Java byte. More infor-

mation about this process is available on the Android developers web page [32].

iOS. The first step is the creation of an XCode project and as it was done with the An-

droid project, Titanium will use the metadata to configure the XCode project. After that,

the JavaScript code is transformed into base64 format and inlined [33] as a variable into

a generated C file. Finally, the XCode use this file to generate the final binaries and the

final IPA.

In order to interpret and execute dynamic source a JavaScript interpreter is needed. To

solve this problem Titanium includes a reduced version of those frameworks with the

rest of the files of the application. For the iOS application, a forked version of WebKit's

JavaScriptCore [34] is used, and a snapshot of Rhino 1.7 R3 CVS [31] is used for An-

droid. On the last version of the Titanium SDK, the 1.8.1, a new JavaScript interpreter

was introduced, the V8 [35]. The performance of V8 is better than Rhino’s [36] but in

this research Rhino will be used because there was not enough documentation about

how V8 is involved on the compilation process.

3.1.3. Pack the application

As mentioned above, Appcelerator Titanium generates binary codes compiled into .apk

or .ipa files to be installed directly on the corresponding devices. In order to generate

the .apk file for Android, we have to select the Distribute > Android Market Place

menu option and specify a private key that will be used to sign the application. In order

to obtain this key we just need to go to the Android Developers web page and look for

the guide to create a private key [37]. Regarding iOS, if we want to generate the .ipa we

have to select the Distribute > Apple iTunes Store menu. In this case we will need to

have a registered iOS device, and an Apple WWDR Intermediate Certificate, Distribu-

tion certificate and a Distribution Provisioning Profile.

3.2. Elements

In this section all the elements one can use to create an application with Titanium Ap-

pcelerator will be explained. For every element, examples of the final result on both

platforms (Android and iOS) will be given, and, if the example requires it, program

code is given.

 15

3.2.1. Navigation

In Titanium allows users to implement two ways to navigate between windows. The

first one is based on Tabs and the second one is based on Windows. It is also possible

to mix the two systems to have a richer user experience.

A tab structure represents a common tab structure where each tab represents an individ-

ual piece of information with the same hierarchical level than the rest of the tabs. In

Figure 3.4 the final result over the iPhone emulator and the Android device can be

found.

Figure 3.4 Tab based app in iOS (left) and Android (right)

In order to achieve a tab based application, tabs and windows objects have to be created

and the windows should be linked with the corresponding tab.

A windows system represents an application with hierarchical data or a stack of win-

dows with different hierarchical level. In this case the coding is more complex than the

tab based navigation because iOS and Android have different systems to manage the

stack of windows in order to be able to come back to the previous windows. In this sys-

tem there is a Master view that contains the components of the main window and a De-

tail view that contains the components for the second window on the hierarchy. The

code needed to create this system is shown in Figure 3.5

 16

Figure 3.5 Master View and Detail View

In addition there is an Application window per platform we want to develop for, namely,

one for Android and one for iOS (Figure 3.6). Inside this window object is where the

platform specific behaviour will be implemented.

Figure 3.6 Two application windows OS dependent

In Android, the code within this application window should define at least two win-

dows: the actual Application window where we have to attach the Master view and an-

other window that will contain the Detail view (Figure 3.7). When we want to navigate

to the second window, we just need to add a button to the Master view with an action

associated that will navigate to the Detail view. In this case the action is as simply as

open the second window that contains the Detail view.

 17

Figure 3.7 Application Window for Android

In iOS the situation is a bit different because this operating system is designed to run

over devices without a hardware button to go back to previous windows. Thus, a system

to allow this behaviour should be implemented. For this reason we have to use the com-

ponent Navigation group [38]. This element allows the device to know in which win-

dow we are and what was the previous window to allow the user navigate backwards.

Hence a new window for the Main view has to be created and added to a navigation

group previously created.

Following the same schema as Android does, a second window has to be created and

linked with the Detail view (Figure 3.8). When we want to navigate to the second win-

dow we also have to add a button to the Master view with an action associated that will

navigate to the Detail view, but in this case, we have to use the navigation group object

in order to open the second window. As a result of this code, we end with these two

applications shown in Figure 3.9 Windows system for Android and Figure 3.10 Win-

dows system for iOS.

 18

Figure 3.8 Application Window for iOS

Figure 3.9 Windows system for Android

Figure 3.10 Windows system for iOS

3.2.2. Controls

The graphical user interface controls that can be implemented for Android and iOS us-

ing Appcelerator Titanium include pickers, buttons, switchers, scrollers, table views,

text labels, inputs, sliders, progress bars, image views, views and search bars.

 19

There are three kind of pickers that can be implemented in Appcelerator Titanium for

both Android and iOS platforms: date pickers, time pickers, and plain data pickers. All

of them are implemented using the same Picker object, and depending on the attribute

type the specific picker will be created. The results are shown in Figure 3.11 for the

iPhone emulator and in Figure 3.12 for the Android device.

Figure 3.11 Pickers on iPhone emulator

Figure 3.12 Pickers on Android

 20

In addition, Titanium supports just two types of buttons that work for both Android and

iOS platforms: the standard button and the switcher (with two states, on or off). In Fig-

ure 3.13 we can see a standard button, following by another standard button with a

background image, and finally a switcher with an on / off state.

Figure 3.13 General Buttons in iOS (left) and Android (right)

In addition, there are individual features that can be implemented depending on the plat-

form (Figure 3.14). For Android it is possible to modify the background of the button

depending on the state, namely, selected, focused, or disabled. For iOS it is possible to

change the style of the button using the attribute style. There are four possible values

that will change the appearance of the button. Using a BAR style, we could integrate

several buttons within a button bar. Using a BORDERED style, we can add a border to a

standard button. If the DONE style is used, the button will include an icon that repre-

sents the end of a task. Finally, using a PLAIN style, our button will have no style and

we will be able to add our own, like gradients, background colours or borders.

Figure 3.14 Special buttons in iOS (left) and Android (right)

Because the goal of a button is to initiate a certain action, we have to use a mechanism

called eventListener. By adding this listener to the button, we are telling the operating

 21

system that every time a specific event occurs over the button, the code within the lis-

tener should be executed.

Another GUI control is the scroller. Both Android and iOS allow scrollable views when

the content exceeds the size of the container. There are two types of scroll that can be

implemented for the two platforms: horizontal scrolling and vertical scrolling. In addi-

tion, there are two kinds of containers where scrolling is allowed: One can scroll over a

Titanium.UI.ScrollView or over a Titanium.UI.ScrollableView. A ScrollView is a con-

tainer that will store a normal view which content exceeds the dimensions of the con-

tainer. This special view can use horizontal or vertical scrolling but only iOS allows

both at the same time. If the scrollType property is not set, the scroll view attempts to

deduce the scroll direction based on some of the other properties that have been set.

Specifically, if contentWidth and width are both set and are equal to each other, or if

they are both set and showVerticalScrollIndicator is set to true, then the scroll direction

is set to "vertical". If contentHeight and height are both set and are equal, or if they are

both set and showHorizontalScrollIndicator is set to true, then the scroll direction is set

to "horizontal". If scrollType is set, it overrides the deduced setting. In case we want to

scroll over different views, we have to use the ScrollableView. With this container, we

can create an array of normal views, link them to the container and scroll horizontally

over them. In order to have a better user experience, both platforms provide a system to

inform the user that there is a scrollable area. To enable or disabled this feature the

showPaginControl property should be set. In Figure 3.15 there are examples of hori-

zontal scrolling (left upper corner), vertical scrolling (right upper corner) and scrollable

views (bottom). In this example image views are also used to show the direction of the

scrolling.

Figure 3.15 Scrolling in iOS (left) and Android (right)

One component that is used to organise the information inside a table is the TableView.

This element consist on one Titanium.UI.TableView and within this table, there are Ti-

tanium.UI.TableViewRow objects. Within the row, any UI component can be added to

 22

create from simple rows with just a title on them, to more complex ones with views,

buttons, labels or more tables inside. By default, this table is scrollable vertically when

the number of rows exceeds the size of the screen. In addition, it is possible to use a

search bar to filter the table rows. In order to have this feature on our table a Titani-

um.UI.SearchBar has to be added.

There is a difference between the final result of the Android application and the iOS

application. In iOS all the features of the search bar are working properly but in Android

the cancel button that should clear the filter information is not working a manual remov-

ing of the characters on the filter is needed to restore the filtering. In Figure 3.16 an

example of the use of a TableView is shown.

Figure 3.16 TableView in iOS (left) and Android (right)

The remaining GUI elements to be analysed are the sliders, the progress bars, and the

Alert dialogs. The sliders are as simple as they are in Android or iOS and the result of

the Appcelerator slider is the same in both platforms. To set up the minimum and the

maximum values is the only important feature that should configure in order to use the

slider into an application. The other element is the progress bar. A progress bar is a

graphical element that shows a horizontal line that represents the progress of a defined

action. To modify the value of the progress bar, the action linked to it should increase

the value every unit of time. This unit of time is defined by the action itself. In the ex-

ample used to explain this component, an HTTP connection is established and the moni-

tor of the stream downloaded will be the one who will increase the value of the bar. The

behaviour of the progress bar is the same in Android and iOS and the only difference is

the visualization of the bar. Each operating system uses his own styles and Appcelerator

does not provide any functionality to do a manual customize over the bar.

The last element used in this example is the alert dialog. These dialogs are small pop-up

views with simple text and simple buttons that show the user some information. There

are two ways to create an alert dialog. The first is using the function JavaScript function

alert() including a message. This method will show the dialog with an OK button. The

second method is using the object Titanium.UI.AlertDialaog that can be customized by

 23

the user adding titles or buttons with different functionalities. By default Android does

not add any OK button to an empty alert dialog created by the Appcelerator method but

iOS does. In Figure 3.17 there is an example of the use of all these elements.

Figure 3.17 Sliders and Progress bars in iOS (up) and Android (down)

3.2.3. GPS and Maps

In order to implement the GPS system the first thing to be done is to give Android

enough permissions [39] to access the data coming from the Internet connexion and the

GPS. To achieve this, the following lines have to be added to the TiApp.xml file which

will be partially used to create the Android manifest:

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

We need to remember that the signal is obtained asynchronously. Titanium provides

two systems to access the data from the GPS: the function Geoloca-

tion.getCurrentPosition() (Figure 3.18) and the event location. The function getCur-

rentPosition() is an asynchronous function that is called once when the application is

launched and the first connection with the GPS is done. Within the function, every fea-

ture the GPS provides is accessible through the coords object. The other option is the

 24

asynchronous event location. This event triggers repeatedly on the location change. To

manage this event, to add a listener to the Geo-location module is needed and the behav-

iour of this listener will be the same than the previous function accessing to the same

coords object.

Figure 3.18 Asynchronous GPS data

The map systems in iOS and Android are based on Google Maps [13], and so Titani-

um’s as well. The map is represented by a Map.View object, and it is used for embed-

ding native mapping capabilities as a view. Over this view the mapping location, the

type of map and the zoom level can be controlled and custom annotations can be added.

An annotation is a geo positioned place represented with a pin over the map.

In order to use a map inside an application, a Map.View has to be created and parame-

terized (Figure 3.19). There are several attributes one can use to customize the map but

the most important are three: the map Type attribute allows one to use satellite maps

with real pictures, standard maps with roads and name streets, and a mix between both

of them. region Fit is used to focus the view on the map’s region. This region is defined

calling method setLocation() and the information obtained with the functions/events

mentioned above can be used to define the parameters of the region. The last one is us-

erLocation; and it is used to show a special pin on the map that represents the current

position of the device. In the current version of Titanium is used on this research, there

is a bug over Android platforms that made this current location pin disappears whenever

the view of the map is not showing [40].

Figure 3.19 Map.View

Figure 3.20 MapAnnotation

The last step is to explain how to add, modify and remove annotations to the map view.

In order to add an annotation, a Map.Annotation object has to be created using the

function Map.createAnnotation(). This called has to be customized with several parame-

 25

ters like the latitude, longitude, or pincolor. Figure 3.20 shows how to create a simple

annotation. One consideration we need to have when we are defining the colour of the

pin is that there is a bug on Titanium [41]. This bug made the Android application crash

when a click event is fired over an annotation which colour was not established as

Map.ANNOTAITON_RED, Map.ANNOTATION_PURPLE or

Map.ANNOTATION_GREEN. If the colour is not defined, Titanium will use blue as

predefined and the application will crash. Once the annotation is added to the map we

can edit it or remove it from the view. To modify an annotation we need to access the

object and use the set of function provided by this object like setTitle, setPincolor, etc.

The changes will affect immediately to the map annotation in iOS but not in Android. It

means that if we change the colour of the pin, in iOS we will see the new colour on the

map annotation instantly but in Android we will not. To see the change over the map,

we will need to force Titanium to refresh the annotations over the map adding new ones

or deleting any of them.

To remove an annotation we have to access the map view and remove it from the list

of annotations using method removeAnnotation(). Both editing and removing actions

need to have the annotation object. Because Titanium does not allow to recover the an-

notations that were created using method addAnnotation() we need to maintain our own

list of annotations object to be able to modify them or delete them.

In Figure 3.21 and Figure 3.22 we show the results of all the features commented

above:

 1 2 4 3

 26

Figure 3.21 Map and GPS example in iOS

Figure 3.22 Map and GPS example in Android

 5 6 7 8

 1 2

 3 4

 5 7 8

 27

1. Open the app and first detection of GPS signal.

2. Map with the current location of the user (blue pin).

3. Add three random pins and one pin on the current location (the last one).

4. Visualization of the pins added.

5. Checking the information of the first pin.

6. First pin edited. The name and the colour will change.

7. Visualization of the pin modified.

8. Visualization of the map after delete de modified pin.

3.2.4. Camera

In this case, we will focus only on Android due to the impossibility to access the camera

inside the iPhone emulator. For this reason we will also not discuss about the features

Appcelerator provides for use the camera in iPhone.

In order to access the camera functionalities Titanium provides several tools within

module Titanium.Media. The first step to use the camera is, like on the GPS, is to set up

the Android permissions customizing the TiApp.xml file:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

After that, function Titanium.Media.showCamera() has to be called and customized

with several parameters and callback functions, namely, success, cancel and error that

define the behaviour of the application when the event defined by the name appears.

As mentioned above, there are two options to use the phone camera: use the interface

provided by the operating system to interact with it (Figure 3.23) or access directly to

the raw image captured by the camera, and implement the rest of functions by ourselves

like the button that takes the picture (Figure 3.24).

Figure 3.23 Predefined camera interface on Android

Figure 3.24 Customized camera interface on Android

 28

In Appcelerator Titanium, over the Android platform, the pictures are stored by default

on the picture album with a specific name Android defines, but it is easily modified to

be stored in a different place with a different name.

3.2.5. Audio

There are two basic functions when Titanium Appcelerator is dealing with audio. The

first one is to reproduce audio (from a local file or from Internet) and the second one is

to record audio. The first feature we will analyse is how Appcelerator reproduces audio

in iOS and Android platforms. Nevertheless the audio recording feature will be tested in

Android platform only due to the impossibility to use an audio input on the iOS emula-

tor.

When we want to reproduce a sound we have to take into account what kind of source

we are using. In the case we are using a local source we have to use the object Titani-

um.Media.Sound. In the other hand, if we want to use an Internet file to reproduce it as a

streaming, the object Titanium.Media.AudioPlayer should be used. Both solutions are

based on create a stream object of bits (the audio information) and associate it with a

state, namely, playing and paused, to control the flow of the playback. In Figure 3.25,

there is an example of the features mentioned above.

Figure 3.25 Audio Player in iOS (left) and Android (right)

The other possible feature one may include in an application is to record audio. Ap-

pcelerator provides a module called Titanium.Media.AudioRecorder to fulfil this aspect.

Unfortunately this module is only available for iOS in this version of the Appcelerator

SDK. For the same reason given on the camera paragraph, due to my impossibility to

obtain an iPhone and because the absence of a microphone on the iOS emulator we will

focus the development of an audio recorder with Appcelerator for Android platforms.

There are not a module that implements the audio recording for Android so we have to

use a third-party module that implements this functionality. In particular, we are going

 29

to use the AudioRecorder module provided by Codeboxed [42]. This code is an external

module precompiled and ready to use. This module was successfully tested with the

1.7.5 version of Titanium Appcelerator but with the upgrading to the 1.8.1 version this

module is not compatible anymore. For this reason all the future mentions will be refer-

ring to the implementations done in the previous version.

The first step to use this module is to download the binary codes packed into a .zip and

place it in the root folder of the Titanium project. After that we have to add an entry to

the TiApp.xml file to indicate the framework where is the code we are going to use:

<module platform=”android” version=”2.0”>com.codeboxed.audiorecorder</module>

When we proceed to compile and execute the application, Titanium unzips the module

binaries and creates a files structure into the project starting on the folder modules. The

final step is add a reference to the module using the require directive and the module

can be used.

This module follows the same logic than the original Appcelerator AudioRecorder for

iOS, allowing the user to pre-set the format, name, duration, compression, etc. of the

audio. It also allows the features of a normal audio player like play the sound recorded

and stops it.

3.2.6. Storage

In order to keep the information generated by an Appcelerator application we can use

the three techniques mentioned above, namely, use the device file system to store the

information into a plain file or into a XML file, or use an SQLite database. To access to

the device’s file system we have to use the Titanium.Filesystem module. It provides

basic functions that can be used to create, open, write, read or remove files and directo-

ries. The use of this API is very similar to any other OS. File system so it will not be

explained here. The only aspect worthy to mention and that affects directly to the mat-

ter, the cross-platform application, is where is allowed to store information within the

device file system. For security reasons Android and iOS use a sandbox [43] and [44]

design to protect the applications and the operating system. For this reason Appcelerator

provides direct access to the following variables:

applicationDataDirectory: This is a writable directory that can be used to store applica-

tions-specific files. In iOS, this directory is specifically designated for user documents.

In Android, files in this directory cannot be accessed by other applications, so it should

not be used for files that must be used by another application.

applicationDirectory: Path to the iOS application directory.

 30

applicationSupporDirectory: This is a writable directory used on iOS for application

files that are not user documents.

externalStorageDirectory: This directory can be used for storing arbitrary data on re-

movable storage, such as SD card. It is read/write and files in this directory can be

passed to other applications.

resourcesDirectory: It contains the path to the application's resource directory. It is a

read-only directory so in case of modifying any files in this directory, they must first be

copied to another directory. It is important to note that when the application is running

on the emulator, the resources directory may be writable, but it is not writable on de-

vice.

Once we know where we can store our directories and files we can pay attention to a

very useful time of file, the XML. Using the Titanium.XML module we have access to

the JavaScript DOM Level 2 [45],and thus all the functions this standard defines are

implemented in Titanium Appcelerator.

Finally, the last method to store data on the device is using the SQLite database. Ap-

pcelerator provides just the functionality to open the database and execute commands so

notions on MySQL are needed in order to interact with the database. The three basic

steps we need to when we want to use a database are the creation/opening the data base

using function Titanium.Database.open(), the execution of any MySQL command using

Titanium.Database.execute() function and at the end, the closing of the database using

the function Titanium.Database.close(). Closing the database is recommended in order

to save resources on the device.

 31

4. ANALYSIS OF A CROSS-PLATFORM

MOBILE APPLICATION

Once we know how to deal with the different features Appcelerator provides, we can

create an application that uses all of them. In this chapter an example application will be

created so we can analyse how easy it is to implement all the features in the same sys-

tem. As it was mentioned on the previous chapter, the tools going to be used to develop

the application are an iMac computer with MacOS 10.X, the Xcode 4.2.1, the Android

SDK v3.1 and Appcelerator Titanium 1.8.1 framework. The application is made for be

running on Android devices and iPhones being a MOTOROLA Xoom Tablet the main

device for testing the Android application and the iPhone Emulator that XCode provides

the virtual device for testing the iOS application.

At the end of this chapter the development of the whole application will be analysed,

pointing out the difficulties and difference integrating the features mentioned on the

previous chapter on the same system.

4.1. Use Case: Travel Guides application

This application is a geo positioning based application whose main goal is to allow us-

ers to create their own digital travel guides when they are walking on the streets. A digi-

tal travel guide is a simplified digital version of a physical travel guide book. When a

user creates a travel guide, he/she writes a name and a description for the guide and

choose the city where the guide belongs. Furthermore, the user can add places to the

guide. When the user is located on a place she/he thinks is interesting, she/he can create

a new place that will be linked with the geo location of the device. The place will be

defined by a name and a description and the user can also add a picture taken by his

camera or an audio recording describing that place. Based on this the user can:

1. Create a new travel guide. A travel guide is defined by a name and a city (mandato-

ry fields) and a description.

2. Create a new place within the travel guide. A place is defined by a name (mandato-

ry field), the coordinates (obtained automatically by the application) and a descrip-

tion. The user can also add a picture taken by the device camera or an audio record-

ing.

 32

3. Visualise the guides created. The application must show a list with all the guides

and offers a system to open the guides.

4. Visualise the places created within a travel guide. The application must show a list

with all the places belonging to a guide and offers a system to open the place.

5. Edit an already created travel guide. The user can modify the name, the city or the

description. She/he can also remove, edit or crate new places.

6. Edit an already created place. The user can modify the name and the description but

not the picture or the audio.

7. Eliminate a travel guide. Delete a travel guide from the list of guides and remove it

from the interface.

8. Visualize every place from a guide into a map. For this feature the user will need

Internet access at the moment of the visualization.

Besides, the application:

1. needs a device with GPS in order to obtain the location of the places.

2. will run on devices with the Android 3.1 version.

3. will run on iPhone devices with the iOS 4.X version.

4.2. Analysis of the requirements

Once we know the requirements of the application, we can analyse them to extract the

information regarding the different features the application should provide and needed

to build the system.

Create a new guide (Figure 4.1) consists of the creation of an object within the applica-

tion that contains the basic information of the guide and pointers to the places that be-

longs to them.

Figure 4.1 Create Guide

Create a new place (Figure 4.2) consist of create an object within the application that

contains the basic information of the place. Also during this process the audio and pic-

 33

ture files that could be taken will be renamed with the identification number of the par-

ticular place to be able to know what file corresponds to what place.

Figure 4.2 Create place

Save a guide (Figure 4.3) consists of the creation of a folder with an identification

number for the guide as a name and within, create a XML file, info.xml, that contains

the basic information of the guide: the identification number (given by the application),

the name, the city and the description (optional). Within this folder, there will be as

much folders as places the particular guide has. The name of those folders will follow

the same criteria of the parent folder and they will use an identification number of each

place. Each place folder will have inside an xml file, info.xml that contains the basic

information of the place: the identification number (given by the application), the name,

a description (optional), the latitude, the longitude and a reference to the places where

the media files (pictures and audio) will be stored during the creation process and later.

It is important to remark that in the case the media files are stored somewhere else out-

side the application directory, and we will have to move them to the final location.

Figure 4.3 Save guide

 34

4.3. Application design

Once we have defined the behaviour of the application we have to design the applica-

tion and translate the diagrams into the JavaScript code. The application structure will

be the one defined in Figure 4.4.

 The application directory contains a Resources folder with the application code.

 The PLACE_AUX directory contains folder structure needed to temporary host

the media files (picture and audio) of the places of the guide that is being created

by the user on that moment.

 The MY_GUIDES directory contains the folder structure needed to store all the

information of all the guides created by the user. This folder is kept until the ap-

plication is removed from the device.

Figure 4.4 Application structure

 35

The implementation of the applications follows the design shown in Figure 4.5.

Figure 4.5 Application diagram: Class approach diagram of the application

The application is divided into three main modules: user interface module (UI module),

library module (lib module) and application module (app module). These will be dis-

cussed in detail in the following.

4.3.1. UI module

The UI module shows the information of the application to the user. It allows the user

interact with the application to create and visualise the guides. The graphical user inter-

face is represented as a tree where the windows that are not leaves have their own win-

dow managers (MainWindow, NewGuide, ListGuides and ListPlaces) with the views

belonging to them (MainWindowView, NewGuideView, ListGuidesView, ListPlac-

esView) and the windows that are leaves (NewPlaceView) are controlling by its parents,

in this case, NewGuide and ListPlaces. The window managers are the responsible to

define and control the navigation between its children windows. They handle every

event arising in the sub windows. The views elements display the controls and the in-

formation of the application.

 36

MainWindow: displays the MainWindowView that shows the two actions the user can

select when they open the application: Create a new guide and show a list of the guides

created by the user. This manager also control the navigation between the windows

needed to fulfil these actions (NewGuide and ListGuides).

ListGuides: displays the ListGuidesView that shows the list of guides already created

by the user. When the user does click in one of the guides of the list, this guide is shown

using the manager NewGuide.

NewGuide: controls the information shown by the NewGuideView and needed to create

a new guide. This view is divided into two views, one for show the basic information

and other to show a map and a menu to add or list places. These views will be shown

accordingly to the user actions. First the info view is shown and when the user does

click on one button, the other places view is shown.

ListPlaces: follows the same logic than the ListGuides manager. It displays a view with

the list of places (ListPlacesView) created for a specific guide and when the user do

click in one of the places, the place is shown using the manager NewPlace. The view

attached to the manager also offers the possibility to remove the place from the list and

thus, from the map that represent the list of places.

NewPlaceView: This view is the ones that show the information needed to create a new

place. It is divided into 3 more views, one for the basic information (infoView), one for

the picture information (pictureView) and other for the audio information (audioView).

4.3.2. lib module

The lib module encapsulates the functionality that is external to the graphical user inter-

face and the main logic of the application. There are five libraries in this module:

StorageManager: This library is used to have a unique point of interaction with the de-

vice file system.

Map: This library is used to encapsulate the map view and the location events. This

view will be just one view created because Android does not allow more than one map

view per application.

AudioRecorder: This library is used to encapsulate the interaction with the external au-

dio recording module.

Guide: this library is the definition of a guide object. It is the ones that knows how to

create an object of that type returning a JavaScript Object Notation (JSON) object.

 37

Place: this library is the definition of a place object. It is the ones that knows how to

create an object of that type returning a JSON object.

4.3.3. app module

This module contains just one element, the app.js file. This object is the starting point of

the application and it is the responsible to initialise the graphical user interface and lis-

ten to the possible petitions it may need (save guides, read guides, etc.).

4.3.4. Screenshoots

Next pictures show the final result of the use case application. In Figure 4.6 we can see

the main window of the application where the user can create a new guide or access to

the list of guides already created.

Figure 4.6 Main Window in Android (left) and iOS (right)

In Figure 4.7 we can see the interface to define the basic information of a new guide.

There are two input fields and one list picker. The input fields are used to define the

name of the guide and a description. The list picker is used to select the city of the

guide. The only appreciable difference between the Android and iOS interfaces is the

list picker. In Android the list picker is smaller and the action needed to select one item

is different than in iOS.

 38

Figure 4.7 New Guide: Basic Info in Android (left) and iOS (right)

In Figure 4.8 we can see the interface where the user can create new places within the

new guide or show the list of places already created within a new guide. It also shows a

map with the places created. This map is displayed using the map system of Android or

iOS. Both platforms are using Google Maps so an Internet connection is needed in order

to display this map.

Figure 4.8 New Guide: Places in Android (left) and iOS (right)

In Figure 4.9 we can see the basic information of a new place. This information is

needed to create the place. In this case the interface contains two inputs to specify the

name of the place and a description. This interface is the first out of a group of three. To

change between interfaces a swip gesture is needed.

 39

Figure 4.9 New Place: Basic Info in Android (left) and iOS (right)

The second interface of the group is shown in Figure 4.10. On the Android interface an

image view is shown after the user take a picture with the camera. On the iOS version

an alert dialog is displayed because the iOS emulator does not provide camera emula-

tion.

Figure 4.10 New Place: Picture view after take the picture in Android (left) and iOS

(right)

The last interface of the group of three is shown in Figure 4.11. In this screen we can

see the interface to add a new audio to the place. As it was mentioned before, the mod-

ule to record audio is not working anymore so the interface does not allow the user to

interact with the audio recorder.

 40

Figure 4.11 New Place: Audio in Android (left) and iOS (right)

In Figure 4.12 we can see how the interface informs the user about a mandatory field.

In this case is informing to the user that the input field needed to specify the name of the

place is empty.

Figure 4.12 New Place: No name alert in Android (left) and iOS (right)

In Figure 4.13 we can see the list of guides of the user. Every element of the list con-

tains two elements: A text with the name of the guide and a button with the “x” charac-

ter to delete the guide from the application. In order to open an specific guide, the user

has to click in the specific row of the list.

 41

Figure 4.13 List of guides in Android (left) and iOS (right)

In Figure 4.14 we can see the map with the places belonging to one guide. As it was

explained on a previous figure, the places are shown on the map. A green pin is used in

order to point the places on the map. To visualize the basic information of the place the

user has to click in any of the pins.

Figure 4.14 List of places: Map in Android (left) and iOS (right)

In Figure 4.15 we can see the list of places belonging to one guide. Every element of

the list contains two elements: A text with the name of the place and a button with the

“x” character to delete the place from the guide. In order to open an specific place, the

user has to click in the specific row of the list.

 42

Figure 4.15 List of places: List in Android (left) and iOS (right)

4.4. Evaluation of the framework

The first point of the evaluation is the operating system where the framework can work.

During the development of this thesis we used three kinds of environments: Linux,

Windows and MacOS. All of them work perfectly with Titanium Appcelerator but there

is one aspect that makes the MacOS environment best suited. While the Android SDK

works in any of the three environments, the XCode, needed to compile the iOS applica-

tion, is working only in MacOS environment. For this reason it is advisable to use Ap-

pcelerator only on systems (virtual or physical) with the Apple operating system.

The second aspect to be analysed is how is the interaction with the framework, includ-

ing the programming part, the framework support and the external dependencies. Re-

garding the programming task, JavaScript is most commonly used in Web environment

where the techniques applied are a bit different from the ones that have to be used in

Appcelerator. For this reason, the users that know JavaScript because the use on web

technologies will have to learn how to use properly the language in order to have a cor-

rect behaviour of the application. This fact made the learning process a bit slow in the

beginning but once a proper knowledge about how to properly use the tools is acquired,

the development process goes quite fast. To help this process it is available a debug

mode (we have to remind that Appcelerator Titanium is a framework based on Eclipse

IDE so it provides the same debugging interface than his parent). The debug mode is

only working if we are using the virtual devices. This poses a problem because the de-

velopment using the Android emulator is significantly slow that it is highly recom-

mended use a real device. Not being able to debug the Android application in real time

with the device is a problem that slows down the development process.

 43

The small disadvantages commented above are not enough to determine if Appcelerator

is a good option to develop a cross platform application or not. On the other hand, there

is one that definitely could make a difference for many developers. Appcelerator does

not provide a graphical tool to create the user interfaces. Despite Appcelerator encour-

age the developers to use a MVC model to separate the user interface from the applica-

tion logic, the development of the interface is not as good as it is on the native applica-

tions development. When developers are using frameworks to develop native applica-

tions (Eclipse+ADT or XCode+Storyboard) they can use visual tools to create the user

interfaces (Figure 4.16). This made the work easier and it could be considered a big

shortcoming from Appcelerator.

Figure 4.16 Graphical GUI development tool in XCode and Eclipse

It is very likely that any developer working with a new framework encounters a problem

that she/he cannot solve. For this reason the companies that create these frameworks

must provide good documentation and online tools to solve the problems of the users. In

this aspect Appcelerator has a good support system on his web page. They have a good

bug manager and there is a big community contributing to the “Questions and Answers”

section that made easier to solve problems. On the other hand, Appcelerator has a large

list of bugs unsolved that can make a developer regrets about his decision to use this

framework.

Another point of view to take into account is the level of dependence between the

framework and the native SDK (Android or iOS). There is a clear dependency between

them but it is not affecting directly the development with this framework. When a mo-

bile phone application is designed, the SDK versions are established and a new upgrade

of the SDK made by the owner companies will not affect to the development of the ap-

plication, because it is out of the scope of the project the possible modifications on the

new SDK the company may do.

 44

Once the application is developed, it is time to pack all the resources to be able to dis-

tribute it. In this phase, Appcelerator shows a clear lack of transparency and flexibility

due to the fact that it does not provide the native code (Java or ObjectiveC). To modify

the final solution in order to make improvements or future changes demanded by the

native platform is not possible. Appcelerator packs everything into the final application

file (.apk or .ipa) ready for distribution. It could be considered a shortcoming or a virtue.

Some developers could consider this feature something to speed up the process of pub-

lishing the application on the online markets but others could see it is a negative aspect

because the impossibility to know how the application is implemented. But definitely it

is a feature to take into account before to start to develop an application with this plat-

form.

The last aspect to take into consideration is the degree of similarity between the applica-

tions produced for Android and iOS and the level of parallel programming that has to be

done in order to cover native aspects of the individual platforms. On this part Appceler-

ator is working pretty well. The level of parallel programming is not so high so most of

the code need not be split in two to cover this aspect. During the development of the

examples and the use case application just the different system to manage the windows

hierarchy and navigation between Android and iOS had to be managed in parallel. The

rest of the code is shared between platforms. It is true that some of the graphical ele-

ments that can be added to the user interfaces like buttons or pickers are slightly differ-

ent but these differences are not so visible when we are dealing with small applications

without very fancy user interfaces.

 45

5. CONCLUSIONS

This thesis analysed the development of cross-platform mobile applications to find out

the virtues and shortcomings of these kinds of applications. For this purpose the frame-

work Titanium Appcelerator was chosen. Using Appcelerator a mobile application for

Android and iOS was created. The development of this application was used to analyse

the framework and the whole development process.

The general conclusions extracted from the development of this thesis and the applica-

tion is that cross-platform mobile applications have many advantages comparing with

the regular mobile applications but the development process depends on frameworks

that are not mature enough.

There are several solutions on the market that help in creating cross-platform mobile

applications. Each of them use different techniques and they lead to different results, but

the common feature of all of them is that they use web technologies to create the appli-

cations.

Titanium Appcelerator is an easy to use framework that has a big community of devel-

opers. The solutions created with this framework keep a high level of similarity. Small

changes in the code are needed in order to develop applications that have the same be-

haviour and appearance in Android and iOS devices.

The Appcelerator learning process is slow in the beginning. One may find many prob-

lems while starting to use the framework but once know how to use it, the development

of a cross-platform application time is reduced.

Even though Appcelerator seem to have features that made it suitable to develop cross-

platform mobile applications, it still has three important disadvantages. The first one is

the stability. During the development of this thesis Appcelerator upgraded four times

the Application Programming Interface (API). Some of the upgrades did not affect to

the development process but others did. The next disadvantage is the development of

the graphical user interfaces. The development of graphical user interfaces using native

resources is made graphically. Most of the frameworks like Eclipse or XCode provide

tools to simplify this process. With Appcelerator this process is made writing the code

that represents those interfaces. This fact made the development slower and imprecise.

 46

The last disadvantage is the big amount of bugs that are still open. To find one of these

bugs is something that every developer prefers to avoid.

Finally, from the point of view of the developers and companies, to create cross-

platform applications is something desirable because they can reach more possible buy-

ers but nowadays is still more profitable to create different applications over the same

development process rather than use any of these new technologies.

To summarize everything, here on Table 2 the results extracted from this thesis are

shown. Those results are related with the specific framework Titanium Appcelerator.

Table 2 Titanium Appcelerator analysis results

Interface creation 2 Poor interface creation and modification

Ease of programming 4 Programming techniques are not so difficult to learn

Learning process 3 A bit slow in the beginning but fast after that

Community support 4 Big community of developers behind

1: Bad.

2: Is not so bad but it needs more improvements.

3: Good.

4: Very good but still not as good as native development.

5: As good as native development.

 47

REFERENCES

1. Global Intelligence Alliance. [Online] April 2010. [Cited: March 27, 2012.]

http://www.globalintelligence.com/insights-analysis/white-papers/native-or-web-

application-how-best-to-deliver-

cont/GIA%20Industry%20White%20Paper%202_2010_Native%20or%20Web%20

App_How%20Best%20to%20De.

2. Native, Web or Hybrid MobileApp Development? Worklight. [Online] March 2011.

[Cited: March 27, 2012.] http://www.scribd.com/doc/50805466/Native-Web-or-

Hybrid-Mobile-App-Development.

3. Android for developers. [Online] [Cited: January 28, 2012.]

http://developer.android.com/guide/topics/ui/index.html.

4. Cocoa Touch. [Online] [Cited: February 16, 2012.]

https://developer.apple.com/technologies/ios/cocoa-touch.html.

5. Android UI elements. [Online] [Cited: February 16, 2012.]

http://developer.android.com/reference/android/widget/package-summary.html.

6. iOS UI elements. [Online] [Cited: February 16, 2012.]

https://developer.apple.com/library/IOs/#documentation/UserExperience/Conceptual

/MobileHIG/UIElementGuidelines/UIElementGuidelines.html.

7. Play audio Android. [Online] [Cited: March 2012, 2012.]

http://developer.android.com/guide/topics/media/mediaplayer.html.

8. Recording audio Android. [Online] [Cited: March 5, 2012.]

http://developer.android.com/guide/topics/media/audio-capture.html.

9. Audio iOS. [Online] [Cited: March 5, 2012.]

https://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/Mul

timediaPG/UsingAudio/UsingAudio.html#//apple_ref/doc/uid/TP40009767-CH2-

SW6.

10. Jochen H. Schiller, Agnès Voisard. Location-Based Services. s.l. : Elsevier, 2004.

11. Localization system Android. [Online] [Cited: March 05, 2012.]

http://developer.android.com/guide/topics/location/obtaining-user-location.html.

12. Localization system iOS. [Online] [Cited: March 5, 2012.]

http://support.apple.com/kb/HT4995.

13. Google Maps. [Online] [Cited: February 2012, 2012.] http://maps.google.com/.

 48

14. Bing Maps. [Online] [Cited: March 5, 2012.] http://www.bing.com/maps/.

15. XML. [Online] [Cited: March 5, 2012.] http://www.w3.org/TR/REC-xml/.

16. SQLite. [Online] [Cited: March 5, 2012.] http://www.sqlite.org/.

17. W3C. [Online] [Cited: March 15, 2012.] http://www.w3.org/.

18. Appcelerator Titanium. [Online] [Cited: February 16, 2012.]

http://www.appcelerator.com/.

19. PhoneGap framework. [Online] [Cited: March 26, 2012.] http://phonegap.com/.

20. Senecha Touch. [Online] [Cited: March 26, 2012.] http://www.sencha.com/.

21. jQuery Mobile. [Online] [Cited: March 26, 2012.] http://jquerymobile.com/.

22. Javascript. [Online] [Cited: February 16, 2012.]

https://developer.mozilla.org/en/About_JavaScript.

23. Appcelerator Studio. [Online] [Cited: February 18, 2012.]

http://www.appcelerator.com/products/titanium-studio/.

24. Eclipse IDE. [Online] [Cited: February 18, 2012.] http://www.eclipse.org.

25. TiApp.xml file. [Online] [Cited: February 21, 2012.]

https://wiki.appcelerator.org/display/guides/tiapp.xml+and+timodule.xml+Reference

.

26. Appcelerator Titanium Mobile 1.8.1 API. [Online] [Cited: February 21, 2012.]

http://developer.appcelerator.com/apidoc/mobile/.

27. Android APK. [Online] [Cited: February 20, 2012.]

http://developer.android.com/guide/appendix/glossary.html.

28. iOS App Store Package. [Online] [Cited: February 21, 2012.]

https://developer.apple.com/library/ios/#referencelibrary/GettingStarted/RoadMapiO

S/ApplicationDevelopment/RM_DevelopingForAppStore/DevelopingForAppStore/

DevelopingForAppStore.html.

29. Github of the Appcelerator Titanium project. [Online] [Cited: February 16, 2012.]

https://github.com/appcelerator/titanium_mobile.

30. CommonJS. [Online] [Cited: March 28, 2012.] http://www.commonjs.org/.

31. Rhino. [Online] [Cited: February 20, 2012.] http://www.mozilla.org/rhino/.

32. Android developers. [Online] [Cited: February 21, 2012.]

http://developer.android.com/index.html.

33. Inlined process. [Online] [Cited: February 20, 2012.]

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html.

34. WebKit's JavaSCriptCore. [Online] [Cited: February 20, 2012.]

http://www.webkit.org/projects/javascript/index.html.

 49

35. V8 JavaScript interpreter. [Online] [Cited: February 22, 2012.]

http://code.google.com/p/v8/.

36. Comparison between V8 and Rhino. [Online] [Cited: February 22, 2012.]

https://wiki.appcelerator.org/display/guides/V8+Performance+in+1.8.0.1.

37. Developers Guide: Obtain a suitable private key. Android developers. [Online]

[Cited: April 8, 2012.] http://developer.android.com/guide/publishing/app-

signing.html#cert.

38. Navigation group. [Online] [Cited: February 22, 2012.]

http://developer.appcelerator.com/apidoc/mobile/latest/Titanium.UI.iPhone.Navigati

onGroup-object.html.

39. Android Manifest permissions. [Online] [Cited: March 12, 2012.]

http://developer.android.com/reference/android/Manifest.permission.html.

40. Current Position pin bug. [Online] [Cited: February 29, 2012.]

https://jira.appcelerator.org/browse/TIMOB-7667.

41. Bug on Annotation pin color. [Online] [Cited: March 1, 2012.]

https://jira.appcelerator.org/browse/TIMOB-4453.

42. Codeboxed AudioRecorder. [Online] [Cited: March 19, 2012.]

http://www.codeboxed.com/2011/08/titanium-module-for-android-audio-recording/.

43. Android sandbox. [Online] [Cited: March 21, 2012.]

http://developer.android.com/guide/topics/security/security.html.

44. iOS Sandbox. [Online] [Cited: March 21, 2012.]

http://developer.apple.com/library/ios/#DOCUMENTATION/iPhone/Conceptual/iPh

oneOSProgrammingGuide/TheiOSEnvironment/TheiOSEnvironment.html.

45. JavaScript DOM level 2. [Online] [Cited: March 21, 2012.]

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html#i-

Document.

46. C.J.ROGERS. Music source used in Audio example. [Online] [Cited: March 13,

2012.] http://www.jamendo.com/en/track/910075.

47. Audio source used in Audio streaming example. [Online] [Cited: March 13, 2012.]

http://www.w3schools.com/html5/song.mp3.

48. Codeboxed Audio recorder module. [Online] [Cited: November 14, 2011.]

http://www.codeboxed.com/2011/08/titanium-module-for-android-audio-recording/.

 50

A. USE CASE IMPLEMENTATION

tiapp.xml
…

<android xmlns:android="http://schemas.android.com/apk/res/android">

 <manifest>

 <application/>

 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

 <uses-permission android:name="android.permission.INTERNET"/>

 </manifest>

</android>

…

app.js

// Storage Manager

var storageManager = require('lib/StorageManager');

// List of guides

var guides_;

setUp();

var lastGuideID = getLastGuideId();

openGUI();

// Save the guide into the file system

Ti.App.addEventListener('saveGuideAndStore',function(guide){

 storageManager.saveGuide(guide)

 if(!guide.saved){

 guide.listIndex = guides_.length;

 guides_.push(guide);

 }

 guide.saved = true;

});

// Delete a guide

Ti.App.addEventListener('deleteGuide',function(guideAux){

 var guide = findGuide(guideAux.id,guides_);

 storageManager.removeGuide(guide.id);

 guides_.splice(guide.listIndex,1);

});

// Create a temporary folder for a place

Ti.App.addEventListener('createPlaceAux',function(place){

 storageManager.createPLACE_AUX(place);

});

// Save a picture

Ti.App.addEventListener('savePicture',function(request){

 storageManager.savePicture(request);

});

// Open the Graphical user interface

function openGUI(){

//require and open top level UI component

 var Window;

 if (Ti.Platform.osname === 'android') {

 Window = require('ui/handheld/android/MainWindow');

 }

 else {

 Window = require('ui/handheld/ios/MainWindow');

 }

 new Window(guides_,lastGuideID).open();

}

// Configure the application in the beginning

function setUp(){

 51

 // 1. Create MY_GUIDES directory in APP directory.

 storageManager.createMY_GUIDES();

 // 2. Read guides and places

 guides_ = storageManager.getGuides();

 // 3. Create PLACES directory in EXTERNAL STORAGE

 storageManager.createPLACES_AUX();

}

// Obtain the id of the last guide created

function getLastGuideId(){

 if(guides_.length == 0){

 return 0;

 }

 else {

 return guides_[guides_.length - 1].id;

 }

}

// Look for a Guide object within a list of guides

function findGuide(guideId,guides){

 var i = 0;

 var found = false;

 while(i < guides.length && !found){

 if(guides[i].id == guideId){

 found = true;

 return guides[i];

 }

 i++;

 }

 return null;

}

iOS/MainWindow.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * MAIN WINDOW / iOS

 *

 * Handler that manage the behavior of the MainWindow

 */

/*

 * Constructor of the module

 *

 * @param guides List of guides

 * @param lastGuideID Id of the last guide created

 * @return Window created

 */

function MainWindow(guides,lastGuideID) {

//declare module dependencies

var MainWindowView = require('ui/common/MainWindowView');

//create object instance

var self = Ti.UI.createWindow({

 backgroundColor:'#ffffff'

});

//construct UI

var mainWindowView = new MainWindowView();

//create master view container

var mainWindowContainerWindow = Ti.UI.createWindow({

 title:'Travel Guides'

});

mainWindowContainerWindow.add(mainWindowView);

// Create sub-windows dependencies

var listGuidesContainerWindow = require('ui/handheld/iOS/ListGuides');

var newGuideContainerWindow = require('ui/handheld/iOS/NewGuide');

//createiOS specific NavGroup UI

 52

var navGroup = Ti.UI.iPhone.createNavigationGroup({

 window:mainWindowContainerWindow

});

self.add(navGroup);

// Map View

var Map = require('lib/Map');

//construct UI

var mapView = new Map();

// Open the window to create a new guide

mainWindowView.addEventListener('showNewGuide', function(e) {

// Create the Guide Object needed.

var Guide = require('lib/Guide');

var guide = new Guide(false,++lastGuideID,"","","",[],[],0);

// Open the window

navGroup.open(newGuideContainerWindow(navGroup,mapView,guide));

});

// Open the window to show the guides created

mainWindowView.addEventListener('showListGuides', function(e) {

// Open the window

navGroup.open(listGuidesContainerWindow(navGroup,mapView,guides));

});

return self;

};

module.exports = MainWindow;

android/MainWindow.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * MAIN WINDOW / ANDROID

 * Handler that manage the behavior of the MainWindow

 */

/*

 * Constructor of the module

 *

 * @param guides List of guides

 * @param lastGuideID Id of the last guide created

 * @return Window created

 */

function MainWindow(guides,lastGuideID) {

 //declare module dependencies

 var MainWindowView = require('ui/common/MainWindowView');

 //create object instance

 var mainWindowContainerWindow = Ti.UI.createWindow({

 title:'Travel Guides',

 exitOnClose:true,

 navBarHidden:false,

 backgroundColor:'#ffffff'

 });

 //construct UI

 var mainWindowView = new MainWindowView();

 mainWindowContainerWindow.add(mainWindowView);

 // Create sub-windows dependencies

 var listGuidesContainerWindow = require('ui/handheld/android/ListGuides'),

 newGuideContainerWindow = require('ui/handheld/android/NewGuide');

 // Map View

 var Map = require('lib/Map');

 //construct UI

 var mapView = new Map();

 // Open the window to create a new guide

 mainWindowView.addEventListener('showNewGuide', function(e) {

 // Create the Guide Object needed.

 var Guide = require('lib/Guide');

 53

 var id = ++lastGuideID + "";

 var guide = new Guide(false,id,"","","",[],[],0);

 // Open the window

 newGuideContainerWindow(mapView,guide).open();

 });

 // Open the window to show the guides created

 mainWindowView.addEventListener('showListGuides', function(e) {

 // Open the window

 listGuidesContainerWindow(mapView,guides).open();

 });

 // Close the application

 mainWindowContainerWindow.addEventListener('close',function(){

 Ti.App.fireEvent('closingApp');

 });

 return mainWindowContainerWindow;

};

module.exports = MainWindow;

MainWindowView.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * MAIN WINDOW VIEW

 * View with the main components of the Main Window

 */

/*

 * Constructor of the module

 */

function MainWindowView() {

 var self = Ti.UI.createView({

 backgroundColor:'white'

 });

 // Button to create a new guide

 var buttonNewGuide = Ti.UI.createButton({

 height:'25%',

 width:'90%',

 color:'black',

 title:'New Guide',

 top:'20%'

 });

 self.add(buttonNewGuide);

 //add behavior

 buttonNewGuide.addEventListener('click', function(e) {

 // Fire the event to the Main Window Manager (ui/handheld/XX/MainWindow.js)

 self.fireEvent('showNewGuide');

 });

 // Button to show the list of guides

 var buttonListGuides = Ti.UI.createButton({

 height:'25%',

 width:'90%',

 color:'black',

 title:'My Guides',

 bottom:'20%'

 });

 self.add(buttonListGuides);

 //add behavior

 buttonListGuides.addEventListener('click', function(e) {

 // Fire the event to the Main Window Manager (ui/handheld/XX/MainWindow.js)

 self.fireEvent('showListGuides');

 });

 return self;

};

module.exports = MainWindowView;

 54

iOS/NewGuide.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * NEW GUIDE / iOS

 *

 * Handler that manage the behavior of the NewGuide window

 */

/*

 * Constructor of the module

 *

 * @param navGroup Navigation group

 * @param mapView View of the map

 * @param guide Guide Object to be created

 * @return Window created

 */

function NewGuide(navGroup,mapView,guide) {

 //declare module dependencies

 var NewGuideView = require('ui/common/NewGuide/NewGuideView');

 //construct UI

 var newGuideView = new NewGuideView(mapView,guide);

 //create master view container

 var newGuideContainerWindow = Ti.UI.createWindow({

 });

 newGuideContainerWindow.add(newGuideView);

 if(guide.saved){

 newGuideContainerWindow.title = "Guide: " + guide.name;

 }

 else{

 newGuideContainerWindow.title = "New Guide";

 }

 // Dependencies of the sub-window

 var listPlacesContainerWindow = require('ui/handheld/iOS/ListPlaces');

 // Create a new place

 newGuideView.addEventListener('newPlace', function(e) {

 // Create the Place Object to be used

 var Place = require('lib/Place');

 var newId = ++guide.lastPlaceId;

 var mediaDirectories = require('lib/StorageManager').getMediaDirectories(newId,

guide.id);

 var place = new Place(false,false,false,newId,"","",0,0,mediaDirectories);

 //Create the Temporary place folder

 Ti.App.fireEvent('createPlaceAux',place);

 // Create the window that will show the menu to create a new place

 var NewPlaceView = require('ui/common/NewPlace/NewPlaceView');

 var newPlaceView = new NewPlaceView(place);

 var newPlaceContainerWindow = Ti.UI.createWindow({

 title:'New Place',

 exitOnClose:false,

 navBarHidden:false,

 backgroundColor:'#ffffff'

 });

 newPlaceContainerWindow.add(newPlaceView);

 // Cancel the place

 newPlaceView.addEventListener('cancelPlace',function(){

 navGroup.close(newPlaceContainerWindow);

 });

 // Save the place

 newPlaceView.addEventListener('savePlace',function(){

 // Take the cordinates

 place.latitude = mapView.myLatitude;

 55

 place.longitude = mapView.myLongitude;

 // If the place is NOT already on the list

 if(!place.inList) {

 // Add it to the temporary places list

 guide.placesAux.push(place);

 place.inList = true;

 // Create the annotation and add it to the map view

 var point = Ti.Map.createAnnotation({

 latitude: place.latitude,

 longitude: place.longitude,

 title: place.name,

 pincolor: Titanium.Map.ANNOTATION_GREEN,

 subtitle: place.desc,

 animate:true,

 myid:place.id,

 });

 mapView.addAnnotation(point);

 place.annotation = point;

 }

 // Close the window

 navGroup.close(newPlaceContainerWindow);

 });

 // Open the window

 navGroup.open(newPlaceContainerWindow);

 });

 // Open the list of places

 newGuideView.addEventListener('listPlaces', function(e) {

 navGroup.open(listPlacesContainerWindow(navGroup,guide.placesAux,mapView));

 });

 // Cancel the guide

 newGuideView.addEventListener('cancelGuide',function(e){

 navGroup.close(newGuideContainerWindow);

 });

 // Save the guide

 newGuideView.addEventListener('saveGuide',function(e){

 // Extract the basic information

 var name = newGuideView.infoView.inputName.getValue();

 var desc = newGuideView.infoView.inputDescription.getValue();

 var city = newGuideView.infoView.listPicker.getSelectedRow(0).id;

 guide.name = name;

 guide.desc = desc;

 guide.city = city;

 // Copy the auxiliar list of places to the real list of places

 guide.places = guide.placesAux;

 // Store the guide into the device file system

 Ti.App.fireEvent('saveGuideAndStore',guide);

 // Close the window

 navGroup.close(newGuideContainerWindow);

 });

 return newGuideContainerWindow;

};

module.exports = NewGuide;

 56

android /NewGuide.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * NEW GUIDE / ANDROID

 * Handler that manage the behavior of the NewGuide window

 */

/*

 * Constructor of the module

 *

 * @param mapView View of the map

 * @param guide Guide Object to be created *

 * @return Window created

 */

function NewGuide(mapView,guide) {

 //declare module dependencies

 var NewGuideView = require('ui/common/NewGuide/NewGuideView');

 // construct the UI

 var newGuideView = new NewGuideView(mapView,guide);

 //create object instance

 var newGuideContainerWindow = Ti.UI.createWindow({

 exitOnClose:false,

 navBarHidden:false,

 backgroundColor:'#ffffff'

 });

 newGuideContainerWindow.add(newGuideView);

 if(guide.saved){

 newGuideContainerWindow.title = "Guide: " + guide.name;

 }

 else{

 newGuideContainerWindow.title = "New Guide";

 }

 // Dependencies of the sub-window

 var listPlacesContainerWindow = require('ui/handheld/android/ListPlaces');

 // Create a new place

 newGuideView.addEventListener('newPlace', function(e) {

 // Create the Place Object to be used

 var Place = require('lib/Place');

 var newId = ++guide.lastPlaceId;

 var mediaDirectories = require('lib/StorageManager').getMediaDirectories(newId,

guide.id);

 var place = new Place(false,false,false,newId,"","",0,0,mediaDirectories);

 //Create the Temporary place folder

 Ti.App.fireEvent('createPlaceAux',place);

 var NewPlaceView= require('ui/common/NewPlace/NewPlaceView');

 var newPlaceView = new NewPlaceView(place);

 // Create the window that will show the menu to create a new place

 var newPlaceContainerWindow = Ti.UI.createWindow({

 title:'New Place',

 exitOnClose:false,

 navBarHidden:false,

 backgroundColor:'#ffffff'

 });

 newPlaceContainerWindow.add(newPlaceView);

 // Cancel the place

 newPlaceView.addEventListener('cancelPlace',function(e){

 newPlaceContainerWindow.close();

 });

 // Save the place

 newPlaceView.addEventListener('savePlace',function(e){

 // Take the coordinates

 place.latitude = mapView.myLatitude;

 57

 place.longitude = mapView.myLongitude;

 // If the place is NOT already on the list

 if(!place.inList) {

 // Add it to the temporary list

 guide.placesAux.push(place);

 place.inList = true;

 //Create the annotation and add it to the map view

 var point = Ti.Map.createAnnotation({

 latitude: place.latitude,

 longitude: place.longitude,

 title: place.name,

 pincolor: Titanium.Map.ANNOTATION_GREEN,

 subtitle: place.desc,

 animate:true,

 myid:place.id,

 });

 mapView.addAnnotation(point);

 place.annotation = point;

 }

 // Close the window

 newPlaceContainerWindow.close();

 });

 // Open the window

 newPlaceContainerWindow.open();

 });

 // Open the list of places

 newGuideView.addEventListener('listPlaces', function(e) {

 listPlacesContainerWindow(guide.placesAux,mapView).open();

 });

 // cancel the guide

 newGuideView.addEventListener('cancelGuide', function(e) {

 newGuideContainerWindow.close();

 });

 // Save the guide

 newGuideView.addEventListener('saveGuide',function(e){

 //Extract the basic information

 var name = newGuideView.infoView.inputName.value

 var desc = newGuideView.infoView.inputDescription.value;

 var city = newGuideView.infoView.listPicker.getSelectedRow(0).id;

 guide.name = name;

 guide.desc = desc;

 guide.city = city;

 // copy the auxiliar list of places to the real list of places

 guide.places = guide.placesAux;

 // Store the guide into the device file system

 Ti.App.fireEvent('saveGuideAndStore',guide);

 // Close the window

 newGuideContainerWindow.close();

 });

 return newGuideContainerWindow;

};

module.exports = NewGuide;

NewGuideView.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * NEW GUIDE VIEW

 * View with the components needed to create a new guide

 58

 */

/*

 * Constructor of the module

 */

function NewGuideView(mapView,guide) {

 // Main view

 var self = Ti.UI.createView({

 backgroundColor:'white'

 });

 // Views for the Info and Places menus

 var newGuideInfoView = createInfoView(self,guide);

 var newGuidePlacesView = createPlacesView(self,mapView,guide.placesAux);

 // Listening the actions to navigate on the New Guide View

 self.addEventListener('goPlaces',function(e){

 newGuideInfoView.setVisible(false);

 newGuidePlacesView.setVisible(true);

 });

 // Listening the actions to navigate on the New Guide View

 self.addEventListener('goInfo',function(e){

 newGuidePlacesView.setVisible(false);

 newGuideInfoView.setVisible(true);

 });

 return self;

};

/*

 * Create the view for the info menu

 *

 * @param self Parent view

 */

function createInfoView(self,guide){

 // Info view

 var infoView = Ti.UI.createView({

 backgroundColor:'white',

 visible: false,

 width: '100%',

 });

 // View to center the form on the screen

 var centeredView = Ti.UI.createView({

 width: '100%',

 height: 400,

 });

 // Input for the name of the guide

 var inputName = Ti.UI.createTextField({

 width: '80%',

 height: 40,

 top: 0,

 editable: true,

 borderStyle: Ti.UI.INPUT_BORDERSTYLE_ROUNDED,

 hintText: 'Name of the guide',

 value: guide.name,

 });

 centeredView.add(inputName);

 // Inputo for the description of the guide

 var inputDescription = Ti.UI.createTextArea({

 width: '80%',

 height: 90,

 top: 45,

 editable: true,

 borderWidth:1,

 borderColor: '#bbb',

 borderRadius: 4,

 value: guide.desc,

 });

 centeredView.add(inputDescription);

 59

 // List picker to choose the city of the guide

 var listPicker = Ti.UI.createPicker({

 top:140,

 width: '80%',

 font: {fontSize:10},

 selectionIndicator: true,

 });

 // Data for the list picker.

 // The attribute "id" has to be the same than the position within the array.

 // This attribute is used to translate numbers to city names.

 var data = [];

 data[0] = Ti.UI.createPickerRow({title: 'Tampere', id: 0});

 data[1] = Ti.UI.createPickerRow({title: 'Helsinki', id: 1});

 data[2] = Ti.UI.createPickerRow({title: 'Turku', id: 2});

 listPicker.add(data);

 centeredView.add(listPicker);

 // Select the corresponding city when a created guide is picked from the list

 Ti.App.addEventListener('guideWindowOpened',function(){

 listPicker.setSelectedRow(0,parseInt(guide.city),true);

 });

 // Add the inputs to the view to extract the information once we want to save the

guide.

 infoView.inputName = inputName;

 infoView.inputDescription = inputDescription;

 infoView.listPicker = listPicker;

 infoView.add(centeredView);

 // Add the info and places view to the parent view

 self.add(infoView);

 self.infoView = infoView;

 infoView.setVisible(true);

 // Button to cancel the guide

 var buttonCancel = Ti.UI.createButton({

 height:44,

 width:'35%',

 title:'Cancel',

 bottom:5,

 left: '5%',

 color:'black',

 });

 infoView.add(buttonCancel);

 //add behavior

 buttonCancel.addEventListener('click', function(e) {

 // Fire the event to the New Guide Manager (ui/handheld/XX/NewGuide.js)

 self.fireEvent('cancelGuide');

 });

 // Button to show the next view: the Places View

 var buttonNext = Ti.UI.createButton({

 height:44,

 width:'35%',

 title:'Next',

 bottom:5,

 right: '5%',

 color:'black',

 });

 infoView.add(buttonNext);

 //add behavior

 buttonNext.addEventListener('click', function(e) {

 // Fire the event to the New Guide View (ui/common/NewGuide/NewGuideView.js)

 self.fireEvent('goPlaces');

 });

 return infoView;

}

/*

 60

 * Create the view for the places menu

 *

 * @param self Parent view

 * @param mapView Map of the application

 * @param places List of places of the guide

 */

function createPlacesView(self,mapView,places){

 // Places view

 var placesView = Ti.UI.createView({

 backgroundColor:'white',

 visible: false,

 });

 self.add(placesView);

 // Map view

 mapView.setTop(10);

 mapView.width = '90%';

 mapView.height = '60%';

 placesView.add(mapView);

 // Add the annotations to the map.

 for(var p = 0; p < places.length; p++){

 var point = Ti.Map.createAnnotation({

 latitude: places[p].latitude,

 longitude: places[p].longitude,

 title: places[p].name,

 pincolor: Titanium.Map.ANNOTATION_GREEN,

 subtitle: places[p].desc,

 animate:true,

 myid:places[p].id,

 });

 mapView.addAnnotation(point);

 // Link the annotation to the Place object to be able to delete the annotation

later

 places[p].annotation = point;

 }

 // Button to create a new place

 var buttonNewPlace = Ti.UI.createButton({

 height:70,

 width:'40%',

 title:'New Place',

 top:'65%',

 left: '5%',

 color:'black',

 });

 placesView.add(buttonNewPlace);

 //add behavior

 buttonNewPlace.addEventListener('click', function(e) {

 // Fire the event to the New Guide Manager (ui/handheld/XX/NewGuide.js)

 self.fireEvent('newPlace');

 });

 // Button to show the list of places

 var buttonListPlaces = Ti.UI.createButton({

 height:70,

 width:'40%',

 title:'List of places',

 top:'65%',

 right: '5%',

 color:'black',

 });

 placesView.add(buttonListPlaces);

 //add behavior

 buttonListPlaces.addEventListener('click', function(e) {

 // Fire the event to the New Guide Manager (ui/handheld/XX/NewGuide.js)

 self.fireEvent('listPlaces');

 });

 61

 // Button to go back to the info view

 var buttonBack = Ti.UI.createButton({

 height:44,

 width:'35%',

 title:'Info',

 bottom:5,

 left: '5%',

 color:'black',

 });

 placesView.add(buttonBack);

 //add behavior

 buttonBack.addEventListener('click', function(e) {

 // Fire the event to the New Guide View (ui/common/NewGuide/NewGuideView.js)

 self.fireEvent('goInfo');

 });

 // Button to save the guide

 var buttonSave = Ti.UI.createButton({

 height:44,

 width:'35%',

 title:'Save',

 bottom:5,

 right: '5%',

 color:'black',

 });

 placesView.add(buttonSave);

 //add behavior

 buttonSave.addEventListener('click', function(e) {

 if(self.infoView.inputName.value != ""){

 // Fire the event to the New Guide Manager (ui/handheld/XX/NewGuide.js)

 self.fireEvent('saveGuide');

 }

 else {

 alert('The guide should have a name');

 }

 });

 return placesView;

}

module.exports = NewGuideView;

iOS/ListGuides.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * LIST GUIDES / iOS

 *

 * Handler that manage the behavior of the Window that lists the guides created

 */

/*

 * Constructor of the module

 *

 * @param navGroup Navigation group

 * @param mapView View of the map

 * @param guides List of Guide objects

 * @return It returns the window object

 */

function ListGuides(navGroup,mapView,guides) {

 //declare module dependencies

 var ListGuidesView = require('ui/common/ListGuidesView');

 //construct UI

 var listGuidesView = new ListGuidesView(guides);

 //create master view container

 var listGuidesContainerWindow = Ti.UI.createWindow({

 62

 title:'List of Guides'

 });

 listGuidesContainerWindow.add(listGuidesView);

 //declare sub-window dependencies

 var newGuideContainerWindow = require('ui/handheld/iOS/NewGuide');

 // Open a Guide

 listGuidesView.addEventListener('openGuide', function(guideAux) {

 // Obtain the real Guide object. the guideAux object is a JSON object that con-

tains the information of the guide but is not the real object

 var guide = findGuide(guideAux.id,guides);

 // Open the window with the guide selected

 navGroup.open(newGuideContainerWindow(navGroup,mapView,guide));

 Ti.App.fireEvent('guideWindowOpened');

 });

 return listGuidesContainerWindow;

};

/*

 * Look for a Guide object within a list of guides

 *

 * @param guideId Id of the guide object to look for

 * @param guides List of guides

 */

function findGuide(guideId,guides){

 var i = 0;

 var found = false;

 while(i < guides.length && !found){

 if(guides[i].id == guideId){

 found = true;

 return guides[i];

 }

 i++;

 }

 return null;

}

module.exports = ListGuides;

android /ListGuides.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * LIST GUIDES / Android

 * Handler that manage the behavior of the Window that lists the guides created

 */

/*

 * Constructor of the module

 *

 * @param mapView View of the map

 * @param guides List of Guide objects *

 * @return It returns the window object

 */

function ListGuides(mapView,guides) {

 //declare module dependencies

 var ListGuidesView = require('ui/common/ListGuidesView');

 //construct UI

 var listGuidesView = new ListGuidesView(guides);

 //create master view container

 var listGuidesContainerWindow = Ti.UI.createWindow({

 title:'List of Guides',

 exitOnClose:false,

 navBarHidden:false,

 backgroundColor:'#ffffff'

 });

 listGuidesContainerWindow.add(listGuidesView);

 63

 //declare sub-window dependencies

 var newGuideContainerWindow = require('ui/handheld/android/NewGuide');

 // Open a Guide

 listGuidesView.addEventListener('openGuide', function(guideAux) {

 // Obtain the real Guide object. the guideAux object is a JSON object that con-

tains the information of the guide but is not the real object

 var guide = findGuide(guideAux.id,guides);

 // Open the window with the guide selected

 newGuideContainerWindow(mapView,guide).open();

 Ti.App.fireEvent('guideWindowOpened');

 });

 return listGuidesContainerWindow;

};

/*

 * Look for a Guide object within a list of guides

 *

 * @param guideId Id of the guide object to look for

 * @param guides List of guides

 */

function findGuide(guideId,guides){

 var i = 0;

 var found = false;

 while(i < guides.length && !found){

 if(guides[i].id == guideId){

 found = true;

 return guides[i];

 }

 i++;

 }

 return null;

}

module.exports = ListGuides;

ListGuidesView.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * LIST GUIDES VIEW

 * View with the list of guides

 */

/*

 * Constructor of the module

 * @param guideList array with the guide objects

 */

function ListGuidesView(guidesList) {

 // Main view

 var self = Ti.UI.createView({

 backgroundColor:'white'

 });

 // TableView with the list of created guides

 var listGuidesTable = Ti.UI.createTableView({

 top:10,

 width:'100%',

 height:'100%',

 });

 self.add(listGuidesTable);

 // Add the guides to the table

 for(var g = 0; g < guidesList.length; g++){

 // Create row on the table for this guide

 var row = Ti.UI.createTableViewRow({

 guide: guidesList[g],

 64

 color:'black',

 height: 50,

 });

 // Create a label to show the name.

 // This has to be done instead to use the attribute "title" because in Android,

when you add another element to the TableViewRow (in our case, a button),

 // the title is not shown.

 var titleLabel = Ti.UI.createLabel({

 text: guidesList[g].name,

 left: 5,

 width: '80%',

 color:'black',

 });

 row.add(titleLabel);

 // Button to delete the place

 var buttonDelete = Ti.UI.createButton({

 right:10,

 height:30,

 width:30,

 title: 'X',

 });

 row.add(buttonDelete);

 // Link the button to the row to be able to manage the events of the row.

 row.deleteButton = buttonDelete;

 // Add behavior

 row.addEventListener('click',function(roww){

 // If we do click on the delete button

 if(roww.source === roww.row.deleteButton){

 // Fire the event to the List Places Manager (ui/handheld/XX/ListPlaces.js)

 Ti.App.fireEvent('deleteGuide',roww.row.guide);

 listGuidesTable.deleteRow(roww.index);

 }

 // If we do click in other part of the row, open the place

 else {

 // Fire the event to the Main Window Manager (ui/handheld/XX/MainWindow.js)

 self.fireEvent('openGuide',roww.row.guide);

 }

 });

 listGuidesTable.appendRow(row);

 }

 // // Add behavior

 // listGuidesTable.addEventListener('click',function(table){

 // // Fire the event to the Main Window Manager (ui/handheld/XX/MainWindow.js)

 // self.fireEvent('openGuide',table.row.guide);

 // });

 return self;

};

module.exports = ListGuidesView;

iOS/ListPlaces.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * LIST PLACES / iOS

 * Handler that manage the behavior of the Window that lists the places created

 */

/*

 * Constructor of the module

 *

 * @param navGroup Navigation group

 * @param places list of places

 * @param mapView View of the map *

 * @return It returns the window object

 65

 */

function ListPlaces(navGroup,places,mapView) {

 //declare module dependencies

 var ListPlacesView = require('ui/common/NewGuide/ListPlacesView');

 //construct UI

 var listPlacesView = new ListPlacesView(places);

 //create master view container

 var listPlacesContainerWindow = Ti.UI.createWindow({

 title:'List of Places'

 });

 listPlacesContainerWindow.add(listPlacesView);

 // Open a place

 listPlacesView.addEventListener('openPlace', function(placeAux) {

 // Create the Place View

 var NewPlaceView = require('ui/common/NewPlace/NewPlaceView');

 var place = findPlace(placeAux.id,places);

 var newPlaceView = new NewPlaceView(place);

 var newPlaceContainerWindow = Ti.UI.createWindow({

 title:'Place: ' + place.name,

 });

 newPlaceContainerWindow.add(newPlaceView);

 // Cancel a Palce

 newPlaceView.addEventListener('cancelPlace',function(e){

 navGroup.close(newPlaceContainerWindow);

 });

 // Save a place

 newPlaceContainerWindow.addEventListener('savePlace',function(){

 // If the place is NOT in the list

 if(!place.inList) {

 places.push(place);

 place.inList = true;

 var storageManager = require('lib/StorageManager');

 place.mediaDirectory = storageManager.getPictureName(place);

 }

 else{

 listPlacesView.fireEvent('refreshPlace',place);

 }

 navGroup.close(newPlaceContainerWindow);

 });

 navGroup.open(newPlaceContainerWindow);

 });

 // Delete the place

 listPlacesView.addEventListener('deletePlace',function(placeAux){

 // Obtain the real Place object. the placeAux object is a JSON object that con-

tains the information of the place but is not the real object

 var place = findPlace(placeAux.id,places);

 place.deleted = true;

 // Remove the annotation from the map

 mapView.removeAnnotation(place.annotation);

 });

 return listPlacesContainerWindow;

};

/*

 * Look for a Place object within a list of guides

 *

 * @param placeId Id of the place object to look for

 * @param places List of places

 */

function findPlace(placeId,places){

 var i = 0;

 var found = false;

 while(i < places.length && !found){

 if(places[i].id == placeId){

 66

 found = true;

 return places[i];

 }

 i++;

 }

 return null;

}

module.exports = ListPlaces;

android /ListPlaces.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * LIST PLACES / ANDROID

 * Handler that manage the behavior of the Window that lists the places created

 */

/*

 * Constructor of the module

 *

 * @param places List of places

 * @param mapView View of the map *

 * @return It returns the window object

 */

function ListPlaces(places,mapView) {

 //declare module dependencies

 var ListPlacesView = require('ui/common/NewGuide/ListPlacesView');

 //construct UI

 var listPlacesView = new ListPlacesView(places);

 //create master view container

 var listPlacesContainerWindow = Ti.UI.createWindow({

 title:'List of Places',

 exitOnClose:false,

 navBarHidden:false,

 backgroundColor:'#ffffff'

 });

 listPlacesContainerWindow.add(listPlacesView);

 // Open a place

 listPlacesView.addEventListener('openPlace', function(placeAux) {

 // Create the place view

 var NewPlaceView = require('ui/common/NewPlace/NewPlaceView');

 // Obtain the real Place object. the placeAux object is a JSON object that con-

tains the information of the place but is not the real object

 var place = findPlace(placeAux.id,places);

 var newPlaceView = new NewPlaceView(place);

 //create detail view container

 var newPlaceContainerWindow = Ti.UI.createWindow({

 title:'Place: ' + place.name,

 exitOnClose:false,

 navBarHidden:false,

 backgroundColor:'#ffffff'

 });

 newPlaceContainerWindow.add(newPlaceView);

 // Cancel a place

 newPlaceView.addEventListener('cancelPlace',function(e){

 newPlaceContainerWindow.close();

 });

 // Save a place

 newPlaceView.addEventListener('savePlace',function(){

 // If the place is NOT in the list

 if(!place.inList) {

 places.push(place);

 place.inList = true;

 67

 var storageManager = require('lib/StorageManager');

 place.mediaDirectory = storageManager.getPictureName(place);

 }

 else{

 listPlacesView.fireEvent('refreshPlace',place);

 }

 newPlaceContainerWindow.close();

 });

 newPlaceContainerWindow.open();

 });

 // Delete the place

 listPlacesView.addEventListener('deletePlace',function(placeAux){

 // Obtain the real Place object. the placeAux object is a JSON object that con-

tains the information of the place but is not the real object

 var place = findPlace(placeAux.id,places);

 place.deleted = true;

 // Remove the annotation from the map

 mapView.removeAnnotation(place.annotation);

 });

 return listPlacesContainerWindow;

};

/*

 * Look for a Place object within a list of guides

 *

 * @param placeId Id of the place object to look for

 * @param places List of places

 */

function findPlace(placeId,places){

 var i = 0;

 var found = false;

 while(i < places.length && !found){

 if(places[i].id == placeId){

 found = true;

 return places[i];

 }

 i++;

 }

 return null;

}

module.exports = ListPlaces;

ListPlacesView.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * LIST OF PLACES VIEW

 * View with the places of the guide

 */

/*

 * Constructor of the module

 * @param placesList List of places to show

 */

function ListPlacesView(placesList) {

 // Main view

 var self = Ti.UI.createView({

 backgroundColor:'white'

 });

 // TableView with the places os the guide

 68

 var listPlacesTable = Ti.UI.createTableView({

 top:10,

 width:'100%',

 height:'100%',

 });

 self.add(listPlacesTable);

 // Add the places to the list

 for(var p = 0; p < placesList.length; p++){

 if(!placesList[p].deleted){

 // Create row on the table for this guide

 var row = Ti.UI.createTableViewRow({

 place: placesList[p],

 height: 50,

 });

 // Create a label to show the name.

 // This has to be done instead to use the attribute "title" because in Android,

when you add another element to the TableViewRow (in our case, a button),

 // the title is not shown.

 var titleLabel = Ti.UI.createLabel({

 text: placesList[p].name,

 left: 5,

 width: '80%',

 color:'black',

 });

 row.add(titleLabel);

 // Button to delete the place

 var buttonDelete = Ti.UI.createButton({

 right:10,

 height:30,

 width:30,

 title: 'X',

 });

 row.add(buttonDelete);

 // Link the button to the row to be able to manage the events of the row.

 row.deleteButton = buttonDelete;

 listPlacesTable.appendRow(row);

 // Add behavior

 row.addEventListener('click',function(roww){

 // If we do click on the delete button

 if(roww.source === roww.row.deleteButton){

 // Fire the event to the List Places Manager

(ui/handheld/XX/ListPlaces.js)

 self.fireEvent('deletePlace',roww.row.place);

 listPlacesTable.deleteRow(roww.index);

 }

 // If we do click in other part of the row, open the place

 else {

 // Fire the event to the List Places Manager

(ui/handheld/XX/ListPlaces.js)

 self.fireEvent('openPlace',roww.row.place);

 }

 });

 }

 }

 // Actualise the information of the table in case any of the places has been modified

 self.addEventListener('refreshPlace',function(place){

 var rows = listPlacesTable.data[0].rows;

 var i = 0;

 var found = false;

 while(i < rows.length && !found){

 if(rows[i].place.id == place.id){

 rows[i].place = place;

 rows[i].title = place.name;

 found = true;

 69

 }

 i++;

 }

 });

 return self;

};

module.exports = ListPlacesView;

NewPlaceView.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * NEW PLACE VIEW

 * View with the components needed to create a new place

 */

/*

 * Constructor of the module

 */

function NewPlaceView(place) {

 // Main view

 var self = Ti.UI.createView();

 // Button to cancel the place

 var buttonCancel = Ti.UI.createButton({

 color: 'black',

 title: 'Cancel',

 bottom: '1%',

 left: '5%',

 width: '35%',

 height: 50,

 });

 self.add(buttonCancel);

 // add behavior

 buttonCancel.addEventListener('click',function(e){

 // Fire the event to the New Guide Manager (ui/handheld/XX/NewGuide.js)

 self.fireEvent('cancelPlace');

 });

 // Button to save a place

 var buttonSave = Ti.UI.createButton({

 color: 'black',

 title: 'Save Place',

 bottom: '1%',

 right: '5%',

 width: '35%',

 height: 50,

 });

 self.add(buttonSave);

 //add behavior

 buttonSave.addEventListener('click',function(e){

 if(infoView.inputName.value != ""){

 place.name = infoView.inputName.value;

 place.description = infoView.inputDescription.value;

 // Fire the event to the New Guide Manager (ui/handheld/XX/NewGuide.js)

 self.fireEvent('savePlace');

 }

 else {

 alert('The place should have a name');

 }

 });

 // Dependencies to be able to create the interface

 var InfoView = require('ui/common/NewPlace/InfoView'),

 PictureView = require('ui/common/NewPlace/PictureView'),

 AudioView = require('ui/common/NewPlace/AudioView');

 //construct UI

 70

 var infoView = new InfoView(place.name,place.description),

 pictureView = new PictureView(place),

 audioView = new AudioView(place);

 // Scrollable view to store the 3 views needed to create a place:

 // INFO + PICTURE + AUDIO

 var scrollableview = Titanium.UI.createScrollableView({

 views:[infoView,pictureView,audioView],

 showPagingControl:true,

 pagingControlHeight:30,

 height: '70%'

 });

 self.add(scrollableview);

 return self;

};

module.exports = NewPlaceView;

InfoView.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * NEW PLACE VIEW: INFO VIEW

 * View with the components needed to add the basic information of a place

 */

/*

 * Constructor of the module

 * @param name Name of the place

 * @param description Description of the place

 */

function InfoView(name, description) {

 var self = Ti.UI.createView();

 // Label to indicate the window we are visualizing

 var title = Ti.UI.createLabel({

 top:10,

 height:'auto',

 width:'auto',

 color: 'black',

 text: '1. Basic info',

 });

 self.add(title);

 // Input to write the name of the place

 var inputName = Ti.UI.createTextField({

 width: '80%',

 height: 40,

 top: 50,

 editable: true,

 borderStyle: Ti.UI.INPUT_BORDERSTYLE_ROUNDED,

 hintText: 'Name of the place',

 value: name,

 });

 self.add(inputName);

 self.inputName = inputName;

 // Input to add a description of the place

 var inputDescription = Ti.UI.createTextArea({

 width: '80%',

 height: '40%',

 top: 100,

 editable: true,

 borderWidth:1,

 borderColor: '#bbb',

 borderRadius: 4,

 value: description,

 });

 71

 self.add(inputDescription);

 self.inputDescription = inputDescription;

 return self;

};

module.exports = InfoView;

PictureView.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * NEW PLACE VIEW: PICTURE VIEW

 * View with the components needed to add a picture to the place

 */

/*

 * Constructor of the module

 * @place Place object

 */

function PictureView(place) {

 var self = Ti.UI.createView();

 // Label to indicate the window we are visualizing

 var title = Ti.UI.createLabel({

 top:10,

 height:'auto',

 width:'auto',

 color: 'black',

 text: '2. Picture',

 });

 self.add(title);

 // Image view to show the picture taken

 var imageView = Ti.UI.createImageView({

 width: '80%',

 });

 // Open Camera button

 var button = Ti.UI.createButton({

 title: 'Open camera',

 width: 100,

 height: 70,

 });

 // Define the image of the image view depending on the status of the place (if it

saved or not)

 var picFile;

 if(place.saved){

 picFile = place.mediaDirectory + Ti.Filesystem.separator + "p" + place.id +

".jpg";

 button.visible = false;

 }

 else {

 picFile = place.mediaDirectoryAux + Ti.Filesystem.separator + "p" + place.id +

".jpg";

 }

 var file = Ti.Filesystem.getFile(picFile);

 if(file.exists()){

 imageView.image = file;

 self.add(imageView);

 }

 // Add behavior

 button.addEventListener('click', function(){

 Ti.Media.showCamera({

 saveToPhotoGallery: false,

 // function to be called when the operation finish successfully

 success: function(event){

 if(event.mediaType == Ti.Media.MEDIA_TYPE_PHOTO){

 imageView.setImage(event.media);

 72

 self.add(imageView);

 var request = {name: place.id, data: event.media};

 // Fire the event to the Main App (/app.js)

 Ti.App.fireEvent('savePicture',request);

 }

 },

 // function to be called when the operation is cancelled by the user

 cancel: function(){},

 // function to be called when the operation fails

 error: function(error){

 var a = Titanium.UI.createAlertDialog({title:'Camera'});

 if(error.code == Titanium.Media.NO_CAMERA){

 a.setMessage('Please run this test on device');

 }

 else {

 a.setMessage('Unexpected error: ' + error.code);

 }

 a.show();

 },

 });

 });

 self.add(button);

 return self;

};

module.exports = PictureView;

AudioView.js
/*

 * USE CASE: TRAVEL GUIDES APP

 * NEW PLACE VIEW: AUDIO VIEW

 * View with the components needed to add an audio to the place

 */

/*

 * Constructor of the module

 */

function AudioView(place) {

 var self = Ti.UI.createView();

 // Label to indicate the window we are visualizing

 var title = Ti.UI.createLabel({

 top:10,height:'auto', width:'auto', color: 'black',text: '3. Audio',});

 self.add(title);

 // // Audio recorder dependencies

 // var audioRecorder = require('lib/AudioRecorder');

 // // Button to start the recording of audio

 // var buttonRecord = Ti.UI.createButton({

 // width: 200, height: 80, top: 20, title: 'Record',

 // });

 // if(!place.saved) {

 // self.add(buttonRecord);

 // }

 // // Add behavior

 // buttonRecord.addEventListener('click', function(e){

 // var nameFile = "a" + place.id;

 // var path = place.mediaDirectories[1] + Ti.Filesystem.separator + nameFile;

 // audioRecorder.record(path);

 // });

 // // Button to stop the recording of audio

 // var buttonStop = Ti.UI.createButton({

 // width: 200, height: 80, top: 120, title: 'Stop',});

 // self.add(buttonStop);

 // // Add behavior

 // buttonStop.addEventListener('click', function(e){

 // audioRecorder.stop();

 // });

 73

 // // Button to play the recording of audio

 // var buttonPlay = Ti.UI.createButton({

 // width: 200, height: 80, top: 220, title: 'Play',});

 // self.add(buttonPlay);

 // // Add behavior

 // buttonPlay.addEventListener('click', function(e){

 // audioRecorder.play();

 // });

 return self;

};

module.exports = AudioView;

StorageManager.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * STORAGE MANAGER

 * Module that manage the storage of the guides and everything related with the file

system.

 */

// PLACES AUXILIAR DIRECTORY WHERE THE PICTURES AND AUDIO FROM THE DIFFERENT PLACES WILL

BE STORAGE TEMPORARY

var PLACES_AUX_DIRECOTRY = getPLACES_AUX_DIRECTORY();

var MY_GUIDES_DIRECTORY = getMY_GUIDES_DIRECTORY();

/*

 * Create the PLACES directory where the pictures and audio from the different places

created will be storage temporary

 */

exports.createPLACES_AUX = function(){

 var places_aux = Ti.Filesystem.getFile(PLACES_AUX_DIRECOTRY);

 if(places_aux.exists()){

 // In the case the application crashes and the directory could not be removed

 places_aux.deleteDirectory(true);

 }

 places_aux.createDirectory();

};

/*

 * Create the PLACES directory where the pictures and audio from the different places

created will be storage temporary

 *

 * @param place Place object

 */

exports.createPLACE_AUX = function(place){

 var place_aux = Ti.Filesystem.getFile(PLACES_AUX_DIRECOTRY,place.id+"");

 if(place_aux.exists()){

 // In the case the application crashes and the directory could not be removed

 place_aux.deleteDirectory(true);

 }

 place_aux.createDirectory();

};

/*

 * Create the MY_GUIDES directory where the guides created by the user will be stored

 */

exports.createMY_GUIDES = function(){

 var my_guides = Ti.Filesystem.getFile(MY_GUIDES_DIRECTORY);

 if(!my_guides.exists()){

 my_guides.createDirectory();

 }

};

/*

 * Extract the guides information stored on the device

 *

 74

 * @return array of GUIDES objects defined with a json object

 */

exports.getGuides = function(){

 // 1. Create list of guides

 var guideList = [];

 // 2. Iterate over guides folder

 var guidesFolder = Ti.Filesystem.getFile(MY_GUIDES_DIRECTORY);

 var guidesFolderContent = guidesFolder.getDirectoryListing();

 for(var i = 0; i < guidesFolderContent.length; i++){

 var guideFolderName = guidesFolderContent[i];

 // 3. Recover information from info.xml

 var infoFile = Ti.Filesystem.getFile(MY_GUIDES_DIRECTORY +

Ti.Filesystem.separator + guideFolderName,"info.xml");

 var guideInfoXMLtext = infoFile.read();

 var guideInfoXML = Ti.XML.parseString(guideInfoXMLtext+"");

 var guide = guideInfoXML.getElementsByTagName("guide");

 var guideNode = guide.item(0);

 var guideID = guideNode.childNodes.item(0).text;

 var guideName = guideNode.childNodes.item(1).text;

 var guideCity = guideNode.childNodes.item(2).text;

 var guideDescription = guideNode.childNodes.item(3).text;

 var lastPlaceId = guideNode.childNodes.item(4).text;

 // 4. Create places list

 var placesList = [];

 var placesListAux = [];

 // 5. Iterate over places folder

 var placesFolder = Ti.Filesystem.getFile(MY_GUIDES_DIRECTORY +

Ti.Filesystem.separator + guideFolderName,"PLACES");

 var placesFolderContent = placesFolder.getDirectoryListing();

 for(var j = 0; j < placesFolderContent.length; ++j){

 var placeFolderName = placesFolderContent[j];

 // 6. Recover information from info.xml

 var infoFile = Ti.Filesystem.getFile(MY_GUIDES_DIRECTORY +

Ti.Filesystem.separator + guideFolderName + Ti.Filesystem.separator + "PLACES" +

Ti.Filesystem.separator + placeFolderName,"info.xml");

 var placeInfoXMLtext = infoFile.read();

 Ti.API.info(placeInfoXMLtext);

 var placeInfoXML = Ti.XML.parseString(placeInfoXMLtext+"");

 var place = placeInfoXML.getElementsByTagName("place");

 var placeNode = place.item(0);

 var placeID = placeNode.childNodes.item(0).text;

 var placeName = placeNode.childNodes.item(1).text;

 var placeDescription = placeNode.childNodes.item(2).text;

 var placeLongitude = placeNode.childNodes.item(3).text;

 var placeLatitude = placeNode.childNodes.item(4).text;

 var placeMediaDirectories = [MY_GUIDES_DIRECTORY + Ti.Filesystem.separator

+ guideFolderName + Ti.Filesystem.separator + "PLACES" + Ti.Filesystem.separator +

placeID , PLACES_AUX_DIRECOTRY = Ti.Filesystem.applicationDataDirectory + "PLACES_AUX"

+ Ti.Filesystem.separator + placeID];

 // 7. Crate the place and add it to the list

 var Place = require('lib/Place');

 var place = new

Place(true,true,false,placeID,placeName,placeDescription,placeLongitude,placeLatitude,pl

aceMediaDirectories);

 var placeAux = new

Place(true,true,false,placeID,placeName,placeDescription,placeLongitude,placeLatitude,pl

aceMediaDirectories);

 placesList.push(place);

 placesListAux.push(placeAux);

 }

 // 8. Create the Guide and add it to the list

 var Guide = require('lib/Guide');

 75

 var guide = new

Guide(true,guideID,guideName,guideDescription,guideCity,placesList,placesListAux,lastPla

ceId);

 guideList.push(guide);

 }

 return guideList;

};

/*

 * Save a guide into the file system

 *

 * @param guide Guide object to save

 */

exports.saveGuide = function (guide){

 // 1. Create the folder for the guide within MY_GUIDES

 // (IF EXISTS: nothing happens)

 var newGuide = Ti.Filesystem.getFile(MY_GUIDES_DIRECTORY,guide.id);

 if(!newGuide.exists()){

 newGuide.createDirectory();

 }

 // 2. Create the XML info file within the new GUIDE folder

 // (IF EXISTS: overwrite info.xml in case a possible modification)

 var infoFile = Ti.Filesystem.getFile(MY_GUIDES_DIRECTORY + Ti.Filesystem.separator +

guide.id + Ti.Filesystem.separator + "info.xml");

 infoFile.write('<guide>');

 infoFile.write('<id>' + guide.id + '</id>',true);

 infoFile.write('<name>' + guide.name + '</name>',true);

 infoFile.write('<city>' + guide.city + '</city>',true);

 infoFile.write('<description>' + guide.desc + '</description>',true);

 infoFile.write('<lastPlaceId>' + guide.lastPlaceId + '</lastPlaceId>',true);

 infoFile.write('</guide>',true);

 infoFile.write('\n',true);

 // 3. Create the PLACES FILE within the new GUIDE folder

 // (IF EXISTS: nothing happens)

 var places = Ti.Filesystem.getFile(MY_GUIDES_DIRECTORY + Ti.Filesystem.separator +

guide.id, "PLACES");

 if(!places.exists()){

 places.createDirectory();

 }

 // 4. Iterate over guide.places

 for(var p = 0; p < guide.places.length; p++){

 var id = guide.places[p].id + "";

 var placeFolder;

 var finalPlacesFolderName = MY_GUIDES_DIRECTORY + Ti.Filesystem.separator +

guide.id + Ti.Filesystem.separator + "PLACES";

 // If the place is already saved:

 if(guide.places[p].saved){

 placeFolder = Ti.Filesystem.getFile(finalPlacesFolderName, id);

 }

 // If the place is NOT already saved:

 else {

 placeFolder = Ti.Filesystem.getFile(PLACES_AUX_DIRECOTRY, id);

 }

 // If the place is mark to delete

 if(guide.places[p].deleted){

 placeFolder.deleteDirectory(true);

 }

 else{

 // If the place is not saved, we have to move the content from the temporary

folder to the new folder

 if(!guide.places[p].saved){

 moveDirectory(placeFolder,places);

 placeFolder = Ti.Filesystem.getFile(finalPlacesFolderName, id);

 76

 }

 // Create the info.xml file

 // 2. Create the XML info file within the new GUIDE folder

 // (IF EXISTS: overwrite info.xml in case a possible modification)

 var placeInfoFile = Ti.Filesystem.getFile(finalPlacesFolderName +

Ti.Filesystem.separator + id,"info.xml");

 placeInfoFile.write('<place>');

 placeInfoFile.write('<id>' + guide.places[p].id + '</id>',true);

 placeInfoFile.write('<name>' + guide.places[p].name + '</name>',true);

 placeInfoFile.write('<description>' + guide.places[p].desc +

'</description>',true);

 placeInfoFile.write('<longitude>' + guide.places[p].longitude +

'</longitude>',true);

 placeInfoFile.write('<latitude>' + guide.places[p].latitude +

'</latitude>',true);

 placeInfoFile.write('</place>',true);

 guide.places[p].saved = true;

 guide.placesAux[p].saved = true;

 }

 }

};

/*

 * Remove a Guide from the file system. It will remove all the sub folders

 *

 * @param guideId Id of the guide we want to remove

 */

exports.removeGuide = function(guideId){

 var guideFolder = Ti.Filesystem.getFile(MY_GUIDES_DIRECTORY + Ti.Filesystem.separator

+ guideId);

 guideFolder.deleteDirectory(true);

};

/*

 * Save a picture into the temporary folder.

 *

 * @param request: { Picture Name + Picture data }

 */

exports.savePicture = function(request){

 var file = Ti.Filesystem.getFile(PLACES_AUX_DIRECOTRY + Ti.Filesystem.separator +

request.name,"p"+request.name+".jpg");

 file.write(request.data);

};

/*

 * Get the directories name where the media information (pictures and audio) will be

stored

 *

 * @param placeId: Id of the place

 * @param guideId: Id of the guide that contains the place

 *

 * @return array with the Media directories that contains the media files. If the guides

is not saved, the media directory will be within the temporary folder.

 * If the guide is saved, the media direcotry will be within the guide directory.

 */

exports.getMediaDirectories = function(placeId, guideId){

 var media = [

 MY_GUIDES_DIRECTORY + Ti.Filesystem.separator +guideId +

Ti.Filesystem.separator + "PLACES" + Ti.Filesystem.separator + placeId,

 PLACES_AUX_DIRECOTRY + Ti.Filesystem.separator + placeId +

Ti.Filesystem.separator

];

 return media;

};

/***

 77

 * AUXILIAR FUNCTIONS

***/

/*

 * Get the name of the PLACES_AUX directory depending the OS

 *

 * @return String with the PLACE_AUX directory

 */

function getPLACES_AUX_DIRECTORY(){

 if (Ti.Platform.osname === 'android') {

 return PLACES_AUX_DIRECOTRY = Ti.Filesystem.externalStorageDirectory + "PLAC-

ES_AUX";

 }

 else {

 return PLACES_AUX_DIRECOTRY = Ti.Filesystem.applicationDataDirectory + "PLAC-

ES_AUX";

 }

}

/*

 * Get the name of the MY_GUIDES directory depending the OS

 *

 * @return String with the MY_GUIDES directory

 */

function getMY_GUIDES_DIRECTORY(){

 return Ti.Filesystem.applicationDataDirectory + "MY_GUIDES";

}

/*

 * Move a temporary place directory to the corresponding guide directory. It will move

also the content inside (picture and auido)

 *

 * @param from Temporary directory of the place

 * @param to Final destination within the GUIDE/PLACES directory

 */

function moveDirectory(from,to){

 var name = from.name;

 // Create a new directory within the "to" folder with the same name than the ones we

want to move

 var newFolder = Ti.Filesystem.getFile(to.nativePath,name);

 newFolder.createDirectory();

 // Move the content within the "from" directory

 var folderContent = from.getDirectoryListing();

 for(var f = 0; f < folderContent.length; f++){

 var file = Ti.Filesystem.getFile(from.nativePath,folderContent[f]);

 file.move(newFolder.nativePath + Ti.Filesystem.separator + folderContent[f]);

 }

}

Guide.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * GUIDE

 * Module that define the content of a Guide Object

 */

/*

 * Constructor of the module

 *

 * @param saved Boolean that indicates if the guide is alaready saved or not

 * @param id Identification number of the guide

 * @param name Name of the guide

 * @param desc Description of the guide

 * @param city City of the guide

 * @param places List of places of the guide

 78

 * @param placesAux Auxiliar list of places of the guide. It will be used to restore the

changes in case the user cancel any modification.

 * @param lastPlaceId Id of the last places created within the guide *

 * @return JSON object with the guide information

 */

function Guide(saved,id,name,desc,city,places,placesAux,lastPlaceId) {

 var json = {

 saved: saved, id: id, name: name,desc: desc,city: city,places: places,placesAux:

placesAux, lastPlaceId: lastPlaceId,

 };

 return json;

};

module.exports = Guide;

Place.js
/*

 * USE CASE: TRAVEL GUIDES APP

 * PLACE

 * Module that define the content of a Place Object

 */

/*

 * Constructor of the module

 *

 * @param saved Boolean that indicates if the place is alaready saved or not

 * @param inList Boolean that indicates if the palce is already on the list of places or

not

 * @param id Identification number of the place

 * @param name Name of the place

 * @param desc Description of the place

 * @param longitude Longitude of the place

 * @param latitude Latitude of the place

 * @param mediaDirectories Array with the directories name where the media content of

the place is sotred. It is an array with two positions.

 * mediaDirecotries[0] = Directory where the media content is stored when the

guide is saved

 * mediaDirecotries[1] = Directory where the media content is stored when the

guide is NOT saved

 * @return JSON object with the place information

 */

function Place(saved,inList,deleted,id,name,desc,longitude,latitude,mediaDirectories) {

 var json = {saved: saved,inList: inList,deleted: deleted,id: id,name: name,desc:

desc,longitude: longitude,latitude: latitude,mediaDirectory: mediaDirectories[0], medi-

aDirectoryAux: mediaDirectories[1],

 };

 return json;

};

module.exports = Place;

AudioRecorder.js

var audioRecorder = require('com.codeboxed.audiorecorder');

var fileRecordered;

audioRecorder.setAudioFormat("DEFAULT");

audioRecorder.setAudioEncoder("DEFAULT");

audioRecorder.setMaxDuration(60000); // 60 seconds

audioRecorder.setMaxFileSize(1000000);

exports.record = function(name){ var path = name; audioREcorder.setFileName(path,"3gp");

 audioRecorder.start();

};

exports.stop = function(){ fileRecordered = audioRecorder.stop();};

exports.play = function(){

 audioRecorder.playAudio(fileRecordered);

};

 79

Map.js

/*

 * USE CASE: TRAVEL GUIDES APP

 * MAP VIEW

 * View with the map of the application.

 * In Android just one instance of this object can be created.

 */

/*

 * Constructor of the module

 */

function Map() {

 // Configuration of the map module

 Titanium.Geolocation.purpose = 'Show a map';

 Titanium.Geolocation.distanceFilter = 10;

 // Map View

 var mapView = Titanium.Map.createView({

 mapType: Ti.Map.STANDARD_TYPE,

 regionFit: true,

 userLocation: true,

 visible: true,

 touchEnabled: true,

 focusable: false,

 myLatitude: 0,

 myLongitude: 0,

 });

 // Callback function when position changes

 Titanium.Geolocation.getCurrentPosition(function(e){

 setPosition(e,"getCurrentPosition");

 });

 // Callback function when position changes

 Titanium.Geolocation.addEventListener('location', function(e){

 setPosition(e,"location event");

 });

 // Set the map location with the information given by the 'source' on the parameter

'e'

 function setPosition(e,source){

 // If there is an error obtaining the position

 if(e.error){}

 else{

 // Create a region with the data obtained

 var region = {

 latitude: e.coords.latitude,

 longitude: e.coords.longitude,

 animate:true,

 latitudeDelta:0.1,

 longitudeDelta:0.1,

 };

 // Set up the map

 mapView.setLocation(region);

 mapView.myLatitude = region.latitude;

 mapView.myLongitude = region.longitude;

 }

 }

 return mapView;

};

module.exports = Map;

