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List, or retail, pricing is a widely used trading institution where firms announce a price that may be
discounted at a later stage. Competition authorities view list pricing and discounting as a procompetitive
practice. We modify the standard Bertrand–Edgeworth duopoly model to include list pricing and a

subsequent discounting stage. Both firms first simultaneously choose a maximum list price and then decide

idely ex
e perio
f a good
nts.2 Lis
ndicate
rices ca
whether to discount, or not, in a subsequent stage. We show that list pricing works as a credible commitment
device that induces a pure strategy outcome. This is true for a general class of rationing rules. Further unlike
the dominant firm interpretation of a price leader, the low capacity firm may have incentives to commit to a
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in Ikea catalogues have an expiry date, however, Ikea is free to offer
discounts on these prices at any time. They cannot however raise the
list price once they commit to it.

The U.S. Department of Justice screens the use of list pricing as a
possible collusion facilitating device. Of special interest are practices
where list pricing, and discounting, information is shared among firms.4

In a recent decision, Judge Posner discussed the role of list prices
L0
L1
L4
L11
L13

Keywords:
List pricing
Discounts
Capacity constrained models
Mixed strategies
Pure strategies
Stackelberg leader

1. Introduction

List, or retail, pricing1 is a w
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versus transaction prices in the High Fructose Corn Syrupmatter. (295

duration of the commitment. However, they can be lowered through
offering of discounts. Further, competition authority permits dis-

F.3d 651: 2002 U.S. App.). He noted that even if most customers do not
pay list prices, list prices may have an impact on transaction prices and
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counts to list prices and views them as competition enhancing. Large
retailing chains such as Sears and Roebuck andMontgomeryWard sell
appliances at their regular prices much of the time, but often have
sales when the price is reduced by 25%.3 Other examples abound. For
example, the price catalogue for Ikea stores, or Amazon online. Prices
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1 The US Federal Trade Commission views list, or retail, pricing analogously.
2 Freedictionary.com. Similar definitions are found in other dictionaries.
3 Varian (1980, p. 658).
us fixing list prices may have an effect on competition. The FTC is
so of the opinion that list prices can provide a means of reaching
nsensus and observing prices thus facilitating coordinated action.5

In this paper we capture such a pricing institution. Firms first post a
aximum list, or retail, price that can be subsequently discounted in a
ter stage. We consider a Bertrand–Edgeworth duopoly where prices
e determined simultaneously in two stages. In the first stage, both
ms announce list, or retail, prices simultaneously. In the second stage,
ms may discount from these (list) prices. Our pricing institution is
ilar to the onedescribed above.We show that there exists a subgame

See, for example, the information exchange program studiedby theU.S. Department of
ticewith respect to publishing list price information, asproposedby theaccountingfirm
OB (at http://www.usdoj.gov/atr/public/busreview/211191.htm).
See, Scheffman and Coleman (2003).
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perfect equilibrium inwhichbothfirmsplaypure strategies and that this
equilibrium payoff dominates any other subgame perfect equilibrium.
Our results hold under quite general assumptions about the rationing
mechanism. We also demonstrate that there is no subgame perfect
equilibrium of the list pricing game inwhichfirms playmixed strategies
in the discounting stage. One should, however, note that our pure
strategy results hold as long as firms are not very different.

The intuition behind our result is simple. In a Bertrand–Edgeworth
equilibrium a firm may set a price such that its rival obtains higher
profits from selling to the residual demand (rather than setting an
undercutting price). This price gives the rival a monopoly on the
residual demand. By committing to a low list price a firm indicates to
its rival that it can act as a monopolist on the residual demand in the
subsequent discounting stage. In this sense the list pricing institution
acts as a facilitating collusion device between the firms.6 There are
some examples that suggest the empirical relevance of this type of
pricing behavior in concentrated industries with a single dominant
firm (see for instance Sorgard, 1997).

Our paper yields pricing outcomes which are similar to those of
Deneckere and Kovenock (1992). They analyze a price leadershipmodel
in a duopolistic market where the firms choose the timing of their price
announcements, maximizing total discounted profits. In their game,
once announced, prices cannot be changed. Firm1announces its price at
the beginning of an even index while firm 2 announce its price at the
beginning of an odd index. Thus Deneckere and Kovenock (1992)
impose price commitment, whereby one firm must eventually set its
price first, as they are interested in the timing of the commitment. Our
model is conceptually different as firms have an option to commit
through list pricing but they may choose, or not, to do so. In this sense
ourpaper is closer to thatof Kreps andScheinkman (1983)whofind that
in the subgame perfect equilibrium firmswill choose capacity such that
they will play pure strategies in the pricing stage.

Applying list pricing and discounting we obtain a pure strategy
equilibrium. This is interesting because one of the drawbacks of these
models has been the existence of a mixed strategy equilibrium.7 Many
do not consider mixed strategies as a satisfactory explanation of pricing
behavior by firms. For example, Shubik and Levitan (1980) consider
them as an “interesting extension of the equilibrium that is somewhat
hard to justify.” Dixon (1987), meanwhile, finds them “implausible,”
while Friedman (1988) finds it “doubtful that the decision makers in
firms shoot dice as an aid to selecting output or price.”

In the paradigmatic case of a duopoly8 the alternatives to the mixed
strategy solution have involvedmodels that assume sequential timingof
firm moves. This is the approach that is followed in Shubik and Levitan
(1980), Deneckere andKovenock (1992), and Canoy (1996).Weprovide
an alternative to the sequential timing hypothesis by analyzing a natural
extension of a Bertrand–Edgeworth model for which pure strategy
equilibrium always exists. Our model does not provide an alternative
solution concept to themixed strategyNashequilibriumbut, it yields the
prediction that randomization by firms is not equilibrium behavior. It

6 In a different context Holt and Scheffman (1987) analyze list pricing as a

facilitating practice device.

7 One way of avoiding this non-existence problem is the mixed strategy solution
concept. Maskin (1986) proves existence of a mixed strategy equilibrium for very
general specifications of the Bertrand–Edgeworth model.

8 The mixed strategy outcome is not particularly troublesome when the number of
firms in the industry is large. Allen and Hellwig (1986a) and Vives (1986) show, under
different assumptions on the rationing function, that as the number of firms in a
Bertrand–Edgeworth model grows the mixed strategy equilibrium converges in
distribution to the competitive equilibrium. In this sense, Allen and Hellwig (1986b),
while considering the non-existence of a pure strategy equilibrium a “drawback of the
Bertrand–Edgeworth specification,” argue that in the large numbers case randomiza-
tion in prices is “in some sense unimportant” as firms will set prices close to the
competitive price with very high probability. The competitive result is robust to a
change in the equilibrium concept. Dixon (1987) and Borgers (1992) obtain
convergence to the competitive equilibrium using the ε-equilibrium and iterated
elimination of dominated strategies solution concepts, respectively.
does sowith a straightforward extension of the classical model. Further,
we generalize some of the results of the Bertrand–Edgeworth literature
whichwere only known to hold for the classical one stage pricing game.

The paper is structured as follows: In Section 2we present the basic
model of a price setting duopolywith capacity constraints and specifya
general residual demand function. In Section 3 we analyze the pricing
equilibria of our list-pricing game and compare it to the equilibrium of
the single stage pricing game. In Section 4 we explore the relationship
between list pricing and price leadership. Section 5 concludes.

2. Residual demand in a Bertrand–Edgeworth duopoly

In the classical Bertrand–Edgeworth competition firms set prices
under the realization that rivals may not be able to supply all the
demand at those prices.9 Once prices are announced, market demand
is distributed between the firms according to some specified rationing
rule. The rationing rule represents some underlying consumer
behavior and is assumed to be either efficient, or proportional.10

Consider a market with two firms, i and j, that produce a homo-
genous good. Firm i incurs constant marginal costs of production, ci.
Marginal costs may differ across firms. Firms face capacity restrictions
ki, 0bki≤D(ci). The aggregate market demand, D(p), is continuous
and results in a strictly concave function, (p−ci)D(p). There exists a
p0N0 such that D(p) is positive, downward sloping, and twice
differentiable on (0,p0) and zero for p≥p0N0. Let P(q) denote the
inverse demand function. Associated with the demand function, and
firm capacity, we can define a firm's monopoly price11 pi

M=argmaxp
(p−ci)min(D(p),ki).

Given a vector of prices paR2
þ, set by the firms, we now discuss

how much firm i sells in the market.

qi pi;pj
� �

=

min ki;D pið Þ½ � pi b pj
min ki;max 0;D pð Þ− Ii·kj

� �h i
pi = pj = p

min ki;R pi;pj; kj
� �h i

pi N pj

8>><
>>:

where, R(pi,pj,kj) represents a general residual (or contingent)
demand function and is defined only for pi≥pj. The residual demand
function is determined by how the rationing of excess demand is
modeled. Using the notation in Deneckere and Kovenock (1996), Ii is
an indicator that takes value of 1 if ciNcj, or ci=cj and i=2, and takes
value of 0 if cibcj, or ci=cj and i=1.

The Bertrand–Edgeworth literature has used one of two specifica-
tions of residual demand: proportional or efficient. Suppose that
consumers have a unitary demand, that firm j undercuts firm i, piNpj,
and that firm j cannot meet all its demand, D(pj)Nkj. The proportional
(or Beckmann) residual demand specification results from the hy-
pothesis that each potential consumer of firm j has an equal proba-
bility of being served. The residual demand facing the high priced firm
is then given by,

RB pi;pj; kj
� �

= max D pið Þ 1−
kj

D pj
� �

0
@

1
A;0

0
@

1
A

The efficient, or surplusmaximizing, residual demand specification
assumes that low priced goods are allocated to consumers with the

9 For a description of Bertrand–Edgeworth competition see Vives (1999), page123.
10
 Efficient rationing is used in Levitan and Shubik (1972), Kreps and Scheinkman
(1983), Vives (1986), and Deneckere and Kovenock (1992). Proportional rationing is
used in Beckmann (1965), Allen and Hellwig (1986a-b), Dasgupta and Maskin (1986),
Davidson and Deneckere (1986) (this last paper also has some results for a general
class of rationing functions) and Deneckere and Kovenock (1992).
11 We assume that the low cost firm’s monopoly price lies above the marginal cost of
the high cost firm. Otherwise the efficient firm always sets its monopoly price with the
high cost firm acting on the residual demand.
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highest valuation for the good. Under this assumption the high
priced firm has residual demand,

RE pi;pj; kj
� �

= max D pið Þ− kj;0
� �

Proportional and efficient rationing are but two of the many
reasonable specifications of residual demand. For instance, one may
assume that a proportion 1-λ(N0) of the low priced firm's capacity is
allocated randomly among potential buyers. The remaining capacity,
meanwhile, goes to unsatisfied high valuation consumers. This would
then result in residual demand for the high priced firm of,

Rλ pi;pj; kj
� �

= max λ D pið Þ− kj
� �

+ 1− λð ÞD pið Þ 1−
kj

D pj
� �

0
@

1
A;0

0
@

1
A:

This function belongs to a class of residual demand functions for
which our results hold. They can be characterized by imposing the
following restrictions on the function R(pi,pj,kj): A→Rþwhere,
A={(p,p′,k′)aR3: p≥p′≥0,k′≥0}

1. R(pi,pj,kj) is continuous and twice continuously differentiable.
2. When R(pi,pj,kj)N0, it is strictly decreasing in pi.
3. When R(pi,pj,kj)N0 then R(pi,pj,kj)(pi−ci) is strictly concave in pi.
4. max(0,D(pi)−kj)≤R(pi,pj,kj)≤max(0,min(D(pj)−kj, D(pi))).
5. When R(pi,pj,kj)N0 it is strictly decreasing in pj.

Properties (1),(2), and (3) guarantee that the residual demand
function inherits certain regularity properties from the demand
function. In order to understand property (4) consider what happens
as pj gets arbitrarily close to pi. In this case, the number of consumers
of the low priced firm with a reservation price below pi becomes
arbitrarily small and the residual demand function is D(pi)−kj. With
respect to the right hand side simply note that the low priced firmmay
never sell more that kj units of the good.13

Property (5) refers to the fact that if firm j (the low price firm)
lowers its price, pj, more consumers enter the market. Note that, this
reduces the proportion of firm j's output that is allocated to high
valuation consumers. This in turn increases residual demand for the
high price firm i. Thus, firm i's profits will rise as firm j lowers its price.
The effect of firm j lowering its price on profits of firm i plays an
important role in our results.

Further, it must be noted that the efficient residual demand is not
included in the class of rationing functions we consider since it
violates property (5). On the other hand our results do hold for
functions that approximate efficient residual demand, i.e. very small
λ, as Rλ(pi,pj,kj)verifies properties 1–5 for any 0≤λb1.

3. The list pricing game

In our extension of the classic model, firms simultaneously set
prices in two stages. In the first stage, each firm ia{1,2} sets a list
price, piL. In the second stage, firms are allowed to offer a discount on
this price. The discounted price, pid (≤pi

L), has to be less than or equal
to the list price set in the first stage. The discounted price is offered to
all consumers.14 Given pi

d consumers make their purchasing decisions

12 It should be noted that although efficient rationing maximizes consumer surplus

P
i.
w

(for a particular capacity constrained firm), it does not maximize total consumer
surplus. Given capacities and prices, if the high priced firm can meet all of its residual
demand proportional rationing leads to greater total consumer and total surplus than
efficient rationing.
13 Properties (1), (2) and (4) are proposed by Davidson and Deneckere (1986) for a
“reasonable rationing function.”
14 In real world situations, firms can offer discounts to a subset of consumers, i.e.
price discriminate (based on volume, repeat purchases etc.). We do not consider this
possibility.
ccording to qi(pi ,pj ). For simplicity, we do not consider list prices
reater than p0.
The game is solved backwards. In the final (discounting) stage we

how some conditions under which firms set the competitive price
Theorem 1). Extending previous results for proportional and efficient
esidual demand we characterize all the mixed strategy equilibria in
he discounting subgame (Theorem 2). Then, in the first stage, list
rices are analyzed. We first show the existence of a pure strategy
quilibrium in the classical Bertrand–Edgeworth game (Theorem 3
nd Corollary 2). When the pure strategy equilibrium of the classical
ame does not exist, we show that any subgame perfect equilibrium of
he list pricing game involves no mixed strategies in the discounting
tage (Theorem 4 and Corollary 3). Finally we prove the existence of a
ure strategies equilibrium (different from the competitive price) for
he full game (Theorem 5). In sub-section 3 we present an example
here we compute the equilibria for the list pricing game.

.1. The Discounting subgame

Firms can discount over their posted list price in the first stage. In
he discounting stage firms set a discounted price that is less than, or
qual, to the list price.We first verify the existence of an equilibrium to
ach discounting subgame given any pair of price ceilings pi

L≥0.
pplying Theorem 5 from Dasgupta and Maskin (1986), and using the
ie breaking rule, it is straightforward to prove that the discounting
ubgame has a (mixed) Nash equilibrium for any (p1L ,p2L).15

We first consider the possibility of reaching a discounting subgame
here the list prices induce a pure strategy equilibrium. A pure
trategy equilibrium that does not involve the competitive price can
lways be induced in the list price stage if firm i sets its list price
uch that it is not undercut (and firm j sets a list price that is high
nough). In fact, any pair of list prices piLNpjL, such that firm i will act
n the residual demand, if firm j sets a discounted price of pjL, i.e. min
D(pjL),ki)(pjL−ci)≤maxpa [pj

L,pi
L] R(p,pjL,kj)(p−ci), induce a pure strat-

gyequilibrium in thediscounting stage, (p̂id, p̂jd). In this equilibrium,firm
does not discount its list price and firm i acts on the residual demand,
etting a discounted price of p̂id=argmaxpa [pj

L,pi
L] R(p,pjL,kj)(p−ci).

A well known result of the Bertrand–Edgeworth literature is that
he only candidate for a pure strategy equilibrium is the competitive
rice (see Arrow, 1951). The condition under which the Arrow result
pplies in ourmodel is discussed in Theorem 1.We show later that this
ondition is never met in equilibrium unless the classic Bertrand–
dgeworth game has a pure strategy equilibrium.
Define the competitive price of our gameaspC=max{c1,c2,P(k1+k2)}.

he following Theorem characterizes some list prices of a game where
he only possible equilibrium in pure strategies is the competitive price.
his Theorem will be used later to show that in some of the list pricing
ames the unique pure strategy equilibrium is the competitive price.
pecifically, we show (Corollary 2) the existence of a pure strategy
quilibrium in the classical Bertrand–Edgeworth game.

heorem 1. Let piL≥pj
L≥pC, if

in D pLj
� �

; ki
� �

pLj − ci
� �

N max
pa pLj ;p

L
i

� � R p;pLj ; kj
� �

p − cið Þ

hen the only candidate for a pure strategy equilibrium in the subgame
ollowing (piL,pjL) involves both firms setting the competitive price.

roof. Suppose a pure strategy equilibrium to the discounting game,
e., (p1̂d, p2̂d), exists. If pîdbpĵd, this implies that pîd=pi

L. Contrarily, firm i
ould want to raise its price. But this contradicts piL≥pj

L. Suppose on
15 Also see Deneckere and Kovenock (1996).
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the other hand pĵ bpî , this then implies p̂j =pj . Further, in order for
firm i to not have incentives to undercut firm j it must be the case that

min D pLj
� �

; ki
� �

pLj − ci
� �

V max
pa pLj ;p

L
i

� �R p; pLj ; kj
� �

p − cið Þ

This, however, leads to a contradiction. We then have that both
firms set the same discounted price. In that case the equilibrium is
competitive (or else, at least one firm will have an incentive to
undercut its rival).

We now consider the possibility of reaching a subgame where list
prices induce a non-degenerate mixed strategy equilibrium. Given the
list prices set in the first stage (p1L ,p2L), a firm's strategy in the
discounting subgame is defined by a (possibly degenerate) probability
measure μid on [ci,piL]. Let the minimum and the maximum of the
support of μ i

d be denoted by p̲i
d and p

̲
i
d, respectively. Given any two

strategies (μ i
d,μ j

d), a firm's expected profits in the discounting stage
will be denoted by πi(μ i

d,μ j
d). For any pj

L≥pC, denotes by pi
E the price

that can be set by firm i such that firm j is indifferent between
undercutting firm i and, acting on the residual demand. That is,

pEi = min p : min D pð Þ; kj
� �

p − cj
� �

= max
xa p;pLj

� �R x;p; kið Þ x − cj
� �8<

:
9=
;

We refer to pi
E as the Edgeworth price. It is trivial to show that

pi
E≥pC.16 The Edgeworth price will be very useful in order to

characterize the equilibria that arise in the pricing subgames that
we study. It should be noted that piE is weakly increasing with pj

L. For
values of pjL close to the competitive price, piE increases with pj

L. For a
high enough value of the list price of firm j, piE attains a maximum
value. Let us denote this value by p

̲
i
E.

The next result characterizes some of the properties of a non-
degenerate mixed strategy equilibrium in the discounting stage.
Property i) shows that the lower bound of the price support is the
same for both firms and above the market clearing price. Property iii)
implies that there is a firm h that, when setting the highest price in its
support, is undercut with certainty. Note that, a discounting subgame
where the list prices are set at p0 is equivalent to the classical one
stage pricing game. This Theorem thus generalizes some of the results
of the Bertrand–Edgeworth literature which are known to hold in the
case of the efficient and proportional residual demands to a more
general class of residual demand functions.

Theorem 2. Given, pL1;p
L
2

� �
and min pL1;p

L
2

� 	
N max pE1; p

E
2

� 	
. If a non-

degenerate mixed strategy equilibrium, μd
1; μ

d
2

� �
, to the discounting

subgame exists, then

•
¯
pd1 =

¯
pd2 =

¯
pd

• πi μd
i ; μ

d
j

� �
= min D

¯
pd
� �

; ki
� �

¯
pd − ci
� �

for any ia 1;2f g
• for one of the two firms ha{1,2}:

πh μd
h; μ

d
−h

� �
=

Z p̄d
−h

¯
pd

R p̄ d
h; p; k−h

� �
p̄ d

h − ch
� �

dμd
−h pð Þ

Proof. See Appendix.

As a Corollary toTheorem 2wewill prove that the lower bound of the
supportof themixed strategyequilibrium is below thehighest Edgeworth

16 Further assumptions on the residual demand function would be needed to

determine which firm will have the highest Edgeworth price. It is straightforward to
see that if the residual demand function is of the type Rλ then ki≥kj, ci≥cj implies
pi
E≤pj

E. That is, the low capacity/cost firm has a higher Edgeworth price than the high
capacity/cost firm. Note that, if kiNkj and cibcj, then either firm could have a higher
Edgeworth price.
price. This result is important since it implies that the high Edgeworth
pricefirmwouldbebetteroff committing to its Edgeworthprice and, have
the other firm acting on the residual demand (than in any discounting
game that has a non-degeneratemixed strategyequilibrium). The proof is
based on the fact that (by Theorem 2) in a mixed strategy equilibrium
there is a firm h which sets a price of p

̲
h
d and is undercut by its rival with

certainty. Setting this price, firm h's payoffs are not certain. They are
greatestwhen its rival sets a price of p̲d. Thus, expectedprofits offirmh are

strictly less than R p̄dh;
¯
pd; k−h

� �
p̄dh − ch

� �
. If firm−hwere to set a price

sufficiently close to p̲d with certainty, then firm h would best respond
acting on the residual demand. This in turn implies that the Edgeworth
price of firm −hmust be greater than p̲d.

Corollary 1. Given, pL1; p
L
2

� �
, such that min pL1;p

L
2

� 	
N max pE1; p

E
2

� 	
. If a

non-degenerate mixed strategy equilibrium to the discounting game
exists, then

¯
pd b max pE1; p

E
2

� 	
.

Proof. By Theorem 2 there is a firm h for whom,

min D
¯
pd

� �
; kh

� �
¯
pd − ch

� �
=

Z p̄d
−h

¯
pd

R p̄ d
h;p; k−h

� �
p̄ d

h − ch
� �

dμ−h pð Þ

• Given the continuity of the residual demand function, by the Mean

Value Theorem we have that for some
¯
pd b z b p̄d−h,

Z p̄d
−h

¯
pd

R p̄ d
h;p; k−h

� �
p̄ d

h − ch
� �

dμ−h pð Þ = R p̄ d
h; z; k−h

� �
p̄ d

h − ch
� �

:

• By Property (5) of the residual demand function we have,

min D
¯
pd

� �
; kh

� �
¯
pd − ch

� �
b R p̄dh;

¯
pd; k−h

� �
p̄dh − ch

� �
:

• That is, pE−h N
¯
pd and, therefore, max pE1;p

E
2

� 	
N
¯
pd:

3.2. The Full Game

We now characterize the subgame perfect equilibrium of the list
pricing game. In part (i) of Theorem 2 we show that if the Edgeworth
price of both firms coincides with the competitive price then any
subgame perfect equilibriumof the list pricing game involves both firms
setting the competitive price. Note that, if the competitive price is equal
to the highest unit cost, then the high cost firm faces zero residual
demand. Facing zero residual demand it will be indifferent between
setting any price as its sales will always be zero. Then, any strategy such
that the other firm (low cost) does not want to raise its price, will be an
equilibrium. It is then straightforward to see that all these subgame
perfect equilibria are payoff equivalent (part (ii) of Theorem 2).

Theorem 3. Given the rationing rule, suppose that k1; k2; c1; c2ð Þ are
such that for every pLi ; p

L
j

� �
, max pE1;p

E
2

� 	
= pC . Then,

i) there exists a subgame perfect equilibrium of the list pricing game
where both firms set a discounted price of pC.

ii) any other subgame perfect equilibrium is payoff equivalent to i) and
involves all quantities being sold at pC.

Proof. Note that, a firm i can always guarantee itself profits of
min D pC

� �
− Iikj; ki

� �
pC − ci
� �

by setting the competitive price in the
list pricing and the discounting stage. This implies that any list price
below the competitive price is strictly dominated. For this reason, in a
subgame perfect equilibrium, no firm will set a price below pC.

Below we prove that is a firm set pC in the discounting stage then
the other firm's best response is setting pC.

4
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• First, consider the case where p = max c1; c2f gN P k1 + k2ð Þ. Let
us suppose that cjNci [or cj=ci and i=1]. Then it must be the case
that firm j has zero residual demand at any price set by firm i above cj
(note that, because max pE1; p

E
2

� 	
= pC = max c1; c2f g, we have pi

E≤cj,
which means that firm j's profits acting on the residual demand
should be the same as when it undercuts, which are non-positive).
This implies that ki≥D(cj).

If firm i sets a price of pC, firm j's residual demand will be zero. In
that case, firm j could set any price, but only pj

d=pC (or any strategy
that deters firm i from raising its price, could be an equilibrium). Firm
payoffs are the same for all these strategies.

If firm j sets pj
d=pC, then min ki;D pC

� �� �
pC − ci
� �

zmax
pa pC ;pL

j

h i

R p; pC ; kj
� �

p − cið Þ (note that pj
d=pC=max{p1E,p2E}≥pj

E). If pj
EbpC,

then firm i will always undercut. If pjE=pC, then

min ki;D pC
� �� �

pC − ci
� �

N R p;pC ; kj
� �

p − cið Þ

for any pNpC (directly applying properties (3) and (4) of the residual
demand). Then firm i's best response would be setting pi

d=pC.

• Now, consider the case where pC=P(k1+k2). We then have that,

ki P k1 + k2ð Þ− cið Þz max
pa P k1 + k2ð Þ;pLi½ �

R p; P k1 + k2ð Þ; kj
� �

p − cið Þ

as pC = max pE1; p
E
2

� 	
= P k1 + k2ð Þ.

Furthermore, by property (4) of the residual demand we have,

ki P k1 + k2ð Þ− cið Þ = R P k1 + k2ð Þ; P k1 + k2ð Þ; kj
� �

P k1 + k2ð Þ− cið Þ

This along with property (3) yields,

ki P k1 + k2ð Þ− cið ÞN R p; P k1 + k2ð Þ; kj
� �

p − cið Þ

for any pNP(k1+k2), which proves the desired result.
This proves that setting the competitive price, or if pC=max{c1,

c2}NP(k1+k2) firm i playing pi
d=pC and firm j playing any strategy

that deters firm i from raising its price, are equilibrium strategies (part
(i) above). Payoff from these equilibria are equivalent to the payoff
when both firms play pC and all quantities are sold at this competitive
price. Then, to prove part (ii) (above), we only need to show that there
are not any other equilibria.

Note that if piL=pC, for some firm i, then it will set the competitive
price in the discounting stage. By the previous argument, firm j will
best respond by setting the competitive price also (or, for the case
where pC=max{c1,c2}=ch, firm h playing any strategy that deters
firm −h from raising its price).

On the other hand, suppose that for both firms, piLNpC. Then, any
hypothetical nondegenerate mixed strategy equilibriumwill have (by
Corollary 1) p̲dbmax{p1E,p2E}. That is, the lower bound of the support
lies below the highest price (and, therefore, below pC). Then a
deviation to the competitive price is profitable. Thus, no nondegene-
rate mixed strategy equilibrium will exist.

If a nondegenerate mixed strategy equilibrium does not exist then
there must be at least a pure strategy equilibrium (a discounting
subgame always has a Nash equilibrium for any (p1L , p2L)). If piLNpC for
both firms, then it must be that piL≥pj

LNpj
E, for some ia{1,2}. Applying

Theorem 1 we know that the only candidate for a pure strategy
equilibrium in the discounted stage involves both firms setting the
competitive price. Thus we obtain the desired result.
The intuition behind the result is that if both firms set the
mpetitive price then no firm has an incentive to raise its price (since
e characterization of the Edgeworth price implies that the
ofits, when undercutting, are equal to the maximum profits that
n be obtained acting on the residual demand, i.e., min ki;D pC

� �� �
C − ci

�
= maxpa pC ;pLi½ �R p;pC ; kj

� �
p − cið Þ). To see that this is the only

ssible equilibrium, note that by Corollary 1, when max{p1E,p2E}=pC

d pi
LNpC, for some i, a mixed strategy equilibrium to the discounting

bgame does not exist.
The Bertrand–Edgeworth pricing game can be seen as a discounting
mewhere the list prices are set arbitrarily high. Then, by Theorem3, it
clear that if max{p1E,p2E}=pC the Bertrand–Edgeworth model has a
re strategy equilibrium. On the other hand, by Theorem 1, we have
at the only candidate for a pure strategy equilibrium in a Bertrand–
geworth model is the competitive price. However, if the Edgeworth
ice of a firm i is greater than the competitive price (i.e.,
= max pE1;p

E
2

� 	
N pC) then firm j will have an incentive to deviate

m this equilibrium. This leads to our next result which characterizes
hen the one stage pricing game has a pure strategy equilibrium.

rollary 2. The Bertrand–Edgeworth model has a pure strategy
uilibrium if and only if max{p1E,p2E}=pC.
Theorem 3 and Corollary 2 imply that when the Bertrand–Edgeworth

odel has a pure strategy equilibrium the addition of a list pricing stage is
nocuous in the sense that it leads to the same prices in equilibrium.
We will now characterize the equilibria of the list pricing game when

pure strategy equilibrium of the Bertrand–Edgeworth game does not
ist. As mentioned earlier, this is observed when one of the firms has an
geworth price greater than the competitive price. In the next Theorem
e prove that all subgame perfect equilibria must involve pure strategies
the discounting stage.

eorem 4. Given the rationing rule, suppose that (k1,k2,c1,c2) are such
at for every (piL,pjL), max{p1E,p2E}NpC. Then, any subgame perfect
uilibrium of the list pricing game must involve pi

L=pi
E, for some i.

oof. It is clear that in equilibrium the list price is greater than, or equal
, the Edgeworth price, i.e. piL≥pi

E. As shown earlier, it is in no firm's
terest to commit to a price below its Edgeworth price. On the other
nd, if piLNpiE for both firms, then from Theorem 1 we know that the
ly candidate for a pure strategy equilibrium in the discounting game
volves both firms setting the competitive price. But from Corollary 2,
th firms setting pC in the discounting game can not be an equilibrium,
max{p1E,p2E}NpC=pi

LNpi
E for both firms. Therefore, no pure strategy

uilibrium exists in the discounting game.

If a pure strategy equilibrium does not exist, this implies that there
a mixed strategy equilibrium in the discounting game. Below we
ill prove by contradiction that such an equilibriumwhere firms play
î
L, pĵL) (in the list pricing stage) and (μ ̂ id, μ ̂ jd) (a mixed strategy in the
scounting stage), with pî

LNpi
E for both firms, cannot exist.

Suppose that firm i has the highest Edgeworth price, i.e. piE=
ax{p1E, p2E}. Then by Theorem 2 -(ii) firm i's profits are given by
μ̂ di ; μ̂

d
j

� �
= min D

¯
pd
� �

; ki
� �

¯
pd − ci
� �

. Given that p̲dbpiE (Corollary 1),
deviation in which firm i plays a discounted price equal to pi

E, and
m j acts on the residual demand, would be profitable (firm i's
ofits would be min(D(piE),ki)(piE−ci)). It is easy to see that if firm i
viates, setting pi

L=pi
E in the list price stage, the induced equilibrium

the discounting stage involves firm i setting a price pi
E (with firm j

ting on the residual demand). This, however, contradicts that (p̂iL, p̂jL)
d (μ ̂ id,μ ̂ jd) is a subgame perfect equilibrium.
From Theorem 4 we know that a firm sets a list price equal to its
geworth price. This implies that its rival, j, has no incentive to
dercut and will set a (list price) in equilibrium which allows it to
aximize its profits acting on the residual demand. This is formalized
the following Corollary.

5
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The proof of this Corollary is straight forward. By Theorem 2 and

asymmetric costs and/or capacities.

Fig. 1. Relationship: Edgeworth and List Price.
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Corollary 3. If max{p1,p2}Np , any subgame perfect equilibrium of
the list pricing game must involve pi

L=pi
d=pi

E, and pLj z pdj =
argmax

pa pLi ;p
L
j

h iR p;pLi ; ki
� �

p − cj
� �

.

Note that by Corollary 3 no subgame perfect equilibrium of the list
pricing game will involve mixed strategies in the discounting stage.

In the following Theorem we prove that at least one subgame perfect
equilibrium to the list pricing game exists. In this subgame perfect
equilibrium, which we denote by ê, firm i sets its list price equal to the
highest possible Edgeworth price (p

̲
i
E) and does not discount. The other

firm j, meanwhile, sets its list price arbitrarily high and acts as a
monopolist on the residual demand in the discounting stage.

Theorem 5. Let p
̲
i
E≥p

̲
j
E, then ê≡((p̂iL,p̂jL),(p̂id, p̂jd)), such that p̂iL= p̂i

d=

p
̲
i
E and p̂L

j z p̂d
j = argmax

pa p̄E
i ;p

L
j

h iR p; p̄Ei ; ki
� �

p − cj
� �

, is a subgame

perfect equilibrium of the list pricing game.

Proof. If p
̲
i
E=pC, this implies that max{p

̲
1
E, p

̲
2
E}=pC. We then obtain

the desired result by applying Theorem 3.

On the other hand suppose that p
̲
i
ENpC. Let us define pRj =

argmax
pa p̄E

i ;p̂
L
j

� �R p; p̄Ei ; kiÞ p − cj
� ��

. In this case, the proposed equili-

brium (ê) yields the following profits:

π̂ i = min ki;D p̄Ei
� �� �

p̄Ei − ci
� �

π̂ j = R pRj ; p̄
E
i ; ki

� �
pRj − cj

� �
= min kj;D p̄Ei

� �� �
p̄Ei − cj

� �

Note that, as firm i is playing its Edgeworth price, firm j's profits
are the same acting on the residual demand or undercutting, i.e., R(pjR,
p
̲
i
E,ki)(pjR−cj)=min(kj,D(p

̲
i
E))(p

̲
i
E−cj).

Below we prove by contradiction that any deviation from the
proposed equilibrium is unprofitable.

Suppose that a firm can profitably deviate. It must then involve
setting a list price greater than p

̲
i
E in the first stage. Let this deviation

be ẽ≡((p̃hL,p−̂h
L ),(p̃hd,p−̃h

d )). If firm h sets a different list price, the
discounted prices (for both firms) will change accordingly. Now, the
discounted prices induced could be a pure, or a mixed, strategy.

Let the firms play pure strategies in the discounting stage in
response to (ph̃L,p̂−h

L ). We know by Theorem 1 that the only candidate
for a pure strategy equilibrium in the discounting stage, for (ph̃L,p−̂h

L ),
will be p̃i

d=pj̃
d=pC. Given that p

̲
i
ENpC, both firms lose under the

deviation.
Now, suppose that firms play mixed strategies, (μ̃i,μ̃j), in the

discounting stage earning expected profits, (π̃i,π̃j). Then, from

Theorem 2 we have that profits for both firms will be πi μd
i ; μ

d
j

� �
=

min D
¯
pd
� �

; ki
� �

¯
pd − ci
� �

. By Corollary 1, p̲dbpiE≤p
̲
i
E. Again, this implies

that the deviation is unprofitable. This then leads to a contradiction.
When argmax

pa pLi ;p
L
j

h iR p;pV; ki
� �

p − cj
� �

weakly increases with p′

(for instancewhen the residual demand is proportional) then it is easy
to show that ê is the unique equilibrium. However, when the best
response price of a firm, acting on the residual demand, decreases
with its rival's price, there could be additional equilibria with firm i
setting pi

L=pi
d=pi

Ebp
̲
i
E, and firm j acting on the residual demand,

such that pjL≥pj
d=argmaxpa [pi

L,pj
L]R(p, piE, ki)(p−cj). These equilibria

would involve lower payoffs than ê for both firms.
In the following Corollary we show that firm profits under the

proposed equilibrium, ê, are greater than those in the equilibrium of
the classic Bertrand–Edgeworth game.

Corollary 4. Firm profits in the equilibrium of the Bertrand–Edgeworth
game are lower than under the proposed equilibrium with list prices, ê.
Corollary 1 the lower bound of the support of any mixed strategy
equilibrium (in the Bertrand–Edgeworth game) will be lower than the
highest Edgeworth price. This implies that expected profits under
randomizing will be smaller than under the list pricing equilibrium, ê.

The equilibrium, ê, is similar to the one obtained in Gelman and Salop
(1983). They analyze a game of entry in amarket by a capacity constrained
firm, where the entrantmust commit to a price towhich the incumbent best
responds. Note, Gelman and Salop (1983) refer to the entrants low price
(small size) strategyas “judo economics”. In the equilibriumof ourmodel, ê,
the low pricing strategy is followed by the firm with the highest Edgeworth
price.Without anyadditional assumptions on the residual demand function
it is not straightforward to prove a direct relation between the low price
strategy and capacity. If we assume that the residual demand is given by
Rλ(pi,pj,kj) for any λb1, and arbitrarily high list prices, then it is easy to
prove that, for ci≤cj, kibkj implies pi

ENpj
E. In this case, the low capacity firm

follows the low pricing strategy. There are several examples of the empirical
validity of this type of “judo economics” pricing behaviorwhich are given in
Gelman and Salop (1983), and Sorgard (1997).

3.3. An example

Consider two symmetric17 firms with capacity ki=400 and unit
variable costs ci=100, for i=1,2, competing for market demandD(p)=
1000−p. The competitive pricewill then bepC=max{c1,c2,P(k1+k2)}=
200, where both firms sell their entire capacity.

Let firm i set a price, pi. Setting a lower price, firm j's profits, would
then be (pj−cj)min{(kj,D(pj)}. These profits are represented in Fig. 1.
Firm j's best response would be to undercut firm i earning profits
(pi−ε−cj)min{kj,D(pi−ε)}, if pi≤600. If piN600 then its best response
would be pj=600, obtaining a profit of 200,000.

Consider a proportional residual demand specification, RB pj;pi; ki
� �

=
max D pj

� �
1− ki

D pið ÞÞ;0
� on

. Given pi, firm j's profits acting on the residual

demand will be max
pa pi ;pLj

h i max D pð Þ 1− ki
D pið Þ

� �
;0

n o
p − cj
� �h i

, which

areproportional to theprofits obtained fromundercutting (dependingon
ki and pi) (see Fig.1 for the cases where pi=200 and pi=311.9). It is easy
to show that, acting on the residual demand, firm j's best responsewill be
setting pj=min{550,pjL} if pi≤550, and pj=pi if piN550. If pi≥600, firm i
will serve the entire demand andfirm j's profitswill always be zero. Then,

17 We solve the symmetric case due to simplicity. The example can be extended to



given firm i's price, pi, firm j's maximum profits acting on the residual

c
tw
c
c
c
F
c
in

s
fi

q
S
o
m

o
e
H
s
a
s

T
s
a

P
a
g
e
p

p

fi

w

T
fi

B

P
w
b

p

s
W
p
p
T
R
r

w
p

s

Fig. 2. Profits firm j.
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players has an incentive to move first.
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demand will be:

πRT
j =

1000− pLj
� �

1− 400
1000− pi


 �
pLj − 100

� �
if pi b pLj b 550

202500 1− 400
1000− pi


 �
if pi V 550 V pLj

1000− pið Þ 1− 400
1000− pi


 �
pi − 100ð Þ if 550 b pi b 600 and pi b pLj

0 if 600 V pi b pLj

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

The Edgeworth price for firm i, pi
E, is the highest price that

firm i can set such that firm j is indifferent between undercutting
firm i or acting on the residual demand (see Fig. 1). If pj

L≥550,

the Edgeworth price for firm i is obtained from pEi − 100
� �

400 =

202500 1− 400
1000 − pEi


 �
, that is, p̅iE=311.9. If pjLb550, the Edgeworth price

solves pEi − 100
� �

400= 1000− pLj
� �

1− 400
1000 − pEi


 �
pLj − 100

� �
, that

is, pEi =425 +
1100 − pLj

� �
pLj −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1476�108 − 400 − pLj

� �
700 − pLj

� �
1100 − pLj

� �
pLj

r
800

(see Fig. 2).
Now, it is easy to show that for pi

L and pj
L sufficiently high (the

classic Bertrand–Edgeworth game), price strategies such as pid=pj
d=

pC=200 are not a Nash Equilibrium. Note that piE=pj
EN200 so both

firms has an incentive to increase their prices, acting on the residual
demand (Corollary 2).

By Theorem 5, we know that pi
L=pi

d=pi
E=311.9 and pj

L≥pj
d=

550 is a subgame perfect equilibrium of the list pricing game.
Note that firm j has no incentive to undercut firm i, or to vary its
price from 550. Firm i, would like to increase its discounted price,
but it is limited by their own list price. Both firms obtain the same
profit.

4. List pricing and price leadership

Price leadership has been studied in the literature with endogen-
ous determination of the timing of the moves, i.e., whether a firm
prefers to act as a leader, or as a follower. In thesemodels, a price, once
set, cannot be changed regardless of how the rival responds. Even
though, ex-post it would be in the leader's interest to change its price
none of the papers explain the strong nature of this commitment. In
this section we argue that list pricing may provide such a credible
commitment mechanism in which price outcomes emerge that are
similar to price leadership.

Hamilton and Slutsky (1990) propose a two stage framework
to endogenize the timing of a duopoly game where each firm
hooses a strategy (which could be a price or quantity). They analyze
o types of games, onewithobserveddelayand theotherwith (action)

ommitment. In the former gamefirms announce atwhat time theywill
hoose their actionand commit to their decision. In the latter gamefirms
ommit to an action in one of the two periods before the market clears.
irmsmay choose their strategy in period 1, or wait till period 2. If a firm
hooses a strategy in the first period and the other firm waits, it is
formed of the strategy chosen by its rival.
The action commitment game of Hamilton and Slutsky has three

ubgame perfect equilibria. In one of them both firms commit in the
rst period to the simultaneous-move Cournot–Nash equilibrium
uantities. In the other two, each firm waits and the other plays its
tackelberg leader quantity in the first period. They also show that
nly the Stackelberg equilibria survive elimination of weakly do-
inated strategies.18

Wewill now show that the final equilibrium (discounted) prices of
ur list pricing game are a sub-game perfect equilibrium in the
ndogenous timing framework (i.e. the action commitment game of
amilton and Slutsky). In order to obtain our equivalence result it
uffices to prove that in the Bertrand–Edgeworth game that we
nalyze the mixed strategy equilibrium is indeed dominated by a
equential game where the high Edgeworth price firm moves first.

heorem 6. Given list prices for which pi
E≥pj

E holds. Then, when no pure
trategy equilibrium of the Bertrand–Edgeworth game exists, firm i has
n incentive to move first in the discounting stage.

roof. Suppose that for given list prices forwhich pi
E≥pj

E, by Theorem 2
nd Corollary 1 in any mixed strategy equilibrium of the discounting
ame (including the case where list prices are set arbitrarily high) the
xpected payoff of firm i is given by min(D(p̲d),ki)(p̲d−ci), for some

̲
dbpi

E.

Contrarily, if firm imoves first and sets price pi
E, then firm jwill set

M(piE, ki). Firm i then obtains profits of min(D(piE),ki)(piE−ci).
We then have that the subgame perfect equilibrium involves one

rm moving first. We will now prove that if firm i moves first then it
ill set its Edgeworth price.

heorem 7. In any equilibrium of the subgame in which firm i moves
rst it sets a price of pi

E when no pure strategy equilibrium of the
ertrand–Edgeworth game exists.

roof. Suppose firm i moves first. Then, if it sets a price above pi
E it

ill be undercut by firm j in the second stage and its profits will be
ounded by πî=(D(p̂)−kj)(p̂−ci). Where,

̂ = argmax
p

D pð Þ− kj
� �

p − cið Þ

By Theorem 2, if firm i deviates to simultaneous play in the second
tage, it will obtain expected profits of πs

i = min D
¯
pd
� �

; ki
� �

¯
pd − ci
� �

.
e will now prove that πîbπis. Let πî≥πis. Then, it must be the case that
̂N p̲. Suppose that, firm i deviates from its mixed strategy and sets a
rice of p̂. Given that the equilibrium is nondegenerate, μj([p ̲

d,p̂))N0.
he payoffs of firm i from this deviation will be bounded below by
p̂; pV; kj
� �

p ̂ − cið Þ where, p′a [p̲,p̂).By properties 4 and 5 of the
esidual demand function R p̂ ;pV; kj

� �
p̂ − cið ÞN D p̂ð Þ− kj

� �
p ̂ − cið Þ:

Thus, π̂ibπis. From this we can conclude that if firm i moves first it
ill choose a price less than or equal to pi

E. Given that, for firm i any
rice below pi

E is dominated by pi
E, we obtain the desired result.

Finally, it is straightforward to see that if piENpjE, and there exists a
ubgame perfect equilibrium where firm j leads, then it is dominated

18 In another paper van Damme and Hurkens (1996) show that playing simulta-
eously is subgame perfect in the Hamilton–Slutsky timing game only if none of the
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for both firms by the equilibrium where firm i leads. We have proved
that in our model the sequential-timing and list-pricing solutions to
the nonexistence of a pure strategy equilibrium are equivalent. The
difference is that while in the sequential-timing models firms are not
allowed to change their price (once it is chosen), in our list pricing
approach firms can discount. Our result is obtained under a weaker
assumption that reflects a pricing institution that is widely prevalent.

5. Conclusion

We analyze the widely used pricing institution of list pricing and
discounting. Under the list pricing institution firms post a list price in
the first stage of the game and can offer a discount on this price in the
second stage. List prices are assumed to be price commitments for
some duration of time. Our pricing structure is motivated by the real
world situationwhere firms first announce list prices (valid for a given
period of time) which they can later discount. The price catalogue of
Ikea stores is an example along these lines. Ikea announces the list
price of its goods which are valid for a certain duration of time. Ikea,
however, is free to offer discounts on these list prices at a later stage.
Department stores, retailers and wholesalers regularly inform con-
sumers about prices through catalogues.

Wemodel a two stage gamewhere firms first, simultaneously, post
list prices and then decide whether they want to discount in the
second stage. We show that any subgame perfect equilibrium of the
list pricing game involves firms playing pure strategies in the
discounting stage. In this equilibrium, a firm sets a list price equal to
its discounting price, such that it will not be undercut by its rival. The
other firm, meanwhile, acts on the residual demand. We characterize
some of the properties of a non-degenerate mixed strategy equili-
brium in the discounting stage. As the Bertrand–Edgeworth game can
be seen as a special case of the list pricing game (for arbitrarily high
list prices), these results also apply to the one stagemodel. Further, we
define a generalized residual demand function for which our results
hold. The proportional and efficient rationing rules are special cases of
this general specification.

We also show that at least one of these equilibrium exists. In this
equilibrium, one firm commits to a low price, thereby signalling to its
rival that it can act as a monopolist on the residual demand. Our result
suggests that the traditional one-stage pricing Bertrand–Edgeworth
models may overstate the competitiveness of an oligopolistic industry
(Deneckere and Kovenock, 1992 make a similar point). Credible
commitment to a price by a firm can enforce a pure strategy outcome.

Our results may also have some relevance in explaining persistent
price dispersion. There exists a large empirical literature that supports
persistent price dispersion in market selling homogenous goods.19 We
obtain price dispersion for a duopoly both under symmetric, and
asymmetric, costs. The subgame perfect equilibrium of the list pricing
game is always in pure strategies in the discounting stage. It would be
interesting to see if the results of our model extend to n firms with
asymmetric costs.
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Appendix A

The following two Lemmas will prove useful in order to prove
Theorem 2.

Lemma 1. In a mixed strategy equilibrium to the discounting subgame, if
μi([p ̂,p̂+ε))N0 for any εN0 and πi(p) is right continuous at p=p ̂, then
the expected profit of the equilibrium is given by πi(p̂).

Proof. If μi(p̂)N0 the proof is trivial. Now, consider that μi(p ̂)=0 and
suppose πi(p ̂)−πi⁎=C, where Cb0, and πi⁎ is the expected payoff of
the mixed strategy equilibrium. Since μi((p̂,p ̂+ε))N0 for any εN0, it
must be the case that πi(p ̂)=πi⁎ for some pa(p ̂,p̂+ε).

Contrarily, by right continuity of πi(p) at p= p̂, we have that for
any δN0, there exists an εN0, s.t. 0bp−p ̂bε, implies |πi(p̂)−πi(p)|bδ.
Take δ = C

2, and we reach a contradiction with πi(p̂)−πi⁎=C.

Lemma 2. In a mixed strategy equilibrium to the discounting subgame, if
firm i has positive measure at a price p̂,pCbp ̂≤pi

L then

• If cjNci [or cj=ci and j=2] then μj([p̂,p ̂+ε])=0 for small enough
εN0.

• If cjbci [or cj=ci and j=1] then μj((p̂,p ̂+ε])=0 for small enough
εN0.

Proof. For any pbp ̂ we may write the expected profits expression as

πj pð Þ = μ i p;p ̂ð Þð Þ + μ i p̂ ;p0
h i� �� �

min kj;D pð Þ
� �

p − cj
� �

+
Z

ci ;p ̂½ �− p;p̂½ �
R p; z; kið Þ p − cj

� �
dμ i zð Þ

+ μ i pð Þmin kj;max 0;D pð Þ− Ijki
� �� �

p − cj
� �

Taking limits from the left

lim
p
−
Y p̂

πj pð Þ = μ i p ̂;p0
h i� �

min kj;D p̂ð Þ
� �

p̂ − cj
� �

+
Z

ci ;p̂½ �
R p̂; z; kið Þ p̂ − cj

� �
dμ i zð Þ

Now, consider the expected profits when pN p̂

πj pð Þ = μ i p ̂;p0
h i� �

− μ i p̂;p0
h i� �

min kj;D pð Þ
� �

p − cj
� ��

+
Z

ci ;p ̂½ �[ p̂;pð Þ
R p; z; kið Þ p − cj

� �
dμ i zð Þ

+ μ i pð Þmin kj;max 0;Dð Þ pð Þ− Ijki
� �

p − cj
� �

Taking limits from the right

lim
p
+
Y p̂

πj pð Þ = μ i p ̂;p0
h i� �

min kj;D p̂ð Þ
� �

p ̂ − cj
� �

+
Z

ci ;p̂½ �
R p ̂; z; kið Þ p̂ − cj

� �
dμ i zð Þ

We also know that

πj p̂ð Þ = μ i p ̂;p0
h i� �

min kj;D p ̂ð Þ
� �

p̂ − cj
� �

+
Z

ci ;p̂½ �
R p̂; z; kið Þ p̂ − cj

� �
dμ i zð Þ

+ μ i p̂ð Þmin kj;max 0;D p ̂ð Þ− Ijki
� �� �

p ̂ − cj
� �
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First, we prove that μj((p̂, p̂+ε])=0 for both firms. We have

j p̂ð Þ− lim
p
+
Y p̂

πj pð Þ = μ i p̂ð Þðmin kj;max 0;D p̂ð Þ− Ijki
� �� �

− R p̂; p̂; kið ÞÞ p̂ − cj
� �

Note that since p̂NpC, and by property (4) of the residual demand
unction, R(p ̂,p̂,ki)=max(0,D(p̂)−ki)bkj.

If cjbci [or cj=ci and j=1], Ij=0, then πj p̂ð ÞN limpYþ p̂ πj pð Þ.
hen εN0, such that πj(p)bπj(p ̂) for pa(p ̂,p ̂+ε]. This implies

j p̂;p ̂ + eð �ð Þ = 0.
If cjNci [or cj=ci and j=2], Ij=1, then it can be shown that

j p̂ð Þ = limpYþ p̂ πj pð Þ. Further, we know that limpYþ p̂ πj pð Þ−
impY

�
p̂ πj pð Þ b 0. Then for εN0, sufficiently small, δN0, such that πj

p)bπj(p ̂–δ) for any pa(p̂,p̂+ε]. This implies μj((p̂,p ̂+ε])=0.
Second, we have

j p̂ð Þ− lim
pY

�
p̂
πj pð Þ = μ i p ̂ð Þ min kj;max 0;D p ̂ð Þ− Ijki

� �� �� �

− min kj;D p̂ð Þ
� �

p ̂ − cj
� �

For cjNci [or cj=ci and j=2], Ij=1. Since p̂NpC, then D(p̂)−
ibmin(kj,D(p̂)). That is, πj p̂ð Þ b limpY� p̂ πj pð Þ, which implies that
here exists a pb p̂ that gives firm j higher expected profits than p̂, thus
j(p̂)=0.

roof. [Proof of Theorem 2-i] Suppose firms have different lower
ounds for their support, thus p̲idb p̲jd.

i) Consider the case p̲j
d≤pi

M, we then have that, for firm i, a pure
strategy λp̲id=(1−λ)pj̲d, for any 0bλb1, dominates any strategy in
[p̲id,λpi̲d+(1−λ)pj̲d). On the other hand, by definition of support,
we have that μi([pi̲d,p̲id+ε))N0 for any εN0. This implies that p̲id=
pi
L and μi(piL)=1. It must then be the case that

min kj;D pLi
� �� �

pLi − cj
� �

V max
pVa pLi ;p

L
j

� �R pV;p
L
i ; ki

� �
pV− cj

� �

and thus firm j maximizes its profits by playing argmax
p Va pL

i
;pL

j

h i
R pV;pLi ; ki
� �

pV− cj
� �

. This then contradicts the assumption that
firms are playing nondegenerate mixed strategies in equilibrium.

i) Now, suppose pj
dNpi

M then pi
M dominates any other price for

firm i. Thus, the best response of firm i involves playing a pure
strategy pi

d=min{piM,piL}. If pi
d=pi

L, then by the previous argu-
ment, firm j must be playing the pure strategy argmax

p6
È
o pLi ;p

L
j

h i
R pV; pLi ; ki
� �

pV− cj
� �

. Contrarily, if pid=pi
M, firm j faces a residual

demand of zero, and the best response of firm j must involve
undercutting pid, which contradicts pi̲dbpj̲d.

roof. [Proof of Theorem 2-ii] From Lemma 2, if cjNci [or cj=ci and
=2] and μi(pd)N0, then μj([p̲d,p̲d+ε])=0, for small enough εN0. Then
e have p̲i

dN p̲d, which contradicts statement i). Therefore, μi(p̲d)=0.

Besides, from Lemma 2, if cjbci [or cj=ci and j=1] and μ i
¯
pd
� �

N 0,
hen μj((p ̲

d,p̲d+ε])=0, for small enough εN0. But we know from
efore that μj(p ̲

d)=0, then μj([p ̲
d,p ̲

d+ε])=0, which contradicts
tatement i). Therefore, μi(p̲d)=0.

Finally, πi(p) is continuous in p ̲
d. Applying Lemma 1 we obtain the

esired result.
roof. [Proof or Theorem 2-iii] Define p ̲=max{ p̅1d,p2̅d}. Suppose that
i(p ̅)N0 for some i. Then, if cibcj [or ci=cj and i=1], from Lemma 2,
j(p ̅)=0, and thus h= i. Contrarily, if ciNcj [or ci=cj and i=2], and
j(p̅)=0, then h= i. But if μj(p̅)N0, leads to a contradiction (Lemma2).

Now, suppose μi(p̅)=0 for both ia{1,2}. Then πi(p) is continuous
n p̅. It must then be the case that p̅=pi̅

d for some i, thus h= i.
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