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Anomalies of ac driven solitary waves with internal modes: Nonparametric resonances
induced by parametric forces
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We study the dynamics of kinks in thef4 model subjected to a parametric ac force, both with and without
damping, as a paradigm of solitary waves with internal modes. By using a collective coordinate approach, we
find that the parametric force has a nonparametric effect on the kink motion. Specifically, we find that the
internal mode leads to a resonance for frequencies of the parametric driving close to its own frequency, in
which case the energy of the system grows as well as the width of the kink. These predictions of the collective
coordinate theory are verified by numerical simulations of the full partial differential equation. We finally
compare this kind of resonance with that obtained for nonparametric ac forces and conclude that the effect of
ac drivings on solitary waves with internal modes is exactly the opposite of their character in the partial
differential equation.
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I. INTRODUCTION

During the last three decades of the 20th century, we h
witnessed a great deal of effort devoted to the study of s
tons and related nonlinear coherent excitations@1–3#. All
that work notwithstanding, the analysis of systems gener
regarded as paradigms of soliton phenomenology still yie
unknown, surprising features. One such case is the dyna
of topological solitons or kinks in nonlinear Klein-Gordo
systems subjected to ac forces. After several papers tha
to contradictory conclusions during the last decade, the p
lem for the sine-Gordon equation was finally solved in 19
@4#. This was the simplest possible scenario for studying
effects of ac forces on topological solitons, in so far as si
Gordon kinks do not have any internal mode and behav
rigid objects @5#. However, this is a nongeneric situatio
because many solitary waves do possess internal degre
freedom@5–7#, and even systems like the sine-Gordon mo
can acquire internal modes due to the influence of pertu
tions, such as discreteness@8–10#. Therefore, it was neces
sary to study the behavior of solitons with internal mod
and subsequently it was found that pure, nonparametric
forces induce resonances of parametric character: If the
quency of the internal mode is denoted byV i , the resonance
appears when the driving frequency isV i /2 @11#. This
anomalous behavior was shown, taking thef4 equation as a
typical example, to arise from the fact that the drivin
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couplesindirectly to the internal mode, which in turn leads t
a parametric influence on its evolution.

In view of the above results, it is only natural to pose t
following question: If nonparametric drivings act paramet
cally onf4 kinks, what is the effect of a parametric driving
To our knowledge, this issue was first addressed in@12#,
although the main point of that work was to show how kin
can be effectively annihilated by a fast parametric drivin
and no attention was paid to the kink dynamics. More
cently, the problem was considered with both parametric
nonparametric forces acting simultaneously in the sys
@13#, but the approach employed by those researchers
not appropriate and led to incorrect results@14#. Therefore,
the dynamics of kinks in thef4 model subjected to parame
ric drivings is largely unexplored, and this is another reas
why we concern ourselves with this problem. This pap
presents our conclusions on this question within the follo
ing scheme: Sec. II is devoted to our analytical approa
Sec. III contains the simulations of the full partial differenti
equation that verify our analytical predictions; and Sec.
summarizes our main results.

II. RESONANCES INDUCED BY PARAMETRIC
PERIODIC FORCES

As we are interested in the behavior of solitary wav
with internal modes, we choose as our working example
f4 equation, which is well known to be representative of t
generic behavior of those solitary waves. Therefore, we
gin by considering the perturbed problem given by

f tt2fxx52
dU

df
2bf t1 f ~ t,f!, ~1!
©2001 The American Physical Society01-1
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where U(f)5(12f2)2/4 is the f4 potential, f (t,f)
5e sin(dt1d0)f represents the parametric ac force,e, d, and
d0 are the amplitude, frequency, and phase of the exte
periodic force, respectively, andb is the damping coeffi-
cient.

In order to obtain analytical results, we resort to the we
known collective coordinate method@5,15#, which will give
us definite predictions on the behavior of the system. Ho
ever, these being approximate results, we will have to ch
them by direct numerical simulations of Eq.~1!; those will
be the subject of the following section. To apply the colle
tive coordinate approach to our problem, we choose to
ploy the so-called generalized traveling wave ansatz@16# or,
equivalently, to use the variation of the momentum and
energy~the equivalence of both techniques is proven in
second paper in@11#!. These two quantities are given by

P~ t ![2E
2`

1`

dx fxf t , ~2!

E~ t ![E
2`

1`

dxH 1

2
f t

21
1

2
fx

21U~f!J . ~3!

In order to evaluate those quantities, we consider the R
ansatz@17# and assume that

f~x,t !5f0Fx2X~ t !

l ~ t ! G , ~4!

wheref0(x) is the static kink solution of the unperturbedf4

equation, i.e., of Eq.~1! with b5e50 zero, centered a
X(t), and with width l (t). With this choice, and following
the standard procedure@5,15#, we find that the evolution o
the momentumP(t)[M0l 0Ẋ/ l (t) and the width of the kink
are given by

dP

dt
5Fstat~X!2bP1Fex , ~5!

aM0l 0

l̈

l
1

P2

M0l 0
5Kint~ l , l̇ ,Ẋ!2baM0l 0

l̇

l
1K, ~6!

with

Fex5E
2`

1`

dx f~ t,f!
]f

]X
, Fstat52

]E

]X
, ~7!

K5E
2`

1`

dx f~ t,f!
]f

] l
, Kint52

]E

] l
, ~8!

E5
1

2

l 0

l
M0Ẋ21

1

2

l 0

l
aM0 l̇ 21

1

2
M0S l 0

l
1

l

l 0
D , ~9!

whereq52, M054/(3l 0), and l 05A2 represent the topo
logical charge, the mass, and the width of the unpertur
kink, respectively, anda5(p226)/12 is a constant.

We now have to evaluate the above quantities. In t
respect, it is interesting to compare the equations we h
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obtained with those found for the case of an ac nonparam
ric force, i.e., f (t,f)5 f (t). In that situation we obtain tha
Fex52q f (t) and K50, and hence the external force ac
directly on the translational mode, whereas the internal m
is excited indirectly due to the coupling between these t
modes. Conversely, as we have seen, in the parametric
driven problem, Fex vanishes, whileK52e sin(dt1d0).
Therefore, Eqs.~5! and ~6! become

dP

dt
52bP~ t !, ~10!

a@ l̇ 222l l̈ 22b l l̇ #5
l 2

l 0
2 F11

P2

M0
2G2112

l ~ t !2

M0l 0
e sin~dt1d0!.

~11!

We thus see that, when introduced in a parametric man
the ac force acts directly on the internal mode and not via
coupling between the translational and internal modes. T
result shows the very different roles of the two drivings
the collective coordinate level.

In order to deal with these equations, we chooseẊ(0)
5u(0), l (0)[l s5 l 0A12u2(0), andl̇ (0) as the initial con-
ditions for Eqs.~10! and~11!. The equation for the momen
tum is trivial and can be solved exactly, yielding

P~ t !5P~0!e2bt. ~12!

We note that forbÞ0 the momentum of the kink goes t
zero and after some transient timet@1/b it effectively van-
ishes. In the same way, if we start from zero initial veloci
P(t)50, i.e., the center of the kink will not move.

Let us now turn to Eq.~11!. As a first step, we introduc
a change of variables, proposed in@18#, given by l (t)
5g2(t). This change transforms Eq.~11! into an Ermakov-
type ~or Pinney-type!equation@19#, which reads

g̈1bġ1F S V

2 D 2

1S V

2M0
D 2

P21e
sin~dt1d0!

2aM0l 0
Gg5

1

4ag3
,

~13!

g~0!5Al sÞ0, ġ~0!5
l̇ ~0!

2Al s

, ~14!

where V51/Aa l 051.2452 is equal to the Rice frequenc
@17# VR51/Aa l s in the case when the kink initially is at res
It can be shown~see@17# and @20#! that when there is no
perturbation in the system~10!, ~11!, l (t) oscillates with a
frequencyVR if we start from anyl (0)Þl s or l̇ (0)Þ0.
Therefore,VR is the characteristic frequency of Eq.~11! and,
since it agrees within 1.7% withV i5A3/251.2247, we ex-
pect that if we find a resonance related toVR in Eq. ~13! @or
Eq. ~11!# we should find a similar phenomenon in the fu
system Eq.~1!, associated with the frequency of the intern
modeV i .
1-2
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We now proceed to solve Eq.~13! analytically for the
undamped case, i.e., whenb50. As we have mentioned, in
this caseP(t)5P(0) and Eq.~13! becomes the following
Pinney-type equation@19#:

g̈1F S VR

2 D 2

1e
sin~dt1d0!

2aM0l 0
Gg5

1

4ag3
, ~15!

whose solution is

g~ t !5Av1
21

1

4aW2
v2

2, ~16!

wherev1(t) andv2(t) are two independent solutions of th
linear part of Eq.~15! and W5 v̇1v22 v̇2v1 is the Wronsk-
ian. W(t) is actually a constant, and can be calculated fr
the initial conditions forv i ( i 51,2), v1(0)5Al s, v̇1(0)
5 l̇ (0)/(2Al s), v2(0)50, andv̇2(0) a nonzero constant.

If we denotet5(dt1d01p/2)/2, after some algebrai
manipulations we arrive at the following Mathieu equati
for the v i functions:

v i91@a22u cos~2t!#v i50,

a5S VR

d D 2

, u5
e

aM0l 0d2
[

e l 0

M0g0
2 S VR

d D 2

, ~17!

where prime denotes the derivative with respect tot, and
g051/A12v(0)2. Notice that the initial conditions, whe
t[t05(d01p/2)/2 for v i(t), become v1(t0)5Al s,

v18(t0)5 l̇ (0)/(dAl s), v2(t0)50, and v28(t0)52v̇2(0)/d.
The solution of Eq.~17! ~see@21#! for v1(t) andv2(t) can
be expressed as a linear superposition of the two Math
functions cen and sen with a noninteger indexn; i.e.,

v i~t!5Aicen~t,u!1Bisen~t,u!, i 51,2, ~18!

where

Ai[
DAi

D
, Bi[

DBi

D
, ~19!

and

D5cen~t0 ,u!sen8~t0 ,u!2cen8~t0 ,u!sen~t0 ,u!,

DAi
5v i~t0!sen8~t0 ,u!2v i8~t0!sen~t0 ,u!,

DBi
5v i8~t0!cen~t0 ,u!2v i~t0!cen8~t0 ,u!,

with the constraint~characteristic curve for Mathieu func
tions!

a5n21
1

2~n221!
u21O~u4!. ~20!
04660
u

From Eqs.~16!, ~18!, and~19!, and taking into accoun
that t5(dt1d01p/2)/2, we obtain that the kink widthl (t)
is given by

l ~ t !5g25v1
2~ t !1

1

4aW2
v2

2~ t !, ~21!

where

v i~ t !5Aicen~dt/21d0/21p/4,u!

1Bisen~dt/21d0/21p/4,u!, i 51,2, ~22!

W52Al sv̇2~0!, ~23!

and the characteristic curve Eq.~20! for our initial param-
eters can be written up to ordere2 as

d5
VR

n S 12
n2l 0

2

4~n221!M0
2g0

4
e2D 1O~e4!. ~24!

Notice that whenn5m1p/s is rational, withm an inte-
ger number andp/s a rational fraction (0,p/s,1), v1(t)
and v2(t) are 2ps-periodic functions, if p is odd, and
ps-periodic functions, ifp is even, whereas for irrationaln
both functions will be nonperiodic although bounded@21#.
For instance, if we take in Eq.~11!, e50.01, d05p/2,
u(0)50, l (0)5l s andd50.94, we can see in Fig. 1 thatl (t)
is a bounded function. Moreover, taking the Mathieu fun
tions that appear in Eq.~22! up to terms of orderu and
substituting the approximate expression of Eq.~22! in Eq.
~21! one can show that the resulting expression forl (t) in-
volves basically the frequenciesVR andd ~see Fig. 1!. We
have also plotted in Fig. 1 the evolution of the energy, E
~9!, takingd not close toVR . For this choice of parameters
E(t) is also a bounded function and its spectrum for t
above parameters chiefly involves three frequenc
ud2VRu, 2d, andd1VR .

As we have shown, Eq.~24! represents the characterist
curve corresponding to stable~either periodic or bounded!
solutions of the Mathieu equation~17!. However, if we try to
find a periodic solution whend'VR , we obtain that the
integer Mathieu functions se1 and ce1 are two independen
solutions of two different Mathieu equations since they a
related to different characteristic curves:

a512u2
u2

8
1

u3

64
2

u4

1536
1•••, ~25!

a511u2
u2

8
2

u3

64
2

u4

1536
1•••, ~26!

respectively. These characteristic curves separate the
stable and stable regions of Eq.~17!. In the unstable region
the solution of this equation, as well asl (t) andE(t), grows
with t ~see Fig. 2!. This is hence a hint of the existence o
resonance phenomenon, and, as we already pointed ou
expect that it will manifest itself in the full partial differentia
equation in an increment of the width and the energy of
1-3
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kink, when d is close toV i . This is the aim of the nex
section, in which we will check by computing the solution
Eq. ~1! whether there is some resonance atd'V i . In addi-
tion, we will analyze the effect of damping in our resonan
picture numerically, as we have not been able to obtain
analytical approximate result in that case.

III. SIMULATION RESULTS

In this section we carry out numerical simulations of E
~1! by using the Strauss-Va´zquez scheme@22#, taking the
length of the systemL5100, Dt50.01, Dx50.1, the final
time t f5200, and free boundary conditions. We also fix t
amplitudee50.01 and the phased05p/2 of the ac force.

In order to show the evolution ofl (t) and E(t) in the
partial differential equation~PDE! ~1! we distinguish two
cases: In the first case we choosed far away from V i ,
whereas in the second oned'V i . In Fig. 3 we plot the
width and the energy of the kink as functions oft for d
50.94, i.e., the parameters of the ac force are the same
Fig. 1. If we compare Figs. 1 and 3 we see thatl (t) andE(t)
have the same behavior both on the collective coordin
level and in the full system Eq.~1!. Naturally, while in the

FIG. 1. Collective coordinates: Evolution ofl (t) andE(t) when
d50.94 for the undamped case,b50. Points: Analytical solution
@see Eqs.~18!–~23!#. Solid lines: Numerical integration of Eq.~11!
for b50, e50.01, d05p/2, u(0)50, X(0)50. The DFT ~not
shown! of l (t) yields two frequencies:v150.9434'd and v2

51.257 89'VR , whereas forE(t) it gives three frequencies:v1

50.3144'ud2VRu50.3052, v251.8868'2d51.88, and v3

52.201 31'd1VR52.1852. The maximum of the discrete Fouri
transform appears atv1.
04660
e
n

.

in

te

spectrum ofl (t) obtained by the collective coordinate a
proach there appear the frequenciesd andVR , in the DFT of
l (t) for the PDE we obtaind andV i , as expected. However
in the Fourier transform ofE(t) for the full system we find
not only frequencies that involved andV i ~see Fig. 3!, but
also an additional frequencyv450.4715'v02d related to
the frequency of the lowest phonon (v05A2) of the f4

system. This means that the internal mode and the phon
can both appear when thef4 system is driven parametricall
with an ac force, but sinceV i and v0 are separated we
expect to be able to excite the internal mode to a lar
extent than phonon modes if the frequency of the ac forc
closer toV i than tov0.

Moving now to the second case, i.e., drivings with fr
quencyd close toV i , Fig. 4 shows that in this situation th
width of the kink oscillates with a large amplitude while th
energy grows, although not monotonically. It is important
stress at this point that, whereas the collective coordin
analysis predicts thatl (t) and E(t) should increase indefi
nitely at resonance, this is not the case in the original syst
The reason is that, in our perturbative method, we have
taken into account the phonons that are present in the sys
and therefore part of the energy input from the ac force g
to the phonons. In our simulations we have also seen tha
kink does not move, even if we are at resonance, in ag
ment with our collective coordinate theory.

In order to present the resonance in a more evident m

FIG. 2. Collective coordinates: Evolution ofl (t) andE(t) when
d51.24'VR for the undamped case,b50. Points: Analytical so-
lution @see Eqs.~19!–~23!#. Solid lines: Numerical integration o
Eq. ~11!. Parameters are as in the previous figure.
1-4
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ANOMALIES OF AC DRIVEN SOLITARY WAVES WITH . . . PHYSICAL REVIEW E64 046601
ner, we have plotted in Fig. 5 the values of the mean n
malized width and the mean energy as functions ofd. We
compute these magnitudes as time averages ofl (t)/ l 0 and
E(t) for times 100<t<200, so as to avoid possible transie
effects ~which are mostly relevant in the damped case d
cussed below!. We see that on the collective coordinate l
^ l (t)/ l 0& and ^E(t)& have a maximum atd5VR ; corre-
spondingly, in the original system Eq.~1!, the resonance
takes place atd51.18, close toV i51.2247. We have also
found that for 1.3,d,v0 ~not shown!, the energy is a
increasing function ofd whereas the width of the kink is
essentically constant. This implies that the increment of
energy is due to excitation of the phonons, which becom
more efficient asd→v0, and is not related to the interna
mode.

Coming now to the damped case, as we mentioned in
preceding section, we have not obtained an analytical re
For this reason, in this section we carry out numerical sim
lations of Eq.~1! and also integrate numerically the colle
tive coordinate prediction Eq.~11! whenbÞ0. In Fig. 6 we
plot the evolution of the energy at resonance forb50.05, as
given by the collective coordinates and as obtained from
numerical simulations of Eq.~1!. For each case, we hav
chosen a frequency near toVR ~for the collective coordi-
nates!and V i @for Eq. ~1!#. To complete the study of th

FIG. 3. Evolution ofl (t) andE(t) as obtained from numerica
simulations of Eq.~1!, when d50.94 with e50.01, d05p/2,
u(0)50, X(0)50. The DFT~not shown!of l (t) yields two fre-
quencies:v150.9429'd andv251.2258'Vi , whereas forE(t)
it gives four frequencies:v150.2887'ud2V i u50.2847, v2

51.8859'2d51.88, v352.3574'd1V i52.1647, and v4

50.4715'v02d50.4749.
04660
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e FIG. 5. ^ l (t)/ l 0& ~points connected by solid line! and ^E(t)&
~dashed line!vs d. Upper panel: Collective coordinate approac
The resonance is atVR51.2452. Lower panel: Results from the fu
system Eq.~1!. The resonance is atd51.18, close toV i51.2247.

FIG. 4. Evolution ofl (t) andE(t) as obtained from numerica
simulations of Eq.~1!, whend51.176. Other parameters are th
same as in the previous figure.
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QUINTERO, SÁNCHEZ, AND MERTENS PHYSICAL REVIEW E64 046601
damped case, we present the result for the resonance a
did for the undamped case, by plotting the mean width a
energy vsd for b50.05~see Fig. 7!. We can observe that,
resonance, these functions also have maxima, although in
presence of damping they are less peaked than in the
damped case:̂l (t)/ l 0& increases by around 7% and the e
ergy by around 10%. Interestingly, the resonance for the
system is now much closer to the internal mode than in
undamped case. We believe that the fact that the dam
suppresses the phonons quite effectively is the reason
the damped system follows more closely the collect
coordinate prediction, which indeed neglects all phon
contributions.

IV. CONCLUSIONS

In the present paper we have studed the effect of a p
metric ac force on the dynamics off4 kinks with and with-
out damping. By using a collective coordinate approach,
have found resonances related to the excitation of the in
nal mode when the frequency of the ac force is close to
Rice frequencyVR'V i . We have verified this prediction
numerically by computing the solution of Eq.~1!, its corre-
sponding energy, and the width of the kink. When this ki
of resonance occurs, the energy and the width of the sys
increase, while for other values of the frequency~except for
smaller, secondary resonances! they are bounded~in some

FIG. 6. Damped case,b50.05: Evolution of the energy accord
ing to the collective coordinate approach, obtained by numer
integration of Eq.~11!, and from the full system, by numerica
simulation of Eq. ~1!, when d51.245'VR and d51.22'Vi ,
respectively.
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cases periodic!functions. Concerning the mobility of the
kink, it is very important to point out, at least for the tim
considered here, that all the input energy goes to the inte
and phonon modes and for this reason the kink does
move ~either near or away from the resonance!.

Although this work has focused on thef4 kink, experi-
ence shows that it is very likely that similar phenomeno
gies will be observed in the dynamics of other solitary wav
with internal modes. In this respect, it is important to co
pare the above results to those obtained for nonparametr
drivings @11# in order to give a thorough, coherent picture
the problem. The collective coordinate analysis, confirm
by direct numerical simulations of the full system, show
that when we drive thef4 system parametrically the forc
acts directly and nonparametrically on the width of the kin
i.e., the internal mode is excited and the phenomenon
resonance takes place and can be observed by monito
l (t) and E(t). On the contrary, non-parametric drivings a
fect the internal mode only indirectly through the coupling
the translation mode, which in turn leads to a parame
coupling. We thus see that the internal mode dynamics
responsible for a highly nontrivial behavior: nonparamet
drivings on the full system induce parametric resonance
the kink dynamics, and vice versa. As a final remark,
want to point out that our results indicate a way of exciti

al
FIG. 7. Damped case,b50.05: ^ l (t)/ l 0& ~points connected by

solid line! and ^E(t)& ~dashed line!vs d. Upper panel: Collective
coordinate approach. The width and the energy take their maxim
values atd51.246 andd51.245, respectively. Lower panel: Re
sults from the full system Eq.~1!. The effective width has its maxi
mum at d51.22 and the maximum of the energy occurs atd
51.21, both of them close toV i51.2247.
1-6
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internal modes without affecting the translation mode, wh
can mask the effects one is interested in. As we have s
the parametric ac force affects only the internal mode,
the kink remains at its original position~or moving uni-
formly with the same speed if nonzero!at all times. This is
not possible with a nonparametric driving and might be
mechanism of interest in situations where the role of inter
modes must be elucidated.
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