PHYSICAL REVIEW E, VOLUME 64, 046601

Anomalies of ac driven solitary waves with internal modes: Nonparametric resonances
induced by parametric forces
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We study the dynamics of kinks in thg* model subjected to a parametric ac force, both with and without
damping, as a paradigm of solitary waves with internal modes. By using a collective coordinate approach, we
find that the parametric force has a nonparametric effect on the kink motion. Specifically, we find that the
internal mode leads to a resonance for frequencies of the parametric driving close to its own frequency, in
which case the energy of the system grows as well as the width of the kink. These predictions of the collective
coordinate theory are verified by numerical simulations of the full partial differential equation. We finally
compare this kind of resonance with that obtained for nonparametric ac forces and conclude that the effect of
ac drivings on solitary waves with internal modes is exactly the opposite of their character in the partial
differential equation.
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[. INTRODUCTION couplesindirectly to the internal mode, which in turn leads to
a parametric influence on its evolution.

During the last three decades of the 20th century, we have In view of the above results, it is only natural to pose the
witnessed a great deal of effort devoted to the study of solifollowing question: If nonparametric drivings act parametri-
tons and related nonlinear coherent excitatiphs3]. Al Cally on¢™ kinks, what is the effect of a parametric driving?
that work notwithstanding, the analysis of systems generallg0 our knowledge, t_h|s issue was first addressed[lm],_

: : o Ithough the main point of that work was to show how kinks
regarded as paradigms of soliton phenomenology still yields

unknown, surprising features. One such case is the dynamié:san be effectively annihilated by a fast parametric driving,

of topological solitons or kinks in nonlinear Klein-Gordon and no attention was paid to the kink dynamics. More re-

systems subjected to ac forces. After several papers that 163 ntly, the problem was considered with both parametric and

) ; . nonparametric forces acting simultaneously in the system
to contradictory conclusions during the last decade, the prob-
; . , . 13], but the approach employed by those researchers was
lem for the sine-Gordon equation was finally solved in 199

[4]. This was the simplest possible scenario for studying th pot approprlate a_nd Ie_d to |Qcorrect res_.[ 4l]. Therefore,
; . . ' e dynamics of kinks in théd* model subjected to paramet-
effects of ac forces on topological solitons, in so far as sine-. ~ ~7 . . T
. : ric drivings is largely unexplored, and this is another reason
Gordon kinks do not have any internal mode and behave as

rigid objects[5]. However, this is a nongeneric situation, why we concern ourselves with this problem. This paper

. ; resent r conclusions on thi tion within the follow-
because many solitary waves do possess internal degreespofese S our conclusions o S guestio € toflo

freedom[5-7], and even systems like the sine-Gordon model"9 scheme: Sec. ll'is dev_oted to our analyt_lcal_approz_ach;
- ; Sec. Il contains the simulations of the full partial differential

can acquire internal modes due to the influence of perturba: . . ) VA

. ; : equation that verify our analytical predictions; and Sec. IV

tions, such as discretengss-10]. Therefore, it was neces- . .

. : T summarizes our main results.

sary to study the behavior of solitons with internal modes,

and subsequently it was found that pure, nonparametric ac

forces induce resonances of parametric character: If the fre-

qguency of the internal mode is denoted®y, the resonance

appears when the driving frequency §3;/2 [11]. This As we are interested in the behavior of solitary waves

anomalous behavior was shown, taking thftequation as a  with internal modes, we choose as our working example the

typical example, to arise from the fact that the driving ¢* equation, which is well known to be representative of the
generic behavior of those solitary waves. Therefore, we be-
gin by considering the perturbed problem given by

du

d’tt_(lsxx:_% B+ (L, ), 1)

I. RESONANCES INDUCED BY PARAMETRIC
PERIODIC FORCES

*Electronic address: niurka@euler.us.es
"Electronic address: anxo@math.uc3m.es
*Electronic address: franz mertens@uni-bayreuth.de

1063-651X/2001/6(4)/046601(7)/$20.00 64 046601-1 ©2001 The American Physical Society



QUINTERO, S,ANCHEZ, AND MERTENS PHYSICAL REVIEW E64 046601

where U(¢)=(1—¢?)?/4 is the ¢* potential, f(t,) obtained with those found for the case of an ac nonparamet-

= e sin(8t+ &) ¢ represents the parametric ac foregg, and  ric force, i.e.,f(t,¢)="f(t). In that situation we obtain that

dp are the amplitude, frequency, and phase of the externdt.,= —qf(t) and K=0, and hence the external force acts

periodic force, respectively, an@ is the damping coeffi- directly on the translational mode, whereas the internal mode

cient. is excited indirectly due to the coupling between these two
In order to obtain analytical results, we resort to the well-modes. Conversely, as we have seen, in the parametrically

known collective coordinate methd8,15], which will give  driven problem, F,, vanishes, whileK= — e sin(ét+ &).

us definite predictions on the behavior of the system. HowTherefore, Eqs(5) and (6) become

ever, these being approximate results, we will have to check

them by direct numerical simulations of E.); those will dpP

be the subject of the following section. To apply the collec- gt~ AP, (10)

tive coordinate approach to our problem, we choose to em-

ploy the so-called generalized traveling wave anfaé or,

equivalently, to use the variation of the momentum and the ., _ .+ P z z (t?
energy(the equivalence of both techniques is proven in the?l!” 21 =241 ]_E 1+M_(2) _]'JFZMOIOESW‘(&tJr %0)-
second paper ifl1]). These two quantities are given by (11)
+ o0
P(t)z—f dx ¢y, (2) We thus see that, when introduced in a parametric manner,
- the ac force acts directly on the internal mode and not via the
. 1 1 coupling between the translational and internal modes. This
E(t)= Ch2 — 2 _ result shoyvs the very different roles of the two drivings at
® f, dX[Z i 2 P U(d))) @ the collective coordinate level.
| der 1 uate th it ider the Ri In order to deal with these equations, we choéﬁ{@)
ansat17] and assume that o e SONSIEETTE B u(0), 1(0)=1,=10 /1= u%(0), andi(0) as the initial con-
ditions for Egs.(10) and(11). The equation for the momen-
x—X(t) tum is trivial and can be solved exactly, yielding
¢(X,t):¢o[W} 4)

P(t)=P(0)e A" (12)
wheregg(x) is the static kink solution of the unperturbed

equation, i.e., of Eq(1) with B=e=0 zero, centered at We note that for3+#0 the momentum of the kink goes to
X(t), and with widthl(t). With this choice, and following ~z€ro and after some transient tirtee 1/3 it effectively van-
the standard proceduf§,15], we find that the evolution of ishes. In the same way, if we start from zero initial velocity,
the momentunP(t)=MlX/I(t) and the width of the kink P()=0. i.e., the center of the kink will not move.

are given by Let us now turn to Eq(11). As a first step, we introduce
a change of variables, proposed [it8], given by I(t)
=g?(t). This change transforms E¢L1) into an Ermakov-

T FS(X) — BP+Fey, (5)  type (or Pinney-typelequation[19], which reads
p2 S i . 0\? 2, osin(at+é)| 1
aM0|OI—+MOIO:K (|,|,X)—ﬁaM0|0|—+K, (6) g :Bg E + 2_N|0 te 2aMo|0 g_4a’g3,
with 13
ba I . OE 0)= - RI(0)
- - S =ls#0, 0)=—=, 14
Fex f_w dxf(t.¢)——., F < 7) g(0)=ls a( o (14)
K—fwd - ¢ Kint__E ®) where Q=1/\/al,=1.2452 is equal to the Rice frequency
=), 9 (t.¢) al’ oA [17] Or=1/\al in the case when the kink initially is at rest.
It can be shownsee[17] and[20]) that when there is no
1l . , 1 lo o1 lo | perturbation in the systertl0), (11), I(t) osciIIatc_as with a
E=2 TMoX"r5 TaMol "5 Mol T+ -] (9 frequency Qg if we start from anyl(0)+I5 or i(0)+0.

Therefore () is the characteristic frequency of Ed.1) and,
whereq=2, My=4/(3l,), andl,= 2 represent the topo- since it agrees within 1.7% witR;= \/3/2=1.2247, we ex-
logical charge, the mass, and the width of the unperturbegect that if we find a resonance related(lg in Eq. (13) [or
kink, respectively, andv=(7w?—6)/12 is a constant. Eq. (11)] we should find a similar phenomenon in the full

We now have to evaluate the above quantities. In thisystem Eq(1), associated with the frequency of the internal
respect, it is interesting to compare the equations we havmode(); .
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We now proceed to solve Eq13) analytically for the From Egs.(16), (18), and(19), and taking into account
undamped case, i.e., whgh=0. As we have mentioned, in that 7= (5t+ §,+ 7/2)/2, we obtain that the kink width(t)
this caseP(t)=P(0) and Eq.(13) becomes the following is given by

Pinney-type equatiofil9]:

B 1
4ag

o QR>2 sin( 8t + &)
— €

2 2a|\/|0|0

3!
whose solution is

1
g()=\/vi+ —4aW2v§,

wherev(t) andv,(t) are two independent solutions of the

linear part of Eq.(15) andW=v,v,—v,v; iS the Wronsk-

ian. W(t) is actually a constant, and can be calculated from

the initial conditions forv; (i=1,2), v4(0)=\/s, v1(0) Qg y2|§

=1(0)/(2\1y), v,(0)=0, andv,(0) a nonzero constant. o=—
If we denoter=(d6t+ dy+ 7/2)/2, after some algebraic

(15)

(16)

|<t>:gzzv§(t>+ng<t>, (21)
4aW?
where
vi(t)=Ace,(8t/2+ 5,2+ l4,0)
+Bise,(8t/2+ 8g/2+wl4,60), i=1,2, (22)
W= —,(0), (23)

and the characteristic curve EO) for our initial param-
eters can be written up to ordef as

————————€?| +0(€Y). 24
v 1T a0t - 1My e

manipulations we arrive at the following Mathieu equation  Ngtice that wherv=m+ p/s is rational, withm an inte-

for the v; functions:
vi+[a—26cog27)]v;=0,

Qg2

6

a=

o= € o EIO (QR
aMoloﬁz_Mo’yg

where prime denotes the derivative with respectrtand

ger number ang/s a rational fraction (8<p/s<<1), vq(t)
and v,(t) are 2mws-periodic functions, ifp is odd, and
mrs-periodic functions, ifp is even, whereas for irrational
both functions will be nonperiodic although boundig ].
For instance, if we take in Eqll), e=0.01, §y=m/2,

2
7) A7 u(0)=0, 1(0)=Ilsand5=0.94, we can see in Fig. 1 thit)

is a bounded function. Moreover, taking the Mathieu func-
tions that appear in Eq.22) up to terms of orderd and

vo=1\T1—0(0)2. Notice that the initial conditions, when SuPStituting the approximate expression of E2p) in EQ.

r=19=(8o+ 72)I2 for vi(7), become v(ro)=s

(21) one can show that the resulting expressionl{a) in-
volves basically the frequenci€dz and § (see Fig. 1). We

Ui(To):KO)/(‘S\/D’ v2(70) =0, and vy(70) =2v5(0)/8.  have also plotted in Fig. 1 the evolution of the energy, Eq.
The solution of Eq(17) (see[21]) for vy(7) andv(7) can  (g) takings not close tag. For this choice of parameters,
be expressed as a linear superposition of the two MathleE(t) is also a bounded function and its spectrum for the

functions ceg and se with a noninteger indew; i.e.,

vi(r)=Aice,(7,0)+Bjse(r,0), =12,
where
Mg, Ag,
A= B=4
and

Azcel/(TOI0)Séy(7-010)_Ce;,(7'0,0)se,,(7'0,0),
Ap,=vi(70)S€(70,0) —v{(70)S8(70,6),

Ag,=v{ (70)ce,(o,6) ~vi(7)CE}(70,6).

with the constraint(characteristic curve for Mathieu func-

tions)

1
a=1>+ —1)(92+ O( 94).

(18)

above parameters chiefly involves three frequencies:
|6—Qgl, 26, and 6+ Qg.

As we have shown, Eq24) represents the characteristic
curve corresponding to stableither periodic or bounded
solutions of the Mathieu equatiqa7). However, if we try to
find a periodic solution whe~Qg, we obtain that the

(19) integer Mathieu functions seand ce are two independent

solutions of two different Mathieu equations since they are
related to different characteristic curves:

0 ¢ ¢

A=l g6 1536 (25)
% 6 o

a=l1+0- 5 - TegeT (26)

respectively. These characteristic curves separate the un-
stable and stable regions of E4.7). In the unstable regions
the solution of this equation, as well &) andE(t), grows

with t (see Fig. 2). This is hence a hint of the existence of a
resonance phenomenon, and, as we already pointed out, we

(20) expect that it will manifest itself in the full partial differential

equation in an increment of the width and the energy of the
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FIG. 1. Collective coordinates: Evolution bft) andE(t) when
5=0.94 for the undamped casg=0. Points: Analytical solution FIG. 2. Collective coordinates: Evolution bft) andE(t) when
[see Eqgs(18)—(23)]. Solid lines: Numerical integration of E¢L1) 0= 1.24~(); for the undamped cas@=0. Points: Analytical so-
for B=0, €=0.01, §,=/2, u(0)=0, X(0)=0. The DFT (not lution [see Eqgs{(19)-(23)]. Solid lines: Numerical integration of
shown) of I(t) yields two frequenciesw;=0.9434~6 and w,  EQ.(11). Parameters are as in the previous figure.
=1.257 89~(}), whereas forE(t) it gives three frequenciess,
=0.3144~6—Qg|=0.3052, w,=1.8868~25=1.88, and w;
=2.201 31~6+ Q) r=2.1852. The maximum of the discrete Fourier
transform appears a,.

spectrum ofl(t) obtained by the collective coordinate ap-
proach there appear the frequencadeend(dg, in the DFT of
I(t) for the PDE we obtaid and();, as expected. However,
) , o , in the Fourier transform oE(t) for the full system we find
kink, when & is close t0{);. This is the aim of the next ., oniy frequencies that involvé andQ); (see Fig. 3), but
section, in which we will check by computing the solution of ;5 an additional frequenay,=0.4715~w,— & related to

Fq' 1) whgilther :hereﬂ;s s?fmet risgnangégtﬂi. In addi- the frequency of the lowest phonomd=+2) of the ¢*
lon, we will analyze the etiect of damping in our resona}ncesystem_ This means that the internal mode and the phonons
picture numerically, as we have not been able to obtain a

; . . an both appear when thg system is driven parametrically
analytical approximate result in that case. with an ac force, but sinc€); and w, are separated we
expect to be able to excite the internal mode to a larger

IIl. SIMULATION RESULTS extent than phonon modes if the frequency of the ac force is
closer to(); than towy.

In this section we carry out numerical simulations of Eq.  Moving now to the second case, i.e., drivings with fre-
(1) by using the Strauss-Vguez schem¢22], taking the quencys close toQ);, Fig. 4 shows that in this situation the
length of the systenh =100, At=0.01, Ax=0.1, the final  width of the kink oscillates with a large amplitude while the
time t;=200, and free boundary conditions. We also fix theenergy grows, although not monotonically. It is important to
amplitudee=0.01 and the phas&,= /2 of the ac force. stress at this point that, whereas the collective coordinate

In order to show the evolution df(t) and E(t) in the  analysis predicts thdt(t) and E(t) should increase indefi-
partial differential equatio(PDE) (1) we distinguish two nitely at resonance, this is not the case in the original system.
cases: In the first case we choo8efar away from();, The reason is that, in our perturbative method, we have not
whereas in the second ore=();. In Fig. 3 we plot the taken into account the phonons that are present in the system,
width and the energy of the kink as functions tofor §  and therefore part of the energy input from the ac force goes
=0.94, i.e., the parameters of the ac force are the same as tio the phonons. In our simulations we have also seen that the
Fig. 1. If we compare Figs. 1 and 3 we see ti{a} andE(t) kink does not move, even if we are at resonance, in agree-
have the same behavior both on the collective coordinatenent with our collective coordinate theory.
level and in the full system Ed1). Naturally, while in the In order to present the resonance in a more evident man-
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FIG. 4. Evolution ofl (t) and E(t) as obtained from numerical

FIG. 3. Evolution ofl(t) andE(t) as obtained from numerical = gjmyjations of Eq.(1), when 8=1.176. Other parameters are the
simulations of Eq.(1), when §=0.94 with €=0.01, §,= /2, same as in the previous figure.

u(0)=0, X(0)=0. The DFT(not shown)of I(t) yields two fre-
quenciesiw,=0.9429~¢ and w,=1.2258~(), whereas folE(t)
it gives four frequencies:w;=0.2887~6—Q;|=0.2847, w,
=1.8859~26=1.88, w3=2.3574~6+);=2.1647, and w,

1.8

=0.4715~wy— 6=0.4749. 161
A
ner, we have plotted in Fig. 5 the values of the mean nor- § 14
malized width and the mean energy as functionsoiVe _"\ 1ol
compute these magnitudes as time averageltpfl, and T
E(t) for times 100<t=<200, so as to avoid possible transient 10
effects (which are mostly relevant in the damped case dis- '
cussed below). We see that on the collective coordinate level 0.8
(I(t)/1g) and (E(t)) have a maximum at=Qg; corre- ~o.
spondingly, in the original system Ed@l), the resonance
takes place ab=1.18, close td);=1.2247. We have also 1.4
found that for 1.3<6<w, (not shown), the energy is an
increasing function of6 whereas the width of the kink is 13
essentically constant. This implies that the increment of the
energy is due to excitation of the phonons, which becomes ;’f’ 12|
more efficient as— wg, and is not related to the internal E'v-
mode. = 1.4
Coming now to the damped case, as we mentioned in the o
preceding section, we have not obtained an analytical result. 10
For this reason, in this section we carry out numerical simu-
lations of Eqg.(1) and also integrate numerically the collec- 0.9
tive coordinate prediction Eq11) when8+0. In Fig. 6 we 08 09 10 11 12 13

plot the evolution of the energy at resonance et 0.05, as
given by the collective coordinates and as obtained from the F|G. 5. (I(t)/10) (points connected by solid lineand (E(t))
numerical simulations of Eq(1). For each case, we have (dashed lines 5. Upper panel: Collective coordinate approach.
chosen a frequency near oy (for the collective coordi- The resonance is &ig=1.2452. Lower panel: Results from the full
nates)and (); [for Eq. (1)]. To complete the study of the system Eq(1). The resonance is #=1.18, close td};=1.2247.
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FIG. 6. Damped casgd=0.05: Evolution of the energy accord- ~ FIG. 7. Damped casg=0.05: (I(t)/l,) (points connected by
ing to the collective coordinate approach, obtained by numericaolid line) and(E(t)) (dashed lineys &. Upper panel: Collective
integration of Eq.(11), and from the full system, by numerical coordinate approach. The width and the energy take their maximum
simulation of Eg. (1), when §=1.245~(); and §=1.22~(), values até=1.246 andd=1.245, respectively. Lower panel: Re-
respectively. sults from the full system Edq1). The effective width has its maxi-

mum at §=1.22 and the maximum of the energy occurs &t

damped case, we present the result for the resonance as wé-21, both of them close ;=1.2247.
did for the undamped case, by plotting the mean width and
energy vsé for B=0.05(see Fig. 7). We can observe that, at cases periodicfunctions. Concerning the mobility of the
resonance, these functions also have maxima, although in thénk, it is very important to point out, at least for the time
presence of damping they are less peaked than in the ugensidered here, that all the input energy goes to the internal
damped cas€l (t)/l,) increases by around 7% and the en-and phonon modes and for this reason the kink does not
ergy by around 10%. Interestingly, the resonance for the fulmove (either near or away from the resonance).
system is now much closer to the internal mode than in the Although this work has focused on th&* kink, experi-
undamped case. We believe that the fact that the dampingnce shows that it is very likely that similar phenomenolo-
suppresses the phonons quite effectively is the reason wiyies will be observed in the dynamics of other solitary waves
the damped system follows more closely the collectivewith internal modes. In this respect, it is important to com-
coordinate prediction, which indeed neglects all phonorpare the above results to those obtained for nonparametric ac
contributions. drivings[11]in order to give a thorough, coherent picture of
the problem. The collective coordinate analysis, confirmed
by direct numerical simulations of the full system, shows
that when we drive thep* system parametrically the force

In the present paper we have studed the effect of a paracts directly and nonparametrically on the width of the kink,
metric ac force on the dynamics g kinks with and with-  i.e., the internal mode is excited and the phenomenon of
out damping. By using a collective coordinate approach, weesonance takes place and can be observed by monitoring
have found resonances related to the excitation of the intet{t) and E(t). On the contrary, non-parametric drivings af-
nal mode when the frequency of the ac force is close to théect the internal mode only indirectly through the coupling to
Rice frequencyQlg~(;. We have verified this prediction the translation mode, which in turn leads to a parametric
numerically by computing the solution of E€L), its corre-  coupling. We thus see that the internal mode dynamics is
sponding energy, and the width of the kink. When this kindresponsible for a highly nontrivial behavior: nonparametric
of resonance occurs, the energy and the width of the systedrivings on the full system induce parametric resonances in
increase, while for other values of the frequeriexcept for  the kink dynamics, and vice versa. As a final remark, we
smaller, secondary resonancéisey are boundedin some  want to point out that our results indicate a way of exciting

IV. CONCLUSIONS
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