
 
 
Working Paper 09-03  
Statistics and Econometrics Series 02 
January 2009 
 

Departamento de Estadística 
Universidad Carlos III de Madrid

Calle Madrid, 126
28903 Getafe (Spain)

Fax (34) 91 624-98-49

 
GARCH MODELS WITH LEVERAGE EFFECT: DIFFERENCES AND 

SIMILARITIES. 
 

Mª JOSE RODRIGUEZ* AND ESTHER RUIZ†‡ 
 
 

Abstract  
 
 
In this paper, we compare the statistical properties of some of the most popular GARCH 
models with leverage effect when their parameters satisfy the positivity, stationarity and 
finite fourth order moment restrictions. We show that the EGARCH specification is the 
most flexible while the GJR model may have important limitations when restricted to 
have finite kurtosis. On the other hand, we show empirically that the conditional 
standard deviations estimated by the TGARCH and EGARCH models are almost 
identical and very similar to those estimated by the APARCH model. However, the 
estimates of the QGARCH and GJR models differ among them and with respect to the 
other three specifications. 
 
 
Keywords: EGARCH, GJR, QGARCH, TGARCH, APARCH. 

                                                           
* Caja Laboral. Departamento de Control de Riesgo. Paseo José María de Arizmendiarreta,  
Arrasate-Mondragón (Spain). Tel: 34 943 719 417. e-mail: mariajose.rodriguez@cajalaboral.es. 
† Corresponding author. Departamento de Estadística, Universidad Carlos III de Madrid. C/ Madrid 126, 
28903 Getafe (Spain). Tel: 34 91 6249851. Fax: 34 91 624 9849. e-mail: ortega@est-econ.uc3m.es. 
‡ We acknowledge financial support from the Spanish Government project SEJ2006-03919.  
   We are grateful to María Rosa Nieto for her help with the software. 
 



GARCH models with leverage e¤ect: Di¤erences and

similarities.

Ma José Rodríguez�and Esther Ruizyz

January 2009

Abstract

In this paper, we compare the statistical properties of some of the most popular GARCH

models with leverage e¤ect when their parameters satisfy the positivity, stationarity and �nite

fourth order moment restrictions. We show that the EGARCH speci�cation is the most �exible

while the GJR model may have important limitations when restricted to have �nite kurtosis. On

the other hand, we show empirically that the conditional standard deviations estimated by the
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and with respect to the other three speci�cations.
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1. INTRODUCTION

It is widely accepted that the volatility of �nancial returns evolves over time. Furthermore, there is

also empirical evidence that the increase in volatility is larger when the returns are negative than when

they are positive. This characteristic, originally put forward by Black (1976), is known as leverage

e¤ect. Consider the following model for returns

yt = "t�t (1)

where "t is a serially independent sequence with zero mean, variance one and symmetric density and

�t is the volatility. To represent the asymmetric evolution of �t, we consider �ve of the most popular

asymmetric GARCHmodels namely the QGARCH of Sentana (1995), the TGARCH of Zaköian (1994),

the GJR of Glosten et al. (1993), the EGARCH of Nelson (1991) and the APARCH of Ding et al.

(1993). We only consider the simplest formulations of these models which specify the conditional

variances as non-linear functions of one-lagged conditional variances and returns. Each of these models

can potentially represent the excess kurtosis, positive and persistent autocorrelations of squares and

the negative cross-correlations between returns and future squared returns often observed in real time

series. Unfortunately, faced with the problem of choosing a particular speci�cation among the available

alternatives, empirical researchers do not have prior statistical tools at their disposal. These �ve models

have been successfully implemented to represent the volatility of the real series of �nancial returns;

see, for example, Franses and Van Dijk (1996), Loudon et al. (2000) and Awartani and Corradi (2004),

among many others, for empirical applications.

In this paper, we compare the statistical properties of these �ve models for asymmetric volatilities

when they are restricted to satisfy the positivity, stationarity and �nite fourth order moment restric-

tions1. Furthermore, we also analyze empirically whether the estimates of the conditional standard

deviations generated by the alternative models di¤er among them.

We show that it is not unusual that the parameters of the GJR do not satisfy the restrictions

1Several authors have tried before to compare some of these models in terms of their predictive power; see, for

example, Loudon et al. (2000), Awartani and Corradi (2004), Balaban (2004) and Hansen and Lunde (2005). Note that

one should be careful with the use of acronyms as they have not been fully consistent in the existing literature. For

example, A-GARCH has been used to represent four di¤erent speci�cations.
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for �nite fourth order moment to represent the leverage e¤ect present in the data. The restrictions

imposed on the TGARCH model to have �nite fourth order moment also restrict the dynamics that

this model can represent but to a lesser degree. On the other hand, the asymmetry that the QGARCH

model is able to represent can be restricted when the parameters satisfy the positivity restrictions.

The APARCH model is apparently more �exible although there are not general necessary conditions

for the stationarity and �nite fourth order moment. Finally, the EGARCH model is the most �exible

within the models considered in this paper. However, when the models are implemented in practice to

estimate the conditional standard deviations of the two series of return considered in this paper, the

TGARCH, EGARCH and APARCH estimates are rather similar.

The rest of this paper is organized as follows. Section 2 analyses the �exibility of the �ve models

with leverage e¤ect considered to represent the empirical properties of time series returns when the

parameters are restricted to satisfy the positivity, stationarity and �nite fourth order conditions. The

results are illustrated in Section 3 with simulated data by �tting all the models considered to series

generated by each of the other models. We show the implications of the restrictions on the estimated

parameters of each of the models. Section 4 contains an empirical application to two series of �nancial

returns. Finally, Section 5 summarizes the main conclusions and gives some guidelines for future

research.

2. GARCH-TYPE MODELS WITH LEVERAGE EFFECT

In this section, we analyze the �exibility of each of the �ve models considered to represent the

combinations of kurtosis, acf of squares and cross-correlations between returns and future squared

returns often observed in real time series. The models are restricted to satisfy the positivity, stationary

and �nite fourth order moment restrictions.

2.1 The QGARCH model

The QGARCH volatility is given by

�2t = ! + �y
2
t�1 + ��

2
t�1 + �Qyt�1: (2)
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The main properties of the QGARCH model have been derived by Sentana (1995) who shows that it is

stationary if p = �+� < 1. In this case, the marginal variance is �2y =
!
1�p : Note that the stationarity

of the model does not depend on the asymmetry parameter, �Q. However, if �2y is �nite, the asymmetry

parameter has to be restricted to guarantee the positivity of �2t . In particular �
2
Q � 4��2y(1 � p): To

avoid the dependence of the asymmetry parameter on the marginal variance, we analyze the positivity

restrictions in terms of the parameter ��Q =
�Q
�y
: Consequently, if the model is stationary, the positivity

restriction is given by

��2Q � 4�(1� �� �): (3)

This restriction implies that, for �xed �, the maximum absolute asymmetry parameter decreases as

� and, consequently, the persistence, increases. This result is illustrated in Figure 1 that plots the

maximum absolute value of ��Q that satisfy the positivity restriction when � + � < 1: On the other

hand, for �xed �; the maximum absolute value of ��Q increases with � when � < 0:5(1 � �) and

decreases otherwise. Finally, for �x �+�, the maximum value of
����Q�� increases with �. Note that, for

the parameter values usually encountered in practice, i.e. small � and large �, the maximum absolute

value of ��Q and, consequently, the leverage e¤ect that the QGARCH model is able to represent, is

very small. Therefore, regardless of the error distribution, the positivity restriction of the QGARCH

model can unduly restrict the dynamics of the conditional variance.

Consider now the restriction for the existence of the fourth order moment which is given by

(k" � 1)�2 + p2 < 1; (4)

where k" is the kurtosis of "t; see He and Teräsvirta (1999a). This restriction does not depend on the

asymmetry parameter. However, the restrictions imposed on � and � by the existence of the fourth

order moment of yt are stronger as the kurtosis of "t increases. When restriction (4) is satis�ed, the

kurtosis of yt is given by ky = k"
1�p2+��2Q

1�[(�"�1)�2+p2] .

The dynamic properties of QGARCH models appear in the acf of squared observations and in the

cross-correlations between squares and original observations. In particular, using the results in He and
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Teräsvirta (1999a), the acf of y2t can be derived as follows

�2(�) =

8>>><>>>:
2�(1�p+�p)+��2Q (k"�+�)

2(1�p2+�2)+k"��2Q
; � = 1

p��1�2(1); � > 1:

(5)

The rate of decay of the acf of y2t does not depend on the asymmetry parameter, �
�
Q. The auto-

correlations decay exponentially with parameter p as in the symmetric GARCH model; see Sentana

(1995). The presence of the leverage e¤ect only a¤ects the �rst order autocorrelation which is larger

than in the corresponding symmetric model. However, remember that if the persistence, p, is close to

one and � close to zero, the maximum absolute value of ��Q is very small if one wants to guarantee the

positivity of �2t . Consequently, the e¤ect of the leverage e¤ect on the autocorrelations of squares is

negligible. As an illustration, Figure 2 plots the acf of squares of four QGARCH models with parame-

ters f!; �; �; ��Qg given by f0:05; 0:15; 0:8; �0:17g; f0:03; 0:1; 0:87;�0:109g; f0:02; 0:1; 0:88;�0:089g

and f0:01; 0:09; 0:9;�0:06g and Gaussian errors. The parameter values of !; �; � have been chosen to

resemble the values usually estimated when GARCH models are �tted to real time series of �nancial

returns. The marginal variance is always one and the fourth order moment is �nite. On the other

hand, ��Q has been chosen at its maximum value to guarantee the positivity of �
2
t . The persistences of

the models are 0:95, 0:97, 0:98 and 0:99, with kurtosis 7:22, 5:44, 7:27 and 19:05, respectively. Note

that, the four models chosen for this illustration have increasing persistence and, consequently, the

maximum value of the asymmetry parameter is decreasing. Figure 2 also plots the acf corresponding

to the models with �Q = 0. This �gure shows that, for the parameter values considered, the auto-

correlations of squares are nearly indistinguishable in the QGARCH models with leverage e¤ect with

respect to the corresponding symmetric models.

The cross-correlations between y2t and yt�� ; derived by Sentana (1995), are given by

�21(�) =

8>>><>>>:
��Q

(�y�1)1=2 ; � = 1

(�+ �)�21(� � 1); � > 1:

(6)

The second column of Figure 2 plots the cross-correlations of the same models considered above.

This �gure shows that, in the cases of interest from the empirical point of view, the QGARCH model
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generates very small cross-correlations between returns and future squared returns. Furthermore, we

can also observe that the correlations decrease as the persistence of the volatility increases because ��Q

has to decrease to guarantee the positivity of �2t :

2.2 The TGARCH model

The TGARCH model is given by

�t = ! + � jyt�1j+ ��t�1 + �Tyt�1: (7)

Note that there are not restrictions to guarantee the positivity of �2t . However, the parameters of

the TGARCH model have to be restricted to guarantee stationarity and the existence of the fourth

order moment. The stationarity condition is given by p < 1; which implies

�2T < 1� �2 � �2 � 2���1 (8)

where �1 = E (j"tj) which is given by
q

2
�
when "t is Gaussian and by

q
(��2)
�

�((��1)=2)
�(�=2)

when "t has a

Student-� distribution; see He and Teräsvirta (1999a).

Note that the stationarity of the TGARCH model depends on the distribution of "t: However, the

values of �1 are not very di¤erent when "t is assumed to be Gaussian or Student-�: For example, when

� = 5; �1 = 0:735 and �1 = 0:798 when "t is Gaussian: Consequently, the restrictions imposed on �T

for the TGARCH model to be stationary are rather similar for di¤erent error distributions. When the

stationary restriction in (8) is satis�ed, the marginal variance is given by

�2y = !
2 1 + q

(1� q) (1� p)

where q = ��1+�, p = q2+�2(1� �21). Figure 3 represents the admissible values of �T that guarantee

the stationarity of the TGARCH model as a function of positive � and � parameters, when the errors

are Normal. Observe that when � is close to one, the maximum asymmetry allowed is rather small.

On the other hand, the asymmetry of the TGARCH model decreases when � increases.

The parameters of the TGARCH model have to be further restricted to guarantee �nite fourth order

moment. The kurtosis of yt; derived by He and Teräsvirta (1999a), is given by

ky = k"
[(1� p)(1� q)(3d+ 5p+ 3q + 3dp+ 5dq + 3pq + dpq + 1]

(1 + q)2(1� d)(1� f) (9)
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where d = (� + �)3 + �3(�3 � 1) + 3��2(�1 � 1) + 3�2T (��3 + �) and f = (�+ �)4 + �4 (k" � 1) +

4��
�
�2 (�1 � 1) + �2 (�3 � 1)

�
+6�2T

�
2���3 + �

2k" + �
2
�
with �3 = E(j"tj3). Given that when � and

� are positive, as it is the case in the empirically relevant models, f < 1 implies that d < 1; the

kurtosis is �nite if

f < 1: (10)

Given that in expression (10) it is not obvious which is the relationship between the asymmetry, the

parameters � and � and the error distribution, Figure 3 also represents the values of the asymmetry

parameter that guarantee �nite kurtosis as a function of positive � and �. This �gure shows that the

restrictions imposed on �T become stronger as the degrees of freedom decrease. Therefore, as the errors

are allowed to have more kurtosis, the leverage e¤ect represented by the TGARCH model should be

smaller and it loses part of its �exibility.

On the other hand, (10) implies that for �xed �T , the parameters � and � and, consequently, the

persistence should be strongly restricted. Consequently, the TGARCH model may have di¢ culties to

represent simultaneously leverage e¤ect with �nite kurtosis and large persistence.

The following expression of the acf of y2t is given by He and Teräsvirta (1999a)

�2(�) =

8>>><>>>:
(1�q)(1�p)f2�q(1�f)�03+�p�04g�(1+q)(1�d)(1�f)f2q+p(1�q)g

�0
; � = 1

p�2(� � 1) + �0q��1; � > 1;

(11)

where

�0 = k"�
0
4(1� q)(1� p)� (1 + q)2(1� d)(1� f);

�0 = (1=�0)f2(1� p)(1� f)[�0
3�q(1� q)� q(1 + q)(1� d)]g

�0
3 = (1 + p)(1 + q) + 2(p+ q)

�0
4 = (1 + p)(1 + q)(1 + d) + 2(1 + p)(q + d) + 4(qd+ p)

�q = ��3 + �

�p = �2 + 2���3 + k"(�
2 + �2T ):

Figure 4 plots the acf of squares of four TGARCH models with Gaussian errors and parameters

f!; �; �; �Tg given by f0:057; 0:14; 0:825;�0:12g; f0:07; 0:15; 0:8;�0:16g; f0:049; 0:1; 0:865;�0:14g and
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f0:025; 0:09; 0:9;�0:1g; respectively. Once more, the parameters have been chosen in such a way that

the marginal variance is one and the asymmetry parameter has its maximum value to guarantee

the existence of the kurtosis of yt. The persistence of these four models are 0:88; 0:9; 0:92 and 0:96

with kurtosis 10:10; 19:02; 15:88; 20:04; respectively. For comparison shake, Figure 4 also plots the

autocorrelations of squares of the corresponding symmetric models. Observe that in the TGARCH

model, the presence of asymmetries could generate large di¤erences in the autocorrelations.

The cross-correlations between y2t and yt�� can be computed using the results in He et al. (2008)

and are given by

�21(�) =

(
2
p
(1�q)(1�p)�T (

��1P
j=0

q��1�jpj+p��1�q(1+pq)(1�d)�1(1+q)�1)
p
(1+q)(ky�1)

; � � 1: (12)

As an illustration, Figure 4 plots the cross-correlations for the same four models considered above.

These cross-correlations are rather large when compared with those of the QGARCH model. They

decay exponentially. Therefore, it seems that although the TGARCHmodel has di¢ culties to represent

series with �nite kurtosis and persistent shocks to volatility, the restrictions imposed on its asymmetry

parameter to guarantee �nite kurtosis are milder than those imposed on the QGARCH model to

guarantee positive conditional variances.

2.3 The GJR model

The GJR model speci�es the conditional variance as

�2t = ! + �y
2
t�1 + ��

2
t�1 + �GI("t�1 < 0)y

2
t�1 (13)

where I(:) is the indicator function that takes value 1 when the argument is true. Note that the GJR

model is similar to the TGARCH model but the volatility is speci�ed in terms of �2t instead of �t.

Consequently, it is necessary to restrict its parameters in order to ensure positivity. In particular,

Hentschel (1995) shows that �2t is positive if

! > 0; �; �; �G � 0: (14)

On the other hand, the model is stationary if

�G < 2(1� �� �): (15)

8



Note that this restriction is the same regardless of the conditional distribution of "t. When the

stationarity condition is satis�ed, the marginal variance of yt is given by �2y =
!
1�p where p = � +

� + 0:5�G. Figure 5, that plots the parameter space of the GJR model that guarantees stationarity,

illustrates that, as in the TGARCH model, the maximum value of �G decreases with � and �. For

small values of � and values of � close to one, the allowed values of �G are rather small.

He and Teräsvirta (1999a) derive the condition for the existence of the fourth order moment which

is given by

p2 + �(�" � 1)(�+ �G) + 0:25�2G(2�" � 1) < 1: (16)

When condition (16) is satis�ed, the kurtosis of yt is given by

ky = k"
1� p2

1� p2 � �(k" � 1)(�+ �G)� 0:25�2G(2k" � 1)
:

The existence of the fourth order moment depends on the distribution of "t. For �xed values of �

and �; larger kurtosis of "t imply more restrictive conditions on �G: Figure 5 also plots the maximum

allowed values of �G that guarantee �nite kurtosis of yt as a function of the parameters � and � when "t

has Normal, Student-5 and Student-7 distributions. Note that as expected, given the close relationship

between the TGARCH and GJR models, the shapes of these surfaces are very similar to those plotted

in Figure 3 for the TGARCH model. Finally note that (16) implies that the GJR model has also

di¢ culties to represent high persistence together with �nite kurtosis.

The acf of y2t ; derived by He and Teräsvirta (1999a), is given by

�2(�) =

8>>><>>>:
(�+k"(�+�G))(1�p2)�p(1�p2��(k"�1)(�+�G)�0:25�2G(2k"�1))

k"(1�p2)�(1�p2��(k"�1)(�+�G)�0:25�2G(2k"�1))
� = 1

�2(1)p
��1 � > 1:

(17)

Figure 6 plots the acf of y2t corresponding to four GJR models with Gaussian errors and para-

meters f!; �; �; �Gg, given by f0:045; 0:1; 0:8; 0:11g; f0:035; 0:1; 0:83; 0:07g; f0:025; 0:10; 0:845; 0:06g;

f0:015; 0:07; 0:885; 0:06g: Once more, the parameters have been chosen such that the marginal vari-

ance is one and the asymmetry parameter has the maximum allowed value to guarantee �nite kurtosis.

The persistences of the models are 0:955; 0:965; 0:975 and 0:985; with kurtosis 8:55, 7:20; 11:50; 12:62;

respectively: Note that in the four models chosen, the di¤erences between the acf of squares in the
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GJR model and in the corresponding symmetric model are even larger than those observed in the

TGARCH model.

Using the results in He et al. (2008), we have derived the cross-correlations between y2t and yt��

which are given by

�21(�) =

8>>><>>>:
�G�3
3

(
p
�2y)

3
p
ky�1

; � = 1

p��1�21(1); � > 1

(18)

where 
3 = E(�
3
t ): This quantity has to be computed by simulation as suggested by He et al. (2008)

2.

The corresponding cross-correlations, plotted in the second column of Figure 6 for the same four

GJR models considered above, have an exponential decay similar to this observed in the QGARCH

and TGARCH models. The magnitudes of the cross-correlations are very small, in line with the

values shown by the QGARCH model and far from the TGARCH case. However, note that the

cross-correlations of the GJR model are less reliable as they are based on simulated moments.

2.4 The EGARCH model

The EGARCH model speci�es the conditional variance as follows

log �t = ! + � log �t�1 + �
� (j"t�1j � E j"t�1j) + �E"t�1: (19)

The speci�cation of the volatility in terms of its logarithmic transformation implies that there are

not restrictions on the parameters to guarantee the positivity of the variance. In addition, Nelson

(1991) show that the EGARCH model is stationary and has �nite kurtosis if j�j < 1. Therefore, there

are not restrictions on the leverage e¤ect that the model can represent imposed by the positivity,

stationarity or the �nite fourth order moment restrictions. The unconditional variance, kurtosis and

acf of squares can be derived using the results in Nelson (1991). They have respectively the following

expressions

�2y = exp

�
!

1� �

� 1Y
i=1

E(exp(�i�1g("t�i))) (20)

2For each model, 1500 series of size 5000 are generated. For each series the median of �3t is computed. Then, the

median of MED(�3t ) is computed through replicates.
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ky = k"

1Y
i=1

E(exp(2�i�1g("t�i)))�
E(exp(�i�1g("t�i)))

�2 (21)

�2(�) =
E("2t exp(�

��1g("t)))P1P2 � P3
k"P4 � P3

(22)

where g("t) = �� (j"tj � E j"tj)+�E"t; P1 =
��1Y
i=1

E(exp(�i�1g("t�i))); P2 =

1Y
i=1

E(exp((1+�� )�i�1g("t�i)));

P3 =

1Y
i=1

�
E(exp(�i�1g("t�i))

�2
; P4 =

1Y
i=1

E(exp(2�i�1g("t�i))): Nelson (1991) derived closed form ex-

pressions for some the expectations involved in equations (20) to (22) for several distributions of "t3.

It is interesting to remark that the rate of decay of the autocorrelations of squares is not constant;

see Carnero et al. (2004) who show that this rate tends to � for large lags whereas for small ones it

depends on �� and �E:

Figure 7 plots the acf of squares of four Gaussian EGARCH models with parameters f!; �; �; �Eg;

given by f�0:002; 0:09; 0:98;�0:06g; f�0:003; 0:06; 0:985;�0:1g; f�0:003; 0:12; 0:99;�0:08g; f�0:001;

0:05; �0:995; �0:07g; respectively. In this case, the asymmetry parameter can be freely chosen. All

the models have marginal variance equal to one and �nite kurtosis. The persistences are 0.98, 0.985,

0.99 and 0.995 with kurtosis 3.60, 4.54, 5.84 and 5.58, respectively. Figure 7 also plots the acf of

squares of the corresponding symmetric models. This �gure illustrates that the EGARCH model can

generate �rst order autocorrelations clearly larger than in the corresponding symmetric models.

Ruiz and Veiga (2008) derived the following expression of the cross-correlations between y2t and yt��

�21(�) =
E("t exp(�

��1g("t)))P1P5

P
1=4
3 [k"P4 � P3]1=2

(23)

where P5 =
1Y
i=1

E(exp(�i+��1+ 1
2
�i�1)g("t�i)); see also Demos (2002) who derives the cross-correlation

function under Gaussian errors and Karanasos and Kim (2003) who obtain a general expression of

�21(�) in ARMA(r; s)-EGARCH(p; q) models from which expression (23) can be obtained as a partic-

ular case.
3He et al. (2002) derived the acf of jytj� for the EGARCH(1,1) model giving closed form expressions for some of the

expectations involved in (20) to (22) when the errors are Normal or Generalized Errors Distribution (GED). Karanasos

and Kim (2003) derive the acf of jytj� of a general EGARCH(p; q) model with Gaussian, GED and Double Exponencial

errors.
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The second column of Figure 7 plots the cross-correlation functions for the four EGARCH models

described before. The exponential decay is similar to this observed in QGARCH, TGARCH or GJR

models.

2.5 The APARCH model

The APARCH model is given by

��t = ! + �A (jyt�1j � �Ayt�1)
� + ���t�1: (24)

This model nests some of the GARCH models with leverage e¤ect described before. For example,

when � = 1 and �T = �A�A; we obtain the TGARCH model while when � = 2; the GJR model in (13)

is obtained with �G = 4�A�A and � = �A(1� �A):

The restrictions for the positivity of ��t are given by Ding et al. (1993) as follows:

! > 0; � � 0;�1 < �A < 1; �A � 0 and � � 0: (25)

However, it is not clear whether ��t should be positive for all �. Consider for example that � = 1,

as in the TGARCH model. In this case, �2t is always positive regardless of whether �t is positive or

negative. Therefore (25) is a su¢ cient but not necessary condition for the positivity of the conditional

variance.

The condition for the existence of E (�t)
� is given by

�AE (j"tj � �A"t)� + � < 1: (26)

Expression (26) depends on the density of the errors. Ding et al. (1993) derive the expression of

E (j"tj � �A"t)� for Gaussian errors and Karanasos and Kim (2006) extended it for Student, GED and

Double exponential distributions. Note that this condition is su¢ cient for stationary when � � 2;

otherwise it guarantees the existence of a moment that not necessarily implies the existence of the

marginal variance. Consider, once more, � = 1; then expression (26) guarantees the existence of E (�t)

which is necessary but not su¢ cient for the existence of �2y.

He and Teräsvirta (1999b) derived the following condition for the existence of the moment E(�2�t )

�2A
2
[(1 + �A)

2� + (1� �A)2�]E
�
j"tj2�

�
+ �A�[(1 + �A)

� + (1� �A)�]E
�
j"tj�

�
+ �2 < 1: (27)
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Again, condition (27) does not imply �nite kurtosis for all �: For example, if � = 1; it only guarantees

the existence of the variance as in the TGARCH model. However, when � = 2; it reduces to �2 +

�2A(1 + 6�
2
A + �

4
A) + 2�A�(1 + �

2
A) < 1 which is the condition for �nite kurtosis in the GJR model.

Therefore, condition (27) is su¢ cient for stationarity when � � 1 while it is su¢ cient for �nite kurtosis

when � � 2. Consequently, it is not possible to carry out a comparative analysis of the maximum

allowed values of �A when the model is stationary, has �nite kurtosis and the conditional variances are

positive for general values of �. In practice, � uses to be estimated between 1 and 2. In this case, the

restriction in (27) guarantees the existence of the variance but not of the kurtosis. In any case, this

restriction will be su¢ cient but not necessary. Therefore, we do not pursue the same kind of analysis

carried out for the other four models considered in this paper.

It is important to note that there are not close form expressions of the variance and kurtosis of

yt. These expressions are only available when � = 1; 2 and, in these cases, they coincide with the

expressions given above for the TGARCH and GJR models. Moreover, the autocorrelations of squares

and cross-correlations are also available only for these two particular cases.

3. THE RESTRICTIONS WITH ESTIMATED PARAMETERS.

In the previous section, we have analyzed the restrictions imposed in the parameter space of each

model to guarantee positivity and �nite variance and kurtosis. However, in practice, the parameters

are estimated and the restrictions are checked using the corresponding estimates. In this section, we

analyze whether the conclusions obtained by checking the restrictions on estimated parameters are in

concordance with the true existence of moments. For this purpose, we generate R = 1000 series of size

T = 2000 by each of the models4. Then, all �ve models are �tted to each series and the corresponding

plug-in moments are obtained by substituting the estimated parameters in the analytical expressions

of the moments5. In particular, we have generated series by a QGARCH(1,1) model with parameters

f0:03; 0:1; 0:87;�0:109g, a TGARCH model with parameters f0:057; 0:14; 0:825;�0:12g; a GJR model

with parameters f0:015; 0:07; 0:885; 0:06g; an EGARCH model with f�0:003; 0:12; 0:99;�0:08g and,

�nally, an APARCH model with � = 1:2 and f0:03; 0:1; 0:8; 0:05g: All the models are stationary, have
4Results for T = 5000 are available upon request. They are similar to those reported in this paper.
5The parameters have been estimated by QML using software developed in Matlab by the �rst author.
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unit variance and �nite kurtosis and satisfy the restrictions for positivity of the conditional variances.

Table 1 reports the percentage of estimated models that satisfy the conditions for positivity, �nite

variance and kurtosis. Consider �rst the results obtained when the QGARCH model is �tted. The

results in Table 1 show that the QGARCHmodel may have problems to satisfy the positivity restriction

when the series are generated by the QGARCH and TGARCH models and to satisfy the condition for

�nite kurtosis when they are generated by the GJR and EGARCH models. Remember that all the

models used to generate the series are such that the positivity restrictions are satis�ed. However, when

�tting the QGARCH model to the series generated by itself only 50.7% of the estimated parameters

satisfy this restriction. The situation is even worse when the series are generated by the TGARCH

model as, in this case, only 32% of the estimated QGARCH models satisfy the restriction. The

stationarity condition is almost always satis�ed. However, when looking at the existence of the kurtosis,

there are 13.8% and 9% of the estimated QGARCH that do not satisfy this condition when the series

are generated by GJR and EGARCH models, respectively.

Looking now at the results obtained when the TGARCH model is �tted, we can observe that both

the stationarity and �nite fourth order conditions are satis�ed in nearly all cases. Only when the series

are generated by the EGARCH model, there are 7.4% of the TGARCH models that do not satisfy the

condition (10) for �nite kurtosis.

The next model �tted is the GJR model. In this case, there is a large percentage of series when the

estimated parameters do not satisfy the positivity condition mainly when the series are generated by

the TGARCH, EGARCH and APARCH models. The stationarity condition is satis�ed in nearly all

cases. Only when the series are generated by the EGARCH model, there are 13.5% of the estimated

GJR models that do not satisfy this condition. However, the percentages of estimated models that

satisfy the condition for the existence of the kurtosis are very small. Note, for example, that only 10%

of the GJR models �tted when the series are generated by the TGARCHmodel satisfy the condition for

the existence of the kurtosis. Even when the series are generated by a GJR model with �nite kurtosis,

only 85:3% of the estimated GJR models satisfy the condition for the existence of the kurtosis.

On the other hand, the EGARCH estimates always satisfy the conditions for the existence of the

kurtosis.
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Finally, in the APARCH model, we have imposed a priori the positivity restriction6. On the other

hand, remember that conditions (26) and (27) are the stationarity conditions when � � 2 and � � 1;

respectively. Therefore, we have computed the percentage of series that satisfy (26) when �̂ � 2 and

that satisfy (27) when �̂ � 1: This is the quantity reported as the percentage of series that satisfy

the stationarity condition in Table 1. On the other hand, (27) is the condition for the existence of

kurtosis when � � 2: Therefore, the percentage reported in Table 1 correspond to the percentage of

series that satisfy (27) among those in which �̂ � 2: When the series are generated by the GJR a the

EGARCH models and the APARCH model is �tted, there is a large percentage of series in which the

stationarity condition is not satis�ed. This percentage is even larger when looking at the condition for

�nite kurtosis. In this case, with the exception of series generated by the own APARCH model, the

APARCH estimates only satisfy the �nite kurtosis restriction in very small percentage of series.

Summarizing, it seems that the QGARCH model may seem to estimate non-positive variances when

�tted to series in which the conditional variance is always positive while the GJR and APARCH

estimates may lead to think that the kurtosis is not �nite when the series has �nite kurtosis.

4. EMPIRICAL APPLICATION

In this section, the �ve GARCH models with leverage e¤ect previously described are �tted to

represent the evolution of the volatility of two series of daily returns. For each model and series, we

check whether the estimated parameters satisfy the positivity, �nite variance and kurtosis restrictions

and analyze whether we obtain contradictory conclusions. Furthermore, and given that the �nal goal

when �tting a conditionally heteroscedastic model is to obtain estimates of the underlying volatility,

we compare the estimated volatilities obtained with the alternative models. The series analyzed are

daily returns of the S&P500 index observed from January 5th 1999 to May 9th 2006 and of the

exchange rates of US Dollar against the Australian Dollar observed from January 2nd 1990 to May

9th 2006. To avoid the misleading e¤ects of outliers on the estimation of the volatility, the series have

been �ltered by equalling all observations larger than 5b�t to b�tsign(yt) where b�t is an estimate of the
conditional standard deviation. The �ltered series have been plotted in Figure 9 together with their

6Without this restriction, the estimator did not converge in may replicates.
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correlogram of squares and their sample cross-correlations. The volatility clustering observed in the

series of returns is re�ected in the positive and signi�cant autocorrelations of squares. Moreover, note

that, as usual, these autocorrelations are not very large and highly persistent. On the other hand, the

cross-correlations are also signi�cant and negative, suggesting the presence of leverage e¤ect.

Table 2 reports the estimation results obtained when �tting the QGARCH, TGARCH, GJR, EGARCH

and APARCH7 models with Student-� errors to S&P500 returns. For all the models, the estimated

degrees of freedom are over 20. Therefore, the conditional distribution of the errors seems to be

well approximated by the Normal distribution. Furthermore, the estimated power parameter of the

APARCH model is 1.188 which is closer to the TGARCH model than to the GJR formulation. In fact,

the parameters estimated when the TGARCH model is �tted are very similar to those estimated for

the APARCH model. In any case, the estimates of � are always very close to 1 while the estimates

of � are small although signi�cant. Finally, note that the estimates of the asymmetry parameter are

also signi�cant in all the models.

After estimating the conditional deviations for each of the models, b�t, the residuals are computed
as "̂t = yt=b�t: Table 2 also reports several diagnostics. For all the models �tted, the kurtosis have
been clearly reduced with respect to the sample kurtosis of S&P500 returns which is 4.41 and they

are closer to 3, the kurtosis of the Normal distribution, although still signi�cantly di¤erent from it.

Furthermore, the autocorrelations of squared residuals and the cross-correlations between returns and

future squared returns are not signi�cant. Therefore, it seems that all the �tted models have been

successful in representing the dynamic evolution of the squares and part of the kurtosis observed in

the S&P500 returns.

Table 2 also reports whether the positivity and �nite variance and kurtosis restrictions are satis�ed.

All models �tted satisfy the positivity restrictions. However, the estimates of the TGARCH and GJR

models are such that the stationarity condition is not satis�ed. Consequently, the variance, kurtosis,

autocorrelations of squares and cross-correlations are apparently not de�ned for S&P500 returns. In

the other two models, the QGARCH and the EGARCH, the estimated parameters satisfy the three

conditions. Finally, in the APARCH model, we can only check whether the stationarity condition is

7All models have been estimated with E-views.
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satis�ed.

As mentioned above, the �nal goal when �tting conditionally heterocedastic models is to obtain

estimates of the underlying volatilities. The main diagonal of Figure 10 plots these estimates obtained

after �tting each of the �ve models considered to the S&P500 returns. The lower triangle of this

�gure plots the di¤erences between the volatilities estimates considered two by two. Finally, the upper

triangle of Figure 10 plots scatter plots of the estimated volatilities taken two by two. The general shape

of the estimated volatilities is similar. However, it is remarkable the similarity between the variances

estimated by the TGARCH, EGARCH and APARCH models. The similarity between TGARCH and

APARCH models could be expected given that, as we mentioned before, the parameter estimates in

both models are very similar. On the other hand, the variances estimated by the QGARCH and

GJR models are di¤erent of the variances estimated by any of the other alternative speci�cations and

di¤erent between them. Note that, in general, when the volatility is large, the QGARCH and GJR

estimated variances are smaller than the variances estimated by any of the other models.

The estimation results corresponding to the Australian Dollar/US Dollar exchange rates are reported

in Table 3. In this case, the estimated degrees of freedom are approximately 7 implying a leptokurtic

distribution of errors. Also, it is interesting to note that the asymmetry parameters are not signi�cant

in the QGARCH and GJR models which is expected given that exchange rates show smaller lever-

age e¤ects than equity indexes8. Again, the APARCH model suggest an speci�cation closer to the

TGARCH model, with the estimated power parameter being �̂ = 1:32. Its parameters are also close

to those estimated by the TGARCH model. As usual, all the estimates of � are small and those of �

are close to 1. With respect to the diagnostics, the residuals have slightly smaller kurtosis than the

returns which is 4:3. Note, that if the errors have a Student-7 distribution, their kurtosis is 5. The

autocorrelation of squared residuals and the cross-correlations of residuals are not signi�cant.

The last part of the Table 3 reports whether the restrictions for positivity and �nite variance and

kurtosis are satis�ed. All the models satisfy the positivity restrictions. However, the estimated GJR

model is not stationary and the QGARCH estimates do not satisfy the conditions for the existence of

8When the errors are assumed to be Gaussian, the estimated leverage e¤ect parameters were signi�cant. It seems

that although the assumption on the error distribution does not a¤ect the other parameters of the volatility, it has an

e¤ect on the estimated asymmetry parameter; this is in concordance with the results of Zhang and King (2008).
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the kurtosis. The EGARCH and the TGARCH models are the only ones with de�ned kurtosis and,

consequently, autocorrelations of squares and cross-correlations.

Figure 11 plots the same quantities plotted in Figure 10 for the exchange rates volatilities. Once

more, we observe a great similarity between the conditional variances estimated by the TGARCH,

EGARCH and APARCH models. In this case, there is also similarity between the QGARCH and GJR

estimates.

Summarizing, when the GJR model is �tted, the estimated parameters imply that the variance is

not de�ned. Something similar happens in the QGARCH model which does not satisfy the conditions

for the existence of the kurtosis of the exchange rate returns and on the TGARCH model which is

not stationary in the case of S&P500 returns. The estimates of the GJR model do not satisfy the

restrictions for the existence of the marginal variance in any of the two series of returns analyzed in

this paper. This could be an artifact due to their lack of �exibility to represent the moments observed

in real data. Finally, in the two examples considered, the conditional standard deviations estimated

by the TGARCH, EGARCH and APARCH models are very similar. Therefore, if the objective is to

estimate the underlying volatilities of a series of returns, choosing any of these three models seems

to give the same answer. However, the conclusions on the existence of moments implied by the

estimated parameters are not reliable in some of the models because they are not �exible to represent

simultaneously high persistence and kurtosis together with leverage e¤ect.

5. CONCLUSIONS

There is a large number of alternative GARCH models proposed in the �nancial econometrics litera-

ture to represent the dynamic evolution of volatilities with leverage e¤ects. In this paper, we compare

the properties of �ve popular asymmetric GARCH models when they are restricted to guarantee pos-

itivity of conditional standard deviations, stationarity and existence of fourth order moments. In

particular, we consider the QGARCH, TGARCH, GJR, EGARCH and APARCH models. We show

that the leverage e¤ect that the QGARCH, TGARCH and GJR models can represent is heavily re-

stricted when these models guarantee positive conditional standard deviations and �nite fourth order

moments. The EGARCH model is more �exible. Finally, for the APARCH model, the results of
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interest correspond to particular cases that coincide with the TGARCH and GJR models. In the

empirical application, we show that the estimates of the underlying volatilities of the two series of

�nancial returns analyzed are surprisingly close when the TGARCH, EGARCH and APARCH models

are �tted. However, the estimates of the parameters of the TGARCH and GJR models are such that

they do not satisfy the conditions for the existence of the kurtosis of returns. Note that the estimates

of the volatility obtained by the EGARCH model with �nite fourth order moment are nearly the same

as those of the TGARCH model without �nite order moment. This result could be attributed to the

fact that when these restrictions are satis�ed, the level of asymmetry that the TGARCH model can

represent is very limited. Therefore, in order to represent the leverage e¤ect truly present in the data,

the estimates of the parameters break the restriction for the existence of the kurtosis.

Summarizing, among the models considered in this paper, the EGARCH model seems to be more

�exible to represent leverage e¤ect and simultaneously satisfy the restrictions for positivity and exis-

tence of the kurtosis. However, the TGARCH model generates estimates of the underlying volatilities

very close to the ones generated by the EGARCH model although its parameter does not satisfy the

restrictions.

There are many other alternative models proposed in the literature to represent the asymmetric

response of volatilities to positive and negative returns. For example Brännäs and Gooijer (2004)

propose an extension of the QGARCH model that allows more �exibility in the asymmetric response

of volatility. However, it seems that in this model even the low order moments lack explicit analytical

expressions. Also, Babsiri and Zaköian (2001) proposed a model that introduces contemporaneous

asymmetry on the returns and Wu and Xiao (2002) conclude that an extension of the EGARCH model

with separate coe¢ cients for large and small negative shocks is better able to capture the asymmetry

e¤ect than the standard EGARCH model. It could be also of interest to extend the analysis to models

with e¤ects in the mean as those proposed by He et al. (2008) or Arvanitis and Demos (2004).

There are also several proposals to model the leverage e¤ect in the context of Stochastic Volatility

(SV) models. Harvey and Shephard (1996) proposed to represent the asymmetric response of volatil-

ities by introducing correlation between the level and volatility noises. So et al. (2002) proposed a

Threshold Stochastic Volatility model to represent simultaneously the mean and variance asymmetries.

Recently, Demos (2002) has proposed a model that encompasses both the Asymmetric SV (A-SV) and
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the EGARCH models as particular cases9. Very recently, Kawakatsu (2007) has proposed a new A-SV

model that generalizes the one proposed by Harvey and Shephard (1996). In this model, the log-

volatility is a quadratic function of a latent variable. The comparison between the GARCH and SV

models with leverage e¤ect is left for further research.

9Carnero et al. (2004) show that the A-SV model is more �exible than the EGARCH model.
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Figure 1.- Parameter space for the stationary QGARCH(1,1) model when the positivity restriction is
satis�ed.
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Figure 2.- Autocorrelations of squares (left column) and cross-correlations (right column) of di¤erent
QGARCH models with Gaussian noises. The solid lines correspond to the autocorrelations when �Q 6= 0
while the dashed lines are the corresponding autocorrelations when �Q = 0:

! = 0:05; � = 0:15; � = 0:80; �Q = �0:170

! = 0:03; � = 0:1; � = 0:87; �Q = �0:109

! = 0:02; � = 0:1; � = 0:88; �Q = �0:089

! = 0:01; � = 0:09; � = 0:9; �Q = �0:06
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Figure 3.- Parameter space for stationarity TGARCH(1,1) models with �nite fourth order moments
and di¤erent error distributions.
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Figure 4.- Autocorrelations of squares (left column) and cross-correlations (right column) of di¤erent
TGARCH models with Gaussian noises. The solid lines correspond to the autocorrelations when �T 6= 0
while the dashed lines are the corresponding autocorrelations when �T = 0:

! = 0:057; � = 0:14; � = 0:825; �T = �0:12

! = 0:07; � = 0:15; � = 0:8; �T = �0:16

! = 0:049; � = 0:1; � = 0:865; �T = �0:14

! = 0:025; � = 0:09; � = 0:9; �T = �0:1
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Figure 5.- Parameter space for stationarity GJR models with �nite fourth order moments and di¤erent
error distributions.
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Figure 6.- Autocorrelations of squares (left column) and cross-correlations (right column) of di¤erent
GJR models with Gaussian noises. The solid lines correspond to the autocorrelations when �G 6= 0 while
the dashed lines are the corresponding autocorrelations when �G = 0:

! = 0:045; � = 0:1; � = 0:8; �G = 0:11

! = 0:035; � = 0:1; � = 0:83; �G = 0:07

! = 0:025; � = 0:1; � = 0:845; �G = 0:06

! = 0:015; � = 0:07; � = 0:885; �G = 0:06
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Figure 7.- Autocorrelations of squares (left column) and cross-correlations (right column) of di¤erent
EGARCH models with Gaussian noises. The solid lines correspond to the autocorrelations when �E 6= 0
while the dashed lines are the corresponding autocorrelations when �E = 0:

! = �0:0017; � = 0:09; � = 0:98; �E = �0:06

! = �0:0029; � = 0:06; � = 0:985; �E = �0:1

! = �0:0031; � = 0:12; � = 0:99; �E = �0:08

! = �0:0015; � = 0:05; � = 0:995; �E = �0:07
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Table 1.-Percentages of �tted models that satisfy the restrictions for positivity and �nite variance and
kurtosis when T=2000.

DGP QGARCH TGARCH GJR EGARCH APARCH
Fitted
QGARCH positivity 50.7 32.0 99.6 96.9 100.0

�2 100.0 100.0 100.0 99.8 100.0
� 99.5 100.0 86.2 91.0 100.0

TGARCH positivity Always Always Always Always Always
�2 99.8 100.0 99.8 98.6 100.0
� 99.7 100.0 99.5 92.6 100.0

GJR positivity 92.0 60.1 99.7 87.1 78.0
�2 100.0 100.0 100.0 86.5 100.0
� 58.2 10.0 85.3 24.5 100.0

EGARCH positivity Always Always Always Always Always
�2 100.0 100.0 100.0 100.0 100.0
� 100.0 100.0 100.0 100.0 100.0

APARCH positivity Imposed Imposed Imposed Imposed Imposed
�2 91.96 99.20 77.12 77.22 100
� 24.67 66.67 21.78 22.27 100

Figure 9.- Daily returns yt (�rst column), sample autocorrelation of y2t (second column), and cross-
correlations between yt and y2t�1 (third column) for S&P500 and AUD/USD observed returns.

S&P500

AUD/USD
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Table 2.- Estimated models for daily S&P500 returns.

QGARCH TGARCH GJR EGARCH APARCH
! 0:013�

(0:004)
0:008�
(0:004)

0:006�
(0:004)

0:002�
(0:000)

0:008�
(0:004)

� 0:031�
(0:007)

0:039�
(0:008)

�0:007
(0:009)

0:063�
(0:014)

0:036
(0:101)

� 0:96�
(0:007)

1�
(0:24)

0:961�
(0:008)

0:994�
(0:003)

0:96�
(0:008)

� �0:069�
(0:014)

�0:038�
(0:009)

0:087
(0:014)

�0:078�
(0:011)

�1
(4:512)

� 1:188�
(0:228)

� 20:58 20:64 21:81 21 21:57

Residuals
Mean �0:009 �0:009 �0:009 �0:009 �0:009
S:D: 0:999 0:999 0:999 1:1 0:999

Skewness �0:122� �0:149� �0:131� �0:150� �0:146�
Kurtosis 3:428� 3:477� 3:373� 3:467� 3:428�

Jarque�Bera 18:71� 24:39� 16:02� 23:74� 20:66�

Q(20) 27:30 28:42 26:26 28:69 27:74
Q2(20) 13:32 15:46 12:24 15:71 13:91
Q21(20) 23:92 22:83 24:19 22:31 23:25

Restrictions
Positivity Y es Always Y es Always Y es

�2y 1:682 � � 1:814 Y es
ky 5:054 � � 6:811 Unknown

- Means that the moment is not de�ned.
* Signi�cant at 5% level.
Asymptotic standard deviations in parenthesis.
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Table 3.- Estimated models for daily AUD/USD exchange returns.

QGARCH TGARCH GJR EGARCH APARCH
! 0:001�

(0:000)
0:005�
(0:001)

0:001�
(0:000)

�0:008�
(0:002)

0:003�
(0:002)

� 0:035�
(0:005)

0:044�
(0:006)

0:039�
(0:006)

0:085�
(0:012)

0:042�
(0:006)

� 0:963�
(0:005)

0:959�
(0:006)

0:963�
(0:006)

0:992�
(0:002)

0:961�
(0:006)

� �0:006
(0:005)

�0:007�
(0:001)

0:010
(0:007)

�0:013�
(0:007)

�0:132�
(0:085)

� 1:321�
(0:310)

� 7:18 7:28 7:17 7:25 7:26

Residuals
Mean 0:003 0:002 0:003 0:002 0:002
S:D: 0:997 0:997 0:997 0:997 0:998

Skewness 0:299� 0:309� 0:318� 0:311� 0:314�

Kurtosis 4:256� 4:241� 4:300� 4:249� 4:237�

Jarque�Bera 403:96� 392:98� 437:49� 400:27� 412:85�

Q(20) 16:34 18:66 18:74 18:76 18:63
Q2(20) 19:89 18:58 16:18 18:73 17:90
Q21(20) 29:57 30:53 29:51 30:49 30:15

Restrictions
Positivity Y es Always Y es Always Y es

�2y 0:584 0:471 � 0:525 Y es
ky � 6:237 � 6:331 Unknown

- Means that the moment is not de�ned.
* Signi�cant at 5% level.
Asymptotic standard deviations in parenthesis.
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Figure 10.- Estimated conditional standard deviations, di¤erences between them and scatter plots
between conditional standard deviations of the S&P500 returns.
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GJR, EGARCH and APARCH, respectively.
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Figure 11.- Estimated conditional standard deviations, di¤erences between them and scatter plots
between conditional standard deviations of the AUD/USD exchange.
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