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Abstract

We propose a new multivariate order based on a concept that we will call
7extremality”. Given a unit vector, the extremality allows to measure the ”far-
ness” of a point in " with respect to a data cloud or to a distribution in the
vector direction. We establish the most relevant properties of this measure and
provide the theoretical basis for its nonparametric estimation. We include two
applications in Finance: a multivariate Value at Risk (VaR) with level sets con-
structed through extremality and a portfolio selection strategy based on the
order induced by extremality.

1 Introduction

A multivariate order is a valuable tool to analyze the data properties and to obtain
direct analogues for multivariate data of univariate order concepts such as median,
range, extremes, quantiles or order statistics. Generalization of these concepts to
the multivariate case is not easy due to the difficulty of defining total orders in R".
Chaudhuri[7] and references therein has studied different ways to generalize quantiles,
but the lack of a unique criterion for ordering multivariate observations is the key
problem in extending these concepts to several dimensions. Barnett [3] was among
the first to give an extension of univariate order concepts such as median, extremes
and ranges to the higher dimensional case. A flexible way to summarize properties
of multivariate data are processes based on generalized quantile functions which are
studied in Einmahl and Mason [11].

Multivariate orders allow comparisons and decision making in multiple output
scenarios; for example, in psychology and sociology to compare individuals by their
characteristics; in the financial industry is important to compare portfolios and per-
formance of investment funds (Zani et al [29]). The detection of outliers in multivari-
ate data is also a relevant application of the multivariate orders (Cerioli and Riani
6]).

Several extensions of usual orders from R to R"”, such as the Pareto-dominance
types and componentwise order, have the drawback of not being total orders. To
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facilitate the total comparison in the multivariate case the antisymmetry is waived;
as a consequence, preorders are obtained instead of orders. An example is defining
some function of interest f : R™ — R and ordering the data according to its f-
value ie., z < y < f(z) < f(y). Orders defined through either norms or pro-
jections onto some vector ¢ such as order by average or weighted average are of
this type (see Barnett [3]). A depth function assigns each point in R" a measure of
centrality with respect to the data cloud or probability distribution. This measure
decreases from the center outward (see, e. g., Zuo and Serfling [30] and Liu et al.
[19]) and thus a depth function provides a multivariate order that allows to define
multivariate versions of median, order statistics, multivariate spacing and tolerance
regions (Li and Liu [20]). Another example is majorization (Marshall and Olkin [22]).
The majorization order is based on the idea of homogeneity between the components
of a vector in R™ and is used in economy to compare the distribution of wealth in
populations. Other orders can be characterized by a Euclidean convex cone C; for
instance, for z, y € R" x <y <= y—x € C. This is the case of the componentwise
order, where C' = RT U{0} or C = R*. These are two of the most important convex
cones: the non-negative orthant and the positive orthant and are useful in the theory
of inequalities. It is customary to write x < y, if y — x belongs to the non-negative
orthant. (see Rockafellar [24]).

Next, we introduce the concept of extremality for multivariate data. The extre-
mality of z € R™ in the direction « is one minus the probability of a oriented convex
cone with vertex in . This cone will be called oriented sub-orthant. Different @
unit vectors define different ways to rank a multivariate sample. An important step
in multivariate data analysis taking into account directions has been made in Kong
and Mizera [18] where is adopted a very simple and quite natural projection- based
definition of quantiles. More recently Hallin et al [15] proposed a new multivariate
quantile based on a directional version of traditional regression quantiles, which also
are associated with a vector u. In the same paper they showed that the contours
generated by the directional quantiles coincide with the classical halfspace depth
contours. Our proposal of extremality is also based on directions. To calculate the
extremality of a point z € R™ we move the non-negative orthant in the direction
given by 4 and translating the origin to . The above determines a isomorph cone to
the non-negative orthant and will be denoted by C¥. Thus, the extremality of 2 in
direction « will be 1 —P (C}E) Unlike Hallin et al [15] where @ indicates the direction
of the ”vertical” axis in the regression, in this paper 4 is ”bisectrix” of the oriented
cone. For example, if @ = ﬁln then, C}g =z + R%. As a consequence of the extre-
mality concept we propose a order for multivariate data that allows to establish the
”farness” of x € R™ respect to points cloud or to a distribution function. Thus, this
extremality measure provides a statistical methodology for segmenting a multivariate
data sample, since the set of z* € R™ such that ]P’( g*) = ¢ can be interpreted as
a multidimensional quantile in the sense of Tibiletti [27] when @ = ﬁ[:l:l, o, E1
In fact, extremality is a starting point to study segmentation by considering other
type of directions such as the first principal component. The purpose of this paper
is to analyze structural properties of this multivariate order and to initiate a theory
of nonparametric statistical estimation of the extremality in the sample case. We
introduce an estimator and prove its weak and strong consistency.

From an applied perspective to insurance and finance, first we propose a version



of multivariate Value at Risk (VaR) based on extremality. The VaR as risk measure
has taken place as benchmark in the risk management techniques. Its approach
is based on a general notion of risk as the probability of not exceeding a certain
threshold quantity considered as dangerous. It has been strongly criticized from
Artzner [2] for not to encourage the diversification and defended by Heyde et al. [16]
for the robustness. For univariate risks, the VaR is simply the a— quantile of the loss
distribution function so the VaR is a risk measure easily interpretable and still remains
the most popular measure used by risk managers. However, for the multivariate
case to define VaR is more complicated due to existence of manyfold definitions of
multidimensional quantile (see Einmahl and Mason [11], Tibiletti [27], Chaudhuri
[7], Serfling [25] and Hallin et al. [15] for definitions of multidimensional quantile).
Bivariate versions of VaR have been studied in Arbia [1], Tibiletti [28], Nappo and
Spizzichino [23] and in general for multivariate case in Embrechts and Pucceti [12] and
more recently in Cascos and Molchanov [5]. We propose a multivariate VaR based
on extremality notion as its set levels. It enables to identify those relevant events for

risk management in the direction . Specifically 4 = %[il, +1])" our VaR coincides

with the VaR in sense Tibiletti [28]. Now, @ = \_/—%[1, ..,1] and @ = %[1, ..., 1] the
VaR in this paper coincides with multivariate lower orthant VaR and multivariate
upper orthant VaR respectively, discussed in Embrechts and Pucceti [12]. However,
taking into account other directions we can obtain conservative types of VaR.

As a second application of the multivariate order based on extremality we pro-
pose a portfolio selection strategy. Portfolio selection problem was considered in
Markowitz [21] whose philosophy is that a investor should hold a portfolio on the
set of couples risk-return which one cannot improve both at the same time. This set
was denoted as the efficient frontier. From Markowitz [21], several criteria have been
studied (see for instance, DeMiguel et al. [10] and references there in) for portfolio
selection. We propose to sort feasible portfolios according to the order induced by
the direction @ = %[1, —1] that favors the risk and does not favors the returns so we
must select the smallest portfolio. We also show that the portfolio selected under
this strategy belongs to the efficient frontier.

The paper is organized as follows. Section 2 introduces the definition and properties
of the oriented sub-orthant and how it is constructed. In Section 3, we present the
extremality measure and the induced multivariate order. The main properties and
consistency results are discussed in Section 4. A multivariate VaR is proposed in
Section 5 and a portfolio selection strategy is constructed in Section 6, where we
compare it with strategies previously used in the literature. Finally, in Section 7 we
summarize the main conclusions.

2 Preliminaries

We introduce in this section definitions and preliminary results needed throughout
the paper. Recall that a binary relation < on an arbitrary set C' is called a partial
order if it satisfies: reflexivity (x < z, for all x € C), transitivity (x =< y and
y Xz = x = z) and antisymmetry (x < y and y = © = & = y). Orderings that
satisfy reflezivity and transitivity are called preorders. A subset C' of R" is said to
be convex if (1 — Xz + Ay € C whenever x € C,y € C and 0 < A < 1.



Definition 1 (Extreme Point) Let C C R" be a convex set. Then x € C is an
extreme point of C if there not exist x1,x29 € C, 11 # T3, such that

x=Ax1+ (1 — N)za, for some 0<A<I1.

An extreme point of a convex set C' does not belong to the segment between any
two points in C. Points 1 and 3 in the left panel of Figure 1 are extreme, while the
right panel has a unique extreme point.

Figure 1: Points 1 and 3 are extreme, and 2 and 4 are not extreme points

Definition 2 A subset C' of R™ is a cone with vertex inv if v+ A(x—v) € C, for allx €
Cand A > 0.

C is a convez cone if it is a convex set and satisfies Definition 2. Clearly the nonneg-
ative upper orthant is a convex cone with vertex in 0. In this paper, we are interested
in rotations of this cone. To formalize the idea, we will use the QR factorization.

Definition 3 Let A be a m X n matriz with m > n. Then A can be factorized as
A=QR,

where Q) is an orthogonal matriz and

with Ry an upper triangular matrix.

Matrix @ can be obtained by using, for instance, Householder Reflections, Givens
Rotations or Gram-Schmidt Transformations (see Gentle [14], pages 95-103). Since
Q is an orthogonal matrix, Q' = Q~'. If the diagonal entries of R are required to be
nonnegative, @@ and R are unique (we will assume nonnegative elements in R along
the paper). The next result establishes that R is the first element of the canonical
basis in R™ in the QR factorization of any unit vector.

Proposition 1 Let @ = [uq,...,u,) be a vector with Euclidean norm ||dlls = 1. If
@ = QR, then R=11,0,...,0].

Proof. We have that
1=4dd=RQ'QR=RIR=RR.

Therefore, R has to be [1,0,...,0]" according to Definition 3. |



Consider the unit vectors ¢ = %[1, ...,1] and @ € R™. Writing
€= Q1R and U= Q2Ry,
Ry = Ry =[1,0,...,0] from Proposition 1
. Hence, Q4u = Q)€ and Q1Q44 = €. Thus,
Ri=Q1Q3 (1)

is an orthogonal matrix transforming  into a unit vector with identical components.
This transformation will send each vector x to a new orthogonal coordinates system,
where o has all its angles equal with respect to the new nonnegative axis coordinates,
that is, Rz = €. This transformation (1) allows to define the following special
oriented cones.

Definition 4 (Oriented sub-orthant C¥) Given a unit director vector i € R™ and
a vertex x € R™, an oriented sub-orthant Cg is the convex cone given by

Cl={z e R" | Ra(z —x) > 0}, (2)
where the inequality is componentwise.

Cg is a convex cone with vertex in = obtained moving the nonnegative orthant and
translating the origin to . Besides, according to Definition 1, C¥ is a convex set with
a single extreme point in x, the semi-line

l={zeR"|z=a+ )i, AX>0} (3)
is totally contained in C¥ and its angles with respect to the new nonnegative semi-axis
coordinates are equal to cos ™! (ﬁ) Note that when @ = ﬁ[il ~-+1) and v = 0,

C¥ coincides with the 2" orthants in R™.

Example 1 Consider R?. If with @ = [u1,us)’ and x = < 21 > then,
2

| 2 _ _
C;f _ 21 cR? £ Ul + U2 U2 — U 21— X1 > 0 ' (4)
29 2 U —u2 U]+ us 29 — X9 0
Example 2 In R?, the director vector @ can be determined by an angle 0 < 6 < 27
indicating the direction of the cone. Then @ = [cosf,sinf]" and

t={(3) e (6% W6-B)(522)=(0)) o

Thus, C¥ is a convex cone obtained rotating the non-negative quadrant by an angle
(6 — &) and translating the origin to (x1,22)". Besides, the semi-line (3) will be

bisectrix of Cg with angles cos™! (%) with respect to the rotated nonnegative semi-

axis.

Figure 2 presents the oriented sub-orthants Cf,Cgl,C(“;Q and Cgé with vertices in

A,B,C,D and @ = [cos 0,sin 0], for 0 = %, 7, %’r, %, respectively.
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Figure 2: Examples of oriented sub-orthants
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Clearly, Cj,, Cjt, Cyt and Cjt are (+,+); (—,+); (=, —); (+,—) quadrants, respec-
tively. In R", if @) = €, Wp = —€’ then Cj' and Cy? are, respectively, the nonnegative
and nonpositive orthants, since R,; = I,, and Rz = —I,, (see equation (1)).

Proposition 2 For any u, if x € Cg then CI C Cg.

Proof. Suppose that z € CZ. From Definition 4, Ryz(z — ) > 0, and Rg(xz —y) >0
by hypothesis. Then, Rz(z—y) = Ra(z—2)+Rg(z—y) > 0 and, therefore, z € C. W

The following Proposition shows that there exists at least a transformation that
allows to compare componentwise two points in R™.

Proposition 3 If x # y € R" and 4 = ﬁ;:gh, where || - || is the Euclidean norm
then,

i) Ray < Rgx
i) C¥ c Cl.

—

Proof. i) According to transformation (1), for any unit vector @, Rzu = €. In

particular, for @ = ﬁ;:z')', then Rz(z — y) > 0 and therefore, Rzy < Rgzx. ii) Since

Ra(x —y) >0,z € Cg and from Proposition 2 C¥ C Cg. |

3 Extremality Measure

Let § be the class of distribution functions on R™, let X be a random vector with
distribution function F' € § and probability distribution Pr. Given a unit vector @
and x € R", denote by P, ; the measure Pr of C};, that is,

Pra= /cg dPp = Pp (C};‘) : (6)



If Pr is absolutely continuous and the multivariate random vector X has joint density
function fx, then

Prg= . fx(x)dx. (7)

Proposition 4 shows the general way to calculate P, z when x € R? for any orientation.

Proposition 4 If (X,Y) is a random vector with joint density function fxy and
u = [cos(0),sin(0)]" as in the Example 2. Then,

o x cos(0—T)+ysin(0—T)—tcos(9—7)
i . sin(0—7)
PF (C(xyy)> - / /xsin(@’T)+ycos(9")+tsin(9") fXY t S det 1{96 77r 27r)}
z + cos(@fﬁ'—)4

zsin(Gf%)fycos(Qf%)ﬁ»scos(Gfﬂ) )

+

sin(6—7) t dtd
S S
zcos(Gf%)ny sin(97%)73 sin(97%) fXY
v cos(0—7)

Loe(z2)

—x sin(Gfﬁ'—)Jﬁy cos(Gfﬁ'—)+t sin(97

o
cos(Gf%)
(t,s)dsdt | 1 5
+ /:1,‘ /zcos(Gg—)+ysin(9£—)tcos(9£—) fXY {66 %77)}

sin(6— %

z cos(0—F)+ysin(0—F)—ssin(0—F)

Y cos(0—1T)
+ / / - f ‘ fxv(t,s)dtds 1{96(%,%)}

zsin(0—F)—ycos(—F)+scos(0—F)
sin(Gfir—)

4 </:O /yoo ny(t,s)dsdt> Lp_zy + (/_; /yoo fXY(t,S)dsdt> Lig_sny
n </_g; /_: Fxy(t, s)dsdt> Lig_szy + (/:o /_io fxv(t, s)dsdt> Lip_12}-

In higher dimensions is more difficult to give a general expression for Pg (ij) unless
the unit vector u is given numerically.

Let t = Rzx be the image of x under the transformation (1). Clearly, x = Rzt
and the absolute value of the Jacobian is 1. If we write Dy = {t € R™ | t > x}, then
(7) is equivalent to

Poa= [ fx(R;'t)dt. (8)
Dx
If x1,...,2p, is a sample of the random vector X, the empirical version of P, 7 is
given by
1 m 1 m
Pra=— Z; Yoyeer} = Z; LiRq(as—2)20h (9)
j= j=

which is the proportion of the data cloud belonging to CZ.

As we have shown, P, ; is the probability of an oriented sub-orthant. We can
now formulate the extremality notion. This concept is the starting point for defining
a new multivariate data order.



Definition 5 (Extremality Measure) The extremality of x € R™ with respect to
a distribution function F in direction @ is a mapping Ez(z, F) : R" x § — RTU{0},
defined by

Exlw, F) = P (CF) =1 Prg, (10)

where Py i is given by (6).

The extremality of z € R™ respect to a data cloud X = {z1,...,z,} in direction ,
denoted by &z(x,X), is defined replacing P, ; by I:’xﬁ

High extremality of a point  means that the convex cone C¥ contains a small
part of the total mass and possibly z belongs to some tail of the distribution. Hence,
high extremality can be interpreted as ”farness” in the distribution.

Figure 3 presents the extremality curves of level 0.99; 0.95; 0.90; 0.85 when F
is a bivariate distribution with independent marginal distributions U (0 1). Left side
in direction @ = -%[1, 1] and right side in direction [0, 1]. Figure 4 shows the

V2
extremality surfaces of level 0.99; 0.95; 0.90; 0.85 in the direction @ = %[1, 1, 1] of
a multivariate distribution F' with three independent marginal distributions U(0 1).
All points on a particular curve or surface have the same extremality with respect to
the distribution F'.

15 { R
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Figure 3: 5%[1’ (@, F) =aand &g (2, F) =a
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Definition 5 induces a multivariate order as follows.

Definition 6 Given z,y € R", y is said to be more extreme than x respect to F in
direction 4, denoted x <g_ y if, and only if,

Ea(x, F) < Ea(y, F).

For any x,y € R", any distribution function F' € § and any « it holds that either
x <g,y ory<g. x. However, <g. is not a partial order in R", but a preorder. Be-
cause, although it satisfies reflexivity and transitivity properties, it does not satisfy
antisymmetry. If F'is an absolutely continuous distribution in the interval [a, b], the
extremality order with & = 1 coincides with the usual order in R.

4 Properties of extremality measure

The extremality measures are nonnegative and bounded. Next we establish its ana-
lytic properties that support the ordering proposed in the previous definition.

Property 1 For any xg € R™ and any absolutely continuous F' € §,

Ei(xo, F) is continuous in .
Proof. Let fx be the density function corresponding to F. From (8) and Definition
5, we have that

Ei(xo, F)=1— fx(RZ't)dt,
Da,

which clearly is continuous in @ since R;l is a linear transformation. |

The following property indicates that the vertex x has minimal extremality in the
set CY.



Property 2 B
Ealx, F) < Eg(x™, F), forall x* €Cy

Proof. Suppose that z* € C¥. From Proposition 2,
¢l c 7 = Pp (cg) < Pp (cg) — Ea(x, F) < Ea(a™, F).
[ |

Property 3 Let X be an n— dimensional random variable with distribution function
F. Let A be an orthogonal matriz and let b € R™. Then

Eai(Az + b, Fax i) = Eglx, Fx)

Proof. Since A is an orthogonal matrix and @, € are unit vectors, A is also a unit
vector. Using Proposition 1, their QR factorization are given by

€=Q1Ry, @ = QoRy, AU = Q3R;, where Ry =[1,0,...,0]' e R". (11)
Therefore, applying the transformations (1), we have
Rg=Q1Q> and Rag = Q1Q3. (12)

As R; has diagonal with non-negative entries, the QR factorization of  is unique.
Therefore, from (11)

% = QR = AQ3R;, which implies that Q2 = A'Q3,
and, from (12),
Ri = Q1Q5 = Q1Q54 = RazA. (13)
Then, using (13) in the last equality, we obtain
Eaa(Az +b, Faxip) = 1= Pr,,,, (CAL,)

=1—Pr(Razg(AX +b— Az —b) > 0)
=1—Pp(RagA(X —z)>0), (from (13))

—1-Pp(Ra(X —2)>0)=1—-Pp (cg’) = Ea(z, Fy).

Proof. Let B = {b € R™: ||b|| > ||lz||}. Suppose that z € C¥. Then Rg(z —x) > 0
(see equation (2)) and Rzz > Rgzx. Using the transformation defined in (1),

. € o
Rﬁu = Rﬂ‘m =e,

and then,
Razz > ||z||€ > 0.

10



Therefore, C¥ C B since
I2? = 2’z = 2 R'gRaz = (Raz)' Raz = |[Raz|l? > ||zl [1€l)? = |12
It follows that
0< Pr (CF) = Pr(Ra(X —2) 2 0) < Pr (IX] 2 |lal]).

And the proof is complete letting ||z| — oo [ |

4.1 Convergence Analysis

In this section we propose an estimator of the extremality measure and establish
its consistency. Let Xi,...,X,, be independent random variables with a common
distribution function Fx. The empirical distribution is

_t{k : XpeB, 1<k<m}

Pr.m(B) — , BeB. (14)

Following (10), a natural empirical counterpart of Ez(x, F) (that is, the extremality
measure) is

~

gﬁ(l‘,Fm) =1- Pp’m <Cg> =1- Pmﬂ,

where F,,, denotes the empirical distribution function.
In Theroem 1 below, we show that Ez(x, Fy,,) is a strongly consistent estimator
of £z(z, F') and obtain its asymptotic distribution.

Theorem 1 Let X be a random vector with distribution function F'. Then,
i) Eq(x, F) — Eg(x, F) a.s., as m — oo
i) SUp, zern | Ea(x, Fy) — Eglz, F) |— 0 a.s, as m — oo
Eq(x,Fm)—Ea(z,F)

Veéa(x, F)(1—Ez(x,F))
random variable.

Ly .
i11) m? — Z, weakly as m— oo, where Z is a standard normal

Proof. Let I4(X) be the indicator function of set A. Since Xji,...,X,, are i.i.d
random vectors, I (Cﬁ)(Xi), i = 1,2,... are also i.i.d random variables with mean

Pp (C¥) and variance Pp(CZ)(1 — Pp(C¥)). Let C be the class of all oriented sub-
orthant C¥ with x, 7 € R™. From equation (14),

Prn (CF) = % > T(eg) (X)-
i=1

i) From Strong Law of Large Numbers, (see, e. g., Gaenssler [13], page 2) for each
CclecC
Pro, (Cg) — Pp (Cg) a.s., as m — oo.

Therefore, ]59“; — P, i a.s., and from Definition 5,

Ea(x, F) — Eg(x, F) a.s., as m — oo.

11



ii) Using a Glivenko - Cantelli Theorem (see, e. g., Gaenssler[13] page 16), we have
that

ngeré Prm (CZ“Z) - Pr (C;T)

and, from Definition 5,

sup
x,i€R?

Ea(x, F) — Ealx, F)‘ — 0 a.s.

iii) From Central Limit Theorem , for each C¥ € C
PF,m (Cg) - PF (Cxﬁ)
VP (C2) (1= Pr ()

where Z is a random variable with standard normal distribution. According to
Definition 5 the previous expression can be rewritten as

Ea(

v/

— 7, as m — 00,

1
m2

1
m2 — Z, weakly, as m — o0.

z, Fy) — Ea(x, F)
z, F) (1 — &z, F))

5 Financial applications: Multivariate VaR

An important goal for a risk manager is to find the maximum aggregate loss that
occur with probability «. Value at Risk (VaR) is the risk measure most used in the
univariate case. VaR is the a— quantile of the loss distribution function. If F' is the
loss distribution and « € [0, 1] then

VaRy(X) :=inf{z e R | F(z) > a}. (15)

A natural idea to study risk for portfolio vectors X = (X1,...,X,,) is to consider a
function f : R™ — R and a one-dimensional risk measure on f(X). Thus, the VaR
of the joint portfolio is that associated to f(X). Examples can be found in Burgert
and Riischendorf [4] where,

n
f(X) = ;Xi or f(X)= igar}:(Xi.

The multivariate VaR analogue of univariate VaR is discussed in Embrechts and
Pucceti [12] and Cascos and Molchanov [5]. In [12], the VaR is defined through
the a- level sets of the joint loss distribution function and the joint loss tail function,
while in [5] it is defined through the level sets of depth functions called depth-trimmed
regions; more specifically, the multivariate VaR notion is constructed from halfspace
trimming regions.

In this section, we introduce a multivariate VaR based on the extremality measure
previously defined; indeed, the VaR can be seen as its level sets. If F' is a multivariate
distribution function, consider the sets

AYF) = {z eR": Ei(x,F) > 1 —a}.

12



The boundary of the set A%(F) can be interpreted as an oriented multivariate value
at risk in the level o and denoted by

VaRY(X) = 0AL(F). (16)
In particular, for @ = € and @ = —€, VaRg(X ) is the upper-orthant value at risk and
the lower-orthant value at risk, respectively, discussed in Embrechts and Puccetti
[12]. However, directions as 4 = ﬁ][il, ..., ®1] and principal components can be

interesting in financial applications. Figure 5 shows the VaR of level 0.05 in the
direction @ = € for three cases of bivariate distributions with marginals independent
and identical distributed as U(0,1), N(0,1) and Exzp(1).

Uniforms Normals Exponentials

Figure 5: M Theoretical curve VaR§ o5(X) for independent bivariate distributions.

The VaR%(X) can be estimated nonparametrically by using a multivariate sample
{z1,...,2,} and fitting a surface on the set

SUF,) = {x, o (w,,Fm) =1- a} :

However, it may be possible that S%(F;,) = ) or there are few elements that satisfy
the strict equality. To solve this problem, we consider the set

g,h(Fm) = {332 :

&;(:Ei,lfm) —1+o¢‘ gh},

where h is a slack. Since SZ(F,,) C S%,(F,,), a more accurate estimation of the
boundary can be made. The direction éiven by @ may have influence in the esti-
mation of Sih(Fm). Indeed, the classical methods used to smooth functions may
fail because the surface of interest is not a function in all the cases. Therefore, to
estimate VaRg(X ), we propose to change the original coordinates as follows.

Suppose that Saﬂ',h(F) = {x1,22...,2;}. Transforming the set according to (1),
we get

Rgsgyh(F) = {’Rgazl, Rﬁxg ‘o ,’Rﬁxk} . (17)
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Now, the smoothing of the points in (17) is done by usual methods, and the result-
ing surface is transformed back to the original system. This is summarized in the

following algorithm:

Input:
i, o, h,
fori =1tom
& = Ealwi, Fn)
if €& —1+a|<h
T; € Sgh(fﬁm)
end
end
Fitting a function f on RgSgh(Fm)
VaR:(X)=R.'f

and the multivariate sample X = (x1, ...

, Tm)

For smoothing we have implemented gridfit, a surface modelling tool available in
(http : //www.mathworks.com/matlabcentral / fileexchange/8998).

Figure 6 shows the estimation of the respective theoretical curves VaR§ o5 drawn
in Figure 5. We have considered h = 0.01. Here the VaR is calculated in the direction
i = € 80 Ry is the identity matrix. An oriented sub-orthant in direction @ = € and
vertex in any yellow point contains a mass less or equal to 0.05. Therefore the

extremality of any of those points is greater than 0,95.

Normal

Uniform

Figure 6: &z (xz,ﬁ’> >095 W Sgyh(F) B Estimated VaR§ o5
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Figures 7 and 8 show daily negative returns of two leading companies in Spain,
since 29/10/2001 until 08/01/2008. In Figure 7 the VaR is estimated in the classical
direction « = €} while in Figure 8 the VaR is estimated using ¢ = p¢ where p¢ is
direction of maximum variability, that is, the direction given by the first principal
component of the data. VaRE can be interpreted a more conservative risk measure.
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Figure 7: & @;F) > 0.95 Estimated VaRg
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Figure 8: = &z (a:,-, F) > 0.95 Estimated VaR§,s
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Figure 9: Ee (xi, F) > 0.95. | [Estimated VaR§ .
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Figure 10: Ex (ml,ﬁ> > 0.95. | |Estimated VaR' ..

Figures 9 and 10 show estimations of VaRg_% and VaRg_C%, respectively, for
daily negative returns of three leading companies in Spain, since 29/10/2001 until
08/01/2008. Note that the risk measure depends heavily on the selected direction.
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6 Financial applications: ordering portfolios

Next, we propose a strategy based on extremality for selecting portfolios. Instead of
the usual optimization techniques, we work with the order induced by extremality in
the direction @ = %[1, —1J.

Consider the general portfolio optimization problem
1 N

min | p(Rw) — ;f(Rw)] , st Zwi =1, (18)
i=1

where w € RY is the vector of portfolio weights and R is a M x N data matrix
(M denotes number of returns of N assets). p is a risk measure based on the data;
for instance, a risk statistic or a natural risk statistic (Heyde [16] and Shabbir [26]).
f :R™ — R is a function that quantifies the returns and + is the risk-aversion
parameter. When p is the variance and f(z) = x/]\14”f , we have the classical portfo-
lio model mean-variance discussed in Markowitz[21]. In this case, problem (18) is
reduced to

N
- 1
min [w’Zw - —,&w} , st E w; = 1. (19)
w ot .
i=1

The model proposed in Markowitz [21] is relevant in modern portfolio theory which
tries to maximize return and minimize risk. Its philosophy is that investors decide
portfolio weights based on the trade-off between expected return and risk. Markowitz
[21] showed that an investor should hold a portfolio belonging to the intersection of
the set of portfolios with minimum variance and the set of portfolios with maximum
return. The set of possible options is usually called the efficient frontier, which con-
tains portfolios for which one cannot improve risk and return at same time. When
v — 00, the problem (19) corresponds to the minimum-variance portfolio. Note
that for different values of v, we obtain the different mean-variance portfolios on the
efficient frontier.

Each w, in the hyperplane Zf\il w; = 1 generates a couple (p(Rw), f(Rw)) of
feasible portfolios. Figure 11 presents possible combinations of assets plotted in risk-
return space. We see that the efficient frontier are the maximum return portfolios
for a given level of risk. Conversely, for a given amount of risk, the portfolio lying
on the efficient frontier represents the combination offering the best possible return.
Portfolios in the A square are better than portfolios in the B square because they have
higher returns with less risk. Similarly, portfolios in C' are better than portfolios in B,
but those in A, C' are not comparable in terms of return and risk simultaneously. We
propose a method based on the extremality notion that permits a total comparison
between feasible portfolios. With our approach, portfolios in A can be compared with
portfolios in C.

We now formalize this idea. Let € be the set of possible weights for a collection
of N assets and let P given by,

PO —R2

W — Py = (puw; Tw)-
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Figure 11: Feasible Portfolios

Let S = P(Q) C R? be the set of possible values of (p,r). The following definition
shows a way to compare portfolios in terms of (p,r) values.

Definition 7 Let w and w' € Q and @ = %[1, —1]. We say that w dominates w'’
if, and only if, Py <g; Pu-

Several criteria for portfolio selection have been studied in the literature (see DeMiguel
et al. [10] and references therein). The simpler strategy to implement is given by
w = %1 ~N. Almost all models can be expressed as (18). In this case, the solution
is a portfolio in S that minimizes the scalar projection on the vector [1, %]’ , where
~ is the risk-aversion parameter. The main difference between models is how risk
is measured and estimated. It is usual to consider the standard deviation; however,
other estimators less unstable can be used for this purpose. For example, DeMiguel
and Nogales [9] propose portfolio policies that are based on robust estimators. Con-
straints on weights are also a difference between models (see Jagannathan and Ma
[17], DeMiguel et al [9]). We propose to sort the portfolios according to Definition 7
and to choose the smallest as the optimal portfolio. The following Proposition shows
that our strategy can be linked with the Markowitz’s solution since the optimal port-
folio belongs to the efficient frontier.

Proposition 5 If P, <g¢. Py for all P, € S then P, belongs to the efficient
frontier.

Proof. Suppose that P, does not belong to the efficient frontier. Then, there is a
portfolio P, = (py,ry) € S, such that p, < p, and 7, > ry, this means that, for

= 501,17,
Puw € C%U and, from Property 2, 571(PU,F7>) < 5@(7311,,13’73), (20)
which contradicts the fact that Py, <g. Pyy. |

In order to evaluate the performance of the proposed Minimum- Extremality port-
folio selection (MEP), we consider three classical strategies: Mean-variance portfolio
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with risk aversion parameter 7 = 1 (MEANVAR), Minimum- Variance portfolio with
shortsales unconstrained (MINU), and Equality-weighted Portfolio (4). The com-
parison is carried out using out-of-sample portfolio mean, out-of-sample portfolio
risk, out-of-sample portfolio Sharpe ratio, and portfolio turnovers. We use the tech-
nique ”rolling-horizon” implemented in DeMiguel and Nogales[8], which depends on
a window 7 to perform the estimation. For our case of monthly data, 7 = 120 which
correspond to 10 years. Thus, using the monthly data over the estimation window,
we estimate the feasible portfolios set S through the simulation of the five thousand
points of the hyperplane ZZJ\LI w; = 1 with w > 0 and we choose the minimum extre-
mality portfolio (MEP) acording to the Definition 7. In each estimation window,
we compute (MEANVAR), (MINU) and (). This procedure is repeated month to
month including the next month and dropping the earliest month until the end of
the data set is reached.

Comparison criteria are calculated as follows (see DeMiguel [8], [9]):
e Out-of-sample portfolio mean (Mean)

M-1
ni 1 i . 1
W= > (W) req, i€ {MEP, MEANVAR, MINU, N}

t=1

where w! denotes the portfolio weight vector chosen at time ¢ under strategy 4,
ry+1 denotes the asset returns at time ¢ + 1 and M is the sample size

e Out-of-sample portfolio risk (Risk)

' 1 M-1 . 3
o= <M—T —1 > (@d)ress = i) )

t=1

e Out-of-sample portfolio Sharpe ratio (SR)

A
—~ 1 M
O—Z
e Turnovers
M—-1 N
i i
Turnoverl = —— U—r_1 E E (‘wj,t+1 - wj,t‘)
t=71 j=1
M—-1 N
i i
Turnover2 = IV —] (’wj,t-i-l - wj,t+’> g
t=71 j=1

where w; ; is the portfolio weight of the asset j chosen at time ¢. The Turnoverl
can be interpreted as a measure of the stability between weights in each period
for each asset. For example, in the case of % strategy, the Turnoverl= 0. The
smallest Turnoverl gives the idea of more stable strategy and this strategy has
the advantage of being a credible strategy for the investor. In the Turnover2
wj ++ is the portfolio weight before rebalancing, but an ¢ + 1 and w] 141 the
desired portfolio weight at time ¢+ 1, after rebalancing. Unlike Turnoverl with

19



1
N

+ strategy, Turnover2 may be different to zero due to changes in asset prices

between ¢ and t 4 1. Turnover2 can be interpreted as the average percentage of

wealth traded period to period and is related to transaction costs.

Regarding the data sets, we have used some portfolios that are quite popular
among practitioners and have been selected from Kenneth French web-site
http : / /mba.tuck.dartmouth.edu/pages/ faculty/ken. french/data_library.html

These data are monthly asset returns and are presented in the Table 1, with
the abbreviation used to refer to each data set, the number of assets in each

data set and the time period.

Data Sets Abrev. N Period

5 industry portfolio representing the U.S. stock market 5Ind 5 07/1963-12/2004
6 Fama and French portfolios sorted by size and book-to-market 6FF 6 07/1963-12/2004
10 industry portfolio representing the U.S. stock market 10Ind 10 07/1963-12/2004
25 Fama and French portfolios sorted by size and book-to-market ~ 25FF 25 07/1963-12/2004
30 industry portfolio representing the U.S. stock market 30Ind 30 07/1963-12/2004
48 industry portfolio representing the U.S. stock market 48Ind 48 07/1963-12/2004

Table 1: Data sets of monthly asset returns.

Tabla 2 reports the out-of-sample criteria for the portfolios considered and the

strategies analyzed. Some points can be addressed

e Out-of-sample portfolio mean We see that the out-of-sample portfolio mean

of the sample based in minimum extremality strategy (MEP) is often higher
than other strategies. This is attractive to investors, but it is not the main
criterion for choosing a good strategy, since investors want to take into account
the risk.

Out-of-sample portfolio risk We have measured the risk with the stan-
dard deviation and we find that out-of-sample risk of the minimum extremality
portfolio (MEP) strategy is much lower than that mean-variance strategy for
all portfolios considered, even in the % strategy for (5Ind, 6FF, 30Ind, 48Ind)
our strategy is not improved.

Out-of-sample portfolio Sharpe ratio Comparing the Sharpe ratios of the
MEP satretgy, we see that it has higher Sharpe ratio than the equally weight
(%) for all data sets, has higher Sharpe ratio than mean-variance strategy
except in (6FF) and it has higher Sharpe ratio for the two largest portfolios.
To have a Sharpe ratio better than (%) is considered a good benchmark.

Turnovers Obviously % has a Turnoverl= 0 since portfolio weights are equal
period to period. Turnoverl of (MEP) strategy is much lower than that mean-
variance strategy for all portfolios considered; this is not surprising because as
explained in DeMiguel and Nogales [9] the mean-variance strategy generates
portfolio weights extremely unstable. However the turnoverl of (MINU) and
(MEP) strategies reflects that the portfolio weights obtained by (MEP) fluc-
tuates less in the portfolios of larger number of assets. Also the best portfolio
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5Ind Portfolio

Strategy Mean Risk S.R. Turnoverl Turnover2
MEP 0.0112 0.0455 0.2454 0.2077 0.2122
MINU 0.0107 0.0432 0.2486 0.0870 0.1282

MEANVAR 0.0077 0.0884 0.0868 0.4543 0.4987
% 0.0111 0.0460 0.2411 0 0.0364
6FF Portfolio

Strategy @ Mean Risk S.R. Turnoverl Turnover2
MEP 0.0139 0.0478 0.2908 0.4722 0.4781
MINU 0.0144 0.0406 0.3537 0.1722 0.2257

MEANVAR 0.0191 0.0603 0.3165 0.6724 0.8429
% 0.0130 0.0490 0.2641 0 0.0389
10Ind Portfolio

Strategy Mean Risk S.R. Turnoverl Turnover2
MEP 0.0117 0.0448 0.2612 0.3959 0.4020
MINU 0.0108 0.0376 0.2861 0.1450 0.1708

MEANVAR 0.0065 0.0846 0.0760 0.6394 0.7013
% 0.011  0.0435 0.2560 0 0.0344
25FF Portfolio

Strategy Mean Risk S.R. Turnoverl Turnover2
MEP 0.0161 0.0560 0.2878 0.5188 0.5295
MINU 0.0159 0.0390 0.4076 0.7314 0.7923

MEANVAR 0.0215 0.1113 0.1932 3.4864 4.1988
% 0.0135 0.0509 0.2660 0 0.0402
30Ind Portfolio

Strategy Mean Risk S.R. Turnoverl Turnover2
MEP 0.0127 0.0479 0.2644 0.2808 0.2881
MINU 0.0097 0.0404 0.2410 0.4521 0.4821

MEANVAR 0.0060 0.1061 0.0568 1.9354 2.2062
% 0.0116 0.0479 0.2433 0 0.0374
48Ind Portfolio

Strategy @ Mean Risk S.R. Turnoverl Turnover2
MEP 0.0120 0.0482 0.2495 0.4341 0.4399
MINU 0.0086 0.0442 0.1944 0.7779 0.8124

MEANVAR 0.0056 0.2401 0.0233 3.5479 4.7163
% 0.0117 0.0488 0.2390 0 0.0383

Table 2: Out-of-sample perforﬁlance for portfolios considered



in terms of Turnover2 are % We can see in Table 2 that our proposal (MEP)
has lower transaction costs than (MEANVAR) for all portfolios considered and
lower transaction costs than (MINU) for (25FF, 30Ind, 30Ind, 48Ind).

7 Conclusions

This paper introduces an extremality measure in multivariate problems analysis which
induces a natural order in R", allowing an extension of the quantiles studied in
Tibiletti [27]. The multivariate Value at Risk defined in this paper generalizes those
given in Embrechts and Pucceti [12] and Tibiletti [27] by the inclusion of directions
u. We give a portfolio selection strategy based on order induced for extremality.
Generally is quite difficult to find a strategy that delivers both a high Sharpe ratio and
low Turnover. Nevertheless, from Table 2, (MEP) strategy offers a good behaviour
in both criteria respect to (MINU) and (MEANVAR) strategies in the portfolios of
larger number of assets.
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