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1- INTRODUCTION 

The assumption that stock returns are normally distributed is widely used, implicitly 

or explicitly, in theoretical finance. Investors' preferences can be mode led in a simple way 

by assuming mean-variance behavior. However, as is well known, this type of behavior is 

consistent with the more general criterion of expected-utility maximization under either one 

of two conditions, namely, that investors' utility functions are quadratic or that stock returns 

are (jointly) normally distributed. Since, as is also well known, a quadratic utility function 

exhibits some implausible properties, l mean-variance behavior is usually justified through 

the assumption of normally-distributed stock returns. Therefore, the widespread use of 

mean-variance behavior, together with the implausibility of quadratic utility functions, may 

help to explain the popularity of the normality assumption for stock returns. Such popularity 

is, of course, strengthened by the fact that normally-distributed stock returns are an 

implication of the random walk theory of stock prices. 

From a theoretical point of view, the normality of stock returns is questionable if 

information does not arrive linearly to the market, or, even if it does, if investors do not 

react linearly to its arrival. In both cases, a leptokurtic distribution of stock returns should be 

observed. If information arrives to the market in infrequent clumps instead of in a linear 

fashion, investors would be forced to react similarly; in other words, if the distribution of 

information is leptokurtic, so should be the distribution of stock returns. Alternatively, if 

information arrives to the market linearly but investors ignore it until trends are well in 

place, and then react in a cumulative fashion to all the information ignored up to that point, 

a leptokurtic distribution of stock returns would also be obtained;2 see Peters (1991). Thus, 

both arguments suggest that the distribution of stock returns should have fatter tails than 

expected under the Normal distribution.3 

I A plausible utility function should exhibit decreasing absolute risk aversion, constant relative risk aversion, 
and increasing risk tolerance. However, the quadratic utility function exhibits increasing absolute risk aversion, 
increasing relative risk aversion, and decreasing risk tolerance. 

2 Note that under this second theory, unlike under the first, changes in stock prices depend on past information, 
thus contradicting the efficient market hypothesis. 

3 The leptokurtosis in stock returns motivated the proliferation of ARCH-type models, which seek to 
incorporate the information contained in the tails of a distribution of stock returns into time series models. For 
a literature review, see BoIIerslev, Chou, and Kroner (1992). 
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Empirical evidence against the normality assumption, on the other hand, has been 

mounting since the pioneering articles by Mandelbrot (1963), Fama (1965), and Clark 

(1973). Mandelbrot (1963) argued that price changes can be characterized by a stable 

Paretian distribution with a characteristic exponent less than 2, thus exhibiting fat tails and 

an infinite variance.4 He directly tested the infinite-variance hypothesis by computing the 

sample variance of a large number of samples containing the returns of cotton prices, and 

found that the variances did not converge to any limiting value. Rather, they evolved in an 

erratic fashion, just as would be expected under the infinite-variance hypothesis. 

Fama (1965), using the thirty stocks ofthe Dow lones Industrial Average, confirmed 

Mandelbrot's (1963) hypothesis that a stable Paretian distribution with a characteristic 

exponent less than 2 describes stock returns better than a Normal distribution. Thus, since 

stable Paretian markets tend to evolve in jumps (rather than continuously and smoothly like 

Gaussian markets), he concluded that stocks are riskier than indicated by the standard 

deviation of a Normal distribution.5 

The infinite variance of stable Paretian distributions, and the fact that if stock returns 

follow this distribution then the usual statistical tools may be badly misleading, led many 

researchers to look for alternatives. Clark (1973) argued in favor of a finite-variance 

subordinated stochastic process and found that a member of this class (the lognormal 

distribution) fitted data on cotton futures prices better than a stable Paretian distribution. 

More recently, using weekly data for the period 1928-89, Peters (1991) found that 

the distribution of the S&P 500 stock returns exhibits negative skewness, fat tails, and a 

high peak. He also found that the probability of a three-sigma event under the empirical 

distribution of stock returns is roughly twice as large as the probability that would be 

expected under a Normal distribution. 

We analyze in this article the distributions of stock returns of thirteen European 

securities markets during the first half of the decade. We start by testing the normality 

assumption for daily stock returns, which we clearly reject in all markets. Then, we attempt 

to find the specification that best fits the empirical distribution of stock returns in each 

4 When the characteristic exponent of a stable Paretian distribution is exactly equal to 2, then the Normal 
distribution is obtained. Hence, the latter is a special case of the former. 

5 In fact, in a stable Paretian market, the sample standard deviation cannot be used as a meaningful measure of 
risk. This is due to the fact that this statistic exhibits a very erratic behavior in the sense that, as the sample size 
increases, it does not converge to any given value. 
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market, and find overall support for the scaled-t distribution and partial support for a 

mixture of two Normal distributions. Then, we quantify the magnitude of the error that 

stems from predicting the probability of obtaining returns in specified intervals by using the 

Normal distribution, and find that such specification significantly underestimates the risk of 

investing in European stocks. Finally, we analyze the distributions of monthly stock returns, 

and find that they are reasonably-well described by a Normal distribution. 

The rest of the article is organized as follows. In section II, we describe the data and 

run three tests of normality. In section Ill, we introduce the statistical distributions to be 

fitted to the data. In section IV, we report and discuss the results of our estimations. In 

section V, we assess the magnitude of the error that stems from predicting the probability of 

obtaining returns in specified intervals by assuming a Normal (instead of a more 

appropriate) distribution. In section VI, we analyze the distributions of monthly stock 

returns. And, finally, in section VII, we summarize the main findings of our study. An 

appendix with figures concludes the article. 

11- DATA AND TESTS OF NORMALITY 

The sample under consideration consists of thirteen European securities markets, 

namely, Austria (AUS), Belgium (BEL), Denmark (DEN), England (ENG), Finland (FIN), 

France (FRA), Germany (GER), Italy (ITA), Netherlands (NET), Norway (NOR), Spain 

(SPA), Sweden (SWE), and Switzerland (SWI). The behavior of each of these markets is 

summarized by the Financial Times Actuaries Indices, published daily in the Financial 

Times. We also analyze the distribution of a World index (WOR), which is computed on the 

basis of 2,249 stocks worldwide. The sample period extends from January 1, 1990, through 

December 31, 1994; that is, 1,304 daily data points from the first half of the decade. The 

temporal behavior of the fourteen indices under consideration is shown in part Al of the 

appendix. 

The series analyzed for each market is the series of returns, where returns are defined 

as the first difference of the natural logarithm of each index; that is, Rt =1 OO[ln(It)-ln(lt_I)], 

where Rt and It are the return and the index in day t, respectively. Table 1 below summarizes 

some relevant information about the empirical distributions of stock returns under 

consideration. The statistics reported are the mean, standard deviation, minimum anrt 
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maximum return during the sample period, coefficients of skewness and kurtosis, and 

standardized coefficients of skewness and kurtosis. 

TABLE 1: Sam[!le Moments of the Distributions of Dail~ Stock Returns 

Market Mean SO Min Max Skw SSkw Krt SKrt 

AUS -0.0064 1.1853 -7.5998 6.9370 0.1758 2.5918 6.1939 45.6561 

BEL -0.0020 0.7190 -5.5734 6.9116 0.1069 1.5761 14.6793 108.2030 
DEN -0.0030 0.8232 -5.8997 4.9312 -0.0936 -1.3803 5.9536 43.8846 
ENG 0.0180 0.8185 -3.9943 5.5348 0.3340 4.9238 3.4455 25.3974 
FIN 0.0377 1.2440 -5.4757 5.2919 0.2328 3.4316 2.1259 15.6700 
FRA -0.0026 0.9996 -7.2685 5.4874 -0.2973 -4.3833 3.8782 28.5867 
GER 0.0046 1.0478 -10.3649 5.2958 -0.6131 -9.0381 9.7663 7l.9886 
ITA -0.0017 1.3691 -8.2403 5.2754 -0.1918 -2.8278 2.2403 16.5131 
NET 0.0241 0.7273 -3.6398 3.0222 -0.3147 -4.6391 1.6304 12.0176 
NOR 0.0069 1.3307 -8.8584 10.8018 0.3662 5.3988 8.8477 65.2171 
SPA -0.0021 1.1249 -8.6287 6.7887 -0.2627 -3.8733 5.8811 43.3505 
SWE 0.0282 1.2504 -6.8453 9.3145 0.5003 7.3755 5.7016 42.0272 
SWI 0.0306 0.9313 -7.2125 5.3787 -0.6884 -10.1489 7.3683 54.3125 
WOR -0.0023 0.6535 -4.2796 3.9281 -0.0142 -0.2088 5.5388 40.8272 

Sample size = 1,304 for all markets. Mean returns, standard deviations (SO), minimum returns (M in), and 
maximum returns (Max) are all expressed in percentages. Skw = Skewness = mis3 and Krt = Kurtosis = mii-3, 
where m, and s are the ith central sample moment and the sample standard deviation of each distribution, 
respectively; both coefficients are computed with a finite-sample adjustment. SSkw = Standardized skewness and 
SKrt = Standardized kurtosis. 

Preliminary evidence on the normality of each distribution of stock returns under 

consideration can be gathered from the last four columns of Table 1; that is, by considering the 

third and fourth central moments of each distribution. Under the assumption of normality, the 

coefficients of skewness and excess kurtosis are asymptotically distributed as N(O,6/T) and 

N(O,241T), respectively, where T is the sample size. Hence, values of these standardized 

coefficients (SSkw and SKrt) outside the range [-1.96,1.96] indicate, at the 5% significance 

level, significant departures from normality. 

Table 1 shows that not all the distributions are negatively skewed, as daily data from 

the U.S. typically shows; this table shows that eight markets display negative skewness and the 

other six markets display positive skewness. Note, however, that the coefficients of 

standardized skewness show that the observed asymmetry is not significant in three of the 

fourteen markets under consideration. In addition, the last column of Table 1 shows that all 

fourteen distributions are clearly leptokurtic, thus exhibiting fat tails (and high peaks). The 

departures from normality detected by the coefficients of standardized skewness and kurtosis 

can also be seen in the histograms displayed in part A2 of the appendix, where Normal 

distributions generated by the sample mean and standard deviation of each market are shown 

together with the observed histograms. 
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The coefficients of standardized skewness and kurtosis provide strong evidence about 

departures from normality, but more formal conclusions can be reached through the tests of 

normality reported below in Table 2. Although the three tests use different information,6 the 

results of all three point in the same direction, namely, to the outright rejection of the 

normality assumption. 7 

TABLE 2: Tests of Normalit~ (Dail~ Stock Returns} 

Goodness of Fit Kolmogorov-Smirnov Jargue-Bera 

Market Statistic df p-value Statistic p-value Statistic p-value 

AUS 153.704 9 0.0000 0.0748 9.2e-07 2,091.182 0.0000 
BEL 159.076 7 0.0000 0.0845 1.7e-08 11,710.330 0.0000 

DEN 118.647 7 0.0000 0.0716 3.2e-06 1,927.768 0.0000 
ENG 45.830 10 1.5e-06 0.0365 0.0621 669.261 0.0000 
FIN 123.383 13 0.0000 0.0612 1.2e-04 257.335 0.0000 
FRA 43.022 9 2.1e-06 0.0441 0.0126 836.407 0.0000 

GER 75.741 7 1.0e-13 0.0554 6.7e-04 5,264.041 0.0000 
ITA 85.782 13 8.ge-13 0.0444 0.0117 280.691 0.0000 
NET 64.326 13 8.7e-09 0.0504 0.0026 165.953 0.0000 
NOR 79.617 8 5.8e-14 0.0594 2.0e-04 4,282.456 0.0000 
SPA 80.346 9 1.4e-13 0.0629 6.6e-05 1,894.244 0.0000 
SWE 128.317 9 0.0000 0.0626 7.3e-05 1,820.680 0.0000 
SWI 92.872 9 4.4e-16 0.0561 5.5e-04 3,052.850 0.0000 
WOR 89.716 9 1.ge-15 0.0629 6.6e-05 1,666.898 0.0000 

The goodness-of-fit test follows a Chi-square distribution with the degrees of freedom (df) indicated above. The 
asymptotic critical value for the Kolmogorov-Smirnov test at the 5% significance level is 0.038. The Jarque-Bera 
test is asymptotically distributed as a Chi-square with 2 degrees of freedom; its critical value at the 5% 
significance level is 5.99. 

The results in Table 2 should come as no surprise; virtually all studies that use daily 

data also reject the normality of stock returns. In order to test what specification describes 

the data better than the Normal distribution, we consider in the next part four alternative 

distributions. We admit from the outset that we have no underlying financial theory to 

justify the use of all specifications. Rather, our purpose is to fit four distributions that allow 

for the characteristics of the data discussed above, to determine which one of those 

distributions best fits each market, and to quantify the error that can be made by predicting 

the probability of obtaining returns in specified intervals by using the Normal distribution. 

6 The Jarque-Bera test uses information on the third and fourth moments of a distribution. The goodness-of-fit 
test divides a distribution in intervals and compares, across intervals, the observed returns with those that 
would be expected if the underlying distribution were Normal. Finally, the Kolmogorov-Smirnov test computes 
the maximum distance between an observed cumulative distribution and the Normal cumulative distribution. 

7 At the 5% significance level, the null hypothesis of normality is not rejected only in the English market under 
the Kolmogorov-Smirnov test. 
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111- ALTERNATIVE DISTRIBUTIONS FOR STOCK RETURNS 

The results reported and discussed above indicate that the fourteen markets we 

consider are characterized by somewhat skewed distributions with fat tails and high peaks. 

As a result, we consider in this part three specifications that allow for leptokurtosis and one 

that also allows for skewness. 

The Logistic Distribution. This distribution, which is very similar to the Normal but has 

thicker tails, was first suggested as appropriate to model stock returns by Smith (1981), and 

subsequently tested by Gray and French (1990) and Peir6 (1994). The density function of 

the logistic distribution can be written as 

(1) 

where J.l (-00<J.l<00) is a location parameter and a (a>0) is a dispersion (or scale) parameter. 

If Rr follows a logistic distribution, then E(Rr)=J.l and Var(Rr)=d=(,{-/3)d. 

The Scaled-I Distribution. Praetz (1972), Blattberg and Gonedes (1974), Gray and French 

(1990), and Peir6 (1994) have reported that this specification fits stock returns better than 

many competing alternatives. The density function of the scaled-t distribution is given by 

f(x) ~ l( T) .[1 + (x - J.l)2 ] _(V;I) 
r(v/2)~7r(v-2)a2 (v-2)a

2 
' 

(2) 

where r(.) represents the gamma function, J.l (-00<J.l<00) and d (d>O) represent a location 

and a dispersion parameter, respectively, and v (v>O) is a degrees of freedom parameter. If Rt 

follows a scaled-t distribution and v>2, then E(Rt)=J.l and Var(Rt)=d. 

The Exponential Power Distribution. Hsu (1982) and Gray and French (1990) have 

argued that this specification, which displays fat tails that shrink at an exponential rate and a 

high peak, provides a reasonably-good fit to stock return data. The density function of the 

exponential power distribution is given by 

exp[ - ~ I~I (,!p) ] 

f(x) = (3+ fl ) ( ) 
2 2 af 3+[3 

2 

(3) 
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where fl (-oo<fl<oo), a (a>0), and /3 (-1 </3:::; 1) are a location, a dispersion, and a shape 

parameter, respectively. This last parameter, in particular, measures the kurtosis of the 

distribution. More precisely, j3<0 implies a platykurtic distribution, the Normal distribution 

is obtained when jJ=0, and fat tails and a high peak are obtained when 0</3:::;1, with the 

thickness of the tails increasing in /3.8 If RI follows an exponential power distribution, then 

E(R)= and Var(R ) = 0-2 = 2<I+P) . [[3(1 + /3) /2] a 2 • 
I fl I [[(1 + /3) /2] 

Mixtures of Two Normal Distributions. An alternative to assuming that stock returns are 

generated from a single distribution is to assume that they are generated by a mixture of 

distributions. Press (1967) argued that stock returns may be generated by the interaction of a 

continuous diffusion (Brownian motion) process and a discontinuous jump (Poison) 

process, where the former captures continuous changes in stock prices and the second 

models large informational shocks. Kon (1984) also argues in favor of (and finds empirical 

support for) this specification. The density function of a mixture of two Normal 

distributions is given by 

[
<X-IlI)2 ] 

f(x) = 1 . e -~ , with probability A 
~27r0-~ 

(4) 
_[<X-Il' )'] 

1 2cr' = . e ' ,with probability (1- A) , 
~27r0-; 

where fli (-oo<fli<oo) and 0-;2 (0/>0) are location and dispersion parameters, respectively. 

This mixture implies that stock returns are drawn from a Normal distribution with mean fll 

and standard deviation 0-1 with probability 1, and from a Normal distribution with mean fl2 

and standard deviation 0-2 with probability (I-A). If RI follows such mixture of distributions, 

then E(Rt)=P=Afll+(1-A)fl2 and Var(Rt)=d=A{(f1I-fl)2+0-12}+(1-A){(f12-fl)f+o-l}. Of all the 

specifications we consider, this mixture of two Normal distributions is the only one that 

allows for skewness in the data.9 

8 For f3= 1, the double-exponential distribution is obtained. 
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IV- ESTIMATION OF PARAMETERS AND GOODNESS-OF-FIT TESTS 

We report in Table 3 below the (maximum-likelihood) estimations that result from 

fitting the theoretical distributions described in the previous part to the series of daily stock 

returns of the fourteen markets under consideration. 

TABLE 3: Parameter Estimates 

AUS BEL DEN ENG FIN FRA GER 

N: p: -0.00636 -0.00205 -0.00301 0.01804 0.03770 -0.00258 0.00455 
0": 1.18440 0.71846 0.82253 0.81787 1.24302 0.99880 1.04666 

L: p: -0.00224 0.01136 -0.00153 0.00871 0.01425 0.00330 0.01087 
a: 0.58850 0.34741 0.41885 0.44202 0.66172 0.53471 0.53856 

S-t: p: 0.00441 0.01780 -0.00072 0.00801 0.00629 0.00460 0.01237 
0": 1.31263 0.75490 0.86401 0.80960 1.28016 0.99498 1.03513 
v: 2.88560 2.97920 3.34660 6.42820 4.26650 5.50990 4.28490 

EP: p: 0.00000 0.00000 -0.00000 0.00045 -0.00000 0.00000 0.00001 
a: 0.39868 0.23524 0.28459 0.50094 0.51754 0.50065 0.42224 
/3: 1.00000 1.00000 0.99999 0.50265 0.86572 0.69250 0.87113 

MN: PI: 0.01638 -0.24906 -0.01645 0.20329 -0.05409 -0.23954 0.01268 
0"1 : 0.73017 1.63780 1.45330 1.85350 0.82717 2.05880 0.84158 

P2 : -0.09754 0.02832 0.00058 0.00638 0.23524 0.01831 -0.11628 
0"2 : 2.20880 0.49141 0.54173 0.70185 1.82780 0.84055 2.61410 
A: 0.80036 0.10946 0.21064 0.05918 0.68276 0.08102 0.93694 
k3 : -0.14149 -0.51387 -0.00157 0.18099 0.16450 -0.19913 -0.12140 

ITA NET NOR SPA SWE SWI WOR 

N: p: -0.00167 0.02405 0.00689 -0.00205 0.02819 0.03055 -0.00233 
a: 1.36806 0.72673 1.32966 1.12401 1.24940 0.93056 0.65305 

L: p: 0.00150 0.03809 -0.00854 0.00216 0.01305 0.04793 -0.00399 
a: 0.73705 0.39449 0.67926 0.58409 0.64014 0.48036 0.33609 

S-t: p: 0.00195 0.04037 -0.01467 0.00289 0.00929 0.05299 -0.00481 
a: 1.38416 0.73395 1.30499 1.12765 1.27511 0.92339 0.66291 
v: 5.19850 5.68060 4.25530 4.22110 3.69760 4.28370 3.83590 

EP: p: -0.00000 0.03355 -0.00000 -0.00001 0.00000 0.03790 -0.00319 
a: 0.66812 0.41144 0.52770 0.45866 0.43700 0.38771 0.27211 
/3: 0.72176 0.58354 0.88132 0.86788 1.00000 0.84330 0.84280 

MN: PI: 0.00460 -0.05175 0.00135 0.00379 -0.00012 -0.28008 0.01230 
0"1 : 1.66170 0.94692 1.06820 0.89482 0.91374 2.02840 1.20920 
P2 : -0.01178 0.08743 0.10965 -0.06216 0.22347 0.06269 -0.00536 
a2 : 0.66026 0.45959 3.66050 2.45450 2.55450 0.72034 0.46024 
A: 0.61738 0.45537 0.94890 0.91149 0.87338 0.09374 0.17163 
k3: 0.01064 -0.17260 0.03141 -0.05833 0.10426 -0.37755 0.01247 

N = Nonnal; L = Logistic; S-t = Scaled-t; EP = Exponential Power; MN = Mixture of two Nonnal 
distributions. The coefficient ofskewness (k3) follows from the expression in footnote 9. 

At least two things are worth noting from Table 3. First, recall that the Normal 

distribution and the t-distribution tend to converge as the degrees of freedom of the latter 

increase. However, the table shows that the estimated degrees of freedom of the scaled-t 

distributions are very small in all markets (between 2.5 and 6.5), thus indicating that these 

empirical distributions diverge significantly from the Normal, particularly in the tails. 
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Second, recall that the parameter fJ of the exponential power distribution is a measure of its 

kurtosis, that for [3=0 the Normal distribution is obtained, and that fJ is increasing in the 

thickness of the tails (with an upper bound at jJ=1). Table 3 shows that fJ is larger than .5 in 

all markets and larger than .8 in ten markets. This provides additional evidence of 

departures from normality, and, in particular, of the thickness of the tails of the empirical 

distributions under consideration. 

In order to compare the relative fit of the theoretical distributions considered, we 

performed goodness-of-fit tests. 1O To that purpose, we divided the range of returns into 20 

equal, non-overlapping intervals contained in the range [-10%,10%]. The results of these 

tests are shown below in Table 4. 

TABLE 4: Goodness-or-fit Tests 

N p-value L p-value S-I p-value EP p-value MN p-value 

AUS 1.8e06 0.0000 1,339.9 0.0000 78.6 3.0e-10 194.7 0.0000 101.1 2.ge-15 
BEL 9.3e13 0.0000 11,562.8 0.0000 63.4 l.4e-07 3,027.8 0.0000 532.1 0.0000 
DEN l.3e06 0.0000 233.2 0.0000 14.7 0.5467 29.4 0.0214 30.7 0.0061 
ENG 5.5e06 0.0000 296.9 0.0000 53.3 6.7e-06 659.3 0.0000 19.0 0.1650 
FIN 577.2000 0.0000 43.6 0.0004 16.8 0.3987 19.7 0.2340 16.6 0.2781 
FRA 2.5e09 0.0000 1,863.4 0.0000 93.1 6.7e-13 994.9 0.0000 106.8 2.2e-16 
GER 34,344.3000 0.0000 397.2 0.0000 56.1 2.3e-06 103.1 9.1e-15 45.6 3.2e-05 
ITA 1.2e06 0.0000 322. I 0.0000 114.7 l.Ie-16 181.5 0.0000 7,214.9 0.0000 
NET 939.6000 0.0000 30.0 0.0263 12.3 0.7231 20.5 0.1985 30.9 0.0057 
NOR 2.2el0 0.0000 749.5 0.0000 21.5 0.1601 11l.I 2.2e-16 19.1 0.1612 
SPA 5.5e09 0.0000 3,595.4 0.0000 55.9 2.5e-06 486.7 0.0000 100.7 3.4e-15 
SWE 2.2e09 0.0000 1,351.9 0.0000 20.7 0.1903 94.8 3.2e-13 40.7 0.0002 
SWI 5.ge 11 0.0000 33,157.4 0.0000 185.6 0.0000 4,179.7 0.0000 356.9 0.0000 
WOR 1.7e06 0.0000 189.2 0.0000 6.4 0.9832 40.5 0.0007 18.2 0.1978 

N = Normal; L = Logistic; S-I = Scaled-I; EP = Exponential Power; MN = Mixture of two Normal 
distributions. The goodness of fit test follows a Chi-square distribution with p-k-l degrees of freedom, where p 
is the number of intervals and k is the number of parameters estimated for each distribution. Degrees of 
freedom are 17 for Nand L, 16 for S-I and EP, and 14 for MN. 

This table shows that, as expected, the Normal distribution provides the worst fit 

among all the specifications considered; it is clearly rejected in all markets. The logistic 

distribution does not fit much better than the Normal, and is also rejected (at the 5% 

significance level) in all markets. The exponential power distribution also provides a very 

poor fit, being rejected (at the 5% significance level) in twelve of the fourteen markets 

analyzed. 

10 We do not use the likelihood-ratio test for the obvious reason that not all these theoretical distributions are 
nested within each other; hence, their log-likelihood functions are not comparable. 
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Table 4 shows partial support for a mixture of two Normal distributions. This 

specification cannot be rejected (at the 5% significance level) in four markets, and is the one 

that best fits three markets. I I Finally, the scaled-t is the distribution that provides the best 

overall fit among all the specifications considered. This distribution cannot be rejected (at 

the 5% significance level) in six markets, and is the one that best fits ten of the fourteen 

markets analyzed. 12 

It may be interesting to contrast our results with those reported by Peir6 (1994), who, 

although using different indices and sample periods, also studies the English, German, 

French, and Spanish markets. In general, his results seem to be more optimistic than ours. 

He finds, for example, that the scaled-t distribution cannot be rejected in any of these four 

markets; we reject it in all four. He also finds that neither the logistic, nor the scaled-t, nor 

the mixture of two Normal distributions can be rejected in the German market; we reject all 

three specifications. And he finds that the French market is best fitted by an exponential 

power distribution, although we clearly reject such specification. 

The interesting issue is whether these different results stem from distributions that 

change significantly over time. Peir6 (1994) uses two years of data we do not use (1988-9), 

we use two years of data he does not use (1993-4), and we overlap in three years (1990-2). 

Thus, if the differences between our results and his stem from changes in the distributions of 

stock returns, we should then be wary of using statistical models that assume that such 

distributions are time invariant. It may be the case that, contrary to such assumption, stock 

returns distributions may actually be changing rapidly over time. 

V- ERRORS IMPLIED BY THE NORMALITY ASSUMPTION 

The tests of normality reported in part II establish that the distributions of stock 

returns of the fourteen markets analyzed exhibit significant departures from normality. In 

addition, the goodness-of-fit tests reported in part IV establish that a scaled-t distribution 

and a mixture of two Normal distributions provide a significantly-better fit than the Normal 

II Kon (1984) fits mixtures of up to five Normal distributions to the thirty stock of the Dow Jones Industrial 
A verage. He finds that a mixture of four Normal distributions best fits seven stocks, a mixture of tb{(.,e Normal 
distributions best fits eleven stocks, and a mixture of two Normal distributions best fits the remaining twelve 
stocks. 

12 All five specifications considered are clearly rejected in the Swiss market. The fact that (as Table 1 shows) 
the Swiss market is the one that exhibits the largest degree of skewness may perhaps explain this finding. 
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distribution. In this part, we quantify the error that can be made by predicting the probability 

of obtaining returns in specified intervals by assuming an underlying Normal distribution. 

In order to assess this error, we first estimate the (unconditional) probability of 

obtaining returns in a given interval using the parameters previously estimated (and reported 

in Table 3) for the Normal distribution; we subsequently repeat this process for the twelve 

intervals we consider. Then we estimate the same probability using the parameters 

previously estimated (and reported in Table 3) for the scaled-t distribution for the same 

twelve intervals. 13 We finally compare, one by one, the probability of obtaining returns in 

each interval. The results of our estimations are reported below in Table 5. 

TABLE 5: Probabilities of Obtaining Returns in S~ecified Intervals 

[x,x+s] [x+s,x+2s] [x + 2s,x + 3s] [x + 3s,x + 4s] [x + 4s,x + Ss] [x + 5s,x + 6s] 

AUS: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.40124 0.07899 0.01617 0.00488 0.00192 0.00090 

BEL: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.41415 0.07917 0.01542 0.00448 0.00171 0.00079 

DEN: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.39052 0.08591 0.01703 0.00472 0.00170 0.00074 

ENG: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.34208 0.11980 0.02565 0.00539 0.00131 0.00038 

FIN: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.36763 0.09442 0.01837 0.00448 0.00140 0.00053 

FRA: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.37242 0.10624 0.01932 0.00394 0.00101 0.00031 

GER: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.38555 0.09478 0.01736 0.00407 0.00124 0.00046 

ITA: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.37016 0.10536 0.01974 0.00423 0.00114 0.00037 

NET: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.37219 0.11176 0.02080 0.00421 0.00106 0.00032 

NOR N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.37961 0.08966 0.01630 0.00385 0.00118 0.00044 

SPA: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.38255 0.09533 0.01784 0.00427 0.00132 0.00050 

SWE: N: 0.34144 0.13580 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.38109 0.08683 0.01676 0.00438 0.00149 0.00061 

SWI: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.39018 0.09796 0.01799 0.00421 0.00128 0.00048 

WOR: N: 0.34144 0.13585 0.02136 0.00131 0.00003 2.83e-7 
S-t: 0.38354 0.09017 0.01723 0.00438 0.00145 0.00058 

N = Normal; S-t = Scaled-t. Each number shows the probability of obtaining a return in the specified interval 
under the specified distribution. Each distribution is centered around its sample mean (x), and the length of 
each interval is equal to each distribution's sample standard deviation (s), both taken from Table 1. Both Nand 
S-t are symmetric distributions; hence, predictions are reported only for one half of each distribution. 

13 We report results for the scaled-t distribution for all markets because the difference between the probability 
predicted by such specification, and that predicted by the mixture of two Normals in the markets for which the 
latter provides a better fit (ENG, GER, NOR) is negligible. 
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Table 5 shows that the probability of obtaining returns in any given interval is very 

different depending on whether the Normal or the scaled-t are assumed as the underlying 

distribution. Recall that leptokurtic distributions have a high peak, thus exhibiting clustering 

of observations around the mean. Accordingly, Table 5 shows that the probability of 

obtaining returns one standard deviation around the mean is higher under the scaled-t 

distribution than under the Normal distribution in all markets. Furthermore, note that the 

opposite is the case in the intervals [x + s, X + 2s] and [x + 2s, x + 3s]; that is, the 

probability of obtaining returns in both intervals is higher under the Normal distribution 

than under the scaled-t distribution in all markets. 

Note, however, that the situation reverses again for the interval [x + 3s, x + 4s] and 

all intervals beyond. In other words, the probability of obtaining returns in any of these 

intervals is higher under the scaled-t distribution than under the Normal distribution in all 

markets. Furthermore, note that the difference between the probability predicted by each 

distribution increases dramatically as we move away from the mean. To illustrate, the 

probability of obtaining a return between three and four standard deviations away from the 

mean is, on average, over three times higher (3.4) under the scaled-t distribution; the 

probability of obtaining a return between four and five standard deviations is, on average, 

over forty five times higher (45.7) under the scaled-t distribution; and the probability of 

obtaining a return between five and six standard deviations is, on average, almost two 

thousand times higher (l,870) under the scaled-t distribution. 

The previous results show that investors that predict the probability of obtaining 

returns in specified intervals by assuming an underlying Normal distribution may 

significantly underestimate the risk of investing in European stocks. This underestimation, 

as the numbers above show, is particularly severe in the tails of the distribution; that is, 

when predicting the probability of large (positive or negative) returns. Returns three and 

more standard deviations away from the mean, which occur with a negligible probability 

under the Normal distribution, occur much more frequently under a scaled-t distribution. 

Another way to look at this issue is by comparing the number of outliers that would 

be expected under a Normal distribution with those expected under a scaled-t distribution. 

Table 6 below reports these numbers, as well as the observed number of outliers in each of 

the markets considered. For the purposes of the table, we consider outliers those returns at 

least three standard deviations away from the mean. 
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TABLE 6: Ex~ected and Observed OutIiers 

Market > 3s >4s >5s >6s 
N S-t Obs N S-t Obs N S-t Obs N S-t Obs 

AUS 1.75 11.78 II 0.04 5.42 7 0.0004 2.92 3 0.0000 1.75 0 
BEL 1.75 10.57 6 0.04 4.72 3 0.0004 2.49 2 0.0000 1.46 2 
DEN 1.75 10.54 9 0.04 4.39 4 0.0004 2.17 2 0.0000 1.21 0 
ENG 1.75 9.52 8 0.04 2.49 3 0.0004 0.77 2 0.0000 0.28 1 
FIN 1.75 9.00 II 0.04 3.16 3 0.0004 1.33 0 0.0000 0.65 0 
FRA 1.75 7.13 7 0.04 1.99 1 0.0004 0.68 1 0.0000 0.27 0 
GER 1.75 8.09 8 0.04 2.77 3 0.0004 1.16 3 0.0000 0.55 0 
ITA 1.75 7.83 7 0.04 2.32 0 0.0004 0.84 0 0.0000 0.35 0 
NET 1.75 7.56 3 0.04 2.07 1 0.0004 0.69 0 0.0000 0.27 0 
NOR 1.75 7.68 5 0.04 2.66 4 0.0004 1.12 2 0.0000 0.54 2 
SPA 1.75 8.54 7 0.04 2.98 4 0.0004 1.26 2 0.0000 0.61 1 
SWE 1.75 9.33 12 0.04 3.62 5 0.0004 1.68 3 0.0000 0.89 1 
SWI 1.75 8.35 7 0.04 2.86 2 0.0004 1.19 1 0.0000 0.57 0 
WOR 1.75 9.17 8 0.04 3.46 4 0.0004 1.56 2 0.0000 0.80 1 

N = Normal; S-t = Scaled-t; Obs = Observed; s = sample standard deviation. Numbers under Nand S-t show the 
expected number of outliers under each Normal and Scaled-t distribution, respectively. Numbers under Obs show 
the observed number of outliers under each empirical distribution. 

Table 6 shows that, as expected, the Normal distribution consistently underestimates 

the expected number of outliers in all markets. The scaled-t distribution, on the other hand, 

provides a much better (though not perfect) prediction of the expected number of outliers. 

Furthermore, this distribution (unlike the Normal) does not display a systematic bias in its 

predictions; that is, the predicted number of outliers is in some cases higher and in some 

cases lower than the observed number of outliers. These results, as well as those discussed 

above, show that the normality assumption unequivocally leads investors to underestimate 

the risk of investing in European stocks. 

As stated above, the argument for normally-distributed stock returns stems from the 

random walk theory of stock prices. Using the same data of this study, and consistent with 

the results just discussed, Estrada (1997) finds that investors who mistakenly assume that 

stock prices follow a random walk (and use the implications of such theory) may 

underestimate the risk of investing in European stocks by an average of 1.25% a month. 

Certainly, an argument can be made against using simplifying assumptions that may lead 

investors to make such substantial mistakes. 

VI- THE DISTRIBUTION OF MONTHLY STOCK RETURNS 

We examine in this part whether the departures from normality observed in daily 

stock returns are also observed in monthly stock returns. To that purpose, we compute 

monthly stock returns (MRt) as MR/=100[ln(h)-ln(h_I)]' where Ik and kl are the value of the 
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index on the last day of month k and the last day of month k-l, respectively. Table 7 below 

summarizes some relevant information about the empirical distributions of monthly stock 

returns of the fourteen markets under consideration. 

TABLE 7: Saml!le Moments of the Distributions of Monthl~ Stock Returns 

Market Mean SO Min Max Skw SSkw Krt SKrt 

AUS -0.1384 8.3512 -25.4979 20.2526 -0.3408 -1.0776 1.5646 2.4739 
BEL -0.0445 4.6504 -12.2494 13.2179 -0.2539 -0.8028 1.0643 1.6828 
DEN -0.0655 5.1179 -11.0931 11.6782 -0.0524 -0.1658 -0.3183 -0.5032 
ENG 0.3923 4.7308 -8.6594 10.4902 0.0773 0.2445 -0.3561 -0.5631 
FIN 0.8200 8.7771 -20.4114 20.9633 0.0505 0.1596 -0.1234 -0.1951 
FRA -0.0560 5.4079 -14.7757 11.9082 -0.2230 -0.7051 0.0088 0.0139 
GER 0.0993 5.6230 -19.7969 9.3121 -1.0676 -3.3760 2.5415 4.0185 
ITA -0.0363 7.4437 -16.1316 20.8624 0.3993 1.2626 0.1139 0.1801 
NET 0.5231 3.9566 -9.9611 9.0035 -0.0950 -0.3006 -0.3188 -0.5041 
NOR 0.1498 6.8552 -16.4028 12.6052 -0.3229 -1.0210 -0.4515 -0.7139 
SPA -0.0446 6.4968 -20.7705 12.8100 -0.4144 -1.3104 0.4918 0.7775 
SWE 0.6132 7.6259 -23.9370 23.0205 -0.2962 -0.9366 1.5848 2.5057 
SWI 0.6646 4.8953 -14.5733 12.0524 -0.5547 -1.7542 1.6346 2.5845 
WOR -0.0507 4.0607 -12.9982 9.7972 -0.5708 -1.8051 1.5585 2.4642 

Sample size = 60 for all markets. Mean returns, standard deviations (SO), minimum returns (M in), and 
maximum returns (Max) are all expressed in percentages. Skw = Skewness = m3/s3 and Krt = Kurtosis = mis4-3, 
where m, and s are the ith central sample moment and the sample standard deviation of each distribution, 
respectively; both coefficients are computed with a finite-sample adjustment. SSkw = Standardized skewness and 
SKrt = Standardized kurtosis. 

The columns labeled SSkw and SKrt in Table 7 show the standardized coefficients 

of skewness and kurtosis for monthly stock returns. At the 5% significance level, these 

coefficients show, unlike those from Table 1, that only one distribution displays a 

significant degree of skewness (GER), and five distributions (AUS, GER, SWE, SWI, 

WOR) display a significant degree of kurtosis. In other words, the departures from 

normality measured by the standardized coefficients of skewness and kurtosis are far less 

evident in monthly stock returns than in daily stock returns. 14 

In order to evaluate more formally the plausibility of the normality assumption as it 

applies to monthly stock returns, we rerun the three tests of normality run above in part 11 

for daily stock returns. The results of these tests for monthly data are reported below in 

Table 8. 

14 Campbel\, Lo, and MacKinlay (1997) compare the daily and monthly distributions of stock returns for two 
indices and ten stocks from the U .S. for the period 1962-94. Predictably, they find that the skewness and 
kurtosis displayed by the monthly distributions is significantly lower than those displayed by the daily 
distributions. 
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TABLE 8: Tests of Normalitl:: {Monthll:: Stock Returns} 

Goodness of Fit Kolmogorov-Smimov Jargue-Bera 
Market Statistic df p-value Statistic p-value Statistic p-value 

AUS 6.0487 4 0.1955 0.0958 0.6410 7.2814 0.0262 
BEL 5.3849 5 0.3707 0.1169 0.3851 3.4765 0.1758 
DEN 3.9205 5 0.5609 0.0622 0.9745 0.2807 0.8690 
ENG 7.3708 6 0.2879 0.0715 0.9190 0.3768 0.8283 
FIN 5.1417 4 0.2731 0.0873 0.7498 0.0636 0.9687 

FRA 3.0409 4 0.5510 0.0755 0.8835 0.4975 0.7798 
GER 3.8972 5 0.5643 0.0910 0.7035 27.5458 0.0000 
ITA 5.2280 4 0.2647 0.0804 0.8324 1.6268 0.4433 
NET 4.4380 5 0.4882 0.0647 0.9630 0.3443 0.8418 
NOR 4.8551 5 0.4338 0.0977 0.6153 1.5523 0.4602 
SPA 2.6113 5 0.7596 0.0652 0.9608 2.3219 0.3132 
SWE 2.4648 4 0.6509 0.0630 0.9712 7.1563 0.0279 
SWI 3.8341 5 0.5735 0.1025 0.5534 9.7567 0.0076 
WOR 5.0296 5 0.4123 0.1043 0.5308 9.3304 0.0094 

The goodness-of-fit test follows a Chi-square distribution with the degrees of freedom (df) indicated above. The 
asymptotic critical value for the Kolmogorov-Smimov test at the 5% significance level is 0.176. The Jarque-Bera 
test is asymptotically distributed as a Chi-square with 2 degrees of freedom; its critical value at the 5% 
significance level is 5.99. 

Table 8 shows that normality does seem to be a reasonable assumption for monthly 

stock returns. At the 5% significance level, the null hypothesis of normality is rejected in no 

market under the goodness-of-fit test and Kolmogorov-Smirnov test, and in five markets 

under the larque-Bera test. These results, though significantly different from those reported 

in Table 2 for daily data, should not be entirely surprising. Under the central limit theorem, 

the longer the time interval for which returns are computed, the more the resulting 

distribution should conform to the Normal distribution. 

VII- CONCLUSIONS 

The evidence against the assumption that daily stock returns are normally distributed 

has been mounting for over thirty years. Most of the empirical evidence analyzes U.S. data, 

although some recent studies have considered European markets. In this article, we used 

data from the first half of the decade to test the hypothesis that stock returns in thirteen 

European markets are normally distributed. 

We started by describing the data and testing the hypothesis of normality. Not 

surprisingly, the distributions of daily stock returns analyzed show fat tails and high peaks, 

as well as skewness in different directions. These results are fully consistent with those 

found for many other markets and reported in many other studies. 

We then fitted the Normal distribution to the data, as well as four alternative 

specifications, all of which exhibit fat tails and one that also allows for skewness. 
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Predictably, we found that the Normal distribution exhibited the worst fit in all markets. We 

also found that neither the logistic nor the exponential power distributions provide a good fit 

to the empirical distributions of European stock returns. However, we found partial support 

for a mixture of two normal distributions, which cannot be rejected in four markets and best 

fits three markets, and overall support for the scaled-t distribution, which cannot be rejected 

in six markets and best fits ten of the fourteen markets analyzed. 

We also attempted to quantify the error that can be made by predicting the 

probability of obtaining returns in specified intervals by using the Normal distribution 

instead of the more appropriate specification. We have shown that such errors can be very 

large, particularly in the tails, and that the Normal distribution (unlike the scaled-t 

distribution) consistently underestimates the probability of (positive or negative) large 

returns. Therefore, we can argue that booms and crashes in European markets are much 

more likely to occur than what a Normal distribution would predict. 

Finally, we examined whether the departures from normality observed for daily data 

are also observed in monthly data. As expected under the central limit theorem, we found 

that this is not the case. The data showed that the Normal distribution may in fact be a 

reasonable approximation to the empirical distributions of European monthly stock returns. 
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