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1- INTRODUCTION 

It is not uncommon to find firms that compute their beta by running a regression 

between the firm's daily returns and the market's daily returns; then they plug the beta into a 

CAPM equation to estimate their daily cost of equity; they subsequently annualize their cost 

of equity (or, more generally, their cost of capital); and finally use such rate to discount the 

cash flows of their investment projects. Nor is it uncommon to find investors that use daily 

or monthly data to evaluate the expected return and risk of their securities, when in fact their 

investment horizon may be several years. 

If stock prices follow a random walk, both procedures are perfectly acceptable. For, 

under such condition, the risk of a security measured in any given time interval contains all 

the relevant information to compute the implied risk of the security in any other time 

interval. And if that is the case, the widely-used linear scaling of volatility (the TI/2 rule) is 

also perfectly acceptable; that is, weekly volatility can be estimated by mUltiplying daily 

volatility by the square root of 5, annual volatility can be estimated by multiplying monthly 

volatility by the square root of 12, and so forth. I 

However, if stock prices do not follow a random walk, such method of estimating 

risk may be badly misleading. For, under such condition, the relationship between the risk of 

a security in different time intervals breaks down. And if that is the case, the volatility of a 

security in a given time interval cannot be reliably estimated from the volatility of the 

security in some other time interval through a linear rescaling. In other words, if stock prices 

do not follow a random walk, scaling volatility according to the square root of time may 

lead firms and investors to make wrong investment decisions. 

The random walk model of stock prices generates several important implications for 

practitioners. Two of them are: First, that stock returns should follow a Normal 

distribution;2 and, second, that the risk of a security should scale proportionally to the square 

I The Tlt2 rule follows from a theorem that states that, if a variable Xi follows a Normal distribution with mean 
Ji and variance d, then the sum of k (U.d.) variables Xi follows a Nonnal distribution with mean kJi and 
variance kd. In the case of stock returns, if there are T trading subintervals in each trading interval I" and 
returns in each subinterval are i.i.d. normal with mean Ji and variance d, then returns in the intervals I, should 
be nonnally distributed with mean TJi and variance Td. Because risk is usually measured by the standard 
deviation (rather than the variance) of returns, the appropriate way to convert volatility in the sub intervals into 
volatility in the intervals is to multiply the former by the square root of T; hence, the name TII2 rule. 

2 This follows from the fact that, if stock prices follow a random walk, then stock returns should be i.i.d. And, 
if enough i.i.d. returns are collected, the central limit theorem implies that the limiting distribution of these 
returns should be Nonna!. 



3 

root of time (the r l/2 rule). The first implication is important because investors need to 

assume a given distribution in order to estimate the risk of their securities. The second 

implication is 'important because it says that investors can estimate the risk of a security in 

any time interval, and subsequently estimate the implied risk in any other time interval 

through a linear rescaling.3 

The first implication of the random walk theory, the normality of stock returns, has 

been widely addressed in the literature; see, for example, MandeIbrot (1963), Fama (1965), 

Peir6 (1994), and Aparicio and Estrada (1997), among many others. The consensus of the 

literature is that daily stock returns do not follow a Normal distribution but some alternative 

specification with fatter tails. Hence, investors that use the normality assumption typically 

underestimate the risk of their securities.4 

The second implication of the random walk theory, the rate at which risk scales, is 

addressed in this article. Both Holton (1992) and Peters (1991, 1994) address the issue 

directly and find that, in short horizons, volatility scales at a faster rate than indicated by a 

random walk. The evidence presented in this article, which also considers a short investment 

horizon, does support that finding. 

The literature on mean reversion and variance ratios is obviously relevant to this 

debate. Lo and MacKinlay (1988), using weekly data on NYSE and AMEX stocks, find 

evidence of positive autocorrelation, particularly in portfolios of small stocks. Fama and 

French (1988), using monthly data on NYSE stocks, find negative autocorrelations (hence, 

mean reversion) in long horizons, particularly during the 1926-40 period. Poterba and 

Summers (1988) find positive auto correlations in short horizons (less than one year) and 

negative autocorrelations in long horizons, in both V.S. and non-V.S. data. Richardson and 

Stock (1989), Richardson (1993), Poon (1996), and Lamoureux and Zhou (1996), on the 

other hand, argue that the evidence against the random walk hypothesis is weaker than the 

previously cited (and other) articles suggest. 

3 Another important implication of the random walk theory is that standard statistical methods can be reliably 
used to test hypotheses about stock prices and stock returns. However, if returns follow some alternative 
specification (like, for example, a stable Paretian distribution), standard statistical inference may be badly 
misleading; see Fama (1965) and Peters (1991). 

4 To illustrate, Aparicio and Estrada (1997), using the same data of this study, report that the probability of 
obtaining a return between four and five (five and six) standard deviations from the mean is, on average, 
almost fifty (almost two thousand) times higher under a fitted scaled-t distribution than under a fitted Normal 
distribution. 
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The main difference between the mean reversion literature and this article lies in that 

the former focus on testing whether stock prices follow a random walk, whereas this article 

focus on the consequences of assuming a random walk when stock prices do not follow such 

process. In other words, the mean reversion literature looks at the scaling of volatility as a 

way to test the random walk hypothesis, whereas this article looks at the same issue from 

the point of view of quantifying the errors that stem from mistakenly assuming that such 

theory holds. Thus, the issue analyzed is the same but the point of view is different. 

As is well known, the random walk is a more stringent condition than required by 

market efficiency. A market is efficient with respect to an information set n if an investor 

cannot use the set n to earn an abnormal return. Such condition is generally fulfilled if price 

changes are uncorrelated, a situation usually referred to as a martingale.s A random walk, on 

the other hand, requires that price changes be i.i.d. This stronger condition implies that stock 

returns be uncorrelated in all the moments of their distribution.6 

Given this relationship between market efficiency and random walks, I should 

emphasize from the outset that I do not attempt in this article to test the efficiency of 

European securities markets. I do attempt, however, to provide evidence showing that the 

thirteen markets considered do not follow a random walk; and I do attempt to quantify the 

mistakes an investor could make if he assumes otherwise. 

To that purpose, I review the nature of the problem in part n. In part III, I describe 

the data and show that daily stock prices in the thirteen European securities markets 

analyzed do not follow a random walk. In part IV, I show that investors that ignore this fact 

are bound to underestimate the total and systematic risk (and overestimate the compound 

and risk-adjusted returns) of European stocks. In part V, I argue that (as should be expected) 

monthly stock prices behave much more like a random walk than daily stock prices. Finally, 

in part VI, I summarize the main conclusions of the analysis. An appendix containing a brief 

description of a Brownian motion process and several tables concludes the article. 

S In fact, from an economic point of view, a market may be efficient even if statistically-significant (but "low") 
correlations in returns are present. This would be the case if any profits an investor can make by exploiting the 
linear dependence in returns are eliminated by transaction costs. Furthermore, Lucas (1978) has shown that 
rational expectations prices need not necessarily be a martingale, of which the random walk is a special case. 
(He also showed, however, that returns appropriately adjusted by risk, should be a martingale.) 

6 As is standard in the literature, throughout this article price changes should be understood as meaning 
changes in the log of prices. Hence, under the random walk hypothesis, price changes and stock returns are 
equivalent concepts. 
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11- THE PROBLEM 

The random walk theory of stock prices, proposed way ahead of his time by 

Bachelier (1900) and independently rediscovered several years later by Osborne (1959), 

argues that changes in stock prices can be modeled with the same process that describes the 

movement of a particle in a fluid. Such process, usually known as Brownian motion and 

briefly described in part 1 of the appendix, eventually came to be known in the financial 

literature as a random walk. 

For our purposes, it suffices to note that in Osborne's (1959) model, investors able to 

equate price and value trade at an equilibrium price determined by all the information 

available. Thus, under this and a few other conditions, at every point in time stock prices 

reflect all available information, and changes in stock prices only stem from unexpected 

new information. If successive bits of information arise independently over time, then 

successive price changes will also be independent. 

As stated above, this theory of stock prices yields the critical implication that the 

temporal dimension of risk is irrelevant; that is, the risk of a security in any time interval can 

be straightforwardly estimated from the risk of the, security in any other time interval 

through a linear rescaling. However, if stock prices do not follow a random walk, the 

relationship between the risk of a security in different time intervals breaks down, and 

investment horizons become a relevant issue. 

Upon reflection, this should not be very surprising. Figures 1 and 2 below show the 

returns of two securities over time (neither of which, of course, follows a random walk). A 

natural question to ask is: Which security is riskier? The answer is not straightforward. The 

security in Figure 1 is risky for the long-term investor but not very risky for the short-term 

investor; the security in Figure 2, on the other hand, is risky for the short-term investor but 

not very risky for the long-term investor. So the next question is: Which security should 

offer a higher return? Again, the answer is not straightforward; the risk of each security 

depends on the investor's investment horizon. However, the answer would be 

straightforward if the two securities were random walks; for in that case the risk of either 

security in any time interval could be estimated from the risk of the security in any other 

time interval, which is clearly not feasible with the stocks in Figures 1 and 2. Therefore, the 

investment horizon of investors is a relevant issue when analyzing the risk of securities that 

do not follow a random walk. 
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Figure 1 Figure 2 

Time Time 

Emerging markets offer an interesting example of this risk puzzle. As is well known, 

these markets usually exhibit high short-term volatility; hence, in equilibrium, they should 

(and do) offer high returns. To illustrate, Erb, Harvey, and Viskanta (1996) report that 

between September 1979 and March 1995, the U.S. market averaged an annual return of 

15.4% (with a standard deviation of 14.8%), whereas the Philippines and Poland averaged 

annual returns of 41.7% and 93.3% (with standard deviations of 36.8% and 90.3%), 

respectively. Thus, if an investor ignores short-term swings and holds on to his shares in 

these markets long enough (that is, until the risk-return relationship is in equilibrium), he 

will be rewarded with high returns. Is then this long-term investor being rewarded for risk 

borne by short-term investors? Are emerging markets very risky for investors whose 

investment horizon is one day, one month, or even one year, but perhaps not so risky for 

long-term investors? If stock prices do not follow a random walk, these questions do not 

have a straightforward answer. 7 

111- DO STOCK PRICES FOLLOW A RANDOM WALK? 

I test in this part whether stock prices behave as a random walk using a sample of 

thirteen European securities markets, namely, Austria (AUS), Belgium (BEL), Denmark 

(DEN), England (ENG), Finland (FIN), France (FRA) , Germany (GER) , Italy (ITA), 

7 Perhaps one way of thinking about long-tenn risk in emerging markets may be in tenns of the uncertainty 
about when the risk-return relationship is going to be in equilibrium. That is, at what point in time in the future 
an investor will be able to liquidate his positions and realize a return consistent with the risk of these markets. 
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Netherlands (NET), Norway (NOR), Spain (SPA), Sweden (SWE), and Switzerland (SWI). 

The behavior of each of these markets is summarized by a Financial Times Actuaries Index 

(FT AI), measured in local currency and published daily in the Financial Times. The sample 

period extends from January 1, 1990, through December 31,1994. Sample statistics for the 

daily and monthly returns of these series are reported in Tables A 1 and A2, respectively, in 

part 2 of the appendix. 

The first step of the analysis consists of testing for a unit root in each of the thirteen 

markets under consideration. To that purpose, logs of the series were first taken and 

augmented Dickey-Fuller and Phillips-Perron tests were subsequently run. The results of these 

tests are reported below in Table 1. 

TABLE 1: Unit Root Tests (Daily Data) 

Augmented Dickey-Fuller Test ~ln(I,) = a + pln(l,.t) + pt + rt~ln(l,_t) + ... + rqilln(l,-q) + c, 
PhilliEs-Perron Test In(l,) = a+ e}n(ll-t) + /X..t-T12} + C, 

Augmented Dickey-Fuller Phillips-Perron 

Market p Ho: p=0 Ho: a=p=0 Ho: a=f3=p=0 Ho: p=0 Ho: a=p=0 Ho: a=f3=p=0 
AUS 0.992 -2.3145 3.2161 2.2898 -1.5163 1.1504 0.7765 
BEL 0.990 -2.8309 4.6954 3.1362 -2.5388 3.9948 2.6662 
DEN 0.987 -1.8359 1.7488 1.1687 -1.4657 1.1457 0.7686 
ENG 0.984 -3.2290 5.2279 3.6654 -2.7879 3.9742 2.8482 
FIN 0.997 -1.8091 3.3744 2.3529 -1.2655 3.6108 2.7331 
FRA 0.988 -2.6460 3.5682 2.3811 -2.4603 3.1140 2.0787 
GER 0.988 -2.2590 3.0059 2.0048 -1.9558 2.2258 1.4917 
ITA 0.996 -1.7657 2.2715 1.5144 -1.7475 2.2571 1.5053 
NET 0.987 -2.4003 3.0788 2.5491 -2.5791 4.0662 3.1803 
NOR 0.991 -1.3281 1.2704 0.8497 -1.2990 1.0954 0.7405 
SPA 0.991 -2.4670 3.1101 2.0745 -2.1708 2.5990 1.7340 
SWE 0.990 -2.3754 3.1449 2.2092 -1.9229 2.3179 1.7316 
SW! 0.990 -2.3629 2.9498 2.3989 -2.3915 3.2516 2.6125 

Numbers in the table represent test statistics except for p, which represents the coefficient from the regression 
In(l/)=,u+pln(l/_t)+c" where 1/ is the value of an index in day t. Asymptotic critical values for Ho: p=0, Ho: a=p=0, 
and Ho: a=fJ=p=0 at the 5% significance level are -3.41, 6.25, and 4.68, respectively. Sample size = 1,305 for all 
markets. 

Table 1 shows that, at the 5% significance level, the unit-root hypothesis cannot be 

rejected in any of the markets under consideration, which is not surprising given that p >.98 in 

all markets. This finding, however, does not necessarily imply that stock prices in these 

markets follow a random walk. A unit-root is a necessary but not a sufficient condition for the 

existence of a random walk; the former (unlike the latter) does not require that stock returns be 

i.i.d. Thus, the next step is to test whether the residuals of the regressions run are in fact i.i.d. 

Table 2 below reports the results of tests of linear and nonlinear dependence in the 

residuals. The first two columns show that the first autocorrelation of the residuals is clearly 



8 

significant in all markets, which is not surprising glven the well-known problem of 

nonsynchronous trading that affects indices; see, for example, Scholes and Williams (1977), 

Atchison, Butler, and Simonds (1987), and Lo and MacKinlay (1990). The next two columns, 

which report the results of Ljung-Box tests on the first 6 autocorrelations, further reject the 

hypothesis of uncorrelated residuals. Higher order Ljung-Box tests (not reported) yield the 

same results. Hence, stock returns in all thirteen markets are linearly dependent. 

TABLE 2: Linear and Nonlinear Dependence in Daily Stock Returns 

Market rP, p-value Q(6) p-value A, p-value 

AUS .2953 0.000 151.82 0.000 .0759 0.000 
BEL .1809 0.000 65.98 0.000 .1050 0.000 
DEN .2874 0.000 87.00 0.000 .1355 0.000 
ENG .1615 0.000 86.07 0.000 .1636 0.000 
FIN .2450 0.000 118.12 0.000 .0177 0.001 
FRA .1058 0.000 21.42 0.001 .0820 0.000 
GER .1040 0.001 14.64 0.012 .0486 0.000 
ITA .1998 0.000 42.56 0.000 .0890 0.000 
NET .1212 0.000 67.72 0.000 .0812 0.000 
NOR .3245 0.000 29.95 0.000 .2619 0.000 
SPA .1565 0.000 20.57 0.001 .1027 0.000 
SWE .2214 0.000 84.38 0.000 .1105 0.000 
SWI .1736 0.000 44.81 0.000 .1884 0.000 

A2 p-value 

.8715 0.000 

.7705 0.000 

.6756 0.000 

.7579 0.000 

.9774 0.000 

.8030 0.000 

.9054 0.000 

.8825 0.000 

.9048 0.000 

.5066 0.000 

.7927 0.000 

.8340 0.000 

.6474 0.000 

if(6) p-value 

174.71 0.000 
26.49 0.000 
33.93 0.000 
49.04 0.000 
29.11 0.000 
76.96 0.000 
44.62 0.000 
41.07 0.000 
53.57 0.000 

150.53 0.000 
99.88 0.000 

139.39 0.000 
108.79 0.000 

First autocorrelation of residuals estimated from the model cl=t/Jo+rP,CI-" where Cl is the residual from the 
model In(!I)=p+pln(!I_')+cl, GARCH coefficients estimated from the model hl=-i.o+A,(CI_,)2+A2hl_" where hI is 
the conditional variance of Cl' Q(6) and Q2(6) are the Ljung-Box statistics for 6 autocorrelations and 6 squared 
autocorrelations, respectively. 

Table 2 also reports two of the three parameters of the GARCH(1,I) models estimated 

in order to examine nonlinear dependence in the residuals. In all markets, both coefficients are 

clearly significant. Furthermore, Ljung-Box tests on the first 6 squared autocorrelations clearly 

reject the null hypothesis of nonlinear independence in the residuals of all markets. In other 

words, stock returns in all thirteen markets exhibit a significant degree of volatility clustering. 

In sum, this evidence shows that although stock prices in the markets analyzed do have 

a unit root, they do not follow a random walk because they are not i.i.d.; they exhibit both 

linear and nonlinear dependence. In fact, if stock returns in these markets were i.i.d., they 

should be normally distributed, a hypothesis that is clearly rejected in the thirteen markets 

analyzed; 8 see Aparicio and Estrada (1997). 

8 Some evidence on the normality of each distribution of daily stock returns can be gathered from the last four 
columns of Table AI. Under the assumption of normality, the coefficients of skewness and (excess) kurtosis 
are asymptotically distributed as N(0,6/1) and N(0,24/1), respectively, where T is the sample size; hence, 
values of these standardized coefficients outside the range [-1.96,1.96] indicate, at the 5% significance level, 
significant departures from normality. By these standards, Table Al shows that all but two distributions are 
significantly skewed (in different directions), and that all thirteen distributions are leptokurtic. 
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IV- CONSEQUENCES OF NONRANDOM WALKS 

The finding that stock prices in European markets do not follow a random walk due to 

the existence of (linear and) nonlinear dependence is uninteresting if taken by itself. After all, 

the same finding has been reported in many other studies and for many other markets. Thus, 

having established that stock prices in the markets analyzed do not follow a random walk, I go 

one step further and attempt to quantify the mistakes an investor could make if he assumes 

otherwise. To that purpose, I analyze the volatility, beta, and Sharpe ratio of each market, as 

well as portfolios of all thirteen markets. 

1.- Volatility 

As argued above, if stock prices do not follow a random walk, estimating volatility 

through a linear rescaling (the TII2 rule) may be badly misleading. Table 3 below reports a 

quantification of the mistakes an investor could make if he estimates monthly risk on the basis 

of daily data.9 

TABLE 3: Dail~, Monthl~, and ImElied Monthl~ Volatilit~ 

Market ODV OMV IMV OSF RD AD 

AUS 1.1853 8.3512 5.5595 49.64 1.50 2.79 
BEL 0.7190 4.6504 3.3724 41.83 1.38 1.28 
DEN 0.8232 5.1179 3.8612 38.65 1.33 1.26 
ENG 0.8185 4.7308 3.8391 33.41 1.23 . 0.89 

FIN 1.2440 8.7771 5.8349 49.78 1.50 2.94 
FRA 0.9996 5.4079 4.6885 29.27 l.l5 0.72 
GER 1.0478 5.6230 4.9146 28.80 1.14 0.71 
ITA 1.3691 7.4437 6.4216 29.56 1.16 1.02 
NET 0.7273 3.9566 3.4113 29.59 l.l6 0.55 
NOR 1.3307 6.8552 6.2415 26.54 1.10 0.61 
SPA l.l249 6.4968 5.2762 33.36 1.23 1.22 
SWE 1.2504 7.6259 5.8649 37.19 1.30 1.76 
SWI 0.9313 4.8953 4.3682 27.63 1.12 0.53 

Averages 1.0439 6.1468 4.8965 35.02 1.25 1.25 

Volatility (measured by standard deviation) reported in percentages. ODV = Observed Daily Volatility; 
OMV = Observed Monthly Volatility; IMV = Implied Monthly Volatility; OSF = Observed Scaling Factor; 
RD = Relative Difference; AD = Absolute Difference. IMV = (22) II20DV; OSF = (OMV/ODV)2; RD = 
OMV/IMV; AD = OMV-IMV. 

The first two columns of the table show the observed volatility, measured by the 

standard deviation of stock returns, computed on the basis of daily data (ODV) and monthly 

data (OMV) for the thirteen markets considered. In all markets, there is an average of 22 

trading days in each month. Thus, under the random walk hypothesis, the OMV column 

9 Throughout the article, the issue of rescaling is analyzed by comparing daily data to monthly data. The 
number of annual observations for the selected sample period is too small to draw any reliable inference about 
the behavior of annual data. 
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could be obtained from the ODV column by multiplying the latter by the square root of 22. 

However, such products, which I will refer to as implied monthly volatility (IMV) are, as 

shown in the third column, significantly lower than the OMV in all markets. 

The fourth column shows the observed scaling factor (OSF); that is, the number 

whose square root, mUltiplied by the observed daily volatility, yields the observed monthly 

volatility.lo As can be seen from the table, this factor is significantly larger than 22 in all 

markets, with an average of 35.02. 11 The last two columns report the relative difference 

(RD) and absolute difference (AD) between the observed monthly volatility and the implied 

monthly volatility, defined simply as the ratio and the difference between the OMV and the 

IMV, respectively. The fifth column shows that the observed monthly volatility is larger 

than the implied monthly volatility in all markets; the former is between 10% and 50% 

larger than the latter, in relative terms, and 25% on average. The last column, on the other 

hand, shows that the observed monthly volatility is between .53% to 2.94% larger than the 

implied monthly volatility in absolute terms, and on average 1.25%. 

These findings thus support those of several other empirical studies (cited above) 

that show that, in short horizons, volatility scales at a/aster rate than implied by the random 

walk. They also show that mistakenly assuming that stock prices follow such process will 

lead investors to seriously underestimate the risk of investing in European stocks. Such 

underestimation may be as high as almost 3% a month, and on average 1.25% a month. 

Does it not make a lot of difference for the average European firm to underestimate its cost 

of equity by 1.25% a month? Will this not lead that firm to accept many projects it should 

reject? 

2.- Betas 

This section addresses the standard practice of computing betas on the basis of daily 

data, and then use those betas to make inferences about the risk of securities in a different 

time interval. As shown below, and consistent with the results reported in the previous 

section, this practice may lead to a serious underestimation of risk. In order to estimate 

10 More precisely the OSF is the number that solves the observed relationship UM2 = (OSF)UD2, where UM2 and 
OJ/ represent the monthly and daily variance of stock returns, respectively; hence, OSF = ailuD2 = (uMIOj)l 

11 It could be argued that the observed monthly volatility is lower than the implied monthly volatility simply 
because 22 trading days are being considered (thUS omitting the volatility over the weekends). However, note 
that an OSF of 35 implies that these series do not follow a random walk even in the extreme case in which 
volatility over the weekend were assumed to be equal to the volatility of two trading days (which empirical 
evidence shows it is clearly not the case). 



11 

betas, the market portfolio used is the FT AI world market portfolio (WMP), which is 

computed on the basis of 2,249 stocks worldwide. 

Table 4 below reports the observed betas for each market analyzed computed on the 

basis of both daily data (ODB) and monthly data (OMB). Under the random walk 

hypothesis, the betas should be independent from the frequency of the data used to compute 

them. 12 However, Table 4 shows that monthly betas are larger than daily betas in all 

markets; on average, the former are 37% larger than the later in relative tenus. Hence, use of 

daily data to compute monthly betas will lead investors to underestimate the systematic risk 

of European securities markets. 

TABLE 4: Betas 

Market ODB OMB RD 

AUS 0.765 0.766 1.00 
BEL 0.524 0.733 1.40 
DEN 0.452 0.708 1.57 
ENG 0.720 0.857 1.19 
FIN 0.362 1.131 3.12 
FRA 0.851 0.918 1.08 
GER 0.822 0.835 1.02 
ITA 0.748 0.934 1.25 
NET 0.598 0.694 1.16 
NOR 0.726 0.782 1.08 
SPA 0.939 1.229 1.31 
SWE 0.880 1.330 1.51 
SWI 0.799 0.929 1.16 
Averages 0.707 0.911 1.37 

ODB = Observed Daily Beta; OMB = Observed Monthly Beta; RD = Relative Difference. RD = 

OMB/ODB. 

The fact that monthly betas are larger than daily betas is explained as follows. Table 

A3 in part 2 of the appendix shows that the average OSF and average RD for the 

covariances between each market and the world market portfolio are 53.01 and 2.41, 

respectively. However, the same table also shows that the OSF and RD for the variance of 

the market portfolio are 38.64 and 1.76, respectively. Hence, monthly betas are larger than 

daily betas because the co variance between each market and the market portfolio (the 

numerator of the betas) scale at a faster rate than the variance of the market portfolio (the 

denominator of the betas). 

12 This follows from the fact that, under such condition, variances and covariances scale at the same rate, and, 
therefore, the scaling factor in the numerator of the beta cancels with the scaling factor in its denominator. 
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3.- Sharpe Ratios 

One way of evaluating the risk-return relationship of any stock or market is by 

means of the so-called Sharpe ratios, which measure the return obtained by an investor per 

unit of risk borne (or, put simply, risk-adjusted returns). 13 The first two columns of Table 5 

below show the observed Sharpe ratio computed on the basis of daily data (ODSR) and 

monthly data (OMSR). Under the random walk hypothesis, Sharpe ratios should scale Gust 

as volatility) according to the square root of time;14 thus, the OMSR column could be 

obtained by mUltiplying the ODSR column by the square root of 22. Such products, which I 

will refer to as implied monthly Sharpe ratios (lMSR) are reported in the third column. 

TABLE 5: Shar[!e Ratios 

Market ODSR OMSR IMSR OSF RD 
AUS -0.0054 -0.0166 -0.0252 9.53 0.66 
BEL -0.0028 -0.0096 -0.0134 I 1.30 0.72 
DEN _ -0.0037 -0.0128 -0.0172 12.23 0.75 
ENG 0.0220 0.0829 0.1034 14.15 0.80 
FIN 0.0303 0.0934 0.1422 9.50 0.66 
FRA -0.0026 -0.0104 -0.0121 16.15 0.86 
GER 0.0043 0.0177 0.0204 16.5 I 0.87 
ITA -0.0012 -0.0049 -0.0057 16.01 0.85 
NET 0.033 I 0.1322 0.1552 15.97 0.85 
NOR 0.0052 0.0218 0.0243 17.81 0.90 
SPA -0.0018 -0.0069 -0.0086 14.18 0.80 
SWE 0.0226 0.0804 0.1058 12.71 0.76 
SWI 0.0328 0.1358 0.1539 17.11 0.88 
Averages 0.0102 0.0387 0.0479 14.09 0.80 

ODSR = Observed Daily Sharpe Ratio; OMSR = Observed Monthly Sharpe Ratio; IMSR = Implied 
Monthly Sharpe Ratio; OSF = Observed Scaling Factor; RD = Relative Difference. IMSR = (22) II2ODSR; 
OSF = (OMSRlODSRi; RD = OMSRlIMSR. 

As can be seen from the table, the observed monthly Sharpe ratios are, in absolute 

value, lower than the implied monthly Sharpe ratios in all markets. This finding is explained 

as follows. Table A4, in part 2 of the appendix, shows that stock returns do scale almost 

exactly proportionally to 22; IS however, as already noted, volatility scales at faster rate than 

13 The Sharpe ratio is computed as (R,-RI)/o;, where Ri and 0; are the return and risk of security i and RI is a 
risk-free rate. The ratios reported in Table 5 ignore the risk-free rate and are computed as R/o;. 

14 Note that monthly returns and volatility are obtained by mUltiplying daily returns by T, and daily volatility by 
(1)112, respectively. Hence, the ratio between the two implied monthly magnitudes is multiplied by (1)112. 

15 Table A4 shows that observed monthly returns and implied monthly returns are, on average, 0.2213% and 
0.2239%, respectively, obviously close to each other. Further, the average OSF is 21.68 (obviously close to 
22), and the average RD is 0.99 {obviously close to I). Note that in the case of returns, the OSF is the number 
that solves the observed relationship PM = (OSF)PD, where PM and PD are the mean monthly and daily stock 
returns, respectively; hence, OSF = PM/PD' 
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the square root of 22. Hence, it follows that the Sharpe ratios must scale at a slower rate 

than the square root of22. Note from the last row of the table that the average OSF is 14.09 

(clearly lower than 22), 'and that the average observed monthly Sharpe ratio is only 80% of 

the average implied monthly Sharpe ratio. Therefore, an investor that mistakenly assumes 

that stock prices follow a random walk would overestimate risk-adjusted returns by an 

average of 25% in relative terms. 

4.- Portfolios 

The results obtained thus far show that firms and investors that mistakenly assume 

that stock prices follow a random walk, and follow the implications of the theory, are bound 

to make significant mistakes. These mistakes, which basically consist of underestimating 

(total and systematic) risk and overestimating risk-adjusted returns, apply (as shown in this 

section) not only to individual stocks but also to portfolios. 

Booth and Fama (1992) show that the continuously compounded rate of return of a 

portfolio (Cp) can be expressed as 

where j.1p and 0/ are the expected return and variance of the portfolio, respectively. Using 

monthly data, an equally-weighted portfolio of the thirteen markets considered yields a 

monthly compound return of 0.1088%. However, if the return and variance of an equally­

weighted portfolio are computed on the basis of daily data, then these two parameters are 

converted into monthly magnitudes under the assumption of a random walk (that is, through 

a linear rescaling), and finally plugged in the expression above, the implied compound 

return of the portfolio would be 0.1706%; that is, almost 57% higher in relative terms. 

Recall that Table 3 shows that the average OSF and average RD for volatility are 

35.02 and 1.25, respectively. An analysis of the covariance matrix (excluding variances) of 

the thirteen markets analyzed shows that the average OSF and average RD for these 

covariances are 53.65 and 2.44, respectively; 16 hence, covariances scale at an even faster 

rate than variances. 

16 To make a consistent comparison between the RD of standard deviations reported in Table 3 (1.25), and the 
RD of covariances just reported (2.44), the RD in Table 3 should be squared (thus obtaining 1.56). This 
follows from the fact that, according to the random walk theory, variances and covariances scale at the same 
rate (1), but standard deviations scale at the square root of such rate (1"12). 
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If we put together the fact that returns scale at the rate suggested by the random-walk 

theory, that variances scale at a faster rate than suggested by this theory, and that 

covariances scale at an even faster rate, simple inspection of the formula above shows where 

the underestimation of compound returns comes from. 

An alternative way of analyzing the risk-return tradeoff in portfolios, and its 

relationship to the random walk theory, is by comparing efficient frontiers. Table A5 in the 

appendix shows two efficient frontiers, one computed on the basis of monthly data, and the 

other computed on the basis of daily data but later converted into implied monthly data 

under the assumption that stock prices follow a random walk. 17 As can be seen from the 

table, for any given return, the monthly risk of the portfolio is larger than its implied 

monthly risk, with the former being larger than the latter by an average of 21 % in relative 

terms. Hence, investors that mistakenly assume that stock prices follow a random walk, and 

follow the implications of the theory, underestimate the true risk of their portfolios. 

v- MONTHLY DATA 

All the results reported so far imply that it is dangerous for investors to make 

investment decisions assuming (implicitly or explicitly) that stock prices follow a random 

walk. However, it is fair to ask at this point whether the problems discussed are specific to 

daily data and thus disappear when the data is aggregated. Tables A6-A 7 in part 2 of the 

appendix consider this issue. 

Table A6 shows that the unit-root hypothesis for monthly stock returns cannot be 

rejected, with marginal exceptions in a few markets under some tests. To be sure, in no 

market all tests simultaneously reject the unit-root hypothesis. Table A7, on the other hand, 

explores the linear and nonlinear dependencies in monthly stock returns. Ljung-Box tests for 

six autocorrelations fail to reject (at the 5% significance level) the hypothesis of linearly 

uncorrelated returns in all markets. Ljung-Box tests for six squared autocorrelations, on the 

other hand, reject the null hypothesis of nonlinear independence in returns in only two 

markets (Belgium and Italy), and marginally in one market (Austria). Finally, the last 

column of Table A 7 shows the results of Kolmogorov-Smirnov tests for normality; the null 

17 More precisely, the implied efficient frontier was computed in two steps: First, the efficient frontier was 
computed on the basis of daily data. Then, each daily risk-return pair was converted into an implied monthly 
risk-return pair by mUltiplying the daily return by 22 and the daily risk by the square root of22. 
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hypothesis of normally-distributed stock returns (another implication of the random walk 

theory) cannot be rejected in any market. 

Therefore, monthly stock returns do not seem to suffer from the problems of daily 

stock returns; put differently, the evidence shows that monthly stock returns do appear to be 

U.d-Normal. This result should not be too surprising; under the Central Limit Theorem, the 

longer the time interval for which returns are computed, the more the resulting distribution 

should conform to the Normal distribution. Whether monthly stock returns can be reliably 

used to make inferences on annual investment horizons is an interesting issue that cannot be 

addressed with the sample size selected for this study. 

VI- CONCLUSIONS 

The results reported in this article question some standard practices in the estimation 

of risk. More precisely, they raise the issue that if stock prices do not follow a random walk, 

use of daily data in order to draw inferences about different investment horizons may be 

badly misleading. 

The analysis has shown that none of the series of daily stock prices of the thirteen 

European markets analyzed follows a random walk. Although a unit-root is present in all 

markets, daily stock returns, not surprisingly, fail to be U.d.; they all exhibit linear and 

nonlinear dependence and display non-normal (fat-tailed) distributions. Under these 

conditions, both data frequencies and investment horizons become relevant issues 

If stock prices follow a random walk, high-frequency data contain all the relevant 

information to forecast risk in other time frequencies; in other words, short-term risk can be 

reliably used to forecast long-term risk. If stock prices do not follow a random walk, 

however, the relationship between volatility in different time intervals breaks down and 

short-term risk carries no reliable information about long-term risk. This breakdown of the 

informational content of short-term risk brings about an interesting risk puzzle which is 

neatly illustrated by emerging markets. On the one hand, these markets are very risky in the 

short ternl. On the other hand, investors would not invest in these markets if they were not 

compensated by high returns. Thus, if an investor waits "long enough" until the emerging 

market yields a return consistent with its risk, this investor will obtain a high return without 

suffering from short-term swings. In other words, if markets eventually yield the equilibrium 

return for their inherent risk, and if an investor waits for the "eventually" to arrive, he would 
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be obtaining a high long-term return without bearing a high long-term risk. I am very 

hesitant to call this a market inefficiency; rather, I tend to think that it is one of the 

interesting characteristics of nonrandom walk data that deserves further analysis. 

The analysis in this article has shown that ignoring the fact that stock prices do not 

follow a random walk would lead investors to underestimate total and systematic risk, as 

well as to overestimate compound and risk-adjusted returns. More precisely, monthly risk 

implied by daily data underestimates the observed monthly risk by an average of 25% in 

relative terms, or 1.25% in absolute terms. Observed monthly betas are on average 37% 

larger, in relative terms, than monthly betas implied by daily data. Monthly risk-adjusted 

returns implied by daily data are on average 25% higher, in relative terms, than observed 

monthly risk-adjusted returns. The monthly return of an equally-weighted portfolio of the 

thirteen markets analyzed implied by daily data is 57% higher, in relative terms, than the 

observed monthly return. Finally, efficient frontiers implied by daily data consistently 

underestimate the observed monthly risk at all reasonable levels of monthly return, and on 

average by over 20% in relative terms. 

The fast scaling of volatility in short horizons has further important implications for 

investors. Among them is the fact that (as suggested above) long-term investors face less 

risk than that indicated by daily volatility, as well as the fact that investors can benefit from 

buying a stock right after its price has fallen sharply; see De Bondt and Thaler (1985). 

The analysis of monthly data, however, shows that monthly stock prices behave 

much more in line with the random walk theory. Monthly stock returns in the markets 

analyzed seem to be both i.i.d. and normally distributed. As pointed out above, however, the 

sample size considered is not large enough to address the issue of whether monthly data can 

be reliably used to make inferences about annual risk and return. The market data used, on 

the other hand, does not make it possible to infer how severe may be the underestimation of 

the cost of capital of firms that compute their betas on the basis of daily data. Both of these 

interesting issues are not addressed in this article but are left open for further research. 
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APPENDIX 

1.- Brownian Motion 

Let P(t) be the price of a security at time t, and h be the minimum length of time 
between transactions in this security. Further, let a finite time interval between t=0 and t=T 
be divided into n subintervals, such that nh=T. Then, the change in the price of this security 
between t=0 and t=T is given by 

n 

Pr - Po = ~)Pk - Pk- I ) , (AI) 
k=1 

where Pk and Pk-l are shorthands for Pkh and P(k-l)h, respectively. The conditional expected 
return of the security per unit of time (Rk) is given by 

(A2) 

where Ek is the expectation operator conditional on all the information available at time k. 

Let 5k be the unanticipated price change in the security between k and k-l; that is, 

(A3) 

such that Ek_I(5k)=0 and Lk5k is a martingale. Define a/=Ek-l(5/)/h as the variance per unit 
of time of the security's return, and Uk=5k/( a/h)1!2. Then, the price change in the security 
can be written as 

and the differential equation describing the path of Pt as 

dp, =R(dt+a(u(dt)1I2. 

(A4) 

(AS) 

Let Pt be a random variable whose time path is described by an equation like (A4), 
and such that Rk=O and ak=l. Thus, the change inpt between t=0 and t=Tis given by 

n 

n n IUk 

'" ( ) h 1/2 ", TI/2 k=1 Pr - Po = L.J Pk - Pk-I = L.J Uk = -1-/2- • 
k=1 k=1 n 

(A6) 

Note that the {ud are U.d. and then, by the central limit theorem, LkuJ!nl12 follows a 
standard Normal distribution regardless of the distribution of the {Uk}. Note, further, that the 
differential equation describing the path of Pt is given by 

dp( = u(dt)I/2 . (A7) 

Thus, a variable Pt whose temporal path is described by an equation like (A 7), such that the 
{Ut} are U.d. and standard normally distributed, is said to follow a Brownian motion 
process. See Merton (1990). 
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2.- Complementary Tables 

TABLE AI: Sam~le Moments of the Distributions of Daill: Stock Returns 

Market Mean SO Min Max Skw SSkw Krt SKrt 

AUS -0.0064 1.1853 -7.5998 6.9370 0.1758 2.5918 6.1939 45.6561 
BEL -0.0020 0.7190 -5.5734 6.9116 0.1069 1.5761 14.6793 108.2030 
OEN -0.0030 0.8232 -5.8997 4.9312 -0.0936 -1.3803 5.9536 43.8846 
ENG 0.0180 0.8185 -3.9943 5.5348 0.3340 4.9238 3.4455 25.3974 
FIN 0.0377 1.2440 -5.4757 5.2919 0.2328 3.4316 2.1259 15.6700 
FRA -0.0026 0.9996 -7.2685 5.4874 -0.2973 -4.3833 3.8782 28.5867 
GER 0.0046 1.0478 -10.3649 5.2958 -0.6131 -9.0381 9.7663 71.9886 
ITA -0.0017 1.3691 -8.2403 5.2754 -0.1918 -2.8278 2.2403 16.5131 
NET 0.0241 0.7273 -3.6398 3.0222 -0.3147 -4.6391 1.6304 12.0176 
NOR 0.0069 1.3307 -8.8584 10.8018 0.3662 5.3988 8.8477 65.2171 
SPA -0.0021 l.l249 -8.6287 6.7887 -0.2627 -3.8733 5.8811 43.3505 
SWE 0.0282 1.2504 -6.8453 9.3145 0.5003 7.3755 5.7016 42.0272 
SWI 0.0306 0.9313 -7.2125 5.3787 -0.6884 -10.1489 7.3683 54.3125 
WOR -0.0023 0.6535 -4.2796 3.9281 -0.0142 -0.2088 5.5388 40.8272 

Mean returns, standard deviations (SO), minimum returns (Min), and maximum returns (Max) are all expressed 
in percentages. Skw = Skewness = m31i and Krt = Kurtosis = mJs4-3, where m; and s are the AA central sample 
moment and the sample standard deviation of each distribution, respectively; both coefficients are computed with 
a finite-sample adjustment. SSkw = Standardized skewness and SKrt =Standardized kurtosis. Sample size = 1,304 
for all markets. 

TABLE A2: Sam~le Moments of the Distributions of Monthll: Stock Returns 

Market Mean SO Min Max Skw SSkw Krt SKrt 
AUS -0.1384 8.3512 -25.4979 20.2526 -0.3408 -1.0776 1.5646 2.4739 
BEL -0.0445 4.6504 -12.2494 13.2179 -0.2539 -0.8028 1.0643 1.6828 
OEN -0.0655 5.1179 -11.0931 11.6782 -0.0524 -0.1658 -0.3183 -0.5032 
ENG 0.3923 4.7308 -8.6594 10.4902 0.0773 0.2445 -0.3561 -0.5631 
FIN 0.8200 8.7771 -20.4114 20.9633 0.0505 0.1596 -0.1234 -0.1951 
FRA -0.0560 5.4079 -14.7757 11.9082 -0.2230 -0.7051 0.0088 0.0139 
GER 0.0993 5.6230 -19.7969 9.3121 -1.0676 -3.3760 2.5415 4.0185 
ITA -0.0363 7.4437 -16.1316 20.8624 0.3993 1.2626 0.1139 0.1801 
NET 0.5231 3.9566 -9.9611 9.0035 -0.0950 -0.3006 -0.3188 -0.5041 
NOR 0.1498 6.8552 -16.4028 12.6052 -0.3229 -1.0210 -0.4515 -0.7139 
SPA -0.0446 6.4968 -20.7705 12.8100 -0.4144 -1.3104 0.4918 0.7775 
SWE 0.6132 7.6259 -23.9370 23.0205 -0.2962 -0.9366 1.5848 2.5057 
SWI 0.6646 4.8953 -14.5733 12.0524 -0.5547 -1.7542 1.6346 2.5845 
WOR -0.0507 4.0607 -12.9982 9.7972 -0.5708 -1.8051 1.5585 2.4642 
Mean returns, standard deviations (SD), minimum returns (Min), and maximum returns (Max) are all expressed 

in percentages. Skw = Skewness = mis3 and Krt = Kurtosis = mJs4-3, where m; and s are the AA central sample 
moment and the sample standard deviation of each distribution, respectively; both coefficients are computed with 
a finite-sample adjustment. SSkw = Standardized skewness and SKrt = Standardized kurtosis. Sample size = 60 
for all markets. 
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TABLE A3: Dail~. Monthl~. and Im~lied Monthl~ Covariances to the Market Portfolio 

Market ODC OMC IMC OSF RD 

AUS 0.000033 0.0013 0.00072 38.70 1.76 

BEL 0.000022 0.0012 0.00049 53.99 2.45 

DEN 0.000019 0.0012 0.00042 60.47 2.75 
ENG 0.000031 0.0014 0.00068 45.99 2.09 
FIN 0.000015 0.0019 0.00034 120.57 5.48 
FRA 0.000036 0.0015 0.00080 41.65 1.89 
GER 0.000035 0.0014 0.00077 39.28 1.79 
ITA 0.000032 0.0015 0.00070 48.27 2.19 
NET 0.000026 0.0011 0.00056 44.81 2.04 
NOR 0.000031 0.0013 0.00068 41.60 1.89 
SPA 0.000040 0.0020 0.00088 50.54 2.30 
SWE 0.000038 0.0022 0.00083 58.36 2.65 
SWI 0.000034 0.0015 0.00075 44.93 2.04 

Averages 0.000030 0.0015 0.00066 53.01 2.41 

WMP 0.000043 0.0016 0.00094 38.64 1.76 

ODC = Observed Daily Covariance; OMC = Observed Monthly Covariance; IMC = Implied Monthly 
Covariance; OSF = Observed Scaling Factor; RD = Relative Difference. IMC = (22)ODC; OSF = OMC/ODC; 
RD = OMC/IMC. 

TABLE A4: Daily. Monthl~. and Im~lied Monthl~ Ex~ected Returns 

Market ODR OMR IMR OSF RD 

AUS -0.0064 -0.1384 -0.1408 21.63 0.98 
BEL -0.0020 -0.0445 -0.0440 22.25 1.01 
DEN -0.0030 -0.0655 -0.0660 21.83 0.99 
ENG 0.0180 0.3923 0.3960 21.79 0.99 
FIN 0.0377 0.8200 0.8294 21.75 0.99 
FRA -0.0026 -0.0560 -0.0572 21.54 0.98 
GER 0.0046 0.0993 0.1012 21.59 0.98 
ITA -0.0017 -0.0363 -0.0374 21.35 0.97 
NET 0.0241 0.5231 0.5302 21.71 0.99 
NOR 0.0069 0.1498 0.1518 21.71 0.99 
SPA -0.0021 -0.0446 -0.0462 21.24 0.97 
SWE 0.0282 0.6132 0.6204 21.74 0.99 
SWI 0.0306 0.6646 0.6732 21.72 0.99 
Averages 0.0102 0.2213 0.2239 21.68 0.99 

ODR - Observed Daily Returns; OMR = Observed Monthly Returns; IMR = Implied Monthly Returns; 
OSF = Observed Scaling Factor; RD = Relative Difference. IMR = (22)ODR; OSF = OMRlODR; RD = 
OMRlIMR. 



20 

TABLE AS: Efficient Frontiers 

MR MV IMV RD AD 
0.4284 3.64Il 2.6172 1.39 1.02 
0.4504 3.6421 2.6285 1.39 1.01 
0.4724 3.6443 2.6414 1.38 1.00 
0.4944 3.6475 2.6560 1.37 0.99 
0.5164 3.6518 2.6723 1.37 0.98 
0.5384 3.6572 2.6901 1.36 0.97 
0.5604 3.6636 2.7095 1.35 0.95 
0.5824 3.67Il 2.7305 1.34 0.94 
0.6044 3.6797 2.7529 1.34 0.93 
0.6264 3.6893 2.7768 1.33 0.91 
0.6484 3.6999 2.8021 1.32 0.90 
0.6704 3.7115 2.8288 1.31 0.88 
0.6924 3.7242 2.8569 1.30 0.87 
0.7144 3.7379 2.8862 1.30 0.85 
0.7364 3.7526 2.9168 1.29 0.84 
0.7584 3.7682 2.9487 1.28 0.82 
0.7804 3.7848 2.9817 1.27 0.80 
0.8024 3.8024 3.0159 1.26 0.79 
0.8244 3.8210 3.0512 1.25 0.77 
0.8464 3.8404 3.0875 1.24 0.75 
0.8684 3.8608 3.1249 1.24 0.74 
0.8904 3.8821 3.1633 1.23 0.72 
0.9124 3.9043 3.2027 1.22 0.70 
0.9344 3.9273 3.2430 1.21 0.68 
0.9564 3.9512 3.2842 1.20 0.67 
0.9784 3.9760 3.3262 1.20 0.65 
1.0004 4.0016 3.3691 1.19 0.63 
1.0224 4.0280 3.4127 1.18 0.62 
1.0444 4.0552 3.4572 1.17 0.60 
1.0664 4.0831 3.5023 1.17 0.58 
1.0884 4.1119 3.5482 1.16 0.56 
1.J 104 4.1414 3.5948 1.15 0.55 
1.J 324 4.1716 3.6420 1.15 0.53 
1.J544 4.2025 3.6898 1.14 0.51 
1.1764 4.2341 3.7383 1.13 0.50 
1.J984 4.2665 3.7873 1.13 0.48 
1.2204 4.2994 3.8369 1.12 0.46 
1.2424 4.3331 3.8870 1.11 0.45 
1.2644 4.3674 3.9377 1.11 0.43 
1.2864 4.4023 3.9889 1.10 0.41 
1.3084 4.4378 4.0405 1.10 0.40 
1.3304 4.4739 4.0926 1.09 0.38 
1.3524 4.5106 4.1451 1.09 0.37 
1.3744 4.5479 4.1981 1.08 0.35 
1.3964 4.5857 4.2515 1.08 0.33 
1.4184 4.6240 4.3052 1.07 0.32 
1.4404 4.6629 4.3594 1.07 0.30 
1.4624 4.7023 4.4139 1.07 0.29 
1.4844 4.7422 4.4688 1.06 0.27 
1.5064 4.7826 4.5240 1.06 0.26 

Avgs: 0.9764 4.0050 3.3957 1.21 0.65 
Monthly returns (MR) are the same for both efficient frontiers. MV = Monthly Volatility; IMV = Implied 

Monthly Volatility; RD = Relative Difference; AD = Absolute Difference. RD = MVIIMV; AD = MV-IMV. 
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TABLE A6: Unit Root Tests (Monthly Data) 

Augmented Dickey-Fuller Test: D.ln(/,) = a + pln(/,.t) + pt + YtD.ln(/,.t) + ... + yqD.ln(/,-q) + Et 
PhilliEs-Perron Test: In(/,) = a+ ,eln(/,.t) + tJ;.t-T12) + Et 

Augmented Dickey-Fuller Phillips-Perron 

Market p Ho:p=0 Ho: a=p=0 Ho: a=fJ=p=0 Ho:p=O Ho: a=p=O Ho: a=fJ=p=O 
AUS 0.905 -2.0027 2.0060 1.3430 -2.1879 2.4111 1.6121 
BEL 0.931 -2.8415 4.5762 3.0529 -2.8767 4.6488 3.1011 
DEN 0.911 -1.7277 1.5440 1.0327 -1.8031 1.6791 1.1225 
ENG 0.916 -3.2782 5.4420 3.7862 -3.4349 5.9898 4.1277 
FIN 0.969 -1.8152 4.0420 2.8908 -1.4850 2.4479 1.7887 
FRA 0.895 -2.6614 3.6111 2.4098 -2.8228 4.0668 2.7132 
GER 0.901 -2.1386 2.5636 1.7156 -2.2045 2.6938 1.8020 
ITA 0.952 -1.7964 2.2342 1.4899 -1.8357 2.2672 1.5119 
NET 0.940 -2.7128 4.2932 3.2507 -2.7574 4.3709 3.2673 
NOR 0.925 -1.3685 1.1671 0.7877 -1.4117 1.2190 0.8218 
SPA 0.905 -2.4055 3.0772 2.0525 -2.4983 3.2975 2.1992 
SWE 0.927 -1.9223 2.2674 1.7644 -2.3624 3.1018 2.1867 
SWI 0.947 -3.6239 7.2494 5.4200 -2.6014 3.7104 2.8149 

Numbers in the table represent test statistics except for p, which represents the coefficient from the regression 
In(/,)=,u+pln(/,.t)+c,. Asymptotic critical values for Ho: p=0, Ho: a=p=0, and Ho: a=fJ=p=O at the 5% significance 
level are -3.41,6.25, and 4.68, respectively. Sample size = 61 for all markets. 

TABLE A 7: Linear and Nonlinear Deeendence, and Normalit~ in Monthl~ Stock Returns 
Market Q(6) p-value Q2(6) p-value KS p-value 
AUS 9.17 0.103 12.66 0.049 0.0958 0.6410 
BEL 6.58 0.254 20.26 0.002 0.1169 0.3851 
DEN 1.95 0.856 6.12 0.410 0.0622 0.9745 
ENG 3.45 0.631 6.29 0.392 0.0715 0.9190 
FIN 7.77 0.169 4.03 0.673 0.0873 0.7498 
FRA 6.17 0.290 6.70 0.349 0.0755 0.8835 
GER 9.46 0.092 12.37 0.054 0.0910 0.7035 
ITA 3.91 0.562 13.50 0.036 0.0804 0.8324 
NET 4.79 0.442 6.02 0.421 0.0648 0.9630 
NOR 1.37 0.928 5.90 0.435 0.0977 0.6153 
SPA 2.41 0.790 7.51 0.277 0.0652 0.9608 
SWE 5.23 0.388 1.17 0.978 0.0630 0.9712 
SWI 6.57 0.225 8.59 0.198 0.1025 0.5534 
Q(6) and q(6) are the Ljung-Box statistics for 6 autocorrelations and 6 squared autocorrelations, 

respectively. KS = Kolmogorov-Smimov test statistic. 
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