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Abstract In competitive domains, some knowledge
about the opponent can give players a clear advan-
tage. This idea led many people to propose approaches
that automatically acquire models of opponents, based
only on the observation of their input-output behav-
ior. If opponent outputs could be accessed directly, a
model can be constructed by feeding a machine learn-
ing method with traces of the behavior of the oppo-
nent. However, that is not the case in the Robocup do-
main where an agent does not have direct access to
the opponent inputs and outputs. Rather, the agent
sees the opponent behavior from its own point of view
and inputs and outputs (actions) have to be inferred
from observation. In this paper, we present an ap-
proach to model low-level behavior of individual oppo-
nent agents. First, we build a classifier to infer and la-
bel opponent actions based on observation. Second, our
agent observes an opponent and labels its actions using
the previous classifier. From these observations, ma-
chine learning techniques generate a model that pre-
dicts the opponent actions. Finally, the agent uses the
model to anticipate opponent actions. In order to test
our ideas, we created an architecture, OMBO (Oppo-
nent Modeling Based on Observation). Using OMBO,
a striker agent can anticipate goalie actions. Results
show that in this striker-goalie scenario, scores are sig-
nificantly higher using the acquired opponent’s model
of actions.

Keywords: Opponent modeling, Learning about
agents, Hybrid learning

1. Introduction

A very important issue in multi-agent systems
is that of adaptability to other agents, be it to
cooperate or compete. In competitive domains, the
knowledge about the opponent can give players a

clear advantage [35]. A powerful way of achieving
that knowledge consists of using machine learning
to automatically build models of other players to
be able to intelligently interact with other agents
(either cooperating or opposing [27,37]).

Sometimes the inputs and outputs of agents
to be modeled are available, and the model can
be constructed from them. In previous papers,
we have presented results for agents whose out-
puts are discrete [1], agents with continuous and
discrete outputs [19], and an implementation of
the acquired model in order to test its accu-
racy [18]. Among other robotic domains, we used
the RoboCup Soccer 2D Simulator (RoboSoccer).
There, we used the logs produced by another
RoboCupSoccer simulation team’s player to pre-
dict its actions using an action/parameter learning
scheme [16]. In those papers, we considered that
we had direct access to the opponent’s inputs and
outputs. However, in most domains (including Ro-
bosoccer) agents cannot see directly other agent’s
inputs (information sensed by the agent) and ac-
tions (actions performed by the agent). Instead,
both have to be inferred by observing the behavior
of the agent to be modeled.

The goal of this paper is to show an ap-
proach that automatically generates models of
other agents when the specific inputs-outputs of
that agent are unknown. We use an input-ouput
approach in order to model opponent agents.
Our approach, called oMBO (Opponent Model-
ing Based on Observation), uses machine learning
(ML) techniques in order to map observations of
the opponent agents into actions that they have
executed (i.e. to label opponent actions from sen-
sory data). In the case of many domains this model
should be independent of the agent that is being
modeled, given that it only accounts for changes
in the environment caused by that action. For in-
stance, in the RoboSoccer simulator domain, kick-
ing the ball results in approximately the same ef-
fects on the environment (i.e. the ball changes
its position), no matter what agent performs the
action. This is somehow equivalent of building a
model of how the simulator executes actions.
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Once the action that the opponent has per-
formed is labeled, a model about the other agent
input-output behavior is built, also using inductive
ML techniques.

Finally, the model of the other agent is used to
improve the agent’s performance. In this paper,
we propose two ways of using the model. First, an
expert on the domain designed a decision-making
algorithm that uses the knowledge supplied by the
model prediction. Second, we propose to automati-
cally obtain the decision-making process itself. We
generated random situations, and a ML technique
learned which is the best action to perform, ac-
cording to the model predictions.

In summary, our OMBO approach uses ML for
opponent modeling at three levels to: label actions
of any agent from observation (i.e. mapping sen-
sory data into discrete actions); build the oppo-
nent model; and generate the decision-making al-
gorithm. We have used the RoboSoccer as a do-
main where to test our approach. Results of the
performed experiments show that using the ac-
quired opponent model can improve the agent’s
performance.

The remainder of the paper is organized as
follows. Section 2 presents our test domain, the
RoboCup. Section 3 presents a summary on our
learning approach to modeling. Actual results are
detailed in Section 4. Section 5 discusses the re-
lated work. The paper concludes with some re-
marks and future work, in Section 6.

2. The RoboCup Soccer Simulator

The base of the soccer simulation league of
RoboCup is the Soccer Server System [21]. This is
a client-server software system. The Soccer Server
provides a virtual field in which two soccer teams
can play a match. The server simulates all move-
ments of the ball and players (clients) and when
the clients send a request to execute an action (e.g.
turn, run, kick), the server modifies the current
state of the world. Additionally, the server period-
ically sends information about the environment to
each agent. This information is noisy and incom-
plete. The player only receives information about
the objects in its vision range. The team’s mem-
bers are eleven independent players as well as a
coach agent. The brain of each player on the field is
a client that controls the actions of the player and

communicates with the server through a standard
network protocol with well-defined actions.

A standard game lasts for about 10 minutes. The
server works with discrete time intervals known as
“cycles”. A second has ten cycles, thus, a standard
game has 6000 cycles. In each cycle, an agent can
send multiple actions to the server, and also re-
ceives information about the world from the server
every 6 or 7 times per second. In our approach we
want to model actions that can be sent one per
cycle.

3. Opponent Modeling Based on
Observation (OMBO)

Our approach carries out the modeling task in
two phases (see Figure 1). In the first phase we cre-
ate a generic module that is able to label the last
action (and its parameters) performed by any ro-
bosoccer opponent based on the observations per-
formed by the agent that is going to build the
model (Action Labeling Module - ALM). As most
activity recognition tasks, in order to obtain a
model of other agent’s behavior we need a log that
matches sensory data with performed actions. In
most of the work on activity recognition, actions
are manually tagged by looking at sensory data.
We propose an automatic way of tagging actions
for the robosoccer simulator. In other words, we
need this module given that in a game in the soc-
cer simulator of the RoboCup, an agent does not
have direct access to the other agents’ inputs and
outputs (what the other agent is really perceiving
through its sensors and the actions that it executes
at each moment). This module can be used for la-
beling later any other agent’s actions. In a second
phase, once we have a tagged log of sensory data
from our agent and performed actions of the oppo-
nent, we create the model of the other agent based
on ALM data inside of the Model Builder Module
- MBM.

As we can see in Figure 1, after the opponent’s
model has been constructed, it can be used by the
Reasoner Module REM to make the most suitable
decision in order to react to the opponent’s behav-
ior.

The implementation of the modules that OMBO
comprises is discussed in detail below.
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Figure 1. Architecture for opponent modeling.

3.1. Action Labeling Module (ALM)

In order to predict the behavior of the opponent
(Agent A), it is necessary to obtain many instances
of the form (Input Sensors, Output Actions), so
that they can be used for learning. However, in
a real match, A’s inputs and outputs are not di-
rectly accessible by the modeler agent (Agent B).
Rather, A’s actions (outputs) must be inferred by
Agent B, by watching A. For instance, if Agent
A is besides the ball at time 1, and the ball is far
away at time 2, it can be concluded that A kicked
the ball. Noise can make this task more difficult.

The purpose of the ALM module is to classify
A’s actions based on observations of A made by
B. This can also be seen as a classification task.
In this case, instances of the form (observations of
A’s from B perspective,A’s actions) are required.
Since we are building an agent-independent label-
ing module, we can use any Agent A for perform-
ing this training. We are somehow capturing the
simulator behavior from a playing agent perspec-
tive.

The detailed steps for building the Action La-
beling Module (ALM) are shown in Figure 2 and
detailed below:

1. The Agent A plays against Agent B in sev-
eral games. At every instant, data about A
and some environment variables calculated
by B are logged to produce a trace of Agent
A behavior from Agent B point of view. On
the other hand, the actual actions carried out
by AgentA can be extracted from its logs or
from the server logs.

Each example [ in the trace is made of three
parts in a given simulation step t:

— a set of features, F', about Agent A,

— some environment features, £, and

— the actual action, C, that Agent A per-
formed.

In other words, given a simulation step ¢,
each example is composed of I; = Fy, Ey, C;.
From the trace of all simulation steps, t =
[1,2,...,n], it is straightforward to obtain a
set of examples D so that Agent B can in-
fer, through ML techniques, the action car-
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Figure 2. Action Labeling Module creation.

ried out by Agent A using its sensoring data
from two consecutive simulation steps. Some-
times, the soccer server does not provide in-
formation for two contiguous time steps. We
ignore these situations.

. Let D be the whole set of available ex-
amples from Agent A trace. Each exam-
ple d; € D is made of two parts: an
n-dimensional vector representing the at-
tributes a(d;) and a value ¢(d;) representing
the class it belongs to. In more detail, a(d;) =
Ft, Et, Ft—l; Et—l; Ct—l; V and C(di) = Ct.
V' represents attributes computed based on
comparison of feature differences between dif-
ferent time steps. We use 24 such attributes
(e.g. Agent A position differences, ball posi-
tion differences, etc. See appendix).

. When the actions ¢(d;) in D are a combina-
tion of discrete and continuous values (e.g.
dash 100 - dash with power 100), we create a
set of instances D with just the discrete part
of the actions, and a set Dj for each param-
eter of the action j using only the examples
corresponding to the same action. That is,

the name of the action and the parameter of
the action will be learned separately. For in-
stance, if the action executed by the player is
“dash 100” only dash will be part of D and
the value 100 will be in Dgqs, with all the
instances whose class is dash.

. The set D is used to obtain a model of the

action names (i.e. classify the action that the
Agent A carried out at a given simulation
step). The bj are used to generate the pa-
rameters with continuous values associated
to its corresponding action j. We have called
this approach for learning the action and
its parameter separately action/pammeter
learning (see Figure 3).

. Finally, in order to label the action carried

out by Agent A, we apply all classifiers in
two steps. First, the action classifier label the
action a; that the agent has just performed.
Second, the action a; parameter classifier la-
bels the value of the parameter of action a;.
This set of classifiers composes the Action
Labeling Module (ALM).
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Kick, dash and turn are generic actions that
have the same effect in the simulator indepen-
dently of the agent that executes them (the ac-
tion models are the same for all players). For in-
stance, kicking the ball results in the same effects
in the environment (the ball changes its position),
irrespectively of the agent that performs that ac-
tion. For this reason, the ALM is independent of
Agent A, and could be used to infer the actions of
other agents as well. In any case, a stronger agent-
independent ALM could be obtained using a set of
heterogeneous agents in order to construct it.

We assume we can access the real action of an
agent whose behavior with respect to sensory ac-
tions is equal to the one we are going to predict
later on. This is the case of RoboSoccer. In other
domains this assumption does not hold and one
would have to devise ways of obtaining those ex-
ecuted actions. For instance, one could manually
tag a small set of instances and then run the ALM
for the rest of the logs.

3.2. Model Builder Module (MBM)

So far, a classifier to label opponent’s action has
been obtained: ALM, and it can be used for the
next step. Our next goal is to learn a classifier
to predict a specific Agent A’s actions based on
observations of A from Agent B’s point of view.

It will be obtained from instances (Fy, Ey, ALM)
recorded during the match, where ALM; is the
action classified by ALM from observations at ¢ and
t — 1. The aim of this classifier is to predict Agent
A’s behavior.

More specifically, data consists of tuples (I) with
features coming from observing Agent A, some en-
vironment variables, and the action that B guessed
the Agent A has performed, together with its pa-
rameter labeled by ALM. Instead of using a single
time step, we have considered several of them in
the same learning instance. Therefore, the learn-
ing tuples will have the form (Iy, Iy 1, ..., Iy (—1)),
where w is the window size. Like in ALM construc-
tion, we used computed attributes, V.

The detailed steps taken for obtaining the model
of Agent A are as follows:

1. The ALM is incorporated into Agent B, so
that it can label (infer) Agent A’s actions.

2. Agent A plays against Agent B in differ-
ent situations. At every instant, Agent B ob-
tains information about Agent A and the
guessed performed action of Agent A, labeled
by ALM, as well as its parameter. All this
information is logged to produce a trace of
Agent A behavior.

3. Like in the ALM construction, every example
I, at a given simulation step t in the trace, is
made of three parts:
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— a set of features, F', about Agent A,

— some environment features, F/, and

— the action, C (labeled by ALM), of Agent
A.

In other words, at simulation step ¢ every ex-
ample is I; = F;, Fy, Cy. We use information
about Agent A from some previous simula-
tions w steps.

4. Let D be the whole set of instances avail-
able at a given simulation step. Each instance
d; € D is made of two parts: an n-dimensional
vector representing the attributes a(d;) and
a value ¢(d;) representing the class it belongs
to. In more detail,

a(d;) = (Fy, By, Fy_1, By _1Cy_1, ...,
Fi_w-1), Bt—(w-1) Ct—(w-1), V)

and ¢(d;) = Cy.

5. Similarly, as in ALM, when the actions ¢(d;)
in D are a combination of discrete and con-
tinuous values (e.g. dash 100), we create a set
of instances D with only the discrete part of
the actions, and a set ﬁj for each parameter
of the action j using only the examples corre-
sponding to the same action. From here on,
action/parameter learning is used, just like in
ALM, to produce action and parameter clas-
sifiers. They can be used later to predict the
actions performed by Agent A.

Although the Model Builder Module could be
used on-line, during the match, the aim of the ex-
periments in this paper is to show that the module
can be built and is accurate enough. Therefore, in
our present case, learning occurs off-line.

3.3. Reasoner Module (REM)

Predicting opponent actions is not enough. Pre-
dictions must be used somehow by the agent mod-
eler to anticipate and react to the opponent. For
instance, in an offensive situation, an agent may
decide whether to shoot the ball to the goal or
not, based on the predictions about the oppo-
nent. The task of deciding when to shoot has
been addressed by other researchers. For instance,
CMUnited-98 [30] carried out this decision by us-
ing three different strategies based on: the dis-
tance to the goal; the number of opponents be-
tween the ball and the goal; and on a decision tree.
In CMUnited-99 [31], Stone et al. [29] considered

the opponent to be an ideal player, to perform this
decision. Unlike Stone’s work, in our approach we
build first a general action-recognition classifier,
an explicit model of the current opponent and we
learn how to use the acquired opponent model.

A first approach for using the model is to pro-
gram the reasoner module by hand. Then, it uses
the prediction given by the model in a specific sit-
uation, in order to make a decision and execute
the right action. In section 4 we will propose one
way to achieve this, but there are many other pos-
sibilities.

The previous approach depends on the expert
knowledge, as well as programming time and skills.
It would still be better if the reasoning module
could be automatically generated. One alternative
would be using reinforcement learning (RL) and
adding the prediction of the model as a new feature
to the state vector [9]. Thus, the policy learned by
RL would take into account both the information
coming from the sensors and the prediction about
the opponent.

In our case, we have followed a simpler approach
shown in Figure 4:

1. First, we randomly generated many different
scenarios in which the modeler is involved,
that include the ball and other players. The
potential scenarios are limited to those that
are interesting for the learning task. For in-
stance, we could have a striker and a goalie.
In that case, the scenarios of interest are
those where the striker starts at some dis-
tance of the goal, it is kicking the ball, and
the goalie is near the goal.

2. Then, the modeler agent executes a random
action, and the result is observed. Random
actions would be restricted to those that
make sense in a particular learning situation
(for instance, a striker can either kick the
ball or continue advancing towards the goal).
According to the result, the action would be
marked as positive or negative. The mean-
ing of positive and negative depends on the
particular learning task. For instance, in the
case of the striker, scoring a goal would be
marked as positive. By repeating this pro-
cess many times, a sequence of state, oppo-
nent prediction, action, class will be gener-
ated. “State” is represented by the features
constructed from data coming from the sen-
sors. “Opponent prediction” is the action pre-
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dicted for the opponent by the model. “Ac-
tion” is the one that was (randomly) executed
in that particular situation. And “Class” is
either positive or negative, depending on the
outcome of performing the action.

3. Finally, these tuples are fed to a learning al-
gorithm (for example 4.5 [22]) in order to
construct a classifier that decides whether an
action should be executed or not in a spe-
cific state taking into account the opponent
prediction.

4. Experiments and Results

This section describes the experimental setup
and results obtained. We have carried out three
phases: first a player of a soccer simulator team
(Agent A) plays against an Agent B to build the
A1LM; second, the model m of Agent A is built;
and third, the model is used by B against A.

We have used two different players as the agent
whose actions will be predicted (Agent A); the
ORCA team [20] goalie and the Uva Trilearn [15]
goalie. On the other hand, the Agent B (modeler
agent) is based on the public part of the source
code of CMUnited-99 [31]. The CMUnited99 team
was simulation league champion in the RoboCup-
99, and it is one of the most used source codes as
base for other teams. Agent A will act as a goalie
and Agent B as a striker, that must make the de-

cision of shooting to the goal or continue advanc-
ing towards it, depending on the predictions about
the goalie.

The techniques to model Agent A actions have
been, in both, ALM and MBM, PART [10] and
M5 [23]. PART is a descendant of ¢4.5 [22], and
generates rules from a decision tree, and M5 gen-
erates regression trees. The latter are also rules,
whose then-part is a linear combination of the val-
ues of the input parameters. PART has been used
to predict the discrete actions (kick, dash, turn,
etc.) and M5 to predict their continuous parame-
ters (kick and dash power, turn angle, etc.). PART
and M5 were chosen because we intend to analyze
the models obtained in the future, and rules and
regression trees obtained by them are quite under-
standable. In these experiments we use the imple-
mentation of PART provided by WEKA [39]. In re-
lation to M5, we use a variant named M5RULES
also implemented in WEKA. This algorithm im-
plements routines for generating a decision list us-
ing M5 model trees and the approach used by the
PART algorithm.

4.1. ALM Construction

As it is detailed in the previous section, the data
used to generate the ALM, is a combination of the
perception about Agent A from the point of view
of Agent B and the actual action carried out by
Agent A. Once the data has been generated, we
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Table 1

Results of ALM creation. (R: correlation coefficient)

ORCA GOALIE

UVATRILEARN GOALIE

Labeling task  Attributes Classes Instances  Accuracy Instances  Accuracy
Action 68 5 5095 70.81% 4545 77.14%
Turn angle 68 Continuous 913 0.007 R 2476 -0.038 R
Dash power 68 Continuous 3711 0.21 R 2067 0.32 R

use it to construct the set of classifiers that will be
the ALM. Results of ALM creation are displayed in
Table 1.

There are three rows in Table 1. The first one
displays the classification of the action performed
by Agent A, while the other two rows show the
classification of the numeric parameters of two ac-
tions: turn and dash. As Agent A is a goalie, for ex-
perimental purposes, we only considered relevant
the parameters of these actions. Columns two and
three represent the number of attributes and the
number of classes (continuous for the numeric at-
tributes) used in these experiments. The rest of
the columns show the number of instances used for
learning and the accuracy obtained in the exper-
iments with different goalies. These results have
been obtained using a ten-fold cross validation.

ALM obtains between 70% and 77% accuracy for
the discrete classes, which is a good result, consid-
ering that the simulator adds noise to the already
noisy task of labeling the performed action.

Although a majority class algorithm (like Ze-
roR) obtains a 72% accuracy in the Orca goalie’s
case and a 70% in the UvaTrilearn agent’s case,
ALM is able to obtain a precision rate higher than
0 for all the classes (not only the majority one).
Table 2 shows the True Positive (TP) and the False
Positive (FP) rates per class. We can see that the
error is distributed among all classes. In addition,
the Precision (TP/TP+FP) is above 30% except
in a case (class none/Orca goalie). Therefore, we
can say that although the accuracy rate is sim-
ilar to the one of a majority rule classifier, the
learned model is more adapted because it considers
all classes.

On the other hand, the results obtained for pa-
rameters values could be improved. These results
are consistent with the results obtained by Blay-
lock & Allen [3] when using statistical methods for
goal recognition. Besides using the m5Rules algo-
rithm, we have also used artificial neural networks
and linear regression techniques obtaining similar

results, and in some cases even worse. It might be
that better results could probably be achieved by
discretizing the continuous values in order to ap-
ply classification algorithms. Moreover, it is not
necessary to predict the numeric value with high
accuracy; only a rough estimate is enough to take
advantage of the prediction. For instance, it would
be enough to predict whether the goalie will turn
left or right, rather than the exact angle. In Sec-
tion 4.3.1, where a reasoner module is programmed
by hand, only the main action is considered. But in
Section 4.3.2, where the reasoner module is gener-
ated automatically, both the main action and the
parameters are used.

4.2. Model Construction

The ALM can now be used to label opponent
actions and build a model, as explained in previous
sections. PART and M5 have been used again for
this purpose. Results are shown in Table 3.

Table 3 shows that the main action that will be
performed by the opponent can be predicted with
high accuracy (more than a 80%) considering the
simulator noise.

Like in ALM construction, we compare our re-
sults with a majority rule classifier. This classifier
obtains 79% and 73% accuracy for the Orca and
Trilearn agents, respectively. In Table 4 we can see
the TP and FP rates and the Precision per class.
As we can see, the Precision rate is over 50% in all
cases.

4.8. Reasoner Module (REM)

Once the model m has been constructed and in-
corporated into the Agent B architecture, it can
be used to predict the actions of the opponent
in any situation. The task selected to test the
acquired model is when to shoot [29]. When the
striker player is approaching the goal, it must de-
cide whether to shoot right there, or to continue



A. Ledezma et al. / OMBO: An opponent modeling approach

Table 2

Results details per class in ALM creation. The

%)

implies that the action was not executed by the agent

ORCA GOALIE

UVATRILEARN GOALIE

Class TP Rate FP Rate Precision TP Rate FP Rate Precision
turn 0.248 0.097 0.359 0.331 0.082 0.381
kick - - - 0.303 0.003 0.435
dash 0.877 0.616 0.793 0.499 0.076 0.541
catch 0 0 0 0.256 0.002 0.524
unknown 0.274 0.048 0.361 0.925 0.294 0.88
none 0.067 0.002 0.091 - - -
Table 3
Model creation results.
ORCA GOALIE UVATRILEARN GOALIE
Predicting Attributes Classes Instances  Accuracy Instances  Accuracy
Action 72 5 5352 81.13% 3196 85.39%
Turn angle 72 Continuous 836 0.67 R 278 0.46 R
Dash power 72 Continuous 4261 041 R 551 0.76 R
R: correlation coefficient
Table 4

Results details per class in MBM creation. The

%)

implies that the action was not executed by the agent

ORCA GOALIE

UVATRILEARN GOALIE

Class TP Rate FP Rate Precision TP Rate FP Rate Precision
turn 0.4 0.069 0.519 0.454 0.042 0.514
kick 0 0 0 0.125 0 1
dash 0.919 0.576 0.862 0.739 0.057 0.728
catch - - - 0 0.001 0
unknown 0.365 0.014 0.564 0.934 0.226 0.919
none 0 0 0 - - -

with the ball towards the goal. In our case, Agent
B (the striker) will make the decision based on a
model of the opponent goalie.

When deciding to shoot, our agent (B) first se-
lects a point inside the goal as a shooting target. In
this case there are two shooting targets: the two
sides of the goal. The agent then considers its own
position and the opponent goalie position to se-
lect which one of the shooting targets to shoot at.
Once the agent is near the goal, it uses the op-
ponent goalie model to predict the goalie reaction
and decides to shoot or not at a given simulation
step. For example, one potential algorithm would
be that if it predicts the goalie will remain still, the
striker advances with the ball towards the goal.

In order to test the effectiveness of our mod-
eling approach in a simulation soccer game, we

ran 100 simulations in which only two players take
part. The Agent A is either an ORCA Team goalie
or a Uva Trilearn goalie, whereas the Agent B is
a striker based on the CMUnited-99 architecture
with ALM and the model of Agent A. For each
simulation, the striker and ball were placed in 30
different positions in the field randomly chosen.
This makes a total of 3000 goal opportunities. The
goalie was placed near to the goal. The task of the
striker is to score a goal while the goalie must pre-
vent it. Figure 5 shows an example of a scenario.

4.3.1. REM coded by hand

To test the model utility, we compare a striker
that uses the model with a striker that does not.
In all situations, the striker dribbles the ball to-
wards the goal until deciding when to shoot. The
striker that does not use the model decides when
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e shoot target
O goalie

QO striker
@ hall

Figure 5. Example of simulated scenario.

to shoot based only on the distance to the goal,
while the striker that uses the model, considers
this distance and the goalie predicted action. The
algorithm coded by hand that uses the prediction
about the opponent is the following;:

1. When the striker gets to a distance of 25 me-
ters of the opponent goal, it begins to con-
sider whether to shoot or to continue advanc-
ing.

2. In order to make the decision, the striker
uses the model to predict whether the oppo-
nent goalie will move (dash). In that case,
the striker will shoot towards the goal. Other-
wise, it will continue advancing and consider
whether to shoot or not in the next time step.

3. In any case, when the striker gets to a dis-
tance of 15 meters, it always shoots.

4. The shooting angle is computed considering
the nearest shooting target and the angle be-
tween the selected shooting target and the
opponent goalie. If the angle is greater than
20 degrees, then the striker shoots at the se-
lected target. Otherwise, the striker shoots at
the opposite target.

When no model is used, the striker always shoots
at a distance of 25 meters, in case it has the ball.

The shooting angle is computed in the same way
as before.

4.3.2. REM generated automatically

In this section we will apply the algorithm de-
scribed in Section 3.3 to the striker-goalie case.
In order to generate the REM, the following steps
were carried out:

— Thirty different scenarios that involve a striker
and a goalie are randomly generated. The
striker always appears in the opponent field
side with the ball. The goalie always appears
near its goal.

— When the striker gets into the 25 meter area,
it decides randomly whether to shoot or to
continue advancing.

— If the striker scores after shooting, a positive
training instance is generated. Otherwise, it
generates a negative one.

— Every training instance is made of 18 at-
tributes, that include the striker, opponent,
ball, and goal positions. Also, the prediction
about the opponent is included by means of
three attributes, the predicted action and its
parameters (angle and power).

— Then, the PART algorithm is trained using the
instances and the resulting classifier is incor-
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porated to the REM. The striker will decide
to shoot when the classifier predicts class pos-
itive (goal) if it shoots.

Our goal here is to automatically learn a model
so that our agent can decide what action to per-
form next. In the experiments with the ORCA
goalie, the training instances included 7414 neg-
ative cases and 2082 positive ones. In order to
obtain good results for both classes, positive in-
stances were replicated 4 times, obtaining a train-
ing set with 7414 negative and 8328 positive in-
stances. For comparison purposes, we generated
two classifiers. One of them with 15 attributes (i.e.
no predictions are included), and another one with
the full 18 attribute set (i.e. including the three
attributes that represent the predictions about
the opponent’s next action). The 10-fold cross-
validation accuracy results are 63.49% (no predic-
tions) and 68.06% (with predictions), respectively.
This implies that using the predictions given by
the model helps to better discriminate positive and
negative instances. In addition, we analyzed the
rules generated by PART. We observed that 72.6%
of the rules (138 out of 190 rules) actually used
the three prediction attributes. This implies that
the prediction attributes are important for decid-
ing what action to perform next.

On the other hand, in the experiments with the
Uva Trilearn goalie, the original training instances
were composed of 14702 negative cases and only
292 positive ones. After the balancing process, we
worked with a training set of 19666 instances with
4694 positive instances. We obtain a 98.18% accu-
racy in the cross-validation process with an accu-
racy rate of 0.934 for positive cases and 0.999 for
negative ones. The model obtained has 199 rules of
which 60 include the opponent action prediction.

4.83.8. Results

The average results of the 100 simulations (30
different scenarios per simulation) are shown in
Table 5.

Analyzing the results obtained against the ORCA
goalie, these show that the goals average using the
model (both by hand and automatically) is higher
than not using the model. Shots outside the goal
are also reduced (10.47 and 9.61 using the model
versus 11.18 without the model).

It can also be seen that when the REM is gener-
ated automatically, results improve over the hand-
made algorithm. We carried out a t-test to de-

termine that these differences are significant at
a = 0.05. Using the model is always significatively
better than not using it with respect to both goals
average and shots outside average.

On the other hand, analyzing the results ob-
tained against the UVA TRILEARN goalie, the score
average using the opponent model is significatively
higher than not using the opponent model again.
UVA'’s goalie is much better than Orca’s and that
is why fewer goals are scored against UVA Trilearn
even though the accuracy of the models is quite
similar.

The difference between using the opponents
models or not may seem small (between 0.48 and
1.96 goals every 30 opportunities). However, look-
ing at the results of the soccer simulation league
in the year 2007 [11], the goal difference in the
four matches of the quarterfinals were between one
and two goals. In other words, using the opponent
model could be decisive in the outcome of a match.

5. Related Work

Our approach follows Webb feature-based mod-
eling [37] that has been used for modeling user
behavior. Webb’s work can be seen as a reaction
against previous work in student modeling, where
it was attempted to model the internal cognitive
processing of students, that cannot be observed.
Instead, Webb’s work models the user in terms
of inputs and outputs, that can be directly seen.
This approach can be applied to any domain where
reaction is important, and the internal state of
agents cannot be accessed or it is not important.

Besides the work in user modeling, there are
other approaches in order to model the behavior
of an agent. For example, in game theory, Carmel
and Markovitch [4] propose a method in which the
opponent model is represented as a deterministic
finite automaton (DFA). Since the DFA uses an
observations table in order to maintain a consis-
tent model with the behavior of the opponent, this
approach is limited to discrete domains and can
not be used in complex domains like RoboCup.
Moreover their approach has a high sensitivity to
noise.

The Recursive Modeling Method, RMM [8,7] is
another method for opponent modeling. Using
RMM an agent can model the internal state of an-
other agent and its action selection strategies in
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Table 5

Simulations results using different strikers.

ORCA GOALIE

UVATRILEARN GOALIE

Striker Goals average  Shots outside average  Goals average  Shots outside average
Without model 4.65 11.18 0.38 4.64
REM coded by hand 5.88 10.47 2.34 5.85
REM generated automatically 5.97 9.61 0.86 4.17

order to predict its action. This method is recur-
sive because the modeled agent might similarly be
modeling the modeler agent. This modeling strat-
egy can lead to an arbitrary depth of reasoning.
Some work has been carried out in order to limit
this depth [6,36]. One problem of RMM is that
it constructs the agent’s payoff matrices assuming
that it knows the internal state of other agents and
their actions capabilities.

Suryadi and Gmytrasiewicz [32] present a frame-
work where an agent can model other agents in
a multi-agent environment based on observed be-
havior. In their work, they start from models of
agents represented as influence diagrams and a his-
tory of observed behavior in order to model other
agents. They modify one of the available models
when none of them are likely to be correct, based
on observed behavior. In this work, the authors
start from a model or a set of models, and they try
to adjust the model or to select the model that de-
scribes best the opponent behavior. Our approach
differs in that our aim is to build the model about
the opponent from scratch.

Takahashi et al. [33] present an approach that
builds a state transition model about the oppo-
nent (the “predictor”), that could be considered
a model of the opponent, and uses reinforcement
learning on this model. They also learn to change
the robot’s policy by matching the actual oppo-
nent’s behavior to several opponent models, pre-
viously acquired. The difference with our work is
that we use ML techniques to build the opponent
model and that opponent actions are explicitly la-
belled from observation.

Another way to face the modeling agents task
is through plan recognition [13,34]. Tambe [34]
presents an algorithm for tracking agents in flex-
ible and reactive environment (RESC: Real-Time
Situated Commitments). Using RESC an agent
can carry out the tracking of another agent in-
ferring a hierarchy of operators (of the modeled
agent) taking advantage of its own architecture.

Avrahami-Zilberbrand and Kaminka [2] use deci-
sion trees for matching observations to the plan
library in a method for symbolic plan recognition.
Like in the work of Suryadi and Gmytrasiewicz,
the plan recognition task starts from predefined
models or plans stored in plan libraries. In our
case, we do not have “a priori” models of other
agents behaviors.

There has also been some work on agent mod-
eling in the RoboCup soccer simulation domain.
Most of the work focuses on the coaching prob-
lem (i.e. how the coach can give effective advice to
the team based on, among other things, the oppo-
nent modeling). For example, Druecker et al. [5]
use neural networks to recognize team formation in
order to select an appropriate counter-formation,
that is communicated to the players. Another ex-
ample of formation recognition is described in Ri-
ley et al. [26] that use a learning approach based
on player positions.

Riley and Veloso [25] presented an approach
that generates plans based on opponent plans
recognition and then communicates them to its
teammates. In this case, the coach has a set of “a
priori” opponent models.

Based on [24], Steffens [27] presents an opponent
modeling framework in multi-agent systems. In his
work, he assumes that some features of the oppo-
nent that describe its behavior can be extracted
and formalized using an extension of the coach lan-
guage. In this way, when a team behavior is ob-
served, it is matched with a set of “a priori” op-
ponent models.

Kaminka et al. [12] focus on learning sequential
behaviors from observations of the agents behav-
iors. Their technique translates observations in a
domain, like RoboCup games, into a time-series
of recognized atomic behaviors. Then this time-
series are analyzed in order to find repeating sub-
sequences that characterize each team behavior.

The main difference with all these previous
works is that we want to model opponent players
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in order to improve low level skills of the agent
modeler rather than modeling the high level be-
havior of the whole team.

On the other hand, Stone et al. [29] propose
a technique that uses opponent optimal actions
based on an ideal world model to model the op-
ponent future actions. This work was applied to
improve the agent low level skills. Our work ad-
dresses a similar situation, but we construct a real
model based on observation of an specific agent,
while Stone’s work does not directly construct a
model.

Steffens [28] propose a similarity-based ap-
proach to model high-level opponents actions (e.g.
shoot towards goal). In its approach, Steffens pro-
pose the use of Case-based reasoning (CBR) in
order to predict the opponent’s actions from the
coach point of view. He increases the classification
accuracy including in the similarity measure some
derived attributes from imperfect domain theo-
ries. As in our work, Steffens does not use pre-
designed models in order to predict the opponents
actions. Nevertheless, unlike our approach, it uses
the global information that can be received by the
online coach and not the information that can be
obtained by a player.

6. Conclusions and future work

In this paper we have presented and tested an
approach to modeling low-level behavior of indi-
vidual game opponent agents. Our approach fol-
lows three phases. First, we build a general clas-
sifier to label opponent actions based on obser-
vations. This classifier is constructed off-line once
and for all future action labeling tasks in the same
domain and type of agent. Second, our agent ob-
serves a specific opponent and labels its actions us-
ing the classifier. From these observations, a model
is constructed to predict the opponent actions.
This can be done on-line. Finally, our agent takes
advantage of the predictions to anticipate the op-
ponent actions.

In this paper, we have given a proof-of-principle
of our approach by learning a model of two differ-
ent goalies, so that our striker gets as close to the
goal as possible, and shoots when the goalie is pre-
dicted to move. Our striker obtains a higher score
by using the model against a fixed strategy. We
have shown that the model that decides which ac-

tion to perform can be built in two ways: by hand
(using knowledge from an expert about the best
way to use predictions about the opponent), and
automatically (generating random situations and
classifying them as positive or negative depending
on the outcome). In both cases, using the model is
significantly better than not using it.

In the future, we would like to do on-line
learning, possibly using the game breaks to learn
the model although this approach wouldn’t work
against the teams that change their behavior over
the break. Moreover, we intend to use the model
for more complex behaviors like deciding whether
to dribble, shoot, or pass. Also, we would like to
explore other ML approaches, such as RL tech-
niques for some of the learning tasks (in partic-
ular, to build the Reasoner Module). Finally, we
would like to extend our techniques to other do-
mains, specially interactive ones, so that the com-
puter agents can predict human player actions.
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Appendix

Table 6 shows the attributes used in the imple-
mentation of the ALM. We have used a total of
68 attributes (without the class), 44 of which are
obtained directly from the modeler agent (basic
attributes) and 24 are calculated attributes. The
basic attributes obtained directly from the mod-
eler agent correspond to perceptions and internal
state data in two consecutive time steps (22 per
time step). These attributes are shown in the up-
per part of the table. The calculated attributes are
based on differences between the basic attributes
in two consecutive time steps. In the lower part of
the table 6 we can see the list of the calculated
attributes and their descriptions.

On the other hand, in the implementation of
the MBM, we have used the same attributes used
in ALM implementation process except the “oppo-
nent number”. We remove this attribute because
we use only one type of opponent (the goalie).
Moreover, we added the output of the ALM to the
set of attributes, that is, the opponent class and
parameters in two consecutives time steps (6 at-
tributes).

15



16

A. Ledezma et al. / OMBO: An opponent modeling approach

Table 6
Used attributes in the classifier construction in ALM.
Name Description
ATTRIBUTES IN ¢t INSTANT
SeeOpponent Can the agent see the opponent?
OpponentNumber Opponent number

BallKickableForOpponent

CanFaceOpponentWithNeck

CanSeeOpponentWithNeck
BallMoving

BallKickable
OpponentPositionValid
OpponentDistance
OpponentSpeed
OpponentAngleFromBody
OpponentAngleFromNeck
BallPositionValid
BallSpeed

BallDistance
BallAngleFromBody
BallAngleFromNeck
MyBodyAng

MySpeed

MyAction

MyActionAngle
MyActionPower

Can the opponent kick the ball?

Can the agent face the opponent turn the neck?
Can the agent see the opponent turn the neck?
Is the ball moving?

Is the ball kickable?

Certain about opponent position

distance to the opponent

opponent speed

opponent angle from agent’s body

opponent angle from agent’s neck

Certain about ball position

ball speed

distance to the ball

ball angle from agent’s body

ball angle from agent’s neck

agent’s body angle

agent’s speed

agent’s action

angle asociated to agent’s action

power asociated to agent’s action

ATTRIBUTES at t — 1

Same attributes used in t

CALCULATED ATTRIBUTES

DIF-BKFO
DIF-CFOWN
DIF-CSOWN
DIF-BM
DIF-BK
DIF-OX
DIF-OY
DESP-O
DIF-OD
DIF-0OS
DIF-OAFB
DIF-OAFN
DIF-BX
DIF-BY
DESP-Ball
DIF-BS
DIF-BD
DIF-BAFB
DIF-BAFN
DIF-MyX
DIF-MyY
DESP-My
DIF-MyBA
DIF-MyS
CLASS

BallKickableForOpponent difference between two time instants
CanFaceOpponentWithNeck difference between two time instants
CanSeeOpponentWithNeck difference between two time instants
BallMoving difference between two time instants

BallKickable difference between two time instants

Opponent X axis difference between two time instants
Opponent Y axis difference between two time instants
Opponent moves from one time instant to another
OpponentDistance difference between two time instants
OpponentSpeed difference between two time instants
OpponentAngleFromBody difference between two time instants
OpponentAngleFromNeck difference between two time instants
Ball X axis difference between two time instants

Ball Y axis difference between two time instants

Opponent moves from one time instant to another

BallSpeed difference between two time instants

BallDistance difference between two time instants
BallAngleFromBody difference between two time instants
BallAngleFromNeck difference between two time instants
Agent X axis difference between two time instants

Agent Y axis difference between two time instants

Agent moves from one time instant to another

MyBodyAng difference between two time instants

MySpeed difference between two time instants

Opponent’s action in ¢t — 1






