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1 Introduction 

Much work in the recent literature has been devoted to the question whether a macroeconomic 
time series is trend-stationary or whether it possesses a unit root. When the time series is 
modeled by an AR(p) sequence with linear time trend, the answer depends on upon whether 
the sum of the AR(p) coefficients, a parameter usually denoted by a, is less than one or equal to 
one. This parameter can be consistently estimated by applying ordinary least squares (OLS) to 
the usual Dickey-Fuller form regression model. Unfortunately, the construction of confidence 
intervals is non-trivial, since the type of the asymptotic distribution of the OLS estimator, as 
well as its rate of convergence, are different in the trend-stationary case as compared to the 
unit root case. When a < 1, the limiting distribution is normal and the rate of convergence is 
the square root of the sample size. On the other hand, when a = 1, the limiting distribution 
is nonstandard and the rate of convergence equals the sample size. This difficulty explains the 
emphasis in the unit root literature placed on hypothesis testing. However, confidence intervals 
provide much more information than knowing whether the null hypothesis of a unit root can be 
rejected or not, namely they serve as a measure of sampling uncertainty and describe the range 
of models that are consistent with the observed data. This point was made in Stock (1991) 
and Andrews and Chen (1994), among others. 

In this paper, we propose a novel approach for constructing confidence intervals for the 
parameter a, based on the subsampling method of Politis and Romano (1994a). The crux of 
the new approach is to recompute the OLS estimator on smaller blocks, or 'subsamples', of 
the observed data sequence. Then, the empirical distribution of these subsample estimates, 
after an appropriate normalization, is used to approximate the sampling distribution of the 
estimator based on the entire data. Unlike the conventional bootstrap, the subsampling method 
can handle the discontinuity of the limiting distribution of the OLS estimator (as a function 
of a), since the subsamples are all generated by the true model rather than an approximating 
bootstrap distribution. While we will focus on the parameter a, the proposed method can 
equally well by applied to construct confidence intervals for alternative parameters of interest, 
such as the largest root of the AR(P) model, a particular AR coefficient, or the coefficient on 
the time trend. 

In Section 2, the model and the parameter of principal interest are presented. Also, some 
previous methods for confidence interval construction are briefly described. The general sub­
sampling methodology and some necessary extensions of the standard theory are discussed 
in Section 3. The general approaches are applied to specific parameters in Section 4, while 
Section 5 is concerned with issues concerning the practical implementation. Two simulation 
studies are presented in Section 6. Some conclusions are stated in Section 7. The proofs appear 
in an appendix and all tables are delegated to the end of the paper. 

2 Definitions and Background 

2.1 Definition of the Model 

The model under consideration is an AR(p) model with intercept and linear time trend. The 
exposition of the model and the notation closely follows Andrews and Chen (1994) with the 
exception that we do not require the innovations to be i.i.d. and normal. The model can be 
written in an unobserved-components form and in a regression form. In the former, it is given 
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by 

Yt /1* + f3*t + ~* for t = 1, ... ,n, 
1":* = t (1) 

where {Et, t = P + 1, ... ,n} is a strictly stationary, martingale difference innovation sequence 
and {Yt, t = 1, ... , n} is the observed series. The variable .6.~* denotes ~* - Yt~l. The 
parameter a satisfies a E (-1,1]; when a = 1, the model is no nst at ionary. The parameters 
('ljJ1, ... , 'ljJp-1) are such that the AR model for yt is stationary when a E (-1,1) and the AR 
model for .6. ~* is stationary when a = 1. The starting values of ~* -that is, (yt, ... , yp* )-are 
taken such that {yt} is stationary when a E (-1,1) and {.6.~*} is stationary when a = 1. 
The level of the D..yt* series is arbitrary when a = 1 (that is, when a = 1, the initial random 
variable yt can be fixed or can have any distribution provided the subsequent ~* values are 
such that .6.~* is stationary). 

The regression form of Model (1) is given by 

Yt = /1 + f3t + aYt-1 + 'ljJl.6.Yt-l ... + 'ljJp-l.6.Yt-p+l + Et for t = 1, ... ,n 

/1 = /1*(1 - a) + (a - 'ljJ1 - ... - 'ljJp-dI3* and" 13 = 13*(1 - a), (2) 

where (Y1, ... , yp) and {Et, t = P + 1, ... , T} are defined as in (1). Model (2) is the well-known 
augmented Dickey-Fuller regression form of the AR(p) model. The corresponding standard 
AR(p) regression form is given by 

Yt = /1 + f3t + I1Yt-1 + ... + IPYt-P + Et· (3) 

As is easy to see, the parameter a in the augmented Dickey-Fuller form equals the sum of the 
AR coefficients in the the standard form, that is, a = 11 + ... + Ip. Moreover, it follows that 
'ljJj = -bj+l + ... + IP) for j = 1, ... ,p - 1. 

It should be pointed out that the time trend parameter 13 is necessarily equal to 0 when 
a = 1 in both models (2) and (3). This desirable feature ensures that E(Yt) is a linear function 
of t for all a E (-1,1]. If 13 =1= 0 was allowed when a = 1, E(Yt) would be a quadratic function 
of t when a = 1, so this discontinuity is naturally avoided. 

2.2 The Parameter of Interest and its Inference Problems 

The remainder of this paper will mainly focus on constructing confidence intervals for the 
parameter a. The motivation is that it provides a useful scalar measure for the long-run 
persistence properties of the time series {Yt}. Indeed, in AR(p) models, 1/(1 - a) equals 
the sum of the impulse response functions over all time horizons, that is, the cumulative 
impulse response; see Andrews and Chen (1994). An alternative scalar measure that has been 
considered in the literature is the largest root of the AR(p) model, usually denoted by p. For 
example, Stock (1991) derived asymptotic confidence intervals for p based on a local-to-unity 
model and DeJong and Whiteman (I99Ia,b) discussed Bayes estimators of p. But, as was 
demonstrated in Andrews and Chen (1994), the persistence of two time series with the same 
value of p can be very different depending on the values of the other roots. Therefore, we have 
decided to focus on the parameter a instead. Note, however, that the methodology developed 
in this paper to construct confidence intervals for a can equally well be employed to construct 
confidence intervals for p. 
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As usual when inference for an unknown scalar parameter is desired, there exist two main 
avenues, namely hypothesis tests and confidence intervals. In accordance with many other 
authors, we feel that a confidence interval is much more informative than a test, since it not only 
states whether a specific parameter value is rejected or not by the observed data, but because 
it also provides the range of all parameter values consistent with the data. In particular, this 
allows to judge the degree of uncertainty about point estimates of the unknown parameter. So 
why is it that the main part of the unit root literature has been concerned with hypothesis tests 
for a, with the null hypothesis typically given by a = I? The reason for this preoccupation 
with the 'wrong' method is that hypothesis tests for a are by an order of magnitude easier to 
construct than confidence intervals. While a can be consistently estimated by applying OLS 
to the Dickey-Fuller form regression model (2), the form of the limiting distribution of the OLS 
estimator, as well as its rate of convergence depend in a discontinuous way on whether or not a 
equals 1; see the proof of Theorem 4.1 for details. Exactly this fact makes the construction of 
confidence intervals difficult. Clearly, the standard asymptotic approach-using the quantiles 
of the (estimated) limiting distribution-is rendered useless, since one has to know whether 
a is equal to 1 or not in order to know the quantiles of which distribution one should use. 
Moreover, the discontinuity of the form of the limiting distribution, as a function of a, causes 
the standard, residual-based bootstrap confidence intervals to fail; see Basawa et al. (1991). On 
the other hand, this dilemma does not affect hypothesis tests, since they only require to specify 
the limiting distribution of the test statistic under the null hypothesis. Despite the inherent 
difficulties in constructing confidence intervals for the parameter a, some notable progress has 
been made recently. 

Stock (1991), focusing on the largest root p of the AR(p) model rather than on the sum 
of the AR(P) parameters, made use of local-to-unity asymptotics. To be more specific, he 
assumed that p shrinks towards one as the sample size tends to infinity in the linear fashion 
p = 1 + c/n, for some constant c ~ 0; note that the theory also works when c > O. This model 
allows to test the null hypothesis c = Co for any value Co and thereby to find a confidence 
interval for c as the collection of Co values that are not rejected by the test. Using the relation 
p = 1 + c/n, a confidence interval for p immediately ensues. The downside of this approach 
may be considered its 'breakdown' problem. The confidence intervals work well when p is 
'close' to one, where 'close' depends on the sample size. Judging from the simulation studies 
in Stock (1991), the actual coverage is (nearly) equal to the nominal one when p = 1, that is, 
when c = 0 but deteriorates as p moves away from 1, that is, as c and/or n decrease. 

Andrews and Chen (1994) based confidence intervals on approximately median-unbiased 
estimation in AR(p) models. This is an extension of previous work of Andrews (1993), where 
exactly median-unbiased estimation in AR(l) models was developed. The idea is to compute 
(or to simulate with arbitrary precision) the sampling distribution of the OLS estimator an us­
ing model (2) but with LLd. innovations from a N(O, 0"2) distribution. In the AR(l) case, this 
distribution can be shown to depend on a only, but not on 1-', (3, and 0"2; see Andrews (1993). 
In the general AR(P) case, the distribution also depends on ('l/Jl, ... , 'l/Jp-d, so it can only be 
approximated. Given that one can (approximately) compute/simulate the sampling distribu­
tion of an for any value of ao, a confidence interval for a is obtained as the collection of all ao 
values whose sampling distribution is 'consistent' with the observed value of an; see Andrews 
and Chen (1994) for details. The obvious criticism of this method is that one has to specify the 
distribution of the innovations (such as normal) in order to calculate/simulate the sampling 
distribution of an. However, the method seems fairly robust against misspecification of this 
distribution, as appears from some simulations in Andrews and Chen (1994), as long as the 
innovations remain i.i.d.. It will be clear from the proof of Theorem 4.1 that the method in 
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general does not work when the innovations are dependent; specifically, see Remark 4.3. 

As mentioned before, even when the innovations are assumed LLd., the conventional, 
residual-based bootstrap confidence intervals fail when a = 1; see Basawa et al. (1991). On the 
other hand, it was shown by Hansen (1998) that one can construct 'indirect' bootstrap confi­
dence intervals that are guaranteed to work for any a E (-1,1]. The trick is to invert bootstrap 
tests, that is, to obtain a confidence interval for a as the collection of all ao values that are 
not rejected by a bootstrap test of the null hypothesis a = ao. Hansen coined his method 
the "grid bootstrap" but it should be pointed out that the idea of inverting bootstrap tests to 
construct confidence intervals is time honored; for example, see DiCiccio and Romano (1988). 
A shortcoming of this approach is that it, too, is restricted to LLd. innovations. 

The aim of this paper is to provide a new way for constructing confidence intervals for a 
that works for any a E (-1, 1] and allows for stationary, dependent rather than i.i.d. innova­
tions, though even the assumption of stationarity could be relaxed; see Remark 3.2. The new 
approach is based on the subsampling method of Politis and Romano (1994a). To make the 
paper self-contained, the general method pertaining to univariate parameters will be briefly 
described; broader methods, pertaining to multivariate or function-valued parameters can be 
found in Politis, Romano, and Wolf (1999). Then, some extensions of the standard theory that 
are necessary for the case a = 1 will be presented. 

3 The Subsampling Method 

3.1 The Basic Method 

Subsampling is a general tool that allows one to construct asymptotically valid confidence 
intervals for unknown parameters under very weak assumptions. 

Suppose { ... ,X -1, X o, Xl, ... } is a sequence of vector-valued random variables defined on 
a common probability space. Denote the joint probability law governing the infinite sequence 
by P. The goal is to construct a confidence interval for some real-valued parameter () = ()(P), 
on the basis of observing {Xl' ... ' X n}. We assume the existence of a sensible estimator 
On = en(X1, ••. ,Xn)· 

For time series data, the gist of the subsampling method is to recompute the statistic of in­
terest on smaller blocks ofthe observed sequence {Xl, ... , X n}. Define eb,t = eb(Xt, ... , Xt+b-d, 
the estimator of () based on the subsample {Xt , ... ,Xt+b-d. In this notation, b is the block 
size and t is the starting index of the smaller block; note that On,l = en- Let Jb(P) be the sam­
pling distribution of Tb (eb,t - ()), assuming that this distribution is independent of t. Here, Tb is 
an appropriate normalizing constant. Also, define the corresponding cumulative distribution 
function: 

Jb{x,P) = Probp{Tb{Ob,t - ()(P)) ~ x}. 

A major assumption that is needed to construct asymptotically valid confidence intervals for () 
is the following. 

Assumption 3.1 There exists a limiting law J{P) such that In(P) converges weakly to J(P). 

This assumptions states that the estimator, properly normalized, has a limiting distribution. 
It is hard to conceive of any asymptotic theory free of such a requirement. Also, it follows 
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that the proper normalizing constant Tn is the one ensuring a limiting distribution. In regular 
cases, the limiting distribution is normal and Tn = n 1/ 2• 

The subsampling approximation to In(x, P) is defined by 

1 n-b+l ~ ~ 

Ln,b(X) = n _ b + 1 &; 1{ Tb (lh,t - On) ~ X}. (4) 

The motivation behind the method is the following. For any t, X t , ... , X t + b - 1 is a 'true' 
subsample of size b. Hence, the exact distribution of Tb(Ob,t - 0) is Jb(P). If both band n are 
large, then the empirical distribution of the n - b + 1 values of Tb(Ob,t - 0) should serve as a 
good approximation to In(P). Replacing 0 by On is permissible because Tb(On - 0) is of order 
Tb/Tn in probability and we will assume that Tb/Tn -+ O. 

Since In(x, P) is approximated by Ln,b(X), both should have the same limit, namely J(x, P). 
To ensure that Ln,b(X) converges to J(x, P) in probability, it is necessary that the information 
in the n - b + 1 subsample statistics Tb(Ob,t - On) tend to infinity with the sample size n. In 
previous theory (Politis and Romano, 1994a; Politis, Romano, and Wolf, 1997), this followed 
from a weak dependence condition on the underlying sequence {Yt}, namely an a-mixing 
condition (Rosenblatt, 1956). 

Definition 3.1 Given a stationary random sequence {Xt}, let:Ft be the l7-algebra generated 
by the segment {Xt, X t+1 , ... ,Xs } and define the corresponding a-mixing sequence by 

ax(h) = sup /P(A n B) - P(A)P(B)/, 
A,B 

where A and B vary over the l7-fields :F~oo and :Ft+h' respectively. The sequence {Xt} is called 
a-mixing or strong mixing ifax(h) -+ 0 as h -+ 00. 

For our applications, it will be convenient to have a more general theory that imposes a 
mixing condition on the subsample statistics only rather than on the underlying sequence. To 
this end, let Zn,b,t = 'Tb(Ob,t - 0) and denote by an,b(-) the mixing coefficients corresponding to 
the sequence {Zn,b,t, t = 1, ... , n - b + 1}. 

The following theorem shows how the subsampling can be used to construct asymptotically 
valid confidence intervals for o. 

Theorem 3.1 Assume Assumption 3.1 and that Tb/Tn -+ 0, bin -+ 0 and b -+ 00 as n -+ 00. 

Also assume that n-1 L~=l an,b(h) -+ 0 as n -+ 00. 

(i) If x is a continuity point of J(., P), then Ln,b(X) -+ J(x, P) in probability. 

(ii) If J(., P) is continuous, then sUP:z; /Ln,b(X) - J(x, P)/ -+ 0 in probability .. 

(iii) For A E (0,1), let cn,b(1 - A) = inf{x : Ln,b(X) ~ 1 - A}. In other words, Cn,b(l - A) 
serves as an (1 - A) quantile of the subsampling distribution Ln,b(·). Correspondingly, 
define c(l- A, P) = inf{x : J(x, P) ~ 1- A}. If J(., P) is continuous at c(l- A, P), then 

Probp{Tn(On - 0) ~ Cn,b(l- A)} -+ 1 - A as n -+ 00. 

Thus, the asymptotic coverage probability under P of the interval 
h = [On - T;lCn,b(l - A), (0) is the nominal level 1 - A. 
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Remark 3.1 The sufficient conditions on the block size b are very weak. In most applications, 
Tn = nK

, for some constant r;, > 0 and the conditions reduce to b -+ 00 and bin -+ 0 as n -+ 00. 

As shown in Politis in Romano (1994a), the latter two conditions are in general not only 
sufficient but also necessary. 

Remark 3.2 The general theory presented here assumes that the subsample statistics are sta­
tionary, i.e., that the sequence {Ob,t, t = 1, ... , n-b+1} is stationary. Note that this assumption 
could be relaxed to accommodate local heteroskedasticity and/or changing distributions of the 
subsample statistics along the lines of Politis, Romano, and Wolf (1997). 

The interval It in (iii) corresponds to a one-sided hybrid percentile interval in the bootstrap 
literature (e.g., Hall, 1992). A two-sided equal-tailed confidence interval can be obtained by 
forming the intersection of two one-sided intervals. The two-sided analogue of It is 

~ -1 ~-1 

12 = [en - Tn cn,b{1 - 0./2), en - Tn cn,b(o./2)]. 

h is called equal-tailed because it has approximately equal probability in each tail: 

Probp{e < On - T;1 en ,b(1 - o./2)} == Probp{e > On - T;1cn,b(o./2)} == 0./2. 

As an alternative approach, two-sided symmetric confidence intervals can be constructed. A 
two-sided symmetric confidence interval is given by [On - c, On + cl, where c is chosen so that 
Probp{\On - e\ > c} == o.. Hall (1988) showed that symmetric bootstrap confidence intervals 
enjoy enhanced coverage and, even in asymmetric circumstances, can be shorter than equal­
tailed confidence intervals. An analogue for symmetric subsample confidence intervals, for the 
application of the sample mean, was provided by Politis, Romano, and Wolf (1999, Chapter 10). 
To construct two-sided symmetric subsampling intervals in practice, one estimates the two­
sided distribution function 

The subsampling approximation to In,I'I(x, P} is defined by 

1 n-b+1 
Ln,b,I'I{x) = n _ b + 1 L I{Tb\Ob,t - Onl $; x}. 

t=1 
(5) 

The asymptotic validity of two-sided symmetric subsampling intervals immediately follows 
from Theorem 3.1 and the continuous mapping theorem. 

Corollary 3.1 Make the same assumptions as in Theorem 3.1. Denote by JI'I (P) the distri­
bution of \Q\, where Q is a random variable with distribution J{P). 

(i) Ifx is a continuity point of JI'I(-,P), then Ln,b,I'I{x) -+ JI'I{x,P) in probability. 

(ii) If JI'I("P) is continuous, then sUPx \Ln,b,I'I(x) - JI'I(x,P)\-+ 0 in probability. 

(iii) For A E (0,1), let cn,b,I'I{1 - A) = inf{x : Ln,b,I'I{x) 2: 1 - A}. Correspondingly, define 
cl'I(1 - A, P) = inf{x : JI'I(x, P) 2: 1- A}. If J I.I(·, P) is continuous at cl'I(I- A, P), then 

Probp{Tn IOn - el $; cn,b,I'I(I- A)} -+ 1- A as n -+ 00. 

Thus, the asymptotic coverage probability under P of the interval 
~ -1 ~ -1 . . 

ISYM = [en - Tn Cn,b,I'I(1 - A), en + Tn Cn,b,I'I(1 - A)] zs the nommal level 1 - A. 
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The application of Theorem 3.1 or Corollary 3.1 requires knowledge of the rate of conver­
gence Tn. In standard cases, this is simply n1/ 2 . In nonstandard cases, it may be another 
power of nj for example, see Subsection 4.3. As long as the rate is known, nonstandard cases 
do not pose a problem. 

On the other hand, for the parameter a it is well-known that the rate of convergence of the 
OLS estimator an is given by n 1/ 2 when a < 1 and by n when a = 1, respectively. Hence, the 
application of the basic subsampling method would require the knowledge of whether the time 
series is trend-stationary or has a unit root! Fortunately, there is a way around this dilemma 
by considering a studentized statistic, namely the usual t-statistic for an. Indeed, this statistic 
has a proper limiting distribution no matter what the value of a. The next subsection will 
provide the necessary theory to apply the subsampling idea in a studentized setting. 

3.2 Subsampling Studentized Statistics 

The focus is now on a studentized statistic T~(On - O)jO-n, where G-n = G-n(Y1, ... , Yn) is some 
positive estimate of scale. Note that the appropriate normalizing constant T~ may be different 
from its analogue Tn in the non-studentized case. Define J;(P) to be the sampling distribution 
of Tb (Ob,t - 0) / G-b,t based on the subs ample yt, ... , YtH-l, assuming that this distribution is 
independent of t. Also, define the corresponding cumulative distribution function 

The subsampling method is modified to the studentized case in the obvious way. Analogous 
to (4), define 

1 n-b+l ~ ~ 

L~,b(X) = n _ b + 1 L l{Tb(Ob,t - On)/G-b,t :S; x}. 
t=l 

(6) 

L~ b(x) then represents the subsampling approximation to J~(x, P). , 

The essential assumption needed to construct asymptotically valid confidence regions for 0 
now becomes more involved than for the non-studentized case. 

Assumption 3.2 J~(P) converges weakly to a nondegenerate limit law r(p). In addition, 
there exist positive sequences {an} and {dn} such that T~ = an/dn, an (On -0) converges weakly 
to a limit law V(P), and dnG-n converges weakly to a limit law W(P) without positive mass 
at zero. 

Theorem 3.2 Assume Assumption 3.2, ab/an -+ 0, TblT~ -+ 0, bin -+ 0 and b -+ 00 as 
n -+ 00. Also assume that {Xt } is near epoch dependent of size -q, for some q > 2, on a basis 
process {vt} whose a-mixing coefficients satisfy limn-too n-1 L:h=l av(h)1-2/r < 00 for some 
r > o. 

(i) If x is a continuity point of Je(-, P), then L~,b(x) -+ r(x, P) in probability. 

(ii) If r(·,p) is continuous, then sUPx IL~b - r(x,p)l-+ 0 in probability. , 
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(iii) For ..\ E (0,1), let c~ b(l - ..\) = inf{x : L~ b{x) ~ 1 - ..\}. Correspondingly, define 
c·(1- ..\,P) = inf{x: j·(x,P) ~ 1- ..\}. If r'(.,p) is continuous at c·(1- ..\,P) then 

Probp{T~(8n - ())/an :::; c~,b(l-"\)} -t 1-..\ as n -t 00. 

Thus, the asymptotic coverage probability under P of the interval 
Ii = [8n - an(T~)-lc~,b(l - ..\),00) is the nominal level 1 -..\. 

The issue of symmetric confidence intervals applies as well to studentized statistics. Let J~,I'I (P) 

be the sampling distribution of T~18n - ()I/an. Define 

(7) 

L~,b,I'I(x) then represents the subsampling approximation to J~,I'I(x). 

Theorem 3.2 and the continuous mapping theorem immediately imply the following corol­
lary. 

Corollary 3.2 Make the same assumptions as in Theorem 3.2. Denote by JI~I(P) the distri­

bution of IUj, where U is random variable with distribution r (P). 

(i) If x is a continuity point of JI~I(·' P), then L~,b,I'I(x) -t JI~I(x, P) in probability. 

(ii) If JI~I(-,P) is continuous, then sUPx IL~,b,I'I- JI~I(x,P)I-t 0 in probability. 

(iii) For..\ E (0,1), let c~,b,I'I(1- ..\) = inf{x : L~,b,I'I(x) ~ 1 - ..\}. Correspondingly, define 

cj.l(l -..\, P) = inf{x : JI~I(x, P) ~ 1 - ..\}. If JI~I(-, P) is continuous at cj.I(1-..\, P) then 

Probp{T~ i8n - ()i fan :::; c~,b,I'I(1-..\)} -t 1 -..\ as n -t 00. 

Thus, the asymptotic coverage probability under P of the interval 
ISYM = [8n - an(T~)-lC~,b,I'I(1- ..\), en +an(T~)-lc~,b,I'1 (1- ..\)] is the nominal level 1- ..\. 

4 Subsampling Inference 

4.1 Confidence Intervals for a in the Full Model 

The goal of this subsection is to demonstrate that the subsampling approach of Subsection 3.2 
can be applied to construct asymptotically valid confidence intervals for the parameter a in 
model (1). Hence, a now plays the role of the general parameter () of the previous section. 

The estimator an is the OLS estimator for a based on the Dicky-Fuller form regression (2). 
Consequently, ab,t is the OLS estimator for 0 based on the block of data {yt, ... , Yt+b-d. 
Denote the corresponding OLS standard errors by SEoLs(an) and SEOLS(ab,t). For reasons 
to become apparent shortly, define an = nl/2SEoLs(an) and ab,t = b1

/
2SEoLs(ab,t). To apply 

the methodology of Subsection 3.2, it is left to specify the appropriate normalizing constant T~. 
With the definition of an above, this turns out the be n1/ 2 no matter what the value of 0; see 
the proof of the following theorem. 
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Denote the mixing coefficients corresponding to sequence {yt}, which is stationary when 
a < 1, by ay' and the mixing coefficients corresponding to sequence {.6.yt*}, which is stationary 
when a = 1, by a~y·. 

Theorem 4.1 Assume that b -r 00 and bin -r 0 as n -r 00 and that the stationary sequence 
{Et} is a martingale difference sequence with EIEt IH8 < 00 for some IS > O. 

• When a = 1 assume that .6.yt* is strong mixing. 

Then, conclusions (i)-(iii) of Theorem 3.2 and Corollary 3.2 hold. 

Remark 4.1 Note that unlike the (conventional) bootstrap, the subsampling method can 
handle discontinuities of the limiting distribution of estimators as a function of the underlying 
model parameters. The intuition is that the subsampling approximation of the sampling dis­
tribution of an estimator is based on subsample statistics computed from smaller blocks of the 
observed data. The subsample statistics are therefore always generated from the true model. 
The bootstrap, on the other hand, bases its approximation on pseudo statistics computed from 
pseudo data according to a bootstrap distribution, which was estimated from the observed time 
series. The bootstrap data come from a model close to the truth, but not exactly the truth. A 
case in point is the parameter a in AR(p) models, where the (conventional) bootstrap fails; see 
Basawa et al. (1991). However, if one is willing to assume i.i.d. residuals, it is possible to invert 
bootstrap tests for a to construct asymptotically valid confidence intervals; see Hansen (1998). 

Remark 4.2 We have presented a result that allows to construct asymptotically valid confi­
dence intervals for any fixed a E (-1, 1]. Strictly speaking, this problem is already solved by 
a pretest method, at least when the residuals are assumed i.i.d. (we would like to thank an 
anonymous referee for pointing this out). The idea is to test for a unit root-using a signifi­
cance level tending to zero with the sample size-and to base the confidence interval on the 
normal approximation, when the test rejects the null, or to set it equal to the singleton unity, 
otherwise. However, it is well-known that this method has terrible finite sample properties; 
this is one of the reasons for considering local-to-unity asymptotics such as in Stock (1991). 
The problem with the pretest method is seen in the fact that it applies one of two inherently 
different types of confidence intervals-normal interval or singleton unity-depending on the 
outcome of a test with low power in finite samples. Hence, quite often the 'false' interval 
will be used, resulting in poor coverage. On the other hand, the subsampling method avoids 
this pitfall, since it employs one unique construction which works both when a < 1 and when 
a = 1. The intuition that subsampling should therefore lead to good finite sample properties 
is confirmed by some simulation studies in Section 6. 

Remark 4.3 An important 'byproduct' of the proof of Theorem 4.1 is the fact that, when 
a < 1, the t-statistic for an has a limiting normal distribution with mean 0 but with variance 
that can be arbitrarily different from 1 if the innovations are allowed to be a martingale 
difference sequence (m.d.s.) rather than i.i.d.; note that m.d.s.-type innovations cannot be 
transformed to i.i.d. innovations by increasing the order of the AR(p) model. This is an 
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important result, since inference for a-at least when a is known or thought to be small in 
absolute value-is often based on the OL8 output. However, this 'standard' inference can be 
arbitrarily misleading, unless the innovations are known to be i.i.d .. In the same way, any other 
inference method on a that assumes i.i.d. innovations-such as Andrews and Chen (1994) or 
Hansen (1998)-is equally affected in the trend-stationary case a < 1. Subsampling, on the 
other hand, offers a safety net against innovations that are a m.d.s .. Note that when attention 
is restricted to the case a < 1 the assumption of a m.d.s. could be relaxed to an uncorrelated 
innovation sequence. 

Remark 4.4 The assumption of stationary of the innovation process {Ed is made to ensure 
the stationarity of the subsample statistics {ab,t, t = 1, ... ,n - b + I}. However, by extending 
the general theory along the lines of Politis, Romano, and Wolf (1997), this assumption could be 
relaxed to allow for heteroskedasticity and/or changing distributions of the Et; see Remark 3.2. 

4.2 Confidence Intervals for a in Restricted Models 

Sometimes it may be known a priori that {3* = 0 or even that f..L* = {3* = 0 in model (I). 
It is then desirable to incorporate this knowledge in making inference on a. But, the above 
restrictions imply {3 = 0 or f..L = {3 = 0, respectively, in model (2). Therefore, the knowledge can 
be incorporated through computing the restricted version of an by applying OLS to model (2) 
excluding the time trend or excluding both the constant and the time trend. Denote the 
restricted versions of an by a~:::o and &~:::,B:::o. Also, denote the corresponding OLS standard 
errors by SEoLs(a~:::O) and SEoLs(a~=,B:::O). 

The application of the subsampling method is analogous to the general model and is based 
on computing the appropritate restricted version of ab on all the subsamples of size b. The 
following two corollaries shows that the ensueing confidence intervals also have asymptotically 
correct coverage probability. 

Corollary 4.1 Make the same assumptions as in Theorem 4.1. In addition, assume that 
{3* = 0 in model (1) Let () = a, On = a~=o, an = nl/2SEoLs(a~=O), and T~ = n1/ 2. 

Then, conclusions (i)-(iii) of Theorem 3.2 and Corollary 3.2 hold. 

Corollary 4.2 Make the same assumptions as in Theorem 4.1. In addition, assume that 
f..L* = {3* = 0 in model (1) Let () = a, On = a~=,B=o, an = nl/2SEOLs(a~=,B=O), and T~ = n 1/ 2. 

Then, conclusions (i)-(iii) of Theorem 3.2 and Corollary 3.2 hold. 

Remark 4.5 The proofs of above corollaries show that the inference on a is asymptotically 
not affected by leaving out the time trend or both the intercept and the time trend when this is 
appropriate and when a < 1. It stands to reason that finite sample performance, on the other 
hand, is affected. Moreover, when a = 1 the limiting distributions of the restricted estimators 
no longer equal the limiting distribution of the unrestricted estimator, so inference on a does 
become more efficient then by excluding appropriate terms from the regression. In addition, 
this fact gives rise to the intuition that, when a < 1, the gain in finite samples from leaving 
out appropriate terms should be bigger the closer a is to 1. This intuitions is supported by 
some simulation studies in Chapter 6; specifically, see Table 2. 
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4.3 Confidence Intervals for Other Parameters 

The general results of Section 3 also allow for the construction of confidence intervals for 
parameters of interest other than a and the details are straightforward and left to the reader. 

To give only one example, consider confidence intervals for any regression coefficient of 
model (3) in the trend-stationary case a < 1. The common inference is based on the limiting 
standard normality of the t-statistic of the corresponding OLS estimator. However, as the proof 
of Proposition A.1 shows, if the innovations are a m.d.s., this inference is again misleading 
because the limiting variance of the t-statistic is then in general not equal to 1. On the 
other hand, subsampling is robust in this respect. Since the rate of convergence is well­
known for all parameters-given by n 1/ 2 for the 'Yi and p, and by n3/ 2 for (3, respectively-,the 
basic subsampling approach of Subsection 3.1 can be employed. Alternatively, the studentized 
approach of Subsection 3.2 is available as well. 

5 Choice of the Block Size 

A practical issue in constructing subsampling intervals is the choice of the block size band 
it can be compared the the problem of choosing the bandwidth for kernel methods. In this 
section, we propose two methods how to select b in practice. The first one is very general and 
can be used whenever subsampling applies. The second one tries to exploit the semi-parametric 
structure of the AR(p) model with linear time trend. 

5.1 Minimizing Confidence Interval Volatility 

This general approach is of heuristic nature and we do not claim any optimality properties. 
It is based on the fact that, in order for the subsampling method to be consistent, the block 
size b needs to tend to infinity with the sample size n, but a smaller rate satisfying b/n --t O. 
Indeed, for b too close to n all subsample statistics fh,t will almost equal to en, resulting in 
the subsampling distribution to be too tight and in undercoverage of subsampling confidence 
intervals. If b is too small, the intervals can undercover or overcover depending on the state of 
nature (e.g., Politis, Romano, and Wolf, 1997). This leaves a number of b values in the 'right 
range' where we would expect almost correct results, at least for big sample sizes. This idea is 
exploited by computing subsampling intervals for a number of block sizes b and then looking 
for a region where the intervals do not change very much. Within this region, an interval is 
then picked according to some arbitrary criterion. 

This idea is illustrated by Figure 1. For two data sets, symmetric subsampling intervals 
are computed for a wide range of block sizes b. The 'right ranges' extend from b = 10 to about 
b = 130 for the first data set and from b = 10 to about b = 80 for the second data set. The 
fact that for very large block sizes the confidence intervals will shrink towards the singleton an 
is a consequence of the fact that the subsampling approximation of the sampling distribution 
of n 1/ 2(an - a)/an collapses to a point mass at zero as the block size b tends to n. 

While this method can be carried out by 'visual inspection', it is desirable to also have 
some automatic selection procedure, especially when simulation studies are to be carried out. 
The procedure we propose is based on minimizing a running standard deviation. Assume we 
compute subsampling intervals for block sizes b in the range of bsmall to bbig. The endpoints 
of the confidence intervals will change in a smooth fashion as b changes. A running standard 
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Figure 1: Confidence intervals as function of the block size b for two AR(l) data sets. The 
data were generated according to model (1) with f.-L* = {3* = 0, a = 0.99, n = 200 and LLd. 
standard normal innovations. The intervals are nominal 95% two-sided symmetric intervals 
based on the studentized approach of Subsection 3.2 and the block size ranges from b = 10 to 
b = 180. 

deviation applied to the endpoints then determines the volatility around a specific b value. We 
choose the value of b with the smallest volatility. Here is a more formal description of the 
algorithm. 

Algorithm 5.1 (Minimizing Confidence Interval Volatility) 

1. For b = bsmall to b = bbig compute a subsampling interval for () at the desired confidence 
level, resulting in endpoints Ib,low and h,up· 

2. For each b compute a volatility index V h as the standard deviation of the interval 
endpoints in a neighborhood of b. More specifically, for a small integer k, let V h be 
equal to the standard deviation of {Ib-k,low, ... , Ib+k,low} plus the standard deviation of 
{Ib-k,up, ... ,Ib+k,up}. 

3. Pick the value b* with the smallest volatility index and report [Ib*,low,Ib*,up] as the final 
confidence interval. 

Some remarks concerning the implementation of this algorithm are in order. 

Remark 5.1 The range of b values, determined by bsmall and bbig, which is included in the 
minimization algorithm, is not of crucial importance. On the other hand, to keep the compu­
tational cost down as well as to 'enforce' the requirements b -+ 00 and bin -+ 0 as n -+ 00, it 
is sensible to choose bSmall = Cln'" and bbig = C2n'" for constants 0 < Cl < C2 and 0 < 1] < 1. 
We recommend Cl E [0.5,1], C2 E [2,3]' and 1] = 0.5. 

Remark 5.2 The algorithm contains a model parameters k Simulation studies have shown 
that the algorithm is very insensitive to its choice. We recommend k = 2 or k = 3. 
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Figure 2: Illustration of the Minimizing Confidence Interval Volatility Algorithm for two data 
sets. The plots on the left correspond to equal-tailed confidence intervals, while the plots 
on the right correspond to symmetric confidence intervals; both interval types are based on 
the studentized approach of Subsection 3.2. The block sizes selected by the algorithm are 
highlighted by a star. The final confidence intervals appear within the plots together with the 
point estimates. 

We now illustrate how the algorithm works with the help of two simulated data sets. First, we 
generated a time series of size according to model (1) with f.1.* = {3* = 0, a = 0.95, n = 200. 
and i.i.d. standard normal innovations. The range of b values was chosen as bsmall = 10 and 
bbig = 40. The minimization of the volatility in Step 2 was done using k = 2. The results are 
shown at the top of Figure 2. The left plot corresponds to equal-tailed confidence intervals 
while the right plot corresponds to symmetric confidence intervals. The block sizes b chosen by 
the algorithm are highlighted by a star. The resulting final confidence intervals are included 
in the plots together with the point estimate Pn. 

This exercise was repeated for another data set according to model (1) with f.1.* = {3* = 0, 
a = 1, n = 500. and Li.d. standard normal innovations. The range of b was there chosen as 
bSmall = 15 and bbig = 60. The results are shown at the bottom of Figure 2. 

The plots show that symmetric intervals are somewhat more stable, that is, the endpoints 
change less as b is varied. This behavior is typical and was observed for many other simulations 
as well. 
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5.2 Choosing b according to an Estimated Model 

The idea underlying the second approach is that the optimal finite sample block size for a 
specific nominal coverage probability 1 - A could be calculated, or at least simulated, if the 
true data generating mechanism was known. Using the simulation method, one would generate 
a large number K, say, of time series according to the true mechanism (with the same sample 
size as the observed series), construct subsampling intervals using a number of different block 
sizes for each generate series, and compute the estimated coverage probability for each blocks 
size as the fraction of the corresponding B intervals that contain the true parameter. One then 
would use the block size whose estimated coverage probability is closest to 1 - A. Of course, 
this method is not feasible, since the true data generating process is generally unknown. 

However, it is reasonable to hope that a feasible variant of this method will still yield useful 
results in case the true data generating mechanism can be consistently estimated. In that case 
one would use the above algorithm with the estimated process in place of the true process. For 
a completely non parametric application, it is in general not clear how to consistently estimate 
the underlying mechanism. However, our application is of semi-parametric nature depending 
on p + 2 real-valued parameters, each of which can be consisten~ly estimated by OLS, say, and 
the probability mechanism of the white noise innovation sequence, which can be consistently 
estimated by applying a time series bootstrap to the estimated innovations, say the moving 
blocks bootstrap (Kiinsch, 1989; Liu and Singh, 1992) or the stationary bootstrap (Politis and 
Romano, 1994b). While it is well-known that this residual based bootstrap yields inconsistent 
results when used "directly", that is, to approximate the sampling distribution of an (e.g. 
Bassawa et al., 1991), it yields consistent results when used "indirectly", that is, to estimate 
the optimal block size of the subsampling method. This is a simple consequence of the fact 
that any method of picking one of several 'competing' block sizes, even coin-tossing, would 
yield consistent results as long as the block sizes included in the 'contest' satisfy the regularity 
conditions b --+ 00 and bin --+ 0 as n --+ 00. The point is that when using an estimated model 
in picking the block size one should expect better finite sample properties as compared to coin 
tossing. 

To provide a somewhat more formal description, introduce the notion of a calibration 
function h : b --+ 1- /'i, that expresses the true coverage probability of a nominal 1-A confidence 
interval as a function of the block size b that is used in constructing the interval. If h(·) was 
known, one could construct an interval with perfect coverage by employing a block size b with 
h(b) = 1 - A (provided that such a solution exists). While the true h(·) is unknown, we can 
approximate it as previously suggested. The estimated data generating mechanism is based on 
o LS estimation of model (3) and the resulting estimates p" /J, 1'1,··. ,1'p, Ep+ 1, ... ,En where 
the subscript n corresponding to estimation based on n data points has been suppressed. To 
generate a corresponding 'estimated' or pseudo sequence, we start by applying a time series 
bootstrap to the estimated innovations to obtain pseudo innovations E;+l' ... ' E~. The pseudo 
sequence is then defined by the recursive relation 

}';* 
t 

}';* 
t 

yt, t = 1, ... ,p 
A at A "\.r* A "\.r* * J.L + JJ + IlL t-l + ... IpL t-p + Et, t = p + 1, ... ,n. (8) 

The following then is the algorithm corresponding to the above calibration idea. It is stated 
for a general parameter () and its corresponding estimate On. Of course, we are mainly inter­
ested in a and an, but the algorithm equally applies to any other parameters of interest; see 
Subsection 4.3. 
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Algorithm 5.2 (Block Size Calibration) 

1. Generate K pseudo sequences yt k'···' y; k' according to (8). , , 
For each sequence, k = 1, ... ,K, 

la. Compute an 1 - A level confidence interval CI~., for a grid of block sizes 
J 

bmin S bj S bmax · 

2. For each bj compute h(bj) = #{On E CI~.}/K. 
J 

3. Find the value of bj with h(bj) closest to 1 - A. 

4. Construct a confidence interval using the block size bj. 

Remark 5.3 Algorithm 5.2 is related to adjusting the nominal level of a confidence interval 
so that its actual level better match the desired level in finite samples, an idea that dates 
back to Loh (1987). However, to this end the (standardized) sampling distribution of On under 
the estimated mechanism must be a consistent approximation of the (standardized) sampling 
distribution of On under the true distribution for the resulting confidence intervals to have 
asymptotically correct coverage probability. As mentioned before, this condition is violated in 
our application. 

Remark 5.4 It is clear that the grid of (subsampling) block sizes to be used in Algorithm 5.2 
should be as fine as possible within the limitations bmin -+ 00 and bmax/n -+ 0 as n -+ 00. 

Moreover, bmin and bmax play roles analogous to bsmall and bbig in Algorithm 5.1 and can be 
picked in a similar fashion. However, at least for simulation studies, including every integer 
number between bmin and bmax might be computationally too expensive in which case an 
appropriate subset can be selected. 

Remark 5.5 As far as the choice of the time series bootstrap is concerned, we prefer the 
stationary bootstrap, since it is well-known to be less sensitive to the choice of the (bootstrap) 
block size than the moving blocks bootstrap and also because it does not suffer from the 'end 
effects' of the latter; see Politis and Romano (1994b). 

6 Small Sample Performance 

The purpose of this section is to examine the small sample performance of the subsampling 
confidence intervals via some simulation studies. Performance is mainly measured by coverage 
probability of two-sided nominal 95% intervals for the parameter u. We also look at median 
length. The approach of Subsection 3.2, subsampling a studentized statistic, is employed, using 
both equal-tailed and symmetric intervals (and denoted by indices ET and BY M). Moreover, 
the two methods of Section 5 for choosing the block size are employed (and denoted by indices 
MVand CA standing for Minimum Volatility and CAlibration). The four resulting interval 
types are labeled SubMv,ET, SubMv,sYM, SubcA,ET and SubcA,sYM. For comparison, the 
normal method which bases the confidence interval on asymptotic standard normality of the 
t-statistic for an and the method of Stock (1991) are also included. These two intervals are 
labeled CLT and Stock, respectively. 
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Some brief remarks concerning Stock's intervals are in order. First, his intervals are for 
the largest root, p, instead of the sum of the AR(P) coefficients, a. These two parameters 
only coincide when p = 1. Hence, Stock's intervals are only included in the simulations for the 
AR(I) case. Next, Table A.l of Stock (1991) allows one, up to some minor interpolation, to 
check whether a particular value of p is contained in the confidence intervals in a way that can 
be automated for simulations. However, the computation of the actual intervals-and thus 
their length-requires a graphical device (Figures 1 and 2 of Stock, 1991) whose automization 
seems very cumbersome. For this reason, only coverage, but not median length, is reported. 

6.1 AR(1) Model 

We start with the the most simple model, namely AR(I). The data are generated according 
the model (1) with p,* = f3* = 0 and a one of the following: 1, 0.99, 0.95, 0.9, or 0.6; note that 
the value a = 0.6 is too far away from 1 to be handled by Stock's intervals. The innovations Et 

are either LLd. standard normal or of the form Et = ZtZt-l with the Zt LLd. standard normal. 
In the latter case, the innovations are a martingale difference sequence but dependent. The 
sample sizes considered are n = 120 and n = 240. The range of b values used for Algorithm 5.1 
is determined by bsmall = 5 and bbig = 25 when n = 120 and by bsmall = 10 and bbig = 40 
when n = 240, respectively. The grid of block sizes bj for Algorithm 5.2 is 5, 8, 12, 18, 26, 
40 when n = 120 and 10, 15, 20, 30, 40, 60 when n = 240. The reason for not employing an 
equally spaced grid is that some prior simulations (with finer grids) showed that the estimated 
calibration function h(·) changes more rapidly for smaller block sizes. 

The results are presented in Table 1. It is seen that equal-tailed subsampling intervals 
perform worse than symmetric intervals in general. The two methods for choosing the block 
size perform comparably. Next, one notes the well-known fact that the CLT approach does not 
work when a = 1 and that it works poorly when a is close to 1. Stock's intervals, on the other 
hand, have rather accurate coverage when they apply. If dependent innovations of the form 
Et = ZtZt-l are employed, the CLT breaks down. For a = 0.6, the coverage drops to about 
80%. In fact in can be shown, that for innovations of the form Et = ZtZt-l ... Zt-k, the coverage 
of CLT intervals will tend to 0 as k tends to infinity; see Romano and Thombs (1996). Also, 
it appears that Stock's intervals are somewhat less robust against dependence as compared to 
symmetric subsampling intervals (especially for n = 120). 

The difference in empirical coverage between equal-tailed and symmetric subsampling in­
tervals is noteworthy. A possible explanation is that the equal-tailed interval is based on 
estimating a 2.5% and a 97.5% quantile while the symmetric interval is based on estimating 
a (single) 95% quantile, and it is conceivable that the latter can be estimated with higher 
precision. One way to examine this issue would be to redo the above table for a number of 
different confidence levels, such as 90% and 80%. Instead, we opt for considering all levels 
'simultaneously' by exploiting the duality between confidence intervals and hypothesis tests to 
calculate corresponding P-values. Hence, the P-value is given by 1 minus the confidence level 
of the interval that 'barely excludes' an hypothesized value aD. Fortunately, this number can 
be directly computed. For example, the symmetric studentized P-value is given by 

and the remaining P-values are computed analogously. It is well known that if aD is equal to 
the true parameter a, then the distribution of a P-value corresponding to an exact hypothesis 
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test (or, equivalently, to an exact confidence interval) is given by Uniform[O,l], provided that 
this distribution is continuous. Hence, one can judge the accuracy of hypothesis test (or the 
corresponding confidence intervals) by a Q-Q-plot of of a large number of simulated P-values 
(for the true parameter) against the Uniform[O,l] distribution. We do this in Figure 3 for the 
two subsampling interval types and the CLT interval; Stock's method is excluded, since the 
tables in Stock (1991) do not allow to compute P-values. To generate the data, we use i.i.d. 
standard normal innovations, n = 240, and the three values a = 1, 0.95, and 0.6. A fixed block 
size of b = 25 is used for all subsampling intervals; this is somewhat suboptimal, since the 
best fixed block size in general depends on the approach used as well as the true underlying 
parameter (and possibly even on the nominal level of the interval). The plots show that the 

Stud-ET Stud-Sym CLT 
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Emj:~lIrleal "'-v.luos EmpirICal p-valu .. 
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Figure 3: Q-Q-plots of 1000 empirical P-values against Uniform[O,l]. The data were generated 
according to model (1) with J-l* = (3* = 0, n = 240 and i.i.d. standard normal innovations. 
The three values for a, from top to bottom, are 1, 0.95, and 0.6. A straight line through the 
origin with slope 1 is included in all plots. 

two subsampling interval type are qualitative rather different. The equal-tailed studentized 
intervals work well when a = 1 but generally undercover when a < 1. On the other hand, 
symmetric studentized intervals are relatively accurate at large confidence levels throughout, 
but at smaller confidence level (70%, say) undercover when a = 1 and overcover when a < 1. 
In addition, once more we observe the well-known fact that the CLT intervals work well for a 
far away from 1, but undercover increasingly as a gets closer to one. 

As discussed in Subsection 4.2, when it is known a priori that (3* = 0 or even that 
p,* = (3* = 0 in model (1), this knowledge should and can be incorporated in constructing 
confidence intervals for a. It is of interest to compare the gain in efficiency, that is, interval 
length in those instances. We do this by computing median length of the 1000 confidence 
intervals in each scenario for the two methods of using the full model and of using the re-
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stricted model without time trend (the latter is appropriate, since we employ J.L* = f3* = 0 
when generating the data). Of course, it is also of interest to compare the median length of 
the various interval types. The results are presented in Table 2. The gain from excluding the 
time trend when it is indeed not needed is substantial when a is equal to or close to 1, but 
it decreases as a gets further away from 1; see Remark 4.5. Moreover, symmetric studentized 
subsampling intervals are about as good as the CLT intervals when both have approximately 
correct coverage, that is, when a = 0.6. Note that we also computed empirical coverage for 
confidence intervals constructed without time trend. However, the results are similar to those 
of Table 1 and thus are not reported. 

6.2 AR(2) Model 

The data generating mechanism is now model (1), with p = 2, a one of the values 1, 0.99, 0.95, 
0.9, and 0.6, and 'l/Jl equal to either 0.4 or to -0.4. Everything else is as in Subsection 6.1. 
Tables 3 and 4 provide empirical coverage for nominal 95% confidence intervals. The results 
are qualitatively comparable to the AR(I) case. 

7 Summary 

In this paper, we proposed a new way of constructing confidence intervals in AR(P) models with 
linear time trend. While the focus was on the parameter a, the sum of the AR(p) coefficients, 
the method is general enough to cover essentially any other parameter of interest as well. The 
crux of the new approach is to recompute an estimator on smaller blocks of the observed data 
to approximate the sampling distribution of the estimator computed from the entire sequence. 
This is the general idea of the subsampling method of Politis and Romano (1994a). 

The subsampling method overcomes the notorious difficulty in the construction of confi­
dence intervals for a, namely that the limiting distribution, as well as the rate of convergence, 
of the OLS estimator an depend in a discontinuous way upon whether or not a < 1. However, 
some extensions of previous theory were necessary to handle the unknown convergence rate. 
The approach suggested is based on subsampling the t-statistic for an, which has a nondegener­
ate limiting distribution no matter what the value of a. The theory is flexible enough to allow 
innovations of the AR(p) series to be a stationary martingale difference sequence rather than 
an i.i.d. sequence (but even the assumption of stationarity could be relaxed). This flexibility 
was seen to be of practical relevance, since in the trend-stationary case a < 1, the standard 
inference on a-but as well on other parameters of interest-can be arbitrarily misleading 
when the innovations are not independent. 

Finite sample performance was examined through some simulation studies and was seen 
to be satisfactory, at least when symmetric subsampling intervals are used. The results were 
most favorable in the case of dependent innovations, since in this case the CLT intervals break 
down (even for a far away from 1) and Stock's (1991) intervals, which are asymptotically valid 
as well, seem somewhat more affected than subsampling intervals in small samples. 

Finally, it should be pointed out that subsampling is a very general and powerful tech­
nique and not restricted to inference in AR(p) models. Basically, subsampling can be applied 
beneficially whenever the limiting distribution of an estimator depends on underlying model 
parameters in a complicated and maybe even discontinuous way; one of many examples is 
inference in models with integrated or nearly integrated regressors as discussed in Elliot and 
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Stock (1994) and Elliot (1998). The main condition for subsampling to work is that the esti­
mator, properly normalized, has a nondegenerate limiting distribution and that the subsample 
statistics are weakly dependent in a sufficient way. 

A Proofs of Technical Results 

Proof of Theorem 3.1: Without loss of generality, we may think of b as a function of n. 
Therefore, the notational burden can be reduced by omitting the b-subscripts. For example, 
Ln(·) == Ln,b(·), Cn(A) == Cn,b{A), etc. To simplify the notation further, introduce q == qn == 
n - b+ 1. Let 

1 q 
Un{x) = - L l{Tb(Ob,t - 8) ~ x}. 

q t=l 

To prove (i), it suffices to show that Un{x) converges in probability to J{x, P) for every conti­
nuity point x of J{., P). This can be seen by noting that 

so that for every E > 0, 

Un{X - E)l{En} ~ Ln{x)l{En} ~ Un{x + E), 

where l{En} is the indicator of the event En = {Tb18 - Onl ~ E}. But, the event En has 
probability tending to one. So, with probability tending to one, 

Un{X - E) ~ Ln{x) ~ Un {X + E). 

Thus, if x + E and x - E are continuity points of J{., P), then Un(x ± E) -+ J(x ± E, P) in 
probability implies 

J{X - E,P) - E ~ Ln{x) ~ J{x + E,P) + E 

with probability tending to one. Now, let E -+ 0 such that x ± E are continuity points of 
J(., P) to conclude that Ln(x) -+ J(x, P) in probability as well. Therefore, we may restrict 
our attention to Un{x). 

Since E{Un{x)) = Jb{x), the proof of (i) reduces by Assumption 3.1 to showing that 
Var{Un{x)) tends to zero. Define 

Ib,t = 1{ Tb {Ob,t - 8) ~ x}, t = 1, .. , q, 

1 q-h 
Sq,h = -q L Cov{Ib,t, Ib,t+h)· 

t=l 

Due to a standard mixing inequality for bounded random variables, 

and therefore, 

Var{Un{x)) 
1 q-l 

- (Sq,Q + 2 L Sq,h) 
q h=l 

1 q-l 

< - (I + 2 L Cln,b{h)) -+ O. 
q h=l 
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This completes the proof of (i). 

To prove (ii), given any subsequence ink}, one can extract a further subsequence {nkJ 
such that L nk . (x) --t J (x, P) for all x in some countable dense set of the real line, almost 

J 

surely. It then follows that, on a set of probability one, Lnk . (x) tends weakly to J(x, P). By 
J 

the continuity of J(., P) this convergence is uniform by Polya's theorem. 

The proof of (iii) is very similar to the proof of Theorem 1 of Beran (1984) given (i) and is 
thus omitted .• 

Proof of Theorem 3.2: Again, let q = n - b + 1. To prove (i), note that 

(9) 

We want to show that the terms Tb (On - 0) /o-b,t are negligible in the last equation. To this 
end, for u > 0, let 

Rn(u) 

Here, we have used the assumption that both the sequences {an} and {dn} are positive. By 
Assumption 3.2 and ab/an --t 0, we have for any 0 > 0 that ab(On - 0) :s:; 0 with probability 
tending to one. Therefore, with probability tending to one 

We need to consider the case u > 0 only, as the scale estimates o-b,t are positive. Due to the 
usual subsampling argument of Theorem 3.1, ~ 2::£=11{dbo-bta 2:: o/u} converges in probability 
to 1 - W(o/u, P), as long as o/u is a continuity point of W(P); note that we do not require 
db/dn --t 0 here since the subs ample statistics are of the form dbo-b,t rather than db(o-b,t - o-n). 
Hence, we can make sure that Rn(u) is arbitrarily close to one by choosing 0 small enough; 
recall that we assume W(P) does not have positive mass at zero. In other words, for any 
u> 0, we have Rn(u) --t 1 in probability. Let us now rewrite (9) in the following way 

~ t 1{Tb(Ob,t - O)/o-b,t :s:; X + Tb (On - O)/o-b,t} 
q t=l 

< ~ t 1{Tb(Ob,t - O)/o-b,t:S:; X + u} + (1- Rn(u)), 
q t=l 

for any positive number u. The last inequality follows because the t-th term in (9) is less than 
or equal to 
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then, sum over all t. We have seen that (l-Rn(u)) -)- ° in probability and hence by a standard 
subsampling argument again we get, for any E > 0, L~ b{x) :-:; r{x+u, P) + E with probability 
tending to one, provided that x + u is a continuity p~int of r (., P). Letting u tend to zero 
shows that L~ b(x) :-:; r{x, P) + E with probability tending to one. A similar argument leads 
to L~b{x) 2: je(x,p) - E with probability tending to one. Since E is arbitrary, this implies 
L~ b ~ Je(x, P) in probability, and thus we have proved (i). , 

The proofs of (ii) and (iii) given (i) are very similar to the proofs of (ii) and (iii) given (i) 
in Theorem 3.1 and thus are omitted .• 

Proof of Theorem 4.1. The subsampling theory presented in Section 3 assumes that the 
distributions of (ab,t-a) and of (ab,t-a)/o-b,t are independent oft. But this follows immediately 
by Appendix A.1 of Andrews and Chen (1994) given the stationarity of the the innovation 
sequence {Et}. 

Therefore, we are left to show that the conditions of Theorem 3.2 are satisfied, no matter 
what the value of a. In the proof, we will distinguish the two cases a < 1 and a = 1. 

Case a < 1: 

By the arguments of Appendix A.1 of Andrews and Chen (1994) again, in deriving the 
asymptotic distributions of an and (an - a)/o-n, we may assume without loss of generality 
that fl* = (3* = ° in model (1). Hence, for the trend-stationary case a < 1, we may assume 
that yt = yt* and so that Yt is a stationary, mean-zero sequence of random variables. 

Next, note that an = 'Yt,n+h,n+ ... +ip,n, where ii,n is the OLS estimator of li in model (3). 
Denote '1 = ('Yl, ... , IP)' and in = (i1,n, . .. ,ip.n)'. As will be shown in Proposition A.1, the 
asymptotic distributions of in and the OLS estimator of its covariance matrix are given by 

(10) 

and 
C- (~ ) p 2n- 1 n ov In ~ (J€ • (11) 

Here, 0 and n are two symmetric p x p matrices of full rank, (J; = E(En, k denotes 

convergence in distribution, and 2t denotes convergence in probability. This implies, letting 
1=(1, ... ,1)', 

and 

n 1
/

2 (an - a) k N(O, In- l On-11'), 

0-2 2t (J21n-11' n €- -, 

.c (In-
l
On-

1
1') 

n
1/2 (an - a)/O-n =} N 0, - (J;ln-11'- . 

(12) 

(13) 

(14) 

Moreover, as follows from Proposition A.1, in the special case of LLd innovations Et, we have 
o = (J;n and the asymptotics simplify to 

and 
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It is, however, important to note that the t-statistic for On does in general not have a limiting 
standard normal distribution. Indeed, the limiting variance can have any arbitrary value as 
determined by the dependence structure of the innovations Et; see Romano and Thombs (1996) 
for some explicit examples. Therefore, the standard inference on a in the trend-stationary case 
(even if a is close to 0) can be very misleading. On the other hand, subsampling inference on a 
is not affected by uncorrelated rather than i.Ld. innovations, as will be demonstrated now. 

To check the conditions of Theorem 3.2, first note that, due to (12)-(14), Assumption 3.2 
holds with r~ = n 1/ 2 , an = n 1/ 2 , and dn = 1. Next, both Ob,t and Ub,t are functions of 
(yt, ... ,yt+b-l) and thus a~b(h) ::; min{l,ay*(h - b)}; recall that for the proof we may 
assume Yt = ~*. This impli~s the mixing condition n-12::h=1 an,b(h) --+ 0 as n --+ 00, since 
ay. (h) --+ 0 as h --+ 00 as well as bin --+ 0 as n --+ 00. 

Case a = 1: 

As shown in Stock (1991), 

(15) 

n1/ 2un k bel) (10 1 
Wt(s)2dS) -1/2, and (16) 

n 1/ 2(on - l)/un :ob (10 1 
Wt(s)2dS) -1/2 101 

Wt(s)dW(s). (17) 

Here, b(l) = 1- 2:f~11 '1/Ji, W(s) is a standard Brownian Motion, and 

Wt(s) = W(s) - 10
1 

(4 - 6r)W(r)dr - s 10
1 

(l2r - 6)W(r)dr 

is a "detrended" Brownian Motion. 

Again, we may assume without loss of generality that Yt = ~* and hence that .6.yt = .6.~*. 

To check the conditions of Theorem 3.2, first note that, due to (15)-(17), Assumption 3.2 
holds with r~ = n 1/2 , an = n, and dn = n 1/ 2 • Next, Ob,t and Ub,t are functions of (Yt, ... , Yt+b-d 
and therefore functions of (yt, .6.yt+1,'.' , .6.yt+b-d. As noted in Appendix A.1 of Andrews and 
Chen (1994), the value of Ob,t does not depend on the initial random variable yt but only on the 
differences .6.yt+1,'" , .6.Yt+b-1; the same can be seen true for the value of Ub,t. This means that 
we are able to reconstruct the numerical values Ob,t and Ub,t from (.6.yt+1, .... , .6.yt+b-d alone. 
Thus, a~,b(h) ::; min{l, a,6.y* (h-b)}. This implies the mixing condition n-1 2:h=1 a~,b(h) --+ 0 
as n --+ 00, since a,6.y* (h) --+ 0 as h --+ 00 as well as bin --+ 0 as n --+ 00 .• 

Proposition A.1 Assume the assumptions of Theorem 4.1 and that a < 1. Let n and IT be 
two p x p matrices defined by their (i, j) th entries 

Wi,j = E(Y;Yp*_li_jl E~+1)' 

and 

Then, the convergences (10) and {11} hold. Moreover, and immediately clear, if in addition 
the innovations Et are i.i.d., then n = (j~II, where (j~ = E(E~). 
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Proof. As usual, assume without loss of generality that f-L* = (3* = 0 in model (1) and hence 
that Yt = yt* is a stationary, mean-zero process. Define () = (ri, ... , rp, f-L, (3)' and 

n1/2 0 0 
0 n1/2 0 

=n -
n1/2 0 0 

0 0 0 
0 0 0 

Then, for the OLS estimator em we have 

Premultiplying (18) by Sn yields 

We claim that 

where 

To see why, note that 

~-l "n TTTTI ~-l 
'::'n L..-t=p+l VtVt :='n 

n-1 E Yt-pYt-l 
n-1 E Yt-l 
n-2 E tYt-l 

n-1 E Yt- pYt-2 
n-1 2: Yt_2 
n-2 EtYt-2 

0 0 Yt-l 
0 0 Yt-2 

and vt= 
0 0 Yt-p 

n1/2 0 1 
0 n3/ 2 t 

(18) 

(19) 

(20) 

n- l 2:Yt-lYt-p n-1 2: Yt-l n-22:tYt_l 
n-1 I: Yt-2Yt-p n-1 I:Yt-2 n-2 I:tYt-2 

n-1 I: y:2 n-1 I:Yt-p n-2 I:tYt-p t-p 
n-1 I:Yt - p n-1·n n-2 2: t 
n-2 EtYt-p n-2I:t n-3Et2 

The convergence part pertaining to A is obvious. Next, to show the convergence part per­
taining to IT, focus on element 1ri,j. First, the sequence Yt-iYt-j has a bounded 2 + o-th 
absolute moment (by Cauchy-Schwartz). Second, it is strong mixing with mixing coefficients 
ai,j{h) ~ min{l, ay. (h -li - jl)}. Third, the expectation of the sample mean has limit 1ri,j as 
n tends to infinity (actually, it is constantly equal to 1ri,j). The convergence of n -1 2: Yt-i Yt-j 
to 1ri,j now follows with Corollary 3.48 of White (1984), (n-p)jn -+ 1, and Slutzky's Theorem. 
Next, the convergence of n-1 EYt-i to 0 in probability is is analogous. Finally, the conver­
gence of n-2 2: tYt-i to 0 in probability is analogous as well by writing it as n- l 2:(tjn)Yt_i. 
Therefore, (20) is proved. 
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We claim now that 

where, 

To see why, note that 

(1/2)E~YpE~+l) ) 

(1/2)E(Yl E~+1) 

n n 

L ytEt = n-1/2 L et with et = 
t=p+1 t=p+1 Yt-pEt 

Et 
(t/n)Et 

(21) 

Note that the sequence et is uncorrelated and strong mixing with mixing coefficients a~(-) 
satisfying a~ (h) ~ min {1, ay. (h - p)}. Moreover, et has expectation zero and covariance 
matrix 

Wl,l 

Wp ,1 

E(Yt- 1El) 
(t/n)E(Yt-1E~) 

Wl,p 

Wp,p 
E(Yt-pEl) 

(t/n)E(Yt_pE~) 

E(Yt-pEl) 
E(El) 

(t/n)E(E~) 

Since the sequence et is uncorrelated, it therefore follows that 

and so (21) is proved. 

(t/n)E(Yt_pE~) 
(t/n)E(El) 
(t/n)2 E(E~) 

The convergences (21) together with the mixing and moment conditions of Theorem 4.1 
imply that 

~ ~ .c [( IT-
l 

0 ) (n T) (IT-
l 

0 )] :='n(()n - ()) ====> N 0, 0 A -1 T' r 0 A -1 . (22) 

Indeed, the convergence (22) follows from the proof of Theorem 3.4 of Politis, Romano, and 
Wolf (1997). Only a slight modification is needed, since the last element of en (namely iJn) 
converges at rate n3/

2 rather than n 1/ 2 , whereas in said theorem all regression coefficients 
converge at rate n 1/ 2 • However, the necessary changes are minor and straightforward and so 
the details are omitted. 

Recalling that () = (r, /-l, (3)' and that 3 n is a diagonal matrix with the first p diagonal 
entries equal to n 1/2, we immediately have that 
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which demonstrates (10). 

To show (11), note that 

n 
- A A2 ~-1 '~-1 

[ ]

-1 

n COV{In) = O'e,n '='n L vtvt'='n , 
t=p+l (l...p,l...p) 

where o-;,n is the OLS estimator of 0'; and [·]U ... p,l...p) is the p x p 'upper-left' submatrix of H 
The consistency of 8"; n' which is standard, and (20) now imply (11) .• , 

Proof of Corollary 4.1. The proof is analogous to the proof of Theorem 4.1 with the only 
difference being that Assumption 3.2 has to be rechecked. The results for the case a < 1 are 
identical, given by (12)-(14), and are derived in a similar fashion as in the proof of Theorem 4.1. 
The results for the case a = 1 are given by (15)-(17) when the "detrended" Brownian Motion 
is replaced by a "demeaned" Brownian Motion; see Stock {1991} .• 

Proof of Corollary 4.2. The proof is analogous to the proof of Theorem 4.1 with the only 
difference being that Assumption 3.2 has to be rechecked. The results for the case a < 1 are 
identical, given by (12)-(14), and are derived in a similar fashion as in the proof of Theorem 4.1. 
The results for the case a = 1 are given by (15)-(17) when the "detrended" Brownian Motion 
is replaced by a regular Brownian Motion; see Stock (1991) .• 

References 

Andrews, D.W.K. (1993). Exactly median-unbiased estimation of first order autoregres­
sive/unit root models. Econometrica 61, 139-165. 

Andrews, D.W.K. and Chen R.-Y. {1994}. Approximately median-unbiased estimation of au­
toregressive models. Journal of Business and Economic Statistics 12, 187-204. 

Basawa, LV., Mallik, A.K., McCormick W.P., Reeves, J.R., and Taylor R.L. (1991). Boot­
strapping unstable first-order autoregressive processes. Annals of Statistics 19, 1098-1101. 

Beran, R. (1984). Bootstrap methods in statistics. Jahresberichte des Deutschen Mathematis­
chen Vereins 86, 14-30. 

DeJong, D. and Whiteman, C.R. (1991a). Reconsidering "Trends and random walks in macroe­
conomic time series". Journal of Monetary Economics 28, 221-254. 

DeJong, D. and Whiteman, C.R. {1991b}. The temporal stability of dividends and stock prices: 
Evidence from the likelihood function. American Economic Review 81, 600-617. 

Dicicio, T.J. and Romano, J.P. (1988). A review of bootstrap confidence intervals (with Dis­
cussion). Journal of the Royal Statistical Society series B 50, 338-370. 

Elliot, G. (1998). On the robustness of cointegration methods when regressors almost have 
unit roots. Econometrica 66, 149-158. 

Elliot, G. and Stock, J.R. (1994). Inference in time series regression when the order of integra­
tion of a regressor is unknown. Econometric Theory 10, 672-700. 

25 



Hall, P. (1988). On symmetric bootstrap confidence intervals. Journal of the Royal Statistical 
Society B, 50, 35-45. 

Hansen, B.E. (1998). The grid bootstrap and the autoregressive model. Technical report, De­
partment of Economics, University of Wisconsin. 

Kiinsch, H.R. (1989). The jackknife and the bootstrap for general stationary observations. 
Annals of Statistics 17,1217-1241. 

Loh, W.-Y. (1987). Calibrating confidence coefficients. Journal of the American Statistical 
Association 82, 155-162. 

Politis, D.N. and Romano, J.P. (1994a). Large sample confidence regions based on subsamples 
under minimal assumptions. Annals of Statistics 22, 2031-2050. 

Politis, D.N. and Romano, J.P. (1994b). The stationary bootstrap. Journal of the American 
Statistical Association 89, 1303-1313. 

Politis, D.N. Romano, J.P., and Wolf, M. (1997). Subsampling for heteroskedastic time series. 
Journal of Econometrics 81,281-317. 

Politis, D.N. Romano, J.P., and Wolf, M. (1999). Subsampling. Springer Verlag, New York. 

Romano, J.P. and Thombs, L.A. (1996). Inference for autocorrelations under weak assump­
tions. Journal of the American Statistical Association 91, 590-600. 

Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of 
the National Academy of Sciences 42, 43-47. 

Stock, J.H. (1991). Confidence intervals for the largest autoregressive root in U.S. macroeco­
nomic time series. Journal of Monetary Economics 28, 435-459. 

White, H. (1984). Asymptotic Theory for Econometricians. Academic Press, Orlando. 

26 



B Tables 

Table 1: Estimated coverage probabilities of various nominal 95% confidence intervals based 
on 1000 replications for each scenario. The data were generated according to model (1) with 

. f-L* = {J* = 0 and p = 1. The innovations are either i.i.d. standard normal (Et = Zt) or of the 
form Et = ZtZt-l. All intervals were obtained by including a time trend in the fitted model. 

AR(I) model, n = 120, Et = Zt 

a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCASYM CLT Stock , 
1 0.90 0.91 0.95 0.90 0.38 0.96 

0.99 0.90 0.93 0.95 0.92 0.51 0.95 
0.95 0.83 0.95 0.84 0.94 0.78 0.94 
0.9 0.82 0.96 0.71 0.95 0.84 0.94 
0.6 0.77 0.95 0.66 0.95 0.93 NA 

AR(I) model, n = 240, Et = Zt 

a SUbMV,ET SUbMV.SYM SUbCA,ET SUbCA,SYM CLT Stock , 
1 0.91 0.92 0.88 0.91 0.37 0.96 

0.99 0.91 0.94 0.85 0.93 0.62 0.94 
0.95 0.80 0.96 0.78 0.95 0.83 0.95 
0.9 0.75 0.96 0.73 0.96 0.88 0.97 
0.6 0.84 0.96 0.79 0.95 0.95 NA 

AR(I) model, n = 120, Et = ZtZt-l 

a SUbMV,ET SubMv.sYM SUbCA,ET SUbCA,SYM CLT Stock , 
1 0.95 0.94 0.96 0.94 0.36 0.92 

0.99 0.95 0.96 0.97 0.96 0.51 0.93 
0.95 0.89 0.95 0.94 0.97 0.75 0.91 
0.9 0.82 0.96 0.87 0.96 0.81 0.91 
0.6 0.75 0.94 0.78 0.95 0.81 NA 

AR(I) model, n = 240, Et = ZtZt-l 

a Sub MV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT Stock 
1 0.94 0.93 0.97 0.94 0.36 0.93 

0.99 0.94 0.97 0.95 0.96 0.63 0.94 
0.95 0.81 0.97 0.84 0.97 0.83 0.93 
0.9 0.78 0.96 0.78 0.96 0.85 0.95 
0.6 0.74 0.93 0.72 0.94 0.80 NA 
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Table 2: Median length of various nominal 95% confidence intervals based on 1000 replications 
for each scenario. The data were generated according to model (1) with J.L* = (J* = 0 and 
p = 1. The innovations are LLd. standard normal. 

AR(l) model including time trend, n = 120, Et = Zt 

a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.12 0.24 0.24 0.24 0.14 

0.99 0.13 0.23 0.24 0.23 0.14 
0.95 0.14 0.26 0.22 0.25 0.17 
0.9 0.17 0.29 0.13 0.28 0.20 
0.6 0.26 0.36 0.18 0.37 0.31 

AR(l) model excluding time trend, n = 120, Et = Zt 

a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.09 0.13 0.20 0.21 0.09 

0.99 0.10 0.15 0.21 0.22 0.11 
0.95 0.13 0.19 0.28 0.23 0.14 
0.9 0.16 0.22 0.34 0.30 0.18 
0.6 0.25 0.31 0.28 0.35 0.30 

AR(l) model including time trend, n = 240, Et = Zt 

a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.06 0.11 0.05 0.12 0.07 

0.99 0.06 0.12 0.06 0.12 0.07 
0.95 0.08 0.15 0.07 0.15 0.10 
0.9 0.10 0.18 0.09 0.17 0.12 
0.6 0.18 0.23 0.15 0.24 0.21 

AR(l) model excluding time trend, n = 240, Et = Zt 

a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.04 0.06 0.04 0.07 0.05 

0.99 0.05 0.08 0.05 0.09 0.06 
0.95 0.08 0.11 0.07 0.12 0.09 
0.9 0.10 0.14 0.09 0.15 0.12 
0.6 0.18 0.21 0.17 0.23 0.21 
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Table 3: Estimated coverage probabilities of various nominal 95% confidence intervals based 
on 1000 replications for each scenario. The data were generated according to model (1) with 
J-t* = {3* = 0 and p = 2. The innovations are either i.i.d. standard normal (Et = Zd or of the 
form Et = ZtZt-l. All intervals were obtained by including a time trend in the fitted model. 

AR(2) model, 'l/Jl = 0.4, n = 120, Et = Zt 

a SUbMV,ET SUbMVSYM SUbCA,ET SUbCA,SYM CLT , 
1 0.93 0.92 0.97 0.91 0.37 

0.99 0.92 0.95 0.96 0.93 0.58 
0.95 0.89 0.96 0.90 0.94 0.85 
0.9 0.82 0.97 0.85 0.95 0.89 
0.6 0.80 0.96 0.82 0.96 0.94 

AR(2) model, 'l/Jl = 0.4, n = 240, Et = Zt 

a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA SYM CLT , 
1 0.91 0.92 0.94 0.91 0.37 

0.99 0.90 0.94 0.89 0.93 0.57 
0.95 0.81 0.96 0.80 0.95 0.80 
0.9 0.78 0.96 0.80 0.95 0.87 
0.6 0.79 0.97 0.78 0.96 0.94 

AR(2) model, 'l/Jl = 0.4, n = 120, Et = ZtZt-l 

a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.95 0.92 0.97 0.95 0.37 

0.99 0.94 0.95 0.97 0.95 0.60 
0.95 0.89 0.97 0.93 0.96 0.84 
0.9 0.86 0.97 0.87 0.96 0.89 
0.6 0.80 0.96 0.79 0.95 0.91 

AR(2) model, n = 240, Et = ZtZt-l 

a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.94 0.93 0.96 0.94 0.39 

0.99 0.93 0.96 0.90 0.95 0.68 
0.95 0.87 0.96 0.84 0.96 0.88 
0.9 0.85 0.95 0.78 0.95 0.89 
0.6 0.82 0.94 0.70 0.96 0.91 
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Table 4: Estimated coverage probabilitieR of various nominal 95% confidence intervals based 
on 1000 replications for each scenario. The data were generated according to model (1) with 
/-l* = {3* = 0 and p = 2. The innovations are either i.i.d. standard normal (Et = Zd or of the 
form Et = ZtZt-l. All intervals were obtained by including a time trend in the fitted model. 

AR(2) model, 'l/Jl = -004, n = 120, Et = Zt 

a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.93 0.91 0.97 0.94 0040 

0.99 0.92 0.93 0.96 0.96 0.50 
0.95 0.90 0.95 0.90 0.97 0.71 
0.9 0.81 0.95 0.85 0.97 0.82 
0.6 0.77 0.96 0.82 0.95 0.91 

AR(2) model, 'l/Jl = -004, n = 240, Et = Zt 
a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.94 0.93 0.97 0.93 0.37 

0.99 0.90 0.95 0.93 0.94 0.71 
0.95 0.84 0.97 0.81 0.95 0.89 
0.9 0.78 0.96 0.79 0.97 0.92 
0.6 0.84 0.95 0.82 0.96 0.95 

AR(2) model, 'l/Jl = -004, n = 120, Et = ZtZt-l 
a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.93 0.92 0.97 0.93 0040 

0.99 0.92 0.93 0.93 0.94 0.50 
0.95 0.87 0.95 0.87 0.95 0.71 
0.9 0.82 0.95 0.83 0.95 0.78 
0.6 0.76 0.93 0.78 0.94 0.86 

AR(2) model, 'l/Jl = -004, n = 240, Et = ZtZt-l 
a SUbMV,ET SUbMV,SYM SUbCA,ET SUbCA,SYM CLT 
1 0.93 0.93 0.98 0.94 0.38 

0.99 0.91 0.94 0.91 0.95 0.56 
0.95 0.80 0.96 0.83 0.96 0.82 
0.9 0.75 0.96 0.79 0.96 0.86 
0.6 0.76 0.95 0.73 0.95 0.87 
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