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Variable Deletion, Confidence Regions 

and Bootstrapping in Linear Regression 

Santiago Velilla* 

Abstract 

A resampling method is introduced to approximate, when some of the pre­

clictors are deleted, the quantiles of the distribution of the usual least squares 

pivots in linear regression. The approximation is used to construct confidence 

regions for the parameters of interest of the model. 

Keywords and phrases: Least squares estimation; r-Jallows distance; Model 

selection; Resampling. 

1. INTRODUCTION 

Consider a linear model of the form 

Y=R,+e:, (1.1) 

where Y is an n x 1 vector of responses, R is an n x M full rank matrix of known 

constants, , is an NI x 1 vector of unknown parameters, and e: = (ci) is an n x 1 

vector of i.i.d. errors with zero mean and variance (J2. If model (1.1) has an intercept, 

the first column of R is the vector of ones In = (1, ~r:), 1)' and the remaining columns 

correspond to the values of P = NI - 1 explanatory variables. When P is large, a 
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customary statistical practice is to eliminate some of the carriers in order to gain sim­

plicity and to reduce, at the same time, the cost of handling a, perhaps, large amount 

of nonessential information. Using a sample-based criterion of variable selection as, 

for instance, looking for the" best" subset of regressors, applying a stepwise method, 

.. , etc. (see Draper and Smith 1998 chap. 15, or Rawlings, Pantula and Dickey 1998 

chap. 7 for excellent updated reviews on variable selection techniques), the design 

matri.,x of model (1.1) is partitioned in the form R = (XI C), where X is an n x m 

matrix that contains the vector of ones and the columns of R corresponding to p 

regressors Xl, X2, ... , xp considered important, and C is an n x q matrix formed with 

the columns of R corresponding, in turn, to a group of q nonimportant regressors Cl, 

C2, ... , cq• The orders of the matrices X and C are such that m = 1 +p and P = p+q. 

After partitioning R in the form above, the next step is to write ~ = (f3' 18')', where 

f3 = (60 , /31 ' "', 6p )' is an m x 1 vector that contains an intercept 60 and the slope 

parameters in ~ corresponding to the variables included in X, and 8 = (01) ... , Oq)' is 

of q x 1 and contains the remaining slope parameters in f. Model (1.1) can be thus 

reexpressed in the form 

Y = X,B + CD + e , (1. 2) 

where, since the columns of C are judged of minor importance, all OJ rv O. As a final 

natural step, and taking into account that the goal is to simplify the model, 8 is set 

to zero or, equivalently, the variables in C are deleted. In other words, a reduced or 

subset model of the form 

Y=Xj3 +u, (1.3) 

is considered, v"here u is an error term, and the estimator obtained in the least squares 

fit of (1.3) 

(1.4) 

is used either for inference purposes on j3 or for predicting the values of future re­

sponses. 

The reduced model (1.3) is seen to be a reasonable approximation of (1.2), \vith an 
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additional advantage of simplicity. However, since the importance of the variables in 

the sample-based criterion might not be same as in the population, some regressors 

omitted from the model might have associated coefficients Oj that, although small 

in magnitude, are not exactly zero. If this is the case, model (1.3) is misspecified 

and, as a consequence, deletion of variables is well-knmvn to be done at the cost of 

introd ucing some bias. To see this, let (J~ = Y' (J - H) Y / (n - m) be the least squares 

estimate of the variance in the fit of the subset model, where H = X(X'xt1x' is 

the n x n orthogonal projection matrLx onto the column space of X. As summarized 

in Hocking (1976, sec. 2), if (1.3) is fitted but the full model (1.2) is assumed to be 

correct, one has 

(1.5) 

where A = (X'xt1 X'C is the so called alias m x q matrLx, and 

E[(J~l = 0-2 + 11 (J - H)C6112 2:: 0-2 , 

n - m 
(1.6) 

where 11.11 is the euclidean norm. Observe, however, that, regardless of the values 
~ 

of the Oj, f3R is unbiased for f3 whenever the columns of X are orthogonal to the 

columns of C. The introduction of bias is counterbalanced: in some circumstances, 

by an increase in precision in the estimation of {3. Specifically, if for a given partition 

R = (XI C) the least squares estimate of, = ({3' 16')' in (1.2) is written in the form 

'Y = ( i ) = (R'Rt'R'Y , (1.7) 

where 8 = [C'(J - H)CJ-1C'(J - H)Y, and if the q x q matrLx 

r = Var[8] - 66' = 0-
2 [C'(J - H)C)-l - 66' (1.8) 

is positive semi-definite (p.s.d.), the difference Var[J3] - MS' E[,BR] is also p.s.d., where 

.MS'E[,BRl = E[(,8R - (3)(,8R - (3)'] is the mean squared error matrix of !3R' Notice 

that the condition r 2:: 0 implies that the true OJ are, in magnitude, smaller than the 

standard deviations of their least squares estimates. 
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One of the aims of this paper is to study, in the same vein as in the paragraph 

above, the impact of misspecification on the least squares confidence regions for {3 

constructed using a subset model as (1.3). Section 2 illustrates that, even for small 

values of 15, the actual coverage probabilities can be far from their nominal values. 

If, nevertheless, the reduced model (1.3) is, for inference purposes, preferred to the 

full model (1.2), section 3 proposes, as a remedial action, a boots trap type technique 
-" 

for building confidence regions for {3 that is based on the subset estimators {3 Rand 

(j~. This technique is shown to produce, in section 4, coverage probabilities close to 

a given nominal value. Section 5 contains some final comments. 

2. VARIABLE DELETION AND LEAST SQUARES CONFIDENCE 

REGIONS BASED ON (3R 

Suppose that interest lies in making inference on a set of linear combinations W = 
-" ~ 

L{3 defined by a given s x m matri,x L of rank r(L) = s :::; m. Put WR = L{3R. 

The effects of underfitting on the confidence regions for W based on {3R are studied 

considering separately the cases of normal and nonnormal errors. 

2.1 Normal errors 

Put 

(2.1) 

where QL = (~R - w)'[L(X'X)-IL'tl(~R - w), for the usual least squares pivot 

for making inferences on W using (1.3). By standard distribution theory in linear 

regression (see e.g. Seber 1977 sec. 3.4), if the magnitude of 15 is "small", that is if 

the reduced model is close to the truth, and if the errors are normal, the distribution 

of FL is thought to be close to an F distribution with sand n - m degrees of freedom. 

Therefore, if a (1- 0:) x 100% confidence region is desired for W, the deletion approach 

leads to the elliptical region 

{W : FL :::; Fs,n-m,a.} 
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where Fs,n-m,Q is the (1 - a) X 100% quantile of an F distribution with sand n - m 

degrees of freedom. 

However, as seen in appendi..x A.l, by application of well-known results relative 

to the distribution of linear and quadratic forms in random vectors with an spher­

ical normal distribution (see e.g. Arnold 1981, sec. 3.5), if (1.2) is the correct 

model and c rv Nn(O, 0"21), it can be seen that QL/0"2 rv X~(v/v), where v = 

[L(X'X)-1L']-1/2LA(bI0"), and (n - m)(&1/0"2) rv X~-m(>\)' where). = [b'C'(I­

H)CbJ/(J2. Moreover, QL and &1 are independent. In other words, the exact distri­

bution of FL is given by the ratio 

(2.3) 

of two independent non central chi squared distributions scaled by their corresponding 

degrees of freedom. The right hand side of (2.3) defines a nonpivotal distribution that 

depends on unknown parameters and that clearly differs from a Fs•n - m . In particular, 

the coverage probability of region (2.2) is a function of the ratio b I 0" as in the following 

simple exam pie. 

Example 1 Suppose that, in the notation of (1.2), the matrices X and Care 

c~ 1 1 1 1 1 XI -
-2 -1 0 1 2 

Cl - ( -2 -4 -2 0 2 4 (2.4) 

so that f3 = (/30, (31)/ and b is a real number. If a 95% confidence interval based on 

f3R = (~O,R '~l,R)' is desired for /31' the region (2.2) reduces to the confidence interval 

(2.5) 

where &R is the positive squared root of &~, xIl is the appropriate diagonal element 

of (XIX)-l, and t5,.025 is the upper .975 quantile of a central Student's t distribution 

\vith five degrees of freedom. To analyze the dependence on 810" of the coverage 
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probability of interval (2.5), an experiment is conducted simulating, for every point 

in a grid of values of 8 in the interval (-.3, .3], N = 2000 independent replications of 

an structure of the form 

y=x C) +CO+€, (2.6) 

where the components Ci, i = 1, ... , 7, of e are i.i.d. N(O,I). The variance (j2 of the 

errors is taken to be one so that the coverage probability of (2.5) depends solely on 

6. Also, the range of values of 6 is selected such that the matrL'C r of (1.8) is p.s.d. 

or, equivalently, such that the difference [C'(I - H)C]-l - 62 is nonnegative. For the 

specific values of X and C given above in (2.4), this requires 161 ::::; 1/ y'C'(I - H)C = 

.2958 ~ .3. Notice that this is precisely the range of values of 6 that lead, when the 

column C is dropped out from the model, to an increasing precision in the estimation 

of (3. 

For each simulated sample, the interval 81,R ± CTRJ;Dt5 •. 025 = 81.R ± .4858CTR is 

computed. For any given value of 6 in the grid, the observed proportion of times that 

the interval (2.5) covers the target value ,6] = 1 is an estimate of its true coverage 

probability. As displayed in the symmetrically shaped figure 1, with the exception 

of the values of 6 in a narrow interval around 6 = 0, the observed estimates are well 

below .95. For example, for 6 = ±.25, around one out of five intervals of the form 

(2.5) do not cover, on average, the target value ,6] = 1. As a conclusion, even for the 

range of values of 6 that lead to a better estimation of (3, the coverage probabilities of 

(2.5) can offer a poor approximation of the desired nominal confidence coefficient .• 

Figure 1 

2.2 Nonnormal errors 

vVhen the errors are not normal, the asymptotic alternative to (2.2) is the region 
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where QL is as introduced after (2.1), and XLl: is the upper (1 - a) x 100% quantile 

ofax; distribution. The rationale behind (2.7) can be sketched briefly as follows. 

From (1.2) and (1.4), one has ~R - f3 = A6 + e, where e = (X'xt 1X'e: and A = 
(X'xt 1x'C is as in (1.5). If the sequence of matrices X'Xln is assumed to converge 

to a positive definite (p.d.) matrix V, an standard application of the Lindeberg 

condition leads, when n -+ 00, to JTie =JTi(X'X)-lX'e: .£. Nm[O , (T2V-lj (see, for 

example, lemma 3.1 in Miller 1974) and, as corollary, to X'e:ln ~ o. Therefore, 

if the columns of C are ignored, that is if the reduced model (1.3) is considered 
~ ~ D 

approximately correct, '¥R - '¥ = L(f3R - f3) ~ L~ ~ Ns[O , 0-2L(X'X)-1L'] and 

&~ ~ e:'(I - H)e:/(n - m) & (T2. Hence, it is accepted that, for n large enough, the 
D 

ratio QL/&1 = (Chl0-2)/(&~/(T2) ~ X; and, as a consequence, region (2.7) is expected 

to have a coverage probability close to (1 - a). 

An alternative asymptotic analysis, taking into account the variables associated to 

the matrix C in (1.2), offers a different message. Specifically, if "smallness" of the 

parameter 6 is formulated by embedding model (1.2) as the nth term in the sequence 

of contiguous models introduced in r..1cKean, Sheather and Hettmansperger (1993, p. 

1256) 

Y = Xf3 + C6n + e: , (2.8) 

'where all the elements are as defined previously and 6n = () I JTi for some fi .. 'Ced vector 

() of q x I, and if the regularity condition below is imposed: 

(C) As n goes to infinity, 

~ R'R = ~ (X'X x'c) -+ IT = (V Z ) , (2.9) 
n n C'X C'C Z' W 

where IT is a finite p.d. Iv! x Ai matrix, 

it can be seen that the ratio QL/&~ converges to a noncentral chi squared distribution 

with noncentrality parameter depending on the parameter vector () 10-. Details can be 
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seen in appendi..x A.2. As a conclusion, region (2.7) above is using, similarly as region 

(2.2), the quantile of an incorrect distribution and should not be expected to have 

coverage probability close to (1- a). This conjecture is confirmed by the simulation 

results presented in tables 2 and 3 of section 4. 

3. VARIABLE DELETION AND BOOTSTRAP CONFIDENCE 

--REGIONS BASED ON f3 R 

Section 2 describes some anomalies of the confidence regions for 'l1 = Lf3 based on 

the fit of the reduced model (1.3). An obvious remedial action would be to replace, 

both in (2.2) and (2.7), the incorrect quantiles Fs,n-m,(l and X;,(l by the correct ones. 

However, and as seen previously, the distribution of the ratio QL/er~, either exact 

or asymptotic, depends, under a model of the form (1.2), on unknown parameters 

and the same is true for its quantiles. Therefore, this approach is of no practical 

use. As an alternative, and in order to circumvent the parametric dependence of the 

distributions involved, a resampling technique can be developed to approximate the 

quantiles of interest. 

For reasons of technical convenience, the derivations are presented in terms of the 

random quantity 

(3.1) 

where erR is the positive squared root of er~. Notice that, if en (L, a) is the (1 - a) x 

100% quantile of TL , one has, since QL/er~ = nTl, 

(3.2) 

so if cn(L, a) were known, the region on the right-hand side of (3.2) would be a 

(1 - a) x 100% confidence region for 'l1 = Lf3 based on statistics computed from 

the subset modeL Unfortunately, cn(L, a) is difficult to determine. However, as 

seen next in subsection 3.1, the distribution of TL admits a tractable bootstrap type 

approximation that can be used to get an estimate of cn(L, a). Replacing this estimate 
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for cn(L, a) in the right hand side of (3.2), leads to a feasible confidence region for W 

based on the ratio QLl(j~. 

3.1 A bootstrap approximation for the distribution of TL 

The first step is to design a data based resampling scheme, based in as much as 

possible on (:JR and (T~, that mimics the structure of the misspecified model (1.3) Y = 

X,B+u, where, taking into account (1.2), u = C8+e. The natural replacement for,B 

is /3R. On the other hand, consider a random vector e* = (c:i, ... ,c:~)' of conditionally 

independent components with common distribution Gn , the empirical distribution of 

the residuals obtained using (3 R 

(3.3) 

where H is the projection matrix introduced in the second paragraph of section 1. 

Notice that, if X has an intercept and the residuals ei,R are rescaled multiplying by the 

factor vn/(n - m), one has E*[vn/(n - m) e"] = 0 and, since (T~ = iieRII2 /(n-m), 

VaT*h/n/(n - m)e*] = (T~In' where E*[.] and VaT*[.] are, respectively, the mean 

and covariance operators under Gn- Therefore, it seems natural to substitute e by 

/n/(n - m) e*. Finally, the first summand in u is replaced by C8, where 8 = 

[C'(I - H)C]-lC'(I - H)Y is, as defined in equation (1.7), the least squares estimate 

of 8 in the fit of the full model (1.2). This last piece of information cannot be provided 

by the reduced model and its introduction is motivated by the need of estimating the 

bias component C8. 

In summary, the proposed resampling scheme is to generate the starred data 

"-

Y* = X,BR + u· , (3.4) 

where 

u* = C8 + .In/(n - m) e* . (3.5) 

(3.4)-(3.5) can be seen as a modification of the standard bootstrap based on residuals 

introduced by Efron (1979) and studied, among others, in Freedman (1981), Efron 
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and Tibshirani (1993, chap. 9), and in Shao and Tu (1995, chap. 7). Put now 
-* .-.. -* 2* I 

f3R = (X'xt1X'Y*, w~ = Lf3R and &R = y* (I-H)Y*/(n-m) for the bootstrap 
..........-.. -.. 2 

counterparts of, respectively, f3 R, W R = Lf3R' and & R" In the same fashion, ,vrite 

(3.6) 

where Q~ = (~~ - ~R)'[L(X'xtlL'l-l(~~ - ~R) and &~ = Jiff, for the re­

sampling analogue to TL . The scheme (3.4)-(3.5) can be used to approximate the 

distribution of TL by means of the realizable distribution of Ti,. Specifically, consider 

the distance between two probability distributions p, and 7r on a given euclidean space 

~k such that both J Ilxll r p,(dx) and J Ilxll r 7r(dx) are finite: 

(3.7) 

where r 2': 1, and the infimum is taken over all the pairs of jointly distributed k 

dimensional random vectors (U, V) with marginals p, and 7r respectively. The distance 

above is introduced in Mallows (1972). A detailed survey of properties of dr (p,,7r) 

is given in Bickel and Freedman, (1981, sec. 8). The notation dr(cjJ,TI) is used 

sometimes to denote the distance between the laws of two random vectors cjJ and TI. 

The next result is obtained in the same context of the sequence of models (2.8) and 

the associated regularity condition (C) introduced in subsection 2.2. 

Theorem 1 Under the sequence (2.8), if: i) the errors Ci are i.i.d. with zero mean 

and constant variance; and ii) condition (C) holds, then, as n ~ 00: 

a) dlh/Q~/n,.jQL/n) ~ 0, a.s. ; 

b) dl(&~'&R) ~ 0, a.s .. 

Proof. See appendL,{ B .• 

By part a) of this theorem, the conditional distribution of .jQ~/n is a strongly 

consistent estimate of the distribution of .jQL/n. Moreover, as seen in appendix B, 

d1 (&R,CJ) ~ o. Therefore, by the triangle inequality and part b) above, the conditional 
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distribution of O'~ is close to (T. Theorem 1 justifies then approximating the law of 

TL by the conditional law of Ti since, by identities (3.1) and (3.6), the numerators 

are close together and the denominators converge to the same constant (T. 

3.2 Bootstrap confidence regions 

As a consequence of theorem 1, the (1 - a) x 100% quantile cn(L,a) of TL can 

be approximated by the corresponding (1 - a) x 100% upper quantile c~(L,a) of 

the conditional distribution of Ti. Moreover, since the distribution of Ti is realiz­

able, c~(L, a) can be estimated by Monte Carlo, generating a "large" number B of 

independent replications Y;, b = 1, ... , B, from the scheme (3.4)-(3.5), computing 

for each generated Y; the associated value Ti,b and, finally, finding the constant 

c~,B(L,a) ~ c~(L, a) that covers (1 - a) x 100% of the B values Ti,b' Replacing, in 

(3.2), cn(L,a) by c~.B(L,a) leads to the feasible confidence region for 'l! 

{'l! : TL ~ C~,B(L, an = {'l! : QL/O'~ ~ nC~~B(L, an 
{'l! : ('l! - ~ R)'[L(X'XtIL't I ('11 - ~ R) ~ n&1C~~B(L, an (3.8) 

(3.8) is, in the notation of Shao and Tu (1995, sec. 4.1), a bootstrap t-type confidence 
~ ~ 

ellipsoid centered at 'l! R = Lf3R and with shape and boundaries defined, respectively, 

by the eigenstructure of the matrLx [L(X'Xt 1 L't 1 /n&~ and the estimated quantile 

c~,B(L)a). 

4. SIMULATIONS 

The regions (3.8) are intended to have approximate coverage probability (1 - a). 

The method is asymptotic in nature and does not depend on the specific distribution 

for the errors. Its performance in finite sample size situations is analyzed by simu­

lation. Comparisons 'with the regions (2.2) and (2.7) used by the deletion approach 

are also addressed. 
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4.1 Example 1 (continued) 

In the example presented in section 2, the region of the family (3.8) corresponding 

to f31 = (0 1 )/3, where /3 = (f30 (3 1)', is the interval 

~1 R ± 8R..jnxllc~ B[(O 1),.05J . , , ( 4.1) 

It is interesting to compare, in this simple context, the coverage probabilities of this 

interval with the coverage probabilities obtained with the interval (2.5). Simulating, 

for each point in the same grid of values of 6 in [-.3,.3J considered in example 1, 

N = 2000 replications of a model of the form Y = X(l 1)' + CD + c, where the 

components of care i.i.d. N(O,l), the continuous line in figure 2 represents the 

empirical coverage probabilities of (4.1) for the target value /31 = 1. The quantile 

C~,B[(O 1),.05J is obtained using B = 1000 bootstrap replications. The bootstrap 

coverage probabilities are bounded between .9150 and .9865 and, despite of the small 

sample size, n = 7, present a clear improvement over the coverage probabilities 

provided by the deletion approach that, in turn, are bounded between .7250 and 

.9475. 

Figure 2 

4.2 Monte Carlo experiment 

To analyze the behaviour of the regions (3.8) in a more complex situation, a higher 

dimensional Monte Carlo experiment is performed. A random sample 81,82, ... ,8150 

is generated from a given N lO (O, :E) distribution, where the covariance matrLx :E has 

an structure of the form 
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being :Ell = I2 , :E21 = ls(l - 1),/-/2, :E12 = :E~l' and :E22 = (1/8)Is + lsl~. The 

150 x 10 data matrL'X 

s= 

is formed. For values of n = 30, 50, lOO, 150, p = 2, q = 2, 4, 8, and AI = 1 + P + q = 

3 + q, an n x Ai matrL'X R is constructed selecting the first n rows and first IV/ columns 

of the matrL'X (1 150 1 S). Next, in the notation of section I, the matrix R is partitioned 

in the form R = (XI C), where X corresponds to the first m = 1 + p = 3 columns, 

and C to the last q ones. Once a given n x 111 matrL'X R = (XI C) has been selected, 

a model of the form 

Y =Xf3+ C6+e: ( 4.2) 

is considered, where f3 = ((30) (31' (32)' is of 3 x 1, 8 = (151, ... , bq )' is of q x 1 and 

e: = (ci) is an n x 1 vector of errors. Put {1R = (X'xt 1X'Y = (~O,R' ,B1,R' ~2,R)'. 

Taking 0: = .05, three confidence regions ot the form (3.8) are analyzed: i) The 

confidence interval 

( 4.3) 

for ,81 = e~f3, where el = (0,1,0)'; ii) The confidence interval 

(4.4) 

for the difference ,81 - (32 = )..'{3, where, if e2 = (0,0,1)', ).. = e1 - e2 = (0,1,-1),; and 

iii) The confidence ellipse 

for the parameters lJ1 = L{3 = ((31,(32)', where L = (e1 e2)' and ~R = L{1R. 

To study the coverage probabilities of regions (4.3), (4.4) and (4.5), N = 2000 

replications of a model of the form (4.2) are generated taking {3 = (1, 1, 1)' and 

6 = e / Jri, where e = 'T/1q/ Jf1 is, for values of 71 = .5, 1., and 1.5, proportional to the 
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unit vector lq/.jii. For the i.i.d. errors Ci with zero mean and variance (}2 = 1, three 

error distributions are considered: i) N(O, 1); ii) uniform U( -V3,V3) and iii) a scaled 

double exponential distribution with density f(x) = exp[-v'2lxlll v'2, -80 < X < 00. 

For each of the N = 2000 replications generated, the quantiles c~,B(L,.05) used in 

(4.3) through (4.5) are computed using B = 1000 bootstrap replications. The target 

values are (31 = 1 in (4.3), (31 - (32 = 0 in (4.4), and W = (1,1)' in (4.5). For 

each region, the proportion of times the corresponding target value is covered, is an 

empirical estimate of the exact coverage probability. For the three values 8 1, 8 2 and 

83 of 8 considered, corresponding, respectively, to the values of 17 = .5, 1. and 1.5, 

these empirical coverage probabilities are displayed in the columns labeled as E* in 

tables 1, 2, and 3. 

For completeness, the empirical coverage probabilities obtained with the boot­

strap method (3.8) are compared \vith the coverage probabilities obtained using 

the regions for (31' (31 - (32 and W = (,8h 82), proposed by the deletion approach. 

vVhen the errors are normal, these regions are, as introduced in (2.2), the interval 

~l,R±&RJe~ (X'X)-l e1 t n - m ,.025, the interval (~1,R-~2,R)±&RJA'(X'X)-1>'tn-m,.o25' 

and the ellipse ('11 - ~ R)'[L(X'Xt1L't1(W - ~ R) :S 2&~F2,n-m,.o5' respectively. For 

a nonnormal error distribution, the corresponding regions are, as in (2.7), the interval 

~1,R±&RJe'l(X'X)-le11.96, the interval (~1,R-~2,R)±&RJA'(X'X)-1>'1.96 and, fi­

nally, the ellipse (w-~R)'(L(X'X)-lL'l-l(w-~R):S &~X~,.05' wherex~,.o5 = 5.9915. 

The empirical coverage probabilities for these regions, computed using a new set of 

N = 2000 independent replications, appear in the columns labeled as D in tables 1, 

2, and 3. 

Table 1 

Table 2 

Table 3 

According to the results in tables 1, 2, and 3, the regions (4.3), (4.4) and (4.5), 

have, for the three different error distributions considered, coverage probabilities rea-
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sonably closer to the nominal confidence coefficient. The approximation seems to 

deteriorate both with the size of () and with the number q of variables deleted from 

the model. However, the bootstrap coverage rates have a much better behaviour than 

the coverage rates obtained with the regions used in the standard deletion approach 

that, as seen in the columns labeled as D, lie often markedly below .95. 

5. FINAL COMMENTS 

This paper presents a bootstrap based technique for making inference on the pa-

rameters of interest of a linear regression model, once a set of variables considered 

nonimportant is deleted. The method is asymptotic in nature and does not require 

any specific distribution for the errors. Implementation of the resampling scheme 

(3.4)-(3.5), presented in subsection 3.1, depends: i) on summary statistics obtained 

in the fit of the subset model (1.3), and ii) on the least squares estimate '8 of /5 ob­

tained in the fit of the full model. This last piece of information is needed to estimate 

the term C/5 on the right hand side of (1.2). 

The regions (3.8) could be used for making inference on {3 after applying a standard 

model selection procedure as the ones described in Draper and Smith (199S, chap. 

15) or in Rawlings et a1. (1998, chap. 7). These methods are useful for partitioning 

the design matrL,{ R of the full model (1.1) in the form R = (X IC) so that the 

role of the variables associated to the columns of the matrL,{ C is, as compared to 

the role of the variables associated to the columns of X, of minor importance. In 

the light of the simulation results presented in section 4, some care is needed before 

automatically eliminating the variables C since, unless very small values of /5 are 

considered, deletion of variables is typically bound to decrease markedly the coverage 

probabilities of the least squares confidence regions (2.2) or (2.7). If, nevertheless, 

inference on f3 is performed using the statistics 13R and &~ computed in the least 

squares fit of the, perhaps misspecified, reduced model (1.3), the appropriate region 

of the family (3.S) seems to offer a better behaved coverage probability. 
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APPENDIX A: EXACT DISTRIBUTION OF FL UNDER (1.2) AND 

ASYMPTOTIC DISTRIBUTION OF QL/(]1 UNDER (2.8) 

A.I Exact distribution of FL under (1.2) 

From expressions (1.2) and (1.4), one has the representation {3R - (3 = Ab + ~, 
where ~ = (X'Xt1X'e and A = (X'X)-lX'C is as in (1.5). Therefore, 

~R - w = L({3R-f3) = LAb + L~ = LAb + L(X'Xr1X'e . (A. 1) 

Also, recalling that 1 - H is an n X n idempotent m atrL"'C , 

(A. 2) 

\vhere <: = (Cb + e)/O'. If e ""' Nn(O, 0'
21), it follows immediately that ~ R - W ""' 

Ns[LAb , O'2L(X'XtlL'] and <: ""' Nn [C(8/O') ,1]. Since 1 - H has rank n - rn, 

one has, by theorem 3.12 in Arnold (1981, sec. 3.5, p. 50), (n - rn)((]1/O'2) ""' 

X;-m()\), where A = [8'C'(I - H)C8J/O'2 is a noncentrality parameter. Notice now 

that (X'X)-lX/(I - H) = O. By theorem 3.15 in Arnold (1981, sec. 3.5, p. 51), 
~ 2 

~ = (X'X) -1 X' e and (I - H)e are independent and, therefore, W Rand (] R are. by 

(A.1) and (A.2) above, independent as well. Finally, writing 

and taking into account the representation QL/O'2 = '11''11, where '11 = [L(X'X)-1L'tl/2 

(~R - W)/O' ""' Ns[v , I] and v = [L(X'xtlL'tl/2LA(8/O'), the statement (2.3) 

about the distribution of FL follows .• 

A.2 Asymptotic distribution of QL/(]1 under (2.8) 

Suppose the regularity condition (e) introduced in subsection 2.2. Under a model 

of the form (1.2), the asymptotic behaviour of QL depends on the limit properties of 

fo ({3R - f3). From the representation {3R - f3 = A8 +~, if not all the coefficients 8 

are simultaneously zero, A8 has a nonnull finite limit so, in principle, fo ({3 R - (3) 
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does not have a proper asymptotic distribution. Hmvever, if the parameters <5 are 

"small", a possible remedial action is to think of (1.2) as the nth term of the sequence 

of contiguous models (2.8). 

Proposition A.I Under the sequence (2.8), if: i) the errors Ei are i.i.d. with zero 

mean and constant variance; and ii) condition (e) holds, then, as n -+ 00: 

a) 0i C!3R - (3) .E.r Nm[V-1ZB ; 0"2V-lj ; 

b) ...... 2 2 
O"R -+ 0" , a.s .. 

Proof. a) vVrite fo (i3R -(3) = foo:+fo~, where foo: = AB. Under condition 

(e), 
- (XIX) -1 (X/C) 1 Jno: = -- -- B -+ Y- ZB . 

n \ n 

as n -+ 00. To finish the proof is enough then to establish fo~ .E.r Nm[O ; (T2V- 1]. 

This fo11mvs from application of the Lindeberg condition and the Cramer-vVold device 

as in lemma 3.1 in ~liller (1974, p. 883). b) Let eR = (I - H)Y be, as in (3.3), 

the least squares residuals of the fit of the reduced model (1.3). Under the sequence 

(2.8), eR - E = (I - H)Y - E = (1 - H)C8n - HE. The two summands on the right 

hand side of this latter identity are orthogonal and, therefore, 

1 2 - IleR - ell 
n 

(A.3) 

From lemma 2.3 in Freedman (1981, p. 1222), X'e/n -+ 0, a.s., so, by (e), the left 

hand side of (A.3) converges to zero, a.s. Also, since IlleRI! - IIEIII ~ IleR - Ell, one 

has, using the representation (JR = IleR11 / vn - m, 

I(JR - 0"1 ~ ~ ~ lIeR - ell + Iv lie 11 - 0"1 V~vn n-m 
(A.4) 

By inequality (A.3) and the law of the large numbers, (A.4) shows that (JR -+ 0", a.s . 

• 
As a corollary, [L(X'XtlL'J-l/2(~ R - 'lI)/0"=[L(X'X/nt1L']-1/2Lfo(.BR - (3)/0" 

.E.r C; '" Ns(v , 1), where v = [Ly-1L'j-l/2Ly- 1Z(B/0"). Therefore, QL/(J1 = 
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(QL/eT2)/((j~/eT2) ~ ~'~ "-'X;(v'v). Notice, finally, that v = [Ly-1L'tl/2Ly-1Z(8/a) 

~ [L(X'X)-1L']-1/2LA( 8n / eT). 

APPENDIX B: PROOF OF THEOREM 1 

The properties of the Mallows distance (3.7) listed below, taken from Bickel and 

Freedman (1981, p. 1211 and ff.), are needed: 

i) If E(II<p1I2) and E(II'lfJ112) are finite, the additive decomposition holds: 

d~ ( <P, 'IfJ) = 11 E ( <p) - E ( 'IfJ ) 112 + d~ [<p - E ( lP ) , 'IfJ - E ( 'IfJ ) J ; (B. 1 ) 

ii) For any real number a, 

(B.2) 

and 

hi) A necessary and sufficient condition for a sequence of random vectors {<Pn} to 

satisfy dr(lPn,<P) ---* ° is that both <Pn ~ <P and E[lllPnln ---* E [11<plll 

The proof of theorem 1 requires also two auxiliary lemmas first. Let Hn and Fn be the 

empirical distribution functions of, respectively, the scaled residuals In/(n - m)eR = 

)n/(n - m)(Y - X/3R) = (In/(n - m)ei,R), and the true errors Cl, ... , cn· 

Lemma B.1 Under the sequence (2.8) if: i) the errors Ci are i. i. d. with zero mean 

and constant variance; and ii) condition (e) holds, then d~(Hn, Fn) ---* 0, a.s. 

Proof. Let (U, V) be jointly distributed with mass l/n at (In/(n - m)ei,R' Ci), 

i = 1, ... ,n. By definition (3.7) and the inequality Ilx + Yl12 :S IlxI12+llyI12+21Ixllllyll, 
valid for x, y E Rn, 
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(B.3) 

(BA) 

By (A.3) and the law of the large numbers, all the terms in both (B.3) and (BA) 

tend to zero, a.s ..• 

Lemma B.2 Under the sequence (2.8) if: i) the errors ei are i.i.d. with zero mean 

and constant variance; and ii) condition (e) holds l then, as n ----t 00: 

-* ........ ,-. 
d2(f3 R - f3R,f3 R - (3) ----t 0, a.s .. (B.5) 

~* ~ 

Proof. Using property (B.l), the squared d2 distance between the laws of i3R - i3R 

'" and f3R - f3 is 

(B.6) 

where ~ = (X'XY-1X'e and ~* = y'n/(n - rn)(X'XY-1X'e*. From the regularity 

condition (e) and results in Lai, Robbins and vVei (1979) on the strong consistency 
~ 

of the least squares estimators in multiple regression, 8 - 8n goes to zero almost 

surely and the same is true for A(8 - Dn). Let now F be the common distribution 

function of El, ... , En. From lemma 8.9 in Bickel and Friedman (1981, p. 1214), 

d~(C,~) ::; n-ltr[(X'X/ny-l] d~(Hn,F) and, since d2 is a metric, 

(B. 7) 

where Fn is the empirical distribution of the errors El, ... , En. Both summands in 

(B. 7) converge to zero almost surely. The first by lemma B.l above and the second 

by lemma 8A of Bickel and Freedman (1981, p. 1212) .• 

Proof of theorem 1. a) For any given vectors x, y in ]Rm and for any rank s ::; rn 

matrix r of s X rn, the chain of inequalities below holds: 

(B.8) 
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where IIxllr = Ilrxll = (x'r'rx)1/2, IlrjlE = A~;,«r'r) is the spectral norm of r, and 

Ilxll is the usual euclidean norm of x. Observe also that 

(B.9) 

where r n = [L(X'X/nt1L']-1/2L is a rank s matrix of s x m. From (B.8), (B.9) and 

definition (3.7) of the Mallows distance, it can be seen 

(B.10) 

by regularity condition (e) and convergence (B.5) obtained in lemma B.2; b) From 

the scaling property (B.2), 

d (/'-* /'- ) =~! d (11eR11 IleR11 ) 
1 CJR,CJR 1 r:::.' r:::. ' n-m y7l yn 

(B.ll) 

where eR = (1 - H) Y*. After applying the triangle inequality twice, the second factor 

in (B.ll) is bounded above by the sum 

(B.12) 

To finish the proof it is then enough to proof that the three summands of (B.12) go 

to zero. The first and the third summands have a similar treatment. One has 

di( 11;i1, l/nl) ::; ; E*(lleR - c:*112) ::; ; jjC8jj2 + a1qn , (B.13) 

where qn = 2[1 - (m/n)J[l- J1- (mjn)J, and 

die Ile~1 ,II~) ::; ~ E(lleR - c:112) ::; ~ IIC8n l1 2 + CJ2(mjn) . 
yn yn n n 

(B.14) 

The two inequalities above are obtained \VTiting first IleR - e*112 
= Q*'Q*, where 

/'- 2 
Q* = eR - c:* = (1 - H)C6 + (1 - H)v'nj(n - m)e* - e*, and IleR - ell = Q'Q, 

where Q = eR - e = (1 - H)C8n - He, noting then that E*[Q*] = (1 - H)C8, 
tr(Var[Q*]) = a1qn, E[Q] = (1 - H)C8n , and tr(Var[Q)) = CJ(m/n) , and, finally, 

applying the well-know formula that gives the expected value of a quadratic form in a 

random vector as a function of its first two moments. The right hand sides of (B.13) 
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and (B.14) go to zero, the former a.s. and the latter deterministically. For treatment 

of the second summand, observe that 

d2(1Ic:*1I M) < ~d2(c:* c:) < d2(G F) 1 r;;' r;; - 2 , - 2 n, , 
yn yn n 

(B.15) 

where Gn is, as introduced in subsection 3.1, the empirical distribution function of 

the residuals eR = (ei,R)' The second inequality in (B.15) follows from lemma 8.9 

in Bickel and Freedman (1981, p. 1214). Using a similar argument as the one given 

in the proof of lemma B.l, it can be seen d~(Gn,Fn) -+ 0, a.s.. Using inequality 

(B.7), with Hn replaced by Gn, gives a.s. convergence to zero of the upper bound in 

(B.15) .• 

Observe, finally, that by property iii) above, expresion (1.6) and part b) of propo­

sition A.l, one has d1 (0'~,CT2) -+ O. Therefore, by lemma 8.5 in Bickel and Freedman 

(1981, p. 1213), d1 (O'R,CT) -+ O. 
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the residuals eR = (ei,R)' The second inequality in (B.15) follows from lemma 8.9 

in Bickel and Freedman (1981, p. 1214). Using a similar argument as the one given 

in the proof of lemma B.l, it can be seen d~(Gn,Fn) -+ 0, a.s.. Using inequality 

(B.7), with Hn replaced by Gn, gives a.s. convergence to zero of the upper bound in 

(B.15) .• 

Observe, finally, that by property iii) above, expresion (1.6) and part b) of propo­

sition A.l, one has d1 (0'~,CT2) -+ O. Therefore, by lemma 8.5 in Bickel and Freedman 

(1981, p. 1213), d1 (O'R,CT) -+ O. 
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CAPTIONS FOR FIGURES AND TABLES 

Figure 1. Estimated coverage probabilities (ec) of interval (2.5) (. -) as a function 

of O. 

Figure 2. Estimated coverage probabilities (ec) of intervals (2.5) (. -) and (4.1) 

(-) as a function of o. 

Table 1. Estimated coverage probabilities for normal errors of the regions studied 

in the simulation study of subsection 4.2. 

Table 2. Estimated coverage probabilities for uniform errors of the regions studied 

in the simulation study of subsection 4.2. 

Table 3. Estimated coverage probabilities for double exponential errors of the 

regions studied in the simulation study of subsection 4.2. 
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Normal Errors 
q=2 q=4 q=8 

/31 /31 - /32 (/31,/32)' /31 ,61 - /32 (/31,/32)' /31 /31 - /32 (,81 , ,82 )' 

E* D E* D E* D E* D E* D E* D E* D E* D E* D 
n=30 

01 .991.942 .984.923 .982.936 .986.922 .988.883 .976.902 .973.853 .970.804 .976.864 
02 .973.880 .971 .846 .968.873 .955.780 .943.687 .961.789 .928.548 .912.433 .920 .. 552 
03 .937.747 .933.705 .936.771 .906.557 .877 .415 .899.551 .820.235 .805.117 .826.202 

n=50 
01 .979.937 .983.926 .979.939 .984.923 .983.898 .987 .921 .973.864 .981 .840 .979.874 
O2 .964.879 .956.846 .968.893 .956.809 .957.72.5 .961 .794 .946.624 .916 .491 .932 .. 593 
03 .943.782 .940.715 .947.804 .920.605 .898 .474 .904.604 .868.308 .846.150 .848.262 

n = 100 
01 .982.931 .983.908 .982.933 .986.908 .988.879 .980.904 .981 .864 .976.775 .981 .838 
02 .971.853 .957.788 .954.844 .951 .759 .943.629 .954.705 .939.556 .906.325 .922.440 
03 .944.744 .909.590 .922.671 .914.523 .873 .307 .895.408 .862.207 .811 .040 .826.088 

n = 150 
01 .982.934 .983.904 .987 .914 .982.907 .981.740 .982.880 .981 .850 .975.745 .981 .819 
02 .979.847 .962.762 .966.820 .960.781 .939.569 .948.644 .939.549 .903.229 .894.349 
03 .935.738 .904.532 .919.605 .909.525 .860.223 .851 .30.5 .853.213 .815.022 .821 .052 

Table 1 

Uniform Errors 
q=2 q=4 q=8 

B1 /31 - B2 ({31' ,82)' /31 81 - /32 ({31 ,(2 ), {31 ,61 - /32 (/31,62)' 
E' D E' D E' D E' D E* D E' D E* D E* D E* D 

n= 30 
(h .987.915 .983.906 .984.993 .978.899 .981 .87.5 .994.985 .97.5 .828 .971 .789 .980.970 
O2 .967.824 .967.814 .979.980 .960.755 .940.667 .953.946 .930.530 .911 .420 .911 .847 
(h .940.716 .941.6.55 .945.950 .902.525 .884.412 .909 .831 .843 .201 .812.088 .814 .Ei21 

11= .50 
(h .987 .915 .984.919 .982.995 .987.906 .986.894 .988.993 .977.859 .971 .827 .983 .98;) 
(Jz .968.863 .965 .851 .967.987 .961.793 .964.721 .967.964 .939.589 .915 .475 .938.884 
03 .934.774 .924.712 .931 .964 .916.605 .906.460 .921 .890 .863.298 .832.143 .845 .619 

n = 100 
01 .985.928 .984.901 .984.993 .988.891 .989.854 .988.990 .986.84B .983.768 .981 .967 
02 .970.851 .953.779 .968.975 .954.755 .949.613 .950.936 .940 .. 556 .906.330 .918.792 
03 .941.734 .914.567 .922.922 .911 .531 .869.307 .875.789 .851 .204 .811 .038 .824.392 

11 = 150 
01 .987.920 .985 .901 .988.994 .984.893 .986.860 .986.987 .980.840 .975.736 .982.964 
(J2 .962.840 .954.753 .965.970 .960.766 .943.556 .953.921 .928.553 .913 .232 .924.760 
(J3 .930.734 .905.527 .920.907 .903.530 .8.'59 .230 .86.5.729 .860.201 .800.021 .805.249 
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Double Exponential Errors 
q=2 q=4 q=8 

81 /31 - /32 (/31 ) (32)' /31 /31 - /32 (/31 ) (32)' /31 /31 - /32 (/31 ) (32)' 
E* D E* D E* D E* D E* D E' D E' D E* D E* D 

n= 30 
81 .981 .931 .982.892 .981.982 .982.883 .982.868 .976.976 .974.833 .972 .792 .977.959 
82 .966.833 .968.798 .969.970 .951.731 .943.644 .9.')6.932 .915.498 .900.383 .915 .806 
83 .928.706 .929.640 .939.934 .908.510 .883.372 .896.795 .825.213 .814.108 .824.474 

n= 50 
81 .984.927 .987.924 .979.993 .985.892 .990.883 .982.986 .985.839 .979 .812 .987.977 
82 .958.862 .966.833 .972 .980 .959.784 .954.693 .963 .951 .944.560 .924 .4.'58 .936.864 
83 .941.768 .929.701 .939.942 .912.594 .904.4,'52 .914.874 .852.287 .820.144 .848 .Ei81 

n = 100 
81 .984.932 .986.894 .983.989 .987.897 .987.865 .983.988 .986.847 .982.780 .982.967 
82 .967.838 .9.53.760 .967.974 .961.744 .94.5.597 .956.934 .940 .. 516 .905.279 .917.789 
83 .936.725 .911 .576 .931.923 .918.521 .871.284 .875.760 .851 .200 .837.050 .819.356 

n = 150 
81 .985.928 .983.914 .986.995 .988.906 .983.835 .988.987 .985.845 .974.746 .981 .972 
82 .969.858 .959.750 .957.968 .962.746 .944 .551 .946.907 .939.530 .900.244 .911 .732 
83 .931.712 .911 .520 .920.912 .907.508 .856.207 .875.697 .863.198 .821 .022 .824 .251 
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