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1. INTRODUCTION 

This paper proposes goodness-of-fit tests for a covariance stationary fractional autoregressive mov

ing average (F ARI AI A) process, whose parameters are to be estimated, against the alternative that 

the data is generated by a general covariance stationary linear model. The tests are based on contin

uous functionals of the integrated relative error between the periodogram and the spectral density 

function obtained under the null specification, having the following attributes. 1) They are consistent 

against any covariance stationary linear process. 2) They have power against contiguous alternatives 

converging to the null at rate n -1/2 and 3) although the alternative model is left unspecified, as in 

any goodness-of-fit test, the tests do not require the choice of any bandwidth parameter. 

The main motivation to look at a F ARI M A model, apparently originated in Adenstedt (1974), is 

due to their prominence in empirical studies, see e.g. Diebold and Rudebusch (1989), Porter-Hudak 

(1990), Sowell (1992) or Ray (1993) among others. This prominence is partly due to the work of Box 

and Jenkins (1976) who advocated and emphasized the use of ARM A or autoregressive integrated 

moving average ARI 111 A models and also to their role in the standard approach to cointegration 

analysis, wherein several related series may be thought to have unit roots. That is, one or more 

linear combinations follow an AR1Il A process. 

Goodness-of-fit tests are of long standing in the statistical literature. It goes back to the work of 

Kolmogorov (1933) for independent identically distributed (iid) data and extended to two sample 

problem, when the null is that the two populations come from the same distribution, by Smirnov 

(1939). In a time series framework, Grenander and Rosenblatt (1957) used Kolmogorov-Smirnov 

statistics to test for a specific short-range model, and latter extended by Ibragimov (1963) under the 

assumption of square integrable spectral density function, so allowing for the presence of long-range 

dependence. More recent work is Velilla (1994) and Anderson (1997) who considered tests for an 

autoregressive moving average ARMA (p,q) and autoregressive AR(p) processes respectively, (see 

also the review paper by Anderson (1993),) and Kokoszka and Mikosch (1997) who allowed for, 

possibly, infinite variance. 

However, as noted by Durbin (1973), when the null model depends on a set of unknown parameters, 

the tests are difficult to implement in practice as they are no longer based on functionals of the 

Brownian motion or Brownian bridge. To overcome this difficulty, Velilla (1994) proposed a pivotal 

test based on a smooth estimator of the spectral density function. In contrast, Anderson (1997) 

used the decomposition of a Gaussian process as an infinite weighted sum of independent normal 
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random variables, where the weights depend on the covariance structure of the process. But their 

approaches amount a degree of sensitivity, in the former to the choice of the bandwidth parameter 

to estimate the spectral density function, whereas in Anderson (1997) one needs to truncate the 

infinite series at some finite value, sa~· T. SO the resulting inferences and performance of the tests 

are subject to those choices. 

Vve propose a bootstrap test. The critical values are estimated by the conditional quantiles, given 

the sample, of a bootstrap statistic. Such a statistic is the bootstrap analog of the original one, 

computed from a naive residual bootstrap resample. This approach has the advantage compared 

to the aforementioned ones that no smoothing parameter, or number T, are required to be chosen, 

besides that it gives a more accurate approximation to the actual finite sample distribution of the 

tests. 

The reminder of the paper is as follows. In section 2, we describe the hypothesis testing and the 

tests. Section 3 discusses their asymptotic properties, showing that the tests do not have trivial 

power under contiguous alternatives converging to the null at the parametric rate n-1j2 . Because, 

under the null hypothesis, the limit distribution of the tests is difficult to tabulate, in Section 4 we 

propose to estimate their critical values by their bootstrap analogs based on a naive resample of the 

innovation sequence of the process. Section 5 presents the results of a small :Monte Carlo experiment 

which illustrates the good level accuracy of the bootstrap tests with fairly small samples. In Section 

6, we give the proofs of our results in Sections 3 and 4, which employ a Lemmata in Section 7. 

2. THE TEST 

Consider a covariance stationary linear process Xt which is observed at times t 

autocovariance function " and spectral density function, j, defined from 

,(j) = E (X)XO) 1: j (>.) eijAd>' j = 0,1,2, ... , 

satisfying 1: log (J (>.)) d>' > -00. 

It is well known that under (2), the process Xt admits a Wold decomposition 

00 

Xt = La (j) Ct-j, 

)=0 

00 

La2 (j) < 00, 

)=0 

where the innovations Ct are a white noise process with zero mean and variance a~. 
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We wish to test the null hypothesis Ho that Xt follows the F ARI M A(p, d, q) representation 

(4) 

where <I> and:::: are the aut.oregressiV(~ and moving average polynomials to be made more precise in 

Assumption A.l, against. the alternative H ln that :rt follows (3). When do > 0, we say that the 

process :l·t exhibits long-range dependence, for do = 0, the process corresponds to weakly or short

range dependence, whereas for do < 0, we have an example of a process Xt exhibiting the so-called 

negative or anti-persistent dependence. 

The covariance structure of the FARIMA process in (4) can be described from (1) in terms of 

its spectral density function 

A B _ a; 1 I:::: (eiA, 1/10) 12 
f ( , 0) - 27f 11 _ eiA I2do 1<1> (eiA,r/Jo)12' A E [0,7f], 

whereas that from (3) is f (A) = ~ lA (A)1 2 with A (A) = 'L,j:o ex (j) eijA
. Because the models given 

in (3) or (4) are perfectly described by their spectral density function, the hypothesis testing can be 

formulated as 

Ho I:/A E [0,7f] and for some Bo E e, f (A) = f (A; Bo) 

against (5) 

HI :::JH (A) C [0,7f] such that for all BEe, f (A) -::j:. f (A; B) 

where H CA), which may depend on B, has Lebesgue measure greater than zero. 

The motivation to leave the alternative model (3) unspecified comes from the observation that 

the F ARI Af A model is only one example of the many possible parameterizations of a covariance 

stationary linear process, even, in terms of a finite number of parameters. An example is Bloomfield's 

(1973) (fractional integrated) exponential model, see also Robinson (1994), and which has recently 

been employed by Gil-Alana and Robinson (1996) and Lobato and Robinson (1998). An earlier 

example is the fractional Gaussian noise model introduced by Mandelbrot and Van Ness (1968). 

One feature of these models is that neither possesses a finite F ARI M A representation. 

We now describe the test. Introduce the periodogram of Xt 
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and the weighted empirical process in ]]]) [0, 1], 

[n/21 I 
- 1 " (n,j) 5n (19,80 ) = ~ ~ I(Aj:::; 7f19) fj (8

0
) -1 where 19 E [0,1] , (6) 

where I (B) denotes the indicator function of the event B, Aj = 27fj In, j = 1, ... , [n/2] and where, 

henceforth, for a generic function h (A), hj = h (Aj). The rational to look at statistics like (6) 

comes from the fact that, under Ho and assumptions A.l and A.2 below, by Robinson (1995a) and a 

straightforward extension to the region [0,7f], E ((27f) In (A)) ~ f (>., ( 0 ), so that E (8n (19, ( 0 )) ~ 0 

for all 19 E [0,1]' whereas under HI it would develop a mean different than zero. More specifically, 

one has that, denoting the periodogram of Et by InE (A) = (27fn) IL~=1 Ete-it"12, 

[,,19/21 

8" (19, ( 0) =.!. L (27f~Ej - 1) + Op (n- 1
/

2
) 

n j=1 (JE 

whose limiting behaviour is well known, see for instance Brillinger (1981, Theorem 7.6.1.). 

As it is known, from related literatUre involving 8n (19, ( 0), see for instance Anderson (1993) for a 

later reference, the limiting covariance structure of 8" (19, ( 0 ) depends on the fourth cumulant K4 of 

the innovation process E:t. Because of that, following Anderson's (1993), see also Kluppelberg and 

Mikosch (1996), to avoid this dependency on K4, we use the transformation 

As in empirical examples, 80 is unlikely to be known. Thus, to make (6) feasible, we need to 

replace 80 by a suitable estimate, say the Whittle estimator e" defined in (11), obtaining 

(7) 

Thus, tests for Ho in (5) can be implemented from some functional of the statistic n 1/
2 5" (rJ, en). 

That is, denote by <p (-) a continuous functional, <p : ~ --+ ~+, of n 1/2 5" (19, en). The test is based 

on 

~ (1/2 ( ~)) 17n = <p n 5n rJ,8 n . (8) 

Two common functionals are Barlett's Tp-test 

Bn= sup In1
/
25n (i,en)1 

{j:j=1 ..... n} n 
(9) 

which is of the Kolmogorov-Smirnov type and the normalized Cnlmer-Van Mises w-statistic 

(10) 
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which are the Riemann's discrete approximation to sUPt9E[O,l) In1/2Sn (1'J, en) I and n 101 
S;, (1'J, en) d1'J. 

3. ASYMPTOTIC PROPERTIES OF THE TESTS 

Introduce the following assumptions. 

A.I: eo = (<p~, 1J)~. do, 1T6c)' is an interior point of the compact parameter space 0 = 0 1 X O2 x 0 3 C 

lRp+q x (-1/2,1/2) xlR+. In addition, the polynomials <I> and:::: are of order p and q, respectively 

with no common roots and lying outside the unit circle for all (q/, 1//)' E 0 1 . 

A.2: In (4), the innovation sequence {c:d is a stochastic process with finite eight moments, where 

E (Et I Ft-d = 0, E (c:; I Ft-I) = E (c:n = a6E a.s., E (c:f 1Ft-I) = J.le < 00 a.s., £ = 3, ... ,8, 

where Ft is the a-algebra of events generated by c:s , s :::; t, and the joint fourth cumulant of 

tl = t2 = t3 = t4, 

otherwise. 

As was mentioned in the previous section, in practice eo is unknown, and thus to make n1/2Sn (1'J; eo) 

feasible, eo has to be replaced by a suitable estimator, say the Whittle estimator, defined as 

_ [11/2) I. 2 [n/2) 

P" ~ rug PE~i~e, f.; lA, '(PlI2 ""cl;;~ ~ ;; f.; lA, (¥n) 12 , (ll) 

where lA (A, .8)1 2 
= 27r f (A, e) la~. Observe that our definition of the Whittle estimate comes from 

the parameterization of the F ARI AI A model. Indeed, under the specification (4), the parameters 

a; and (3 = (cjJ', 1//, d)' are functional unrelated and I~7T log lA (A, (3) 12 dA = 0 for all (3 E 0 1 X 02. 

So a6E has the interpretation of being the one-step-prediction error. 

The next theorem establishes the behaviour of the process of n 1/2 Sn ( 1'J, en) . 

Theorem 1 Let en be given by (11). Assuming A.1 and A.2, under Ho, 

n 1
/

2 Sn (1'J,en ) converges weakly to S= (1'J) in lIJ) [0, 1J endowed with the Skorohod metric, 

where S= is a Gaussian process centered at zero and covariance structure 

1 . 1, -1 
K(1'J 1 ,1'J 2 ) =2 (mm(1'J},1'J2)-1'Jl1'J2)-27r9(1'Jl) A 9 (1'J 2 ) , (12) 

with 9 (1'J) = I; (I (A:::; 7r1'J) -1'J) cjJ (A; eo) dA, cjJ (A, e) = 1-1 (A, e)] (A, e), and] (A, e) = af (A, e) lae. 
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From Theorem 1, the asymptotic covariance structure K (13 1 , i( 2 ) has two components, the second, 

that is, (27r) -1 9 (13d A -19 (192 ), due to the estimation of eo as in Durbin (1973) or Anderson (1997), 

whereas the first term of (12) is twice that of a Brownian bridge. :-Ioreover, it is expected that tests 

based on 171' given in (8) should be able to detect contiguous alternatives which converge to the null 

at the rate n -1/2. To this end, consider the contiguous alternatives, 

( 
9 (A)) 

Hl1' : f (A) = f (A, e) 1 + n 1/ 2 for some e E e and for all A E [-7r,7rJ , 

where 9 (A) is some symmetric (around the origin), positive and non-constant integrable function in 

[-7r,7rJ. This type of alternatives has also been considered, in related specification testing problems 

by Stute (1997) or Andrews (1997), among others. 

Introduce 

R (iJ) = 11< [I (A ~ 7riJ) - iJJ 9 (A) dA - 9 (iJ)' A-I 11< cP ().., e) 9 (A) d).., 

which is a non-zero function. Notice that if 9 (A) were constant, then R (iJ) = ° as is not surprising 

since in that case, H11' will be included in Ho. Thus, we have the following Corollary, which shows the 

limiting behaviour of any continuous functional 'P (-) of n1 / 2Sn (iJ; On) under H 1n , and by extension 

under Ho. 

Corollary 1 Let 'P (.) be a continuous mapping in R+ and let en be given in (11). If Al and A2 

hold, under H1n , 

TJn= 'P (n1 /2 5n (iJ;On)) ~ T]'oo= 'P (500 (iJ) +R (iJ)) , 

where " ~" denotes convergence in distrib'ution. 

Observe that under Ho, g(A) = 0, so TJn = 'P(n 1
/

2 Sn(iJ;On)) ~ T]oo = 'P(Soo(iJ)). Also 

Corollary 1 indicates that for the functionals 'P (.) defined in (9) and/or (10), under HIn , 

Bn ~ sup ISoo (iJ) + R(iJ)1 and Cn ~ t (Soo (iJ) + R(iJ))2 diJ . 
..9E[O,lj lo 

As was mentioned in the introduction, as the structure of K (iJ 1 , i(2 ) in (12) is complicated, tests 

based on T]oo = 'P (Soo (iJ)) seems difficult to implement in practice. So, in the next section we 

describe and justify the bootstrap approach to TJn. 

4. BOOTSTRAP TESTS 

Since Efron's (1979) seminal paper, bootstrap methods have proved to be a very useful tool in 

statistics, see for instance the monographs by Hall (1992) and Shao and Th (1995). Once a continuous 
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functional 'P : IR -> IR+ has been designed to test for Ho, we propose to estimate the distribution of 

1)n = 'P(nl/2S" (19;811 )) by its bootstrap analog, 17:', based on a resample ~*= (xi,x2, ... ,X;,)' of 

~= (Xl,:1:2, ... ,:1:,,)'. The resampling method must be such that the conditional distribution, given 

~, of the boots trap statistic 1);, consistently estimates the distribution of "700 under Ho. That is, 

1):' ->d" 1700 in probability under Ho, where "->d"" denotes 

lim Pr [1)~ ::; zl x] .!!.., G (z) , 
11_00 ,..."", 

at each continuity point z of G(z) = Pr (1700 ::; z) as defined in Gine and Zinn (1990). Moreover, 

under contiguous alternatives Hl'l> 1);, must also converge, in bootstrap distribution to "700 . 

We now describe the bootstrap. 

STEP 1 Let nn (eo) = ['1 (Ii - jl , eO)]i.j=l ..... n be the n x n autocovariance matrix of ~ and Ln (eo) 

its Cholewsky's decomposition. That is, nn (eo) = Ln (eo)' Ln (e) where Ln (eo) is a triangular 

matrix, so the vector of observations x can be represented as 

where ~= (El, E2, ... , En)' is the vector of innovations. 

STEP 2 Let e" be the vVhittle given in (11) and compute the residuals as ~= Ln (8n) -11 ~. 

STEP 3 Let;C= (z~, Z;, ... , Z~)' be a random sample with replacement from the standardized res id-

uals 
~ -1 n ~ " ( n)2 __ Et - n 2:t=l Et -2 1 '" ~ 1 "'~ 

Et- _ ,aEn=-~ Et--~Et , 
(J E" n t=l n t=l 

and obtain the bootstrap sample 

STEP 4 Denote the periodogram of x* as 

J* . = _1 I~ x*e-it>.j 12 
n.1 271"n ~ t , 

t=l 

(13) 

and obtain the bootstrap analog of the Whittle estimate (11), that is 

~* [n/2J J* . 2 [n/2J J* . 
f3 . '" n.1 d ~2* '" n.1 

n = arg mm ~ f (e) an a En = - ~ f (e)· i3E8, x8 2 . J. n. J. 
1=1 1=1 

(14) 
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STEP 5 Let e~ = (~~', 8;*)' be the boots trap analogs of en obtained with the resample :*, and 

compute 

with 

STEP 6 Finally, obtain the bootstrap test as 17:1 = 'P ( n 1/2 s~ (19; e:) ). 

Remark 1 Since E [~I:] = 0 and E [f:~I:] = I'l) E [:*1:] = 0, E h*:*'I:] = nn (en) 
and the spectral density function of xi, conditional on :' is f (A, en) . 

The following theorem provides the consistency of the bootstrap test. 

Theorem 2 Let 'P (-) be a continuous mapping in R+, and let en be given by (11). If A 1 and A2 

hold, under Ho or HIn , 

Theorem 2 justifies the consistency of the bootstrap test which employs the critical values com

puted from the conditional distribution of the bootstrap statistic, c~c:> say, where Pr [17~ ~ c~c:> I :] = 

a. As the bootstrap critical values are computationally difficult to obtain, they are approximated, as 

accurately as desired, by Monte Carlo simulation. That is, let {:*(l), :*(2), ... , :*(B)} be B resam

pIes as generated in STEP 3 and be {l7;Y) , 17;,(2), .... l7;l(B)} their corresponding bootstrap statistics 

as given in STEPS 5 and 6. Then, c;w. is approximat.ed by C;l~' defined from 

B 

~ "'"' 1 (~*(j) *B) -B ~ 17n 2: cnc:> - a. 
j=l 

5. MONTE CARLO EXPERIMENTS 

In all the experiments, we have generated 5000 Monte Carlo samples and we have used 2000 

bootstrap resamples. We have considered sample sizes of n = 25, 50, 100 and 150. 

To compare the performance of the bootstrap test with respect to the asymptotic one, when this is 

feasible, we have performed the test when the null hypothesis is that Xt follows a white noise process. 

To this end, the observations Xt were generated as iid N (0,1) and Uniform(-0.5, 0.5). The empir

ical level of the Monte Carlo experiments is reported in Table 1. The results of Table 1 illustrates 
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that the bootstrap tests exhibit an excellent accuracy level for both distributions considered for Xt. 

even for sample sizes as small as n = 25. In contrast, the performance of the tests based on their 

limit distribution is worst than that of the bootstrap the smaller the sample size is. In addition, we 

observe that the Cramer-von IVIises, en, works better than the Kolmogorov-Smirnov test, Bn, a well 

known fact (see e.g. D'Agostino and Stephens, 1986). This illustrates that even in situations where 

the limit distribution of the statistic can be approximated, as in Anderson (1997), its performance 

would not be better than that of the bootstrap test by means of a better level accuracy. 

Table 2 studies the performance of the level of the bootstrap test when the null hypothesis is an 

AR (1) process with parameter 0.5 and the innovations et were iid N (0,1) or Uniform( -0.5,0.5). 

In both situations, the bootstrap tests perform very well, even for sample sizes of n = 25. 

In Table 3, we examined the performance of the test under Ho when the model follows a 

F ARI}.If A (0, d, 0) process with d = 0.2,0.3, and 0.4, and where the innovations et are iid N (0, 1). 

As could be expected, larger sample sizes, at least of n = 100, are needed to obtain a reasonable 

level accuracy than when testing for a short-range specification, across the spectrum of values of d. 

Tables 4 and 5 illustrates the power of the tests. In Table 4, we describe the empirical power when 

testing that the model is an AR (1) process, but the true model is a F ARI M A (0, d, 0) process with 

parameter d = 0.2,0.3, or 0.4, whereas in Table 5, we report the power of the tests when testing 

that the data follows a F ARI M A (0, d, 0) process but the true model is an AR (1) with parameter 

0.5. In both cases, the innovations et were generated as iid N (0,1). Not surprisingly, the power 

increases with the sample size. Of course, this is what one can expect, as, in finite samples, the 

power depends very much on how far away the true model is from the hypothetical one. This fact 

is illustrated when testing an AR (1) model against the F ARI M A process. There, the greater the 

parameter d is, and thus the far away the model is from the AR (1) structure, the smaller the sample 

sizes are required to achieve a reasonable power behaviour. 
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6. PROOFS 

In this and next sections, for lIotational simplicity. we write [n/2] as n/2. 

Proof of Theorem 1 

Write .:J ({), j) = I (j :::; [n{) /2]) - {). By definition 

where 
n/2 

P',({)) = ~L.:J({),j)Inj [f;1 (en) -fj-
1(eo)]. 

J=1 

(15) 

Since see, for instance Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and Surgailis (1990), Hosoya 

(1997) or Velasco and Robinson (1999) who allow also d < 0, under A.l and A.2, 

(16) 

where 
1 [n/2] -1 

bn =:;:;: L cjJj (eo) [fj (eo) In,j -1] and A = ltr cjJ(A,eO) cjJ(A, eo)' dA, 
j=1 

uniformly in {) E [0,1]. By standard linearization of f;1 (en) - f;1 (eo) 

n/2 
~ _ 1 ~ . ,Inj (~ ) ( ( -1/2)) Pn({))--:;:;:~.:J({)'J)cjJj(eo) fj(e

o
) en-eo 1+0p n . 

Because by A.l and A.2, cjJ (A, eo) is continuously differentiable outside any neighborhood containing 

the origin, for any {; > 0 and uniformly in {) E [0,1]' 

and 
1 on/2 1 Otr . 

:;:;: L.:J({),j)cjJj(eo)- (27r) 1 (I(A:::;7r{))-{))cjJ(A;eo)dA=O(n-110gn), 
J=1 

by Brillinger (1981, p.15) and Lemma 2 of Robinson (1995b), respectively. 

Thus uniformly in {) E [0,1]' 
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where 
1 11/2 

Rn CO) = n 1/ 2 f;~Jj Cd) (f/(~o) -1), 
with~J.i (d) = ..J Cd, j) - Q (if) A -1 0J (eo), and 

n/2 

( ) _ 1 '" (_ I (Inj ) (~ ) Hn {) - - n 1/2 f;;{..J {),J) c/l j (eo) fJ (eo) - 1 en - eo . 

Now the proof follows by Propositions 1 to 3 below. Rn ({)) is 

n/2 n/2 

1 '" () (Inj (27r) Iej ) 1 '" ( ((27r)Iej ) 1 2 172~1jJj {) f-(e)- a2 +172~1jJj {)) 2 -1 = Rn({))+Rn({)), 
n j=1 J ° Oe n j=1 a Oe 

where sUP-.9E(0,1) IR;, ({))I = op (1) by Proposition 1 and R;, ({)) we~ly Boo ({)) in lIJ) [0, 1] by Proposi

tions 2 and 3. Finally, sUP-.9E(0,1) IHn ({))I = op (1) from Propositions 1 to 3 and en - eo = op (1). 0 

Henceforth, to simplify the notation, we assume, without loss of generality, that aBe = 1. 

Proposition 1 Assuming Ai and A2. sUP-.9E(O,1) IR;' (tJ)1 = op (1). 

Proof. By definition of R~l (tJ) and the triangle inequality, 

n/2 

sup ;/2 LI(j::; [n{)/2]) (fI(ne
j

) - (27r) Ie j ) 
-.9E(0,1) n j=1 j 0 

(17) 

n~ I 
+ sup ;/2 L ({) + Q ({)) A-1

c/lj (eo)) (f (ne
j 

) - (27r) Iej ) 
-.9E(0,1) n j=1 j ° 

We only prove that the first term on the right vanishes asymptotically. The proof for the second 

term is easier, as sUP-.9E(0,1) IG ({))I < C, where henceforth C is a generic finite positive constant. 

Let Uj = Aj1wj, Vj = We,j and Aj = A (>"j;/3o) where 

n n 

Wj = (27rn)-1/2 L Xte-itAj and We,j = (27rn) -1/2 L Ete-itAj. 
t=1 t=1 

The first term of (17) is thus bounded by 

1 [n-.9/2J 2 1 [n-.9/2J 
sup IJ2 L IUj - vjl + 2 sup ----vz L Vj (Uj - Vj) , 

-.9E(O,l) n j=1 -.9E(0,1) n j=1 
(18) 

where c denote the conjugate of the complex number c. 
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The first term of (18) is Gp (1) since its expectation is 

because E IVj 12 = 1 and by Theorems 1 and 2 of Robinson (1995a). 

Next, to show that the second term of (18) is Gp (1), it suffices to show that the finite dimensional 

distributions of the term inside the absolute value converge to zero and tightness. First, 

2 

Vj (Uj - Vj) = a1 + a2 + b1 + b2, 
j=[m9,/2J+1 

where 

[n191/2J { 2 
a1 ~ L EluJI2ElvJI2+IE(VjuJ)12+IE(vJuJ)12+2(EIVjI2) +(EvJ)2 

and 

J=[n191/2J+1 

-2E Ivjl2 E (VjUj) -JEv;J E (UjVj) - 2E Ivi E (UjVj) - E (UjVj) E (vD}) 

1 

n 
[n19 1 /2] <j<k::;[n192 /2J 

+ [E (VjUj) - 1] + [E (vkud - 1] + E (VjUk) E (UjVk) + E (VjVk) E (VjVk) 

+ (E IVkl2 - 1) + E (vjvd E (VjVk) - E (VjVk) E (ujvd - [E (VjUj) - 1] 

-E(VjVk)E(ujVk) - E(VjUk)E(vjUk) - [E(VkUk) -1]- E(VjUk)E(VkVj)}, 

By routine extension of the proof of the term (4.8) in Robinson (1995b) to [O,7rJ, it follows that 

1 [n19 2 /2J 

a1 + a2 = - L lo~j ~ Cn-1 (log2 (m92) -log2 (m9d) = 0 (1) 
n J 

j=[n19 1 /2J+1 
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and 

bl + b2 :::; C (n- I log2 nd2 + n-1/ 2 (191/2 _19~/2) logn192 + n-1/2 (19y2 -19~/2f) . 

So, the finite dimensional distributions of the second term of (18) converge to zero in probability. 

To complete the proof we need to show tightness. By Billingsley's (1968) Theorem 15.6 it suffices 

to show that 
4 

E n- 1/ 2 (19) 
j=[1ll9 , /2)+1 

where 8 > 0 and F (19) is a nondecreasing function. The left side of (19) is bounded by 

where Mr denotes the rth cumulant of 2:;~~~~1/2)+l Vj (Uj - Vj). From the proof of the first term of 

(18), n-2 Mi :::; C (F (19 2 ) - F (19d) 1+6, so it remains to examine the behaviour of n-2 1M4 1 which is 

(20) 

where Wj = (Uj - Vj). By Theorem 2.3.2 of Brillinger (1981) and denoting X j1 = Vj and X j2 = Wj, 

where the summation is over all indecomposable partitions v = VI U ... U vp. A typical component 

in cum (XjC;j£ E VI) has kl elements Vj and k2 elements Wj, so applying formulae of 

Brillinger [ (1981), (2.6.3), page 26 and (2.lO.3), page 39], we deduce after straightforward calcula

tions that CU1n (X jC ; j£ E vd is 

where 

f.-Lkl +k2 ( (0 (A' + ... + A,k, -" + v' :,',:j~:') 0 (-A') ... a (_Ak' -,) 
n(k l +k2)/2 J[_rr,rr)·,+A>2- 1 

D (Ajl - [AI + ... + A(k l -1) + vI + ... + V k2 ]) D (Ah + AI) 

x ... D (Aj.> , + A(k l -l)) D (v l 
- Ae l ) D (Vk2 - Aek2) , 

14 



D (A) = I:;'=1 eitA is the Dirichlet kernel and, say, ii (-VI) = a:~Ia: (_VI) - 1. But by a routine 

extension of Lemma 3 of Robinson (1995b) and observing that in each partitioned v, each subindex 

j;, i = 1. ... ,4, appears only once 

( 

1,,02121 1) 4 4 
(20) :::; Cn- 2 L ~ :::; C (19~/2 - .t9~/2) . 

j=[n8,/21+1 J 

Then conclude since F (19) = 19 1
/
2 is a nondecreasing continuous function on 19 E [0,1]. 0 

Define g (19 1,192) = J01/21jJ (27rU, 191) 1jJ (27ru, 192) du- 2<I> (191) <I> (192), where <I> (19) = J; /2 1jJ (27ru, 19) du 

and write 
n/2 

Cs (19) = 2n-3
/

2 L 1jJj (19) cos (sAj). (21) 
j=l 

Proposition 2 Assuming A.l and A.2, the finite dimensional distributions of R;' (19) converge to 

those of a Gaussian process with covariance structure g (19 1 ,19 2 ) + (K4 + 2) <P (19 1) <P ('19 2)' 

Proof. Fix '19 1, ... , '19 q and constants aI, ... , aq . Observing that 

(22) 

by Cramer-Wold device, it suffices to investigate the limiting distribution of 

(23) 

where 

z, ~" ~" Ct,a".-. (rl,l) . 
suppressing any reference to n in Zt and Ct-s ('I9p), p = 1, ... , q. 

The first and second terms on the right of (23) are uncorrelated since, by A.2, for all t < s, 

E (EtEs (E; - 1)) = O. Next, by standard CLT for martingale differences, the first term on the right 

of (23) converges in distribution to a normal random variable with variance 

(K4 + 2) (I:~=1 ap<I> ('I9 p)) 2. So, it remains to examine the behaviour of the second term on the right 

of (23). Because Zt forms a triangular array of a martingale difference sequence it suffices, see for 

instance Hall and Heyde (1980), to check 

n q q 

(a) L E (zZIFt - 1 )- L Laplg('I9pjl'l9p2)ap2~0 
t=2 PI =1 P2=1 

n 

(b) LE (z;I (IZtl > 8)) !:., 0 for all 8 > O. 
t=2 

15 



We begin with (a), whose left side is 

t, ~ c; (t. a"CH (;J,) r -P~J, a,,9 (;Jp,,;J,,) ap, (24) 

+ t, ,~~" '" c" { (t. ap"_" ("p)) (t. ap"_., ("p)) } . (25) 

First we examine (24), which is 

By Lemma 1 the second term converges to zero whereas the first term has zero mean and variance 

by A.2. Next, for {J E [0,1]' 

(26) 

and by summation by parts, it is also 0 (17,/8), because by Zygmund (1977), 

(27) 

if 1:::; 8:::; 17,/2, whereas for [17,/2]:::; 8:::; n-1, it follows because cos (8Ae) = (-1)ecos((8 - [n/2]) Ae) 

and 1/' (2/Tu. 11) is an integrable function in u for all 11. So, we can restrict ourselves to the sum on 

8:S [n/2]. But, 

(28) 

because 2::=1 Cs ({Jp) = 2::=1 Cn - s ({Jp), and where for the first and second terms on the right of 

(28) we have used (26) and (27) respectively and the definition of Cs ({Jp). So, 

16 
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Then, by Markov's inequality we conclude that (24) = op (1), choosing m = n~ with 1/2 > ~. 

To complete the proof of part (a), we need to examine (25), whose expectation is zero and its 

second moment has as typical element 

n min(t-l,u-l) 

L L Ct-5 I ('!9 pl ) C"-51 ('!9 p") Ct-52 ('!9p,J CU - 52 ('!9p, ) 

t,u=2 SI,82=1 

n t-l 

L L Ct- 51 (iJ pl ) Ct- 51 (!Jp") Ct-52 (iJ p,) Ct-52 ('!9p, ) 

t=2 5, #5"=1 
n t-l u-l 

+ L L L Ct- 51 ('!9p,) C"-5, ('!9p,) Ct-52 ('!9 pJ CU- S2 ('!9pJ. 
t=3 u=2 s, #s2=1 

The first term on the right is 0 (1) proceeding as in the proof of (28), and by Schwarz inequality, the 

second term is bounded by 

~ ~ (~Ct-s ('!9 p1 ) Ct-s ('!9 p,,) ~ CU - 5 ('!9 p2 ) Cu- s ('!9 P4 )) 

< (tCd'!9P1 )Cd'!9P3 )) (~~S=~+l Cs ('!9p2 ) Cs ('!9p.)). (29) 

Proceeding as with (28), the second bracketed term on the right of (29) is 

using (26) and (27) for the first and second terms on the right of the above inequality, respectively. 

Also, by (26) and (27), the first bracketed term on the right of (29) is 0 (m- 1 + mn-2 ), so 

(29) = 0 (~+ 10gn) = 0(1), 
m3 m 

by choosing m = n~ with ~ > 2/3. (Observe that this choice of m is also valid for (28).) Then by 

Markov's inequality, (25) = op (1), which concludes the proof of part (a). 

To finish the proof, we need to prove part (b). To that end, it suffices to show the sufficient 

condition E~=2 E (zt) ~ 0, whose proof is similar to that in Robinson (1995b), so is omitted. 0 

Proposition 3 Assuming A.1 and A.2, the process R; (19) equipped with the Skorohod's metric in 

IIJ) [ 0, 1] is tight. 

Proof. The first term on the right of (22) is tight since In- 1 L~~; ('ljJj ('!9d - 'ljJj (192 )) 1 S 1191 - 1921< 

for ( > 1/2 by the definition of 'IjJ (>.., {}) and E (n -1 /2 E~=2 (c~ - 1)) 2 < C by A.2. So, it suffices to 

17 



examine the tightness condition for the second term of (22). To that end, write 

n t-l 

E,J!9) = 2:::>t L EsCt-s C!9) . 
t=2 s=1 

First, by definition of 1/Jj (19), En (19) is a process which belongs to lID [0, 1], so by Billingsley's (1968) 

Theorem 15.6, it suffices to show the moment condition 

for some 8 > 0 and where F (19) is a nondecreasing function on 19 E [0,1]. 

Writing Ct = Ct (192 ) - Ct (19r), the left side of the last display inequality is 

By A.2, the above expectation is zero if t3 < t4, so it is 

(31) 

(32) 

Since 84 is greater than t2 and so is than 81,82,83 and t 1, by A.2, (31) = O. 

Because 83 > t2 and by A.2, (32) is 

which is zero unless tl = t2, in which case, it becomes 

(33) 
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because the quantities Cf-s are nonnegative and by Schwarz's inequality. 

Next (30), which is zero unless tl = t2, and thus it is 

The first term of (34) is 

because Cf-s ::; n-1lt - 81-
2 

by (27). The second term of (34) is bounded by (L~2 (L~:i Cf-s)) 2 
since Cf-s ~ O. Finally, the third term of (34), by the Schwarz inequality, is bounded by 

Thus (30) + (32) is bounded by 

( 

n (t-l~ ))2 E(Et) n (t-l~ ) 
4 L LCt-s +-L LCt-s , 

t=2 s=1 n t=2 s=1 

which. proceeding as in Lemma 1, is bounded by 

( 

1/2 ( 1/2 ) 2) 2 
4 la ('lj; (27rU, 192 ) -11' (27rU, 19d)2 du - 2 la ('lj; (27rU, 192 ) - 'lj; (27ru, 19d) du 

+ E ~t) ([12 (,p (2.", ~2) _ " (2.", ~,))2 du _ 2 ([12 (,p (2.", ~2) _ ,p (2 .. , ~,») dU) 2) 
< D(192 -19 1)2( 

from the definition of 'lj; (A, 19) and squared integrability. This concludes the proof of the proposition.O 

Proof of Corollary 1 

Proceeding as in the proof of Theorem 1, under H 1n , 

1 n/2 (I.) 1 n/2 

;:;: ~ J (19,j) j~ - 1 + n 3/ 2 ~ J (19,j) gj 

n/2 I. ~ 1 n/2 (I.) 
-~LJ(19,j)<Pj(80) f.(n~o) (8n -80) + n3/2~J(19,j)gj 7- 1 

J=1 J J=1 J 
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1 n/2 (I.) 1 n/2 

~ j; J (19,j) j~ - 1 + n 3/ 2 j; J (19,j) gj 

n/2 

-~ j;J (8,j) 1>j (80 ) (1 + 1)/2 gj ) (en - 80) + Gp (n-l/2). 

Thus from the proof of Theorem 1, the right side is 

n;/2 ~ J (19,j) (lfnj 
- 1) + r (I (A::; r(19) -19) 9 (A) dA 

)=1 ) lo 
-9 (19)' n 1

/
2 (en - 80 ) + Gp (1). 

1/2 (~ ) d 1 1T But, under HIll, n 8n - 80 ---> N (A- 10 1> (A) 9 (A) dA; (4rr) A-I). From here, the conclusion 

of the Corollary is standard. 0 

Proof of Theorem 2 

The technique of proof uses arguments in Stute et al. (1998) and those of Theorem 1, but instead 

of applying Propositions 1 to 3, we apply Propositions 4 to 7 below. First, by Lemma 5, and the 

continuity of 1> (A, 8) in 8, 

n/2 

~ _1
1 ""' ( -1 (~) * ) = 8n - (2rr) A ~ ~ fj 8n Inj - 1 (1 + Gp' (1)) 

j=1 

(35) 

where for the second equality, we have used the consistency of 8n and the definition of A. Then, 

proceeding as in the proof of Theorem 1, we have that 

n/2 [* 
1/2 * ( ~*) _ 1/2 * ( ~) 1 ""' . (~)' nj (""* ~) n Sn 19,8n -n Sn 19,8n -"172~J(19,J)1>j 8n (~) 8n -8n (l+Gp .(l)). 

n j=1 /j 8n 

Proceeding as in the proof of Theorem 1 and using that n-1 2:7~~ J (19,j) 1>j (en) ~ (2rr)-1 9 (19), 

we obtain 

n 1
/

2 s~ (19, e:) = R~ (19) + H~ (19) + Gp' (1) 

where 

20 



Now the proof follows by Propositions cl to 7. First, by Propositions 4 to 7 and Lemma 5, 

where I;.,j = (27fn)-l/L~=l E;e-it>'j /2. Proposition 4 shows that sUPt9E(O,l) /R;,* Ct9)/ = op. (1). 

Proposition 5 shows that R;,* has a covariance structure, conditional on ::" that converges in prob

ability to K Ct9 l , 79 2). Proposition 6 shows that the finite dimensional limiting distribution of R;* is 

Gaussian centered at zero. Finally, Proposition 7 shows tightness of R~2. Thus, combining Propo

sitions 5, 6 and 7, R~* W~Y 500 in IlJ) [0,1] in probability, as defined by Gine and Zinn (1990). 

(Observe that the arguments used are valid under Ho and Hln.) Then, apply the continuous map-

ping theorem to conclude. o 

Proposition 4 Under the same conditions of Pmposition 1, sUPt9E[O,l] /R~* (79)1 = op. (1). 

Proof. The proof is omitted since it follows by identical steps as those in Proposition 1, but instead 

of Lemma 3 of Robinson (1995b) and Theorem 2 of Robinson (1995a), we use Lemmas 2 and 3 

respectively where necessary. o 

Proposition 5 Under the same conditions of Proposition 4, 

(36) 

(37) 
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By Lemma 4 and the properties of E;, the second term of (37) converges in probability to 

(h:4 + 2) <I> (v d <I> (1'7 2 ), because the empirical distribution function of Et converges uniformly to the 

distribution function of Et, implying that cum* (E;, E;, E;, En - K4 = op (1). Thus, we are left with 

the behaviour of the first term of (37). To this end, write 

n/2 

Cs (v; en) = 2n- 3
/

2 L 1/lj (v; en) cos (SAj) 

j=1 

and the triangular array of mart.ingale difference sequence, conditional on x, 

t-I 

z; (v) = E; LE;Ct-s (v;en ) , 

s=1 

where, for notational convenience, reference to nand e in z; (v) and to n in Ct-s (v; en) have been 

suppressed. Let Ft be the smallest sigma algebra generated by {E;, S ~ t }conditional on ;:" Since 

E* (En = 0 and E* (E;2) = 1, 

n t-I 

L: L E;2 {Ct-s (VI; en) Ct-s (1'72; en) } (38) 
t=25=1 

n t-I 

+ L L (E;jE: 2 Ct-S j (VI;en) Ct- 5 2 (1'72; en)) . 
t=2 1=5, =/S2 

The first term on the right of (38) is 

By Lemma 4, the second term converges in probability to 9 (VI, 1'72 ), whereas the first term, condi

tional on x, has mean zero and variance which converges in probability to 

b * (* * * *) p ecause cum Et, et, et ,et ----; K4· 

Next, by the continuously differentiability of 'ljJj (v; en) for all V E [0,1] and (en - Bo) = op (1), 

I ( ~) I -1/2 Cs v;Bn =n (l+op(l)), (39) 

and by summation by parts, it is also op (n/s), because by (en - Bo) = op (1) and Zygmund (1977), 

(40) 

22 



if 1 ~ s ~ 11/2, whereas for [11/2] ~ 8 ~ 11 - 1 because cos (SAe) = (_l)e cos ((S - [n/2]) Ae) and 

'LC' (27rlL,d) =1/-' (27r1L, d; eo) is an integrable function for all iJ E [0,1], So, we can restrict ourseh'es to 

the sum on s <:; [n/2]. But, 

n/2 

LCs (iJ 1 ;en) Cs (iJ2;Bn) 
s=l 

n/m n/2 

L Cs (iJ 1; en) Cs (iJ2; en) + L Cs (iJ 1; en) Cs (iJ2; en) 
s=l s=n/m+1 

O 
(

1 nIL _2) -- +- S 
P 11 rl1 n 

s=n/m+1 

( 41) 

because Cs (iJ; en) = Cn - s (iJ; en) and by (39) and (40). Thus, 

choosing m = n( with 1/2 > (. That finishes the proof that the first term on the right of (38) 

converges in probability to 9 (iJ1 , iJ2). 
To complete the proof of the proposition, we are left to prove that the second term on the right 

of (38) = 0p' (1). But, conditional on ~, its first moment is 0, and its second moment is 

n min(t-1,u-1) 

L L Ct-Sl (iJ; en) CU - Sl ({); en) Ct-s2 ({); en) CU - 82 ({); en) 
11 t-I 

L L cZ- Sl ({};Bn) cZ- S2 ({};en) 
t=2 s, ;<,s2=1 

n t-1 u-1 

+ L L L Ct-sl (iJ; en) CU-SI ({); en) Ct-s2 ({); en) CU - S2 ({); en) . 
t=3 u=2 s, ;<,s2=1 

The first term on the right of the above equation is op (1), by (41) while the second term on the 

right, by Schwarz inequality, is bounded by 

The second bracketed term on the right of (42) is 

n-2 

L S (n - S - 1) e; ({); en) 
n/2 

< 2n Lse; ({};Bn) 
8=1 s=l 
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n/m 

< 211 L sc; (19; en) + 211 L sc; (19; en) 
8=2 8=n/111+1 

O ( 
nn2 (.2!:.)) p 2 + log , 

11111. m 

because c; (19; en) = n- 1s-2 (1 + op (1)). Thus, together with (41), it implies that 

( 
n2 lOgn) (42)=Op -3+-- =op(l), 

111 111. 

by choosing m = n( with ( > 2/3. That concludes the proof of Proposition 5. o 
Introduce the following 

Definition 1 We say that Z;, = op. (1), ~f for all b > 0, Pr {IZ;'I > bl :} !:.., o. 

Proposition 6 Under the same conditions of Proposition 4, the finite dimensional distributions of 

R~* converge in bootstmp law to thos'e of a centered Gaussian process. 

Proof. Fix 19 1, ... ,19q and constants al, ... ,aq . By Cnlmer-Wold device, it suffices to examine the 

limit distribution of 

(43) 

where 

2 n/2 ( q ~ (t-l )) 
z; (~) =C:;n3/ 2 f; ~(ap1/Jj (19 p;Bn)) ~c::cos((t-s)Aj) 

with ~= (19 1 , ... , 19p )'. Proceeding as in the proof of Proposition 2, the terms on the right of (43) are 

uncorrelated. Moreover, it is straightforward to show that the second moment of the first term of 

(43) converges in probability to (11:4 + 2) (L:=1 ap q>(19p )f. 
So, we are left to examine the second term of (43). Proceeding as in the proof of Proposition 5, 

n/2 q q 

L E * (z;2 (~) 1Ft-I)!:'" L L ap1g (19p1 ,19p2 ) ap2 , 
j=1 PI =1 P2=1 

and so, it remains to verify the Lindeberg's condition, that is Vb > 0, 
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or the sufficient condition 2:::~1=2 E* [z;4 (~)] £. 0, whose proof is essentially that of Robinson 

(1995b) proceeding as in Proposition 2, and thus is omitted. 0 

Proposition 7 Under the same conditions of Proposition 4, conditional on '::' R;.* (19) is tight. 

Proof. Let £,~ (19; en) = n -1/2 2:::~1~; 'I/J j (19; en) 11 -1 2:::;'=2 E~ 2:::~:i E; cos (( t - s) >"j). Then 

(44) 

The first term on the right of (44) is tight since n-1/2 2:::~=1 (E;2 - 1) = Gp (1) and 

n/2 

~ L'l/Jj (19 1; en) -'l/Jj (192 ; en) £. V (191,192 ) :::; 1191 -1921(, 
j=1 

with ( > 1/2 as we now prove. The left side is bounded by 

1 n/2 n/2 

;;: L'l/Jj(191;80 ) -'l/Jj (19 2 ;80 ) + ~L(9(191) -9(192))' A-I (4)j (en) -4>j(80 )) , 

j=1 j=1 

where the first term is as in Proposition 3, bounded by C 1191 -192 1( and the second as en - 80 = 

Gp (n-l/2) and differentiability of 9 (19) also bounded by C 1191 -192 1(. To show tightness for the 

second term on the right of (44) it suffices to check the moment condition 

E* I£~ (192 ; en) - £~ (191; en) 14 < C [Fn (192 ; en) - Fn (191; en)] 1+6 

£. C(F(192 ;80 ) - F(191;80 ))1+6. 

Denoting et (en) = Ct (192 ; en) - Ct (19 1; en)' the left side of the above inequality is bounded by 

From here, the reminder of the proof is identical to that of Proposition 3 but instead of Lemma 1, 

we use by Lemma 3, that Ct (19; en) - Ct (19, 80 ) ~ 0 and E;, conditional on ~, is iid with mean 0 

and variance 1. 0 
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7. TECHNICAL LEMMAS 

Lemma 1 Let Cs (19) be as given in (21). Then. fOT all 19 1 and 19 2 E [0, 1]. 

n-1 n- t 

L L Cs (a 1) Cs (19 2) = 9 (19 1 ,19 2 ) (J + 0 (J)) . 
t=1 5=1 

Proof. The left side of (45) is 

n/2 n-1 n-t 

4n-3 L 1/Jj (19t) 1/Jj (192 ) L L cos2 (SAj) 
j=l t=l 8=1 

n/2 n/2 n-1 n-t 

+4n-3 L 1/Jjl (19 1 ) L 1/Jh (192 ) L L cos (SAjl) cos (SA12) 
jl =1 h=l.#h t=l 8=1 

n/2 n-1 n-t 

4n-3 L 1/Jj (19t) 1/Jj (192 ) L L cos2 (SAj) 
j=l 

n/2 

+2n-3 L 1/Jj, (19t) 

t=l 8=1 

n/2 n-1 n-t 

L 1/J12 (192) L L cos (s (Ajl + A12)) + cos (s (Aj, - AjJ). 
h=l.#h t=l 8=1 

Because, see for inst.ance Robinson (1995b), 

~~ 2(A)_(n-l)2 
~~cos s) - 4 
t=l 8=1 

n-1n-t 

L L cos (s (Ajl + AjJ) + cos (S (Ajl - AjJ) = -n, 
t=l 8=1 

the right side of (46) is 

from the definition of 1/Jj (19) and the continuity of 9 (19). 

Lemma 2 Let K (A) be the FejeT kernel. Assuming A1 and A2, as n ---7 00, 

( 45) 

(46) 

( 47) 

(48) 

o 

Proof. The proof is essentially the same as that of Lemma 3 of Robinson (1995b). For 8 E (2Aj, 7f), 

we split the integral up as follows: 

1-0 + 1-A
)/2 + 1Aj

/
2 

+ r2Aj 
+ ro 

+ (" 
-"/r -0 -Aj /2 1 Aj /2 l2Aj lo 

(49) 

26 



As in Robinson's (1995b) Lemma 3, conditional 011 the sample, the first integral is bounded by 

since J:.7r f (A; an) dA = IT;. Because, by A.l, f (A; B) is differentiable in B and (an - Ba) = 

Gp (n- 1/2), the right side of the above equation is Gp (i-I), also lI.rl has the same bound by 

the same arguments. Proceeding as in Robinson (1995b), conditional on :, the contribution due to 

second integral in (49) is bounded by 

But, again by Al and (an - Ba) = Gp (n-1/2), the above expression is Gp (i-I), and also If:>., I 
has the same bound. Finally, the contribution due to the third integral in (49) is, as in Lemma 3 of 

Robinson (1995b) and the previous arguments, Gp (i-I). That completes the proof. 0 

Lemma 3 Denote vl= I~.jl laj (an) I. Then, under A.l and A.2 and k < j, 

(a) E*(vtvj)-l 

( c) E* (vrv~) 

Op CO;j) , (b) E* (Vj*vn = Op CO;j) , 

oPCO;j) and (d) E*(Vj*V;)=opCO;j). 

Proof. The proofs follows by using the same steps as in Theorem 2 of Robinson and Lemma 3, and 

so is omitted. o 

Lemma 4 Let Cs (13;an ) = 2n- 3 /
2 L;l~; 'lj;j (13;an ) cos (SAj), where 'lj;j (13; B) = 'Ij; (j In, 13; B). Then, 

for all 13 1 and 13 2 E [0, 1], 

n-1 n-t 

L L Cs (13 1 ;a11 ) Cs (13 2 ;a11 ) -g(13 1 ,132 ) & O. 
t=l s=l 

Proof. As in Lemma 1, the first term on the left side of the last display expression is 

11/2 n-l11-t 

4n-3 L 'lj;j (131 ; 8n ) 'lj;j (132 ;811) L L cos2 (SAj) (50) 
j=1 t=1 8=1 

n/2 11/2 n-111-t 

+2n-3 L'Ij;jl (13 1;811) L 'lj;J2 (132 ;811) LLcos(S(AJl +AJ2))+COS(S(AJl -AJ2 ))· 
jl =1 j2=1.#12 t=1 s=1 
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By Lemma 1, d. (47) and (48), the left side of (50) is 

(51) 

Because 1/;j (19; e) is continuously differentiable in e, by the Mean Value Theorem, continuity of the 

derivative and that, by Giraitis and Surgailis (1990), (en - eo) .& 0, 

But, by Lemma 1, the last two terms on the left of the above equation converges to -g (19}, 192), 

which concludes the proof of the lemma. o 

Lemma 5 Let en be such that it converges almost surely to e 1 E e. Then 

Proof. Conditional on the sample :' x; is, by construction, a linear covariance stationary process 

with spectral density f (>.; en), where the innovations Ct are iid with mean 0 and variance 1. More

over, because f (>.; en) satisfies J:.7r log (! (>.; en)) d>' > -00, it implies that the sequence xi is 

ergodic, because it possesses a spectral distribution function which does not have atom at frequency 

O. Then, proceeding as in the proof of Lemma 1 of Hannan (1973), uniformly in e E e, 

1 n/2 1* . J7r f (>.;On) 
n L f ,(~) - _ f(>.;e) d>'.& O. 

)=1-n/2 J 7r 

Now proceed as in the proof of Theorem 1 of Hannan (1973) to conclude. o 
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TABLE 1 

Proportion of rejections, in 5000 ~vIonte Carlo experiments, under Ho when testing that the process 

is white noise. Observations generated according to a N (0,1) and a Uniform (-0.5,0.5). 

Bootstrap critical values are computed based on 2000 bootstrap samples. 

Asymptotic Bootstrap 

Normal Uniform Normal Uniform 

Cn Bn Cn Bn Cn Bn Cn Bn 

0: = 0.01 0.0064 0.0026 0.0094 0.0034 0.0102 0.0108 0.0126 0.0124 

11, = 25 0: = 0.05 0.0368 0.0148 0.0452 0.0172 0.0492 0.0478 0.0534 0.0510 

0: = 0.10 0.0852 0.0330 0.0894 0.0408 0.0960 0.0976 0.0982 0.0978 

0: = 0.01 0.0l72 0.0104 0.0l84 0.0092 0.0120 0.0120 0.Oll6 0.0110 

11, = 50 0: = 0.05 0.0594 0.0296 0.0662 0.0340 0.0476 0.0486 0.0514 0.0538 

0: = 0.10 0.ll40 0.0624 0.1210 0.0734 0.0976 0.0930 0.1010 0.0988 

0: = 0.01 0.Oll8 0.0064 0.0122 0.0070 0.0096 0.0100 0.0096 0.0098 

n = 100 0: = 0.05 0.0592 0.0346 0.0584 0.0366 0.0536 0.0540 0.0512 0.0542 

0: = 0.10 O.llOO 0.0732 0.ll52 0.0772 0.1010 0.10l0 0.1042 0.1042 

0: = 0.01 0.0120 0.0064 0.Oll2 0.0070 0.0108 0.0108 0.0098 0.0102 

11, = 150 0: = 0.05 0.0596 0.0370 0.0610 0.0380 0.0580 0.0518 0.0568 0.0516 

0: = 0.10 0.ll36 0.0796 0.ll48 0.0818 0.1076 0.1064 0.1066 0.ll02 
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TABLE 2 

Proportion of rejections, in 5000 l'donte Carlo experiments, under Ho when testing that the process 

is an AR (1). Observations generated as :Ct = 0.5:1.·t-1 + ~t, Ct ~ iid N (0,1) and 

Ct ~ iidUn'iforlH (-0.5,0.5). Bootstrap critical values are computed based on 2000 bootstrap 

samples. 

Normal Ct Uniform Ct 

0: = 0.01 0.0066 0.0070 0.0056 0.0064 

n = 25 0: = 0.05 0.0438 0.0396 0.0432 0.0408 

0:=0.10 0.0840 0.0832 0.0856 0.0844 

0: = 0.01 0.0092 0.0104 0.0098 0.0122 

n = 50 0: = 0.05 0.0518 0.0496 0.0498 0.0470 

0: = 0.10 0.0952 0.0964 0.0944 0.0964 

0: = 0.01 0.0088 0.0080 0.0086 0.0082 

n = 100 0: = 0.05 0.0458 0.0466 0.0490 0.0484 

0: = 0.10 0.0944 0.0954 0.0946 0.1000 

0: = 0.01 0.0116 0.0130 0.0108 0.0116 

n = 150 0: = 0.05 0.0482 0.0524 0.0516 0.0564 

0: = 0.10 0.0962 0.0996 0.1030 0.1016 
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TABLE 3 

Proportion of rejections, in 5000 Monte Carlo experiments, under Ho when testing that the process 

is a F ARI AI A (0, d, 0) process with d = 0.2,0.3,0.4 and the innovations Et are N (0,1). Bootstrap 

critical values are computed based on 2000 bootstrap samples. 

d= 0.2 d= 0.3 d = 0.4 

0: = 0.01 0.0028 0.0044 0.0034 0.0048 0.0064 0.0070 

n = 25 0: = 0.05 0.0290 0.0334 0.0332 0.0362 0.0460 0.0500 

0: = 0.10 0.0680 0.0758 0.0766 0.0810 0.0952 0.0968 

0: = 0.01 0.0046 0.0064 0.0056 0.0070 0.0068 0.0074 

n = 50 0: = 0.05 0.0340 0.0376 0.0366 0.0408 0.0448 0.0464 

0: = 0.10 0.0766 0.0808 0.0854 0.0864 0.0942 0.0958 

0: = 0.01 0.0080 0.0094 0.0100 0.0108 0.0088 0.0102 

n = 100 0: = 0.05 0.0408 0.0452 0.0448 0.0464 0.0438 0.0442 

0: = 0.10 0.0882 0.0892 0.0926 0.0938 0.0862 0.0912 

0: = 0.01 0.0072 0.0074 0.0082 0.0080 0.0054 0.0058 

n = 150 0: = 0.05 0.0480 0.0466 0.0498 0.0476 0.0414 0.0430 

0:=0.10 0.0952 0.0972 0.0968 0.1004 0.0890 0.0914 
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TABLE 4 

Proportion of rejections, in 5000 l'dOllte Carlo experiments under HI, when testing that the process 

is an AR (1) and the observations are generated according to a F ARI M A (0, d, 0) process with 

d = 0.2,0.3.0.4, and the innovations Et. are N (0,1). Bootstrap critical values are computed based 

on 2000 bootstrap samples. 

d = 0.2 d = 0.3 d = 0.4 

ell 

0: = 0.01 0.0334 0.0280 0.0538 0.0442 0.0514 0.0398 

n = 25 0: = 0.05 0.1112 0.0990 0.1634 0.1444 0.1684 0.1404 

0: = 0.10 0.1786 0.1714 0.2454 0.2264 0.2614 0.2292 

0: = 0.01 0.0602 0.0412 0.1106 0.0856 0.1412 0.0994 

n = 50 0: = 0.05 0.1476 0.1374 0.2536 0.2212 0.3402 0.2816 

0:=0.10 0.2218 0.2048 0.3552 0.3180 0.4594 0.4050 

0: = 0.01 0.0982 0.0680 0.2536 0.1978 0.4278 0.3426 

n = 100 0: = 0.05 0.2224 0.1958 0.4344 0.3766 0.6410 0.5792 

0: = 0.10 0.3202 0.2898 0.5344 0.4914 0.7290 0.6840 

0: = 0.01 0.1328 0.0968 0.3440 0.2786 0.5998 0.5188 

n = 150 0: = 0.05 0.2816 0.2344 0.5356 0.4668 0.7662 0.7042 

0: = 0.10 0.3786 0.3368 0.6360 0.5740 0.8350 0.7878 
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TABLE 5 

Proportion of rejections, in 5000 Monte Carlo experiments, under HI when testing that the process 

is a F ARI!II A (0, d, 0) and the observations are generated according to an AR (1) with parameter 

0.5 and the innovations Et are N (0, 1). Bootstrap critical values are computed based on 2000 

bootstrap samples. 

Cl: = 0.01 0.0260 0.0318 

n = 25 Cl: = 0.05 0.1344 0.1358 

Cl: = 0.10 0.2448 0.2316 

Cl: = 0.01 0.0560 0.0538 

n = 50 Cl: = 0.05 0.2082 0.1892 

Cl: = 0.10 0.3402 0.3116 

Cl: = 0.01 0.1350 0.1156 

n = 100 Cl: = 0.05 0.3890 0.3412 

Cl: = 0.10 0.5436 0.4862 

Cl: = 0.01 0.2540 0.2122 

n = 150 Cl: = 0.05 0.5518 0.4792 

Cl: = 0.10 0.6982 0.6340 
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