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1 Introduction 

Additive models are widely used in both theoretical economics and in econometric data 

analysis. The standard text of Deaton and Muellbauer (1980) provides many examples 

in micro economics for which the additive structure provides interpretability and allows 

solution of choice problems. Additive structure is desirable from a purely statistical point 

of view because it circumvents the curse of dimensionality. There has been much theo­

retical and applied work in econometrics on semi parametric and nonparametric methods, 

see Hardle and Linton (1994), Newey (1990), and Powell (1994) for bibliography and 

discussion. Some recent work has shown that additivity has important implications for 

the rate at which certain components can be estimated. In this paper we consider the 

finite sample performance of two popular estimators for additive models: the backfitting 

estimators of Hastie and Tibshirani (1990) and the integration estimators of Linton and 

Nielsen (1995). 

Let (X, Y) be a random variable with X of dimension d and Y a scalar. Consider the 

estimation of the regression function m(x) = E (Y I X = x) based on a random sam­

ple {(Xi, l~)}i=l from this population. Stone (1980, 1982) and Ibragimov and Hasminskii 
l 

(1980) showed that the optimal rate for estimating m is n - 2l+d with e an index of smooth-

ness of m. An additive structure for m is a regression function of the form 

d 

(1) m(x) = c + L mo(xo), 
0=1 

where :r = (Xl, ... , Xd)T are the d-dimensional predictor variables and mo are one­

dimensional nonparametric functions operating on each element of the vector or predictor 

variables with E {mo (Xo)} = o. Stone (1985, 1986) showed that for such regression 

curves the optimal rate for estimating m is the one-dimensional rate of convergence with 
e 

n - 21+1. Thus one speaks of dimensionality reduction through additive modelling. 

In practice, the backfitting procedures proposed in Breiman and Friedman (1985) and 

Buja, Hastie and Tibshirani (1989) are widely used to estimate the additive components. 

The latter (equation (18)) consider the problem of finding the projection of m onto the 

space of additive functions representing the right hand side of (1). Replacing population 

by sample, this leads to a system of normal equations with nd x nd dimensions. To solve 

this in practice, the backfitting or Gauss-Seidel algorithm, is usually used, see Venables 

and Ripley (1994). This technique is iterative and depends on the starting values and 

convergence criterion. It converges very fast but has, in comparison with the direct 

solution of the large linear system, the slight disadvantage of a more complicated 'hat 

matrix', see Hardle and Hall (1993). These methods have been evaluated on numerous 

datasets and have been refined quite considerably since their introduction. 
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Recently, Linton and Nielsen (1995), Tj0stheim and Auestad (1994), and Newey (1994) 

have independently proposed an alternative procedure for estimating ma based on in­

tegration of a standard kernel estimator. It exploits the following idea. Suppose that 

m{x,z) isanybivariatefunction, and consider the quantities fLl{X) = Jm{x,z)dQn{z) and 

. fL2(Z) = J m(x, z)dQn(x), where Qn is a probability measure. If m(x, z) = ml(x) +m2(z), 
then fLl(-) and fL2(-) are ml(-) and m2('), respectively, up to a constant. In practice one 

replaces m by an estimate and integrates with respect to some known measure. The 

procedure is explicitly defined and its asymptotic distribution is easily derived: it con­

verges at the one-dimensional rate and satisfies a central limit theorem. This estimation 

procedure has been extended to a number of other contexts like estimating the deriva­

tives (Severance-Lossin and Sperlich, 1997), to the generalized additive model (Linton 

and Hiirdle, 1996), to dependent variable transformation models (Linton, Chen, Wang, 

and Hiirdle, 1997), to econometric time series models (Masry and Tj0stheim, 1995,1997), 

to panel data models (Porter, 1996), and to hazard models with time varying covariates 

and right censoring (Nielsen, 1996). In this wide variety of sampling schemes and pro­

cedures the asymptotics have been derived because of the explicit form of the estimator. 

By contrast, backfitting or backfitting-like methods have until recently eluded theoreti­

cal analysis, until Opsomer and Ruppert (1997) provided conditional mean squared error 

expressions albeit under rather strong conditions on the smoothing matrices and design. 

More recently, Linton, Mammen, and Nielsen (1998) has established a central limit the­

orem for a modified form of backfitting which uses a bivariate integration step as well as 

the iterative updating of the other methods. 

The purpose of this paper is to investigate the finite sample performance of the standard 

backfitting estimator and the integration estimator. 

2 Methods and Theory 

\i\1e suppose that 

1~ = m(Xi) + Ci, i = 1, ... ,n, 
where by definition E(ciIXi) = 0; let also var(ciIXi) = a2(Xi) be the conditional variance 

function. We denote the marginal density of the d-dimensional explanatory variable by 

p(x) with marginals Pa(xa}, a = 1, ... ,d. We shall sometimes partition Xi = (Xai' xaif 
and x = (xa, xaf into scalar and d -I-dimensional subvectors respectively calling Xa the 

direction of interest and xQ. the direction not of interest; denote by PQ.(xQ.) the marginal 

density of the vector XQ.i. In the following we assume the following additive form for the 

regression function 
d 

m(x) = c + L ma(xa) , x = (Xl,"" Xdf ,c constant. 
a=l 
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2.1 Integration 

A commonly used estimate of m(x) is provided by the multidimensional local polynomial 

product kernel estimator which solves the following minimization problem 

(2) 

where I(): and het) a = 1, ... , d, are scalar kernels and bandwidths respectively, while 

Pq(Oo, 01; t) is a (q _1)th order polynomial in the vector t with coefficients 00 ,01 for which 

Pq(Oo, ()1; 0) = OD and e.g. P2 (Oo, 01; t) = OD + 01t. Let m(x) = Oo(x). Under regularity 

conditions, see Ruppert and Wand (1995) for example, the local polynomial estimator 

satisfies 

(3) 

where h = (Il~=1 hof/d is the geometric average of the bandwidths, J-lq(K) and vq(K) 
are constants depending only on the kernels, while v(x) = a2 (x) /p(x) and b(x) is the bias 

function depending on derivatives of m, and possibly p, up to and including order q. The 

(mean squared error) optimal bandwidth is of order n- 1/(2q+d) for which the asymptotic 

mean squared error is of order n-2q /(2q+d) , see Hardle and Linton (1994), which reflects 

the curse of dimensionality - as d increases, the rate of convergence decreases. 

When m(·) satisfies the additive model structure, we can estimate m(x) with a better 

rate of convergence by imposing these restrictions. Let 

(4) 

where c is an estimate of c, while Qn(-) is some easy to compute probability measure. The 

most convenient choice of Qn(-) is the empirical measure of {Xf!i} ;=1' which converges to 

the population distribution. It changes the integral in (4) to a sum over terms evaluated 

at Xf!i and implies for the constant c = E(Y). The latter can be estimated root-n consis­

tently by the sample mean n-1 L:~=1 Yi; an alternative estimate, which is not necessarily 

root- 11 consistent, is provided by n-1 L:f=1 mo(Xai). \Vhatever the estimates of c and 

mo(xo), we reestimate m(x) by 

d 

(5) mhl (x) = C + L mo(xo). 
0=1 

Linton and Hardle (1996) derived the pointwise asymptotic properties of the empirical 

integration versions of mo(xo) and mhl (x). To simplify matters, we set ha = hI and 

Ko = K, while TIf3:;eo Kf3 = Land hf3 = h2 for all f3 =F- a. Under their regularity conditions, 

(6) 
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where bo(x) = l:a bao(xa) and vo(x) = Ea VaO(Xa) with bao(xa) = J b(x)pgJxQ.)dxQ. and 

vaO(xa) = I V (x)p!(xQ.)dxQ.. Here, llq(K) and vq(K) are constants depending only on the 

kernel K. By choosing hI <X n-1/(2q+1) one can achieve the optimal rate of convergence 

i.e., mean squared error of order n-2q/(2q+1) , which is independent of the dimensions d. 

See also Linton and Nielsen (1995) and Severance-Lossin and Sperlich (1997). 

REMARK. The bandwidths hI, ... , hd should be chosen differently as we discuss further 

in the simulation section. To achieve the optimal rate of convergence, we must impose 

some restrictions on the bandwidth sequences. This condition, which corresponds to (A 7) 

in Linton and Hardle (1995) is needed for bias reduction of the nuisance components. In 
section 3 we will examine some bandwidth selection methods. 

2.2 Backfitting 

Hastie and Tibshirani (1990) motivate the backfitting method as follows. First consider 

the analogous population problem: 

d 

minE {Y - m(X)}2 s.t. m(x) = L mo(Xa), 
m 

0=1 

which can be formulated inside a Hilbert space framework: let [1iyx, (., .)] he the Hilbert 

space of random variables which are functions of Y and X with (a, b) = E(ab), let also 

[1ix, (., .)], and [1ixo' (., -)], et = 1, ... , d be corresponding subspaces, where for example 

1ixn contains only functions of Xo. The above problem is equivalent to finding the element 

of the sllbspace 1ix) EB ... EB 1iXd closest to a point Y E 1i1'X or equivalently the point 

m E 1ix . By the projection theorem, there exists a unique solution which is characterized 

by the following first order conditions 

which leads to the formal representation: 

I PI PI m1(X1) PlY 

P2 I P2 m2(X2) P2Y 

Pd Pd I md(Xd) PdY 

where Po (-) = E (·IXa ) . By analogy, let Sa (n X n) be the smoother matrix which when 

applied to the n x 1 vector Y = (Y1, . .• , Ynf yields an n x 1 vector estimate SaY of the 
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vector {E(Yi IXat} , ... , E(YnIXan)}T. Substituting Pa by 5a we obtain the following 

I 51 51 nh 51y 

52 I 52 m2 52y 

5d 5d I - 5dy md 

'" ndxnd 

This system can in principle be solved exactly for {ma(Xad, ... ,ma(Xan)}T, a = 1, ... ,d. 

However, when nd is large the required matrix inversion is not feasible. Further, often 

the matrix on the left is not regular in practice and thus this equation cannot be solved 

directly. In practice, the backfitting (Gauss-Seidel) algorithm is used to solve these equa­

tions: given starting values m~O), a = 1, ... , d, update the n x 1 vectors as follows 

m~) = 5a {Y - L rh~-l)}, r = 1, ... 
'1'1=a 

until some prespecified tolerance is reached. The estimator is linear in y, but the algo­

rithm only converges under strong restrictions on the smoother matrices. Recent work 

by Opsomer and Ruppert (1997) discuss some improvements to this algorithm which are 

guaranteed to provide a unique solution. They also derive the conditional mean squared 

error of the resulting estimator under strong conditions: this has a similar expression to 

(6) in large samples. 

3 Simulation Results 

3.1 Introduction 

In a number of different additive models, we determined the bias, variallce and mean 

squared error for both estimation procedures. \Ve considered designs with distributions: 

the uniform U[ -3, 3]d, the normal with mean 0, variance 1 and varying covariance p = 
0,0.4,0.8, denoted as N(p) , for different numbers of observations and several dimensions. 

\Ve drew all these designs once and kept them fixed for the investigation described in the 

following. The error term c was always chosen as normal distributed with zero mean and 

variance a; = 0.5. Since both estimators are linear, i.e., 

n 

ma(x) = L wai(x)li 
i=l 

for some weights {Wai(X)} we determined the conditional bias and variance as follows 

n 

var {ma(xa)IX} = a; L W~i(X) 
i=l 
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n 

bias {mo(xo)IX} =: L woi(x)m(Xi) - mo(xo) 
i=l 

for the additive function estimators and by analogy for the regression estimator. In the 

following notation the MSE denotes the mean squared error and the MASE the averaged 

MSE. We focused on the following questions: 

a) What is a reasonable bandwidth choice for an optimal fit ? 

b) How sensitive are the estimators to the bandwidth ? 

c) What are the MASE, MSE, bias and variance, boundary effects? 

d) We considered degrees of freedom, eigen analysis, singular values and eigen vectors. 

e) Vve plotted the equivalent kernel weights of the estimates and 

1) we investigated whether and when the asymptotics kick in. 

We examined how well the estimation procedures performed in estimating one additive 

function. The parameters are d = 2 dimensions and n = 100 observations. We considered 

all combinations of the following additive functions for a two dimensional additive model: 

ml(x) = 2x 

m3(x) = exp(x) - E{ exp(x)} 

m2(x) = x2 - E(x2) 

m4(x) = 0.5· sin( -l.5:z:). 

Our interest is mainly in the estimation of the marginal effect mo . We first determined 

different optimal bandwidths for a given design distribution. In the second step we cal­

culated for fixed designs bias, variance and mean average squared error (on the complete 

data set as well as on trimmed data) for both estimation procedures. 

The advantages of using local polynomials are well known, especially with regard to the 

robustness against choice of bandwidth and the improvement in bias and consequently 

mean squared error if the requisite smoothness is present. In Severance-Lossin and Sper­

lich (1997) the consistency and asymptotic behavior of the integration estimator using lo­

cal polynomial is shown. For these reasons we did the investigation for both, the N adaraya 

Watson and the local linear estimator. 

3.2 Bandwidth Choice 

The choice of an appropriate smoothing parameter is always a critical point in nonpara­

metric and semi parametric estimation. For the integration estimator we need even two 

bandwidths, hI and h2' see section 2. There exist at least two rules for choosing them: 

the rule of thumb of Linton and Nielsen (1995) and the plug-in method suggested in 

Severance-Lossin and Sperlich (1997). Both methods give the MASE minimizing band­

width, the first one approximately with the aid of parametric pre-estimators, the second 
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one by using nonparametric pre-estimators. We give here the formulas for the case of 

local linear smoothers. The rule of thumb is 

{ 
2 }1/5 

h 
= 0- v(K)(max - min) -1/5 

1 d A 2 n 
/ldK) ( Lj=1 {3j) 

where v(K) = IIKII~, P,2(K) = J t2 K(t)dt and max and min are the sample maximum 

and minimum of the direction of interest. We obtained ~j as the coefficients of xJ /2 from 

a least squares regression of Y on a constant, Xj, xJl2 and XjXk for all j, k = 1, ... , d 

j < k, while 0-2 was obtained from the residuals of this regression by taking the average 

of the squares. 

The formula for the nonparametric plug-in method we used for calculating the asymptot­

ically optimal bandwidth is 

Note that this formula is not valid for h2' the bandwidth for the direction not of interest. 

We took the bandwidth h2 that minimized the MASE in the particular finite sample 

model. 

For a fair comparison of the optimal bandwidth and the corresponding l\IASE of both 

estimators we applied several procedures. vVe started with considering the minimal MASE 

of the overall regression function and the minimizing bandwidths. Then we looked for the 

bandwidths minimizing the MASE in each direction separately. For taking into account 

the influence of boundary effects we looked also for the optimal bandwidths on trimmed 

data. 

For small samples of 100 observations we could not discover any information by comparing 

the numerically MASE-minimizing bandwidths. They differed a lot dep(~nding on the 

particularly drawn design. Therefore we focused on once drawn, in that sense fixed, 

designs for the whole paper and considered only analytically determined bandwidths hI. 

Thus we compared the results for bandwidths calculated with the rule of thumb proposed 

by Linton and Nielsen and the analytically optimal one. 

Selected numerical Results, using both, the Nadaraya Watson and the local 

linear Smoother Since the values of the MASE minimizing bandwidths that we found 

numerically for the particular designs in finite samples, were not particularly illuminting, 

we do not report them in the tables. In table 1 the bandwidths of the rule of thumb 

by Linton and Nielsen and the asymptotically optimal bandwidths for each estimation 

procedure are shown. Here we concentrated on bandwidths that minimize the MASE in 
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each direction separately. They are displayed for the additive components m3, m4 versus 

the particular model and design. The behavior for ml, m2 is the same, the results can be 

requested from the authors. One can see very well the strong influence of the distribution 

and the dependence of the additive function that has to be estimated. Furthermore, not 

only do the bandwidths determined by theory based rules differ a lot, we found them 

quite often far away from the MASE minimizing bandwidth value. This is also the case 

for the local linear smoothers. Mostly, the analytically chosen bandwidth was closer to 

the :MASE minimizing one than the rule of thumb bandwidth, which, however, is much 

easier to calculate. 

If the optimal value was infinity, we set it to 1 or in the case of a N(O.8) distributed design 

to 2. In formulas where we had to integrate over a density from -00 to +00 we did this 

[for numerical reasons] over the interval [-1.5,1.5] for N(O.8) and over [-3,3] else. 

TABLE 1: ASYMPTOTICALLY OPTIMAL BANDWIDTHS WHEN USING NADARAYA WATSON 

Additive Function: m3 m4 

Distribution: U2 N(.O) N(.4) N(.8) U2 N(.O) N(.4) N(.8) 

Model m = ml +m3 m=ml +m4 

rule of thumb 0.222 0.246 0.243 0.242 0.308 0.294 0.3Hi 0.376 

backfitting 0.191 0.175 0.175 0.260 0.426 0.310 0.310 0.282 

integration hI 0.191 0.175 0.194 0.307 0.426 0.309 0.352 0.387 

Model m = m2 +m3 m =m2 +mi 

rule of thumb 0.194 0.210 0.209 0.209 0.279 0.251 0.260 0.276 

backfitting 0.191 0.175 0.175 0.260 0.426 0.310 0.310 0.282 

integration hI 0.191 0.175 0.194 0.307 0.426 0.309 0.352 0.387 

Model m =m3+m4 m = m3 +m.t 

rule of thumb 0.185 0.230 0.234 0.243 0.185 0.230 0.234 0.243 

backfitting 0.191 0.175 0.175 0.260 0.426 0.310 0.310 0.282 

integration hI 0.191 0.175 0.194 0.307 0.426 0.309 0.352 0.387 

Table 2 gives the optimal bandwidths for different distributions, models, estimation rou­

tines and criteria when using local linear smoothing. 

All findings from table 1 are replicated here. Furthermore, note that for uncorrelated 

regressors the bandwidths are almost the same for backfitting and integration method, 

which is in accordance with the theoretically similar MASE. As mentioned above we will 

now consider the choice of bandwidth for the local linear estimation procedure in a more 

detailed way. 
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TABLE 2: ASYMPTOTICALLY OPTIMAL BANDWIDTHS WHEN USING LOCAL LINEAR 

Additive Function: m3 m4 

Distribution: U2 N(.O) N(.4) N(.8) U2 N(.O) N(.4) N(.8) 

Model m =mI +m3 m =mI +m4 

rule of thumb 0.222 0.246 0.243 0.242 0.308 0.294 0.316 0.376 

backfitting 0.191 0.267 0.267 0.284 0.426 0.423 0.423 0.374 

integration hI 0.191 0.267 0.324 0.571 0.426 0.423 0.513 0.752 

Model m=m2+ m 3 m = m2 +rn4 

rule of thumb 0.194 0.210 0.209 0.209 0.279 0.251 0.260 0.276 

backfitting 0.191 0.267 0.267 0.284 0.426 0.423 0.423 0.374 

integration hI 0.191 0.267 0.324 0.571 0.426 0.423 0.513 0.752 

Model m = m3 +m4 m = m3 +rn4 

rule of thumb 0.185 0.230 0.234 0.243 0.185 0.230 0.234 0.243 

backfitting 0.191 0.267 0.267 0.284 0.426 0.423 0.423 0.374 

integration hI 0.191 0.267 0.324 0.571 0.426 0.423 0.513 0.752 

3.3 Robustness with respect to the Choice of Bandwidth 

To find out how sensitive the estimators are with respect to the choice of bandwidth for 

the direction of interest hI we plotted MASE and MSEx=o against bandwidth for the 

two models m = m2 + m3 and m = m2 + m4. The parameters were kept unchanged or 

were mentioned in the caption of the respective figures. We present our results first for 

the uniform design on [-3,3]2, then for designs with distribution N(O.O) alld N(O.4), see 

figures 1 to 6. 

The results for MASE have been trimmed in the pictures, since otherwise they would 

have been dominated by boundary effects (compare with tables in the next section). The 

results for the integration estimator are drawn throughout the paper as solid lines, those 

for the IJackfitting algorithm as dashed lines. 

Obviously, the backfitting estimator is very sensitive to the choice of bandwidth. To 

get a small MASE it is crucially important for the backfitting method to choose a good 

smoothing parameter. For correlated designs oversmoothing seems slightly preferable, 

otherwise there is no particular advantage to either oversmoothing or undersmoothing. 

The behavior of the estimates for the highly correlated design is slightly strange and hard 

to interpret. This is true for both estimation procedures. Therefore we skipped the figures 

for the N(0.8) distributed design. 

For the integration estimator the results differ depending on the model. In general this 
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method is by far not as sensitive to the choice of bandwidth as the backfitting procedure 

is. If we focus on the MSEx=o we have similar results as for the MASE but weakened 

concerning the sensitivity. Here the results differ more depending on the data generating 
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Since in a [-3,3]2 rectangle n = 100 observations are fairly sparse and thus the behavior 

of the tdASE or MSEx=o perhaps is not typical, we did the same investigation with 

n = 100 observations for the uniform design on [-1.5, 1.5]2. But, plotting the MASE 

and r..1SE,T=O functions on the same scale as we did for the U[ -3,3]2 design, we detected 

that the general sensitivity is similar but certainly on a different range. Furthermore, 

the integration estimate improved a lot since it has been suffering more when data were 

sparse as e.g., in [-3,3]2. All in all, our observations above are confirmed when data were 

not too sparse. 

3.4 Simulation Results: Bias, Variance and MASE 

Due to the excess of information we got out of doing our simulations, we concentrate on 

the results for the local linear case. Nevertheless we think it worthwhile to mention both, 

and, if there are differences in the results, to discuss them. 

For the optimal bandwidths computed in section 3.2 and given fixed designs the following 

tables present MASE, squared bias and variance on the complete data set and on trimmed 

data. In table 3-5 the results are for the complete data set in the upper line, for the 

trimmed data in the lower line. 
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TABLE 3: MASE, USING THE LOCAL LINEAR SMOOTHER 

OVER ALL (UPPER) AND OVER TRIMMED (LOWER) DATA 

U2 N(.O) N(.4) N(.8) U2 N(.O) N(.4} N(.8} U2 N(.O} N(.4) N(.8) 

m=ml+m2 m =ml +m3 m=ml +m4 

0.065 0.047 0.041 0.020 0.401 0.046 0.028 0.053 0.022 0.027 0.026 0.028 

0.060 0.038 0.031 0.014 0.393 0.037 0.018 0.033 0.018 0.018 0.016 0.019 

0.028 0.019 0.030 0.057 0.616 0.031 0.075 0.081 0.018 0.023 0.023 0.024 

0.023 0.013 0.017 0.047 0.555 0.024 0.059 0.071 0.014 0.016 0.015 0.017 

0.116 0.083 0.079 0.047 0.479 0.073 0.053 0.058 0.033 0.033 0.036 0.048 

0.113 0.071 0.060 0.024 0.470 0.058 0.032 0.028 0.027 0.022 0.020 0.026 

0.436 0.090 0.116 0.530 0.402 0.137 0.234 0.528 0.191 0.043 0.074 0.137 

0.427 0.028 0.029 0.205 0.411 0.027 0.031 0.149 0.180 0.020 0.023 0.093 

0.052 0.052 0.054 0.049 0.066 0.051 0.054 0.057 0.040 0.040 0.043 0.042 

0.045 0.032 0.031 0.028 0.057 0.030 0.029 0.035 0.333 0.024 0.024 0.024 

0.156 0.115 0.145 0.619 0.206 0.175 0.285 0.608 0.066 0.063 0.104 0.132 

0.143 0.041 0.041 0.252 0.159 0.043 0.053 0.194 0.051 0.031 0.041 0.089 

u2 N(.O) N(.4) N(.8) u2 N(.O} N(.4} N(.8) u2 N(.O) N(.4) N(.8) 

m =m2+m3 m=m2 +m4 m=m:l+m4 

0.228 0.075 0.109 0.344 0.142 0.124 0.135 0.128 0.107 0.068 0.081 0.111 

0.206 0.057 0.079 0.119 0.141 0.107 0.116 0.099 0.101 0.046 0.055 0.081 

0.645 0.065 0.105 3.490 0.048 0.047 0.048 0.089 0.078 0.053 0.049 0.056 

0.572 0.031 0.064 0.782 0.041 0.022 0.026 0.078 0.070 0.026 0.022 0.041 

0.271 0.060 0.086 0.238 0.132 0.112 0.121 0.110 0.077 0.051 0.062 0.096 

0.264 0.041 0.058 0.093 0.124 0.101 0.110 0.091 0.071 0.039 0.048 0.075 

0.310 0.070 0.191 1.499 0.061 0.048 0.480 1.322 0.177 0.057 0.603 2.413 

0.233 0.040 0.055 0.186 0.047 0.032 0.061 0.151 0.166 0.040 0.265 1.020 

0.087 0.072 0.074 0.124 0.061 0.061 0.063 0.068 0.079 0.065 0.066 0.064 

0.076 0.042 0.041 0.067 0.052 0.035 0.035 0.037 0.069 0.038 0.037 0.038 

0.407 0.204 0.443 6.283 0.102 0.118 0.561 1.368 0.145 0.085 0.670 2.238 

0.308 0.136 0.236 0.785 0.084 0.076 0.083 0.189 0.123 0.044 0.257 0.681 

We found three main points: 

1) It is not possible to declare one estimating procedure superior to the other one 

in general. The results are differing from model to model and for each additive 

component we want to estimate. We neither can say that one of the estimation 

procedures is in general outperforming the other one regarding the MASE nor that 
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TABLE 4: AVERAGED SQUARED BIAS, USING LOCAL LINEAR 

OVER ALL (UPPER) AND OVER TRIMMED (LOWER) DATA 

U2 N(.O) N(A) N(.8) U2 N(.O) N(A) N(.8) U2 N(.O) N(.4) N(.8) 

m=ml +m2 m = rnl + m3 m =ml +m4 

0.043 0.022 0.016 0.000 0.380 0.022 0.003 0.033 0.001 0.002 0.001 0.007 

0.039 0.020 0.014 0.000 0.338 0.019 0.003 0.017 0.000 0.002 0.001 0.004 

0.007 0.003 0.008 0.020 0.598 0.015 0.053 0.043 0.001 0.006 0.004 0.004 

0.005 0.002 0.003 0.017 00481 0.010 0.036 0.036 0.000 0.005 0.003 0.002 

0.078 0.046 0.037 0.002 00425 0.033 0.008 0.015 0.004 0.004 0.003 0.010 

0.068 0.040 0.031 0.002 0.364 0.027 0.006 0.006 0.002 0.003 0.002 0.007 

0.358 0.054 0.065 00415 0.329 0.097 0.175 00431 0.142 0.013 0.034 0.055 

0.266 0.003 0.006 0.078 0.227 0.002 0.004 0.072 0.119 0.003 0.003 0.031 

0.006 0.005 0.005 0.003 0.004 0.002 0.002 0.014 0.003 0.002 0.002 0.004 

0.005 0.004 0.004 0.003 0.001 0.001 0.001 0.007 0.002 0.001 0.001 0.002 

0.062 0.068 0.075 00475 0.118 0.123 0.209 00482 0.005 0.022 0.050 0.040 

0.032 0.008 0.010 0.103 0.062 0.009 0.015 0.099 0.003 0.006 0.012 0.024 

U2 N(.O) N(A) N(.8) U2 N(.O) N(A) N(.8) U2 N(.O) N(A) N(.8) 

m=m2+ m 3 m = 7712 +m4 m = rn:{ + m4 

0.187 0.033 0.066 0.289 0.102 0.082 0.091 0.072 0.050 0.024 0.034 0.059 

0.156 0.028 0.049 0.058 0.087 0.072 0.080 0.058 0.039 0.017 0.026 0.047 

0.590 0.022 0.058 30465 0.006 0.004 0.013 0.064 0.017 0.005 0.011 0.035 

0.387 0.007 0.033 0.574 0.004 0.000 0.004 0.047 0.010 0.002 0.002 0.019 

0.219 0.023 0.051 0.198 0.105 0.086 0.095 0.074 0.050 0.025 0.036 0.060 

0.180 0.019 0.035 0.035 0.088 0.072 0.079 0.059 0.040 0.019 0.029 0.050 

0.238 0.030 0.132 1.473 0.018 0.018 00455 1.300 0.132 0.027 0.577 2.391 

0.134 0.010 0.020 0.136 0.011 0.011 0.036 0.124 0.097 0.019 0.211 0.724 

0.006 0.003 0.003 0.055 0.005 0.003 0.003 0.004 0.007 0.005 0.003 0.003 

0.003 0.002 0.001 0.013 0.003 0.002 0.002 0.002 0.004 0.002 0.002 0.001 

0.280 0.124 0.340 6.220 0.020 0.050 0.500 1.310 0.040 0.012 0.600 2.182 

0.098 0.077 0.153 0.624 0.010 0.033 0.041 0.138 0.023 0.005 0.170 0.539 

one of them is more biased or has less variance than the competing one. 

2) The integration estimator is suffering more from boundary effects. 

3) For increasing correlation both estimators get problems but much more the in­

tegration estimator. This is in line with the theory saying that the integration 
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TABLE 5: AVERAGED VARIANCE, USING LOCAL LINEAR 

OVER ALL (UPPER) AND OVER TRIMMED (LOWER) DATA 

U2 N(.O) N(.4) N(.8) U2 N(.O) N(.4) N(.8) U2 N(.O) N(.4) N(.8) 

m=ml +m2 m=ml +m3 m = 1nl + m4 

0.022 0.024 0.025 0.020 0.022 0.024 0.025 0.020 0.022 0.025 0.025 0.020 

0.015 0.014 0.014 0.012 0.015 0.014 0.014 0.012 0.015 0.014 0.014 0.013 

0.021 0.017 0.023 0.037 0.018 0.017 0.023 0.039 0.017 0.017 0.019 0.020 

0.015 0.009 0.011 0.025 0.013 0.010 0.011 0.026 0.012 0.009 0.010 0.013 

0.038 0.037 0.042 0.045 0.054 0.040 0.045 0.043 0.029 0.029 0.034 0.038 

0.028 0.020 0.019 0.020 0.042 0.021 0.020 0.018 0.021 0.016 0.015 0.015 

0.078 0.036 0.051 0.115 0.073 0.040 0.059 0.097 0.049 0.029 0.040 0.083 

0.051 0.020 0.019 0.044 0.055 0.021 0.021 0.040 0.033 0.015 0.016 0.046 

0.046 0.047 0.050 0.046 0.061 0.050 0.052 0.043 0.037 0.038 0.041 0.038 

0.036 0.025 0.026 0.024 0.049 0.027 0.027 0.022 0.028 0.021 0.021 0.019 

0.094 0.048 0.069 0.144 0.088 0.052 0.077 0.126 0.061 0.041 0.054 0.092 

0.066 0.027 0.030 0.067 0.067 0.029 0.033 0.064 0.044 0.023 0.025 0.053 

U2 N(.O) N(.4) N(.8) U2 N(.O) N(.4) N(.8) U2 N(.O) N(.4) N(.8) 

m = m2+m3 m =m2 +rn4 m=rn:l+m4 

0.041 0.041 0.043 0.056 0.040 0.042 0.044 0.056 0.057 0.044 0.047 0.052 

0.030 0.020 0.020 0.025 0.030 0.021 0.020 0.025 0.043 0.022 0.021 0.023 

0.054 0.043 0.047 0.025 0.042 0.043 0.035 0.025 0.061 0.047 0.038 0.024 

0.039 0.020 0.022 0.012 0.031 0.019 0.016 0.012 0.046 0.021 0.017 0.012 

0.053 0.037 0.035 0.041 0.027 0.026 0.026 0.035 0.027 0.026 0.026 0.036 

0.040 0.017 0.016 0.017 0.018 0.012 0.011 0.014 0.018 0.012 0.011 0.014 

0.073 0.040 0.059 0.026 0.043 0.030 0.026 0.022 0.045 0.030 0.026 0.022 

0.055 0.021 0.021 0.011 0.030 0.015 0.012 0.010 0.031 0.015 0.012 0.010 

0.081 0.069 0.071 0.069 0.057 0.058 0.061 0.064 0.073 0.061 0.063 0.061 

0.065 0.038 0.039 0.036 0.044 0.032 0.032 0.033 0.058 0.034 0.033 0.031 

0.127 0.080 0.102 0.063 0.082 0.069 0.061 0.058 0.105 0.073 0.070 0.056 

0.098 0.043 0.048 0.026 0.064 0.035 0.029 0.024 0.082 0.037 0.030 0.023 

estimator is inefficient for correlated designs, see Linton (1997). He suggested an 

estimator for additive models constructed as a mixture of marginal integration and 

one-iteration-backfit and proved that for correlated designs this procedure dominates 

asymptotically the integration method in its variance part. 
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We want to emphasize our statements bi looking closer to the behavior of squared bias, 

variance and MSE over the range. 

The main difference from the results for using the Nadaraya Watson smoother is that 

the local linear smoother improves the integration estimator more than the backfitting 

estimator. The effects concerning the distribution of X and model structure are, as we 

expected, quite similar. 

The following figures illustrate the behavior and the trade-off of variance and bias for 

both estimators in each additive direction. They are plotted on the range of the support. 

The boundaries of the data are cut off at a level of 5% each side, since otherwise their 

effects would dominate the pictures. The figures 7-11 reinforce clearly our observations 

and remarks concerning the tables 3-5. 

The integration estimator suffers more from sparseness of observations than the backfitting 

estimator does. In what follows the boundary effects are worse in the integration estimator 

and it does better for the normal distribution than for the uniform considering the MASE. 

At the mass of observations this estimator mostly has lower squared bias and variance 

for the estimators of the additive functions. Finally, we observe that all increasing p 

(covariance of the explanatory vector) affects strongly its MASE in a negative sense. 

The backfitting estimator is less affected by boundary effects or correlation of the explana­

tory yariables. For the regression estimator it fits the regression in general better than the 

integration estimator, at least the MASE is almost always smaller. But it pays for a low 

MSE (01' MASE) for the regression with high MSE (MASE respectively) ill the additive 

function estimation. Here we see the main difference of these estimators; the integration 

estimator is estimating the additive function by integrating out the directiolls not of inter­

est, which means it is measuring the marginal influence of the considered input, whereas 

the backfitting estimator is looking in the space of additive models for the best fit of the 

response Y vs. X. For a more detailed discussion about their different interpretation, see 

Nielsen and Linton (1997). An increase in the correlation p of the design again leads to 

a worse estimate. 

Making Use of the Bandwidth Matrix For the purpose of correcting for correlation 

between the components of X we furthermore refined the estimation procedure by re­

placing the bandwidth vector h by its multivariate counterpart, a nonsingular bandwidth 

matrix H. This leads to the following multivariate kernel function: 

Motinlted by the bandwidth matrix selection in the book of Wand and Jones (1995), the 

matrix H is constructed in the following way: Its diagonal elements are equivalent to the 
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Figure 7: Variance (left), bias2 (middle) and MASE (right) by bandwidth hI in model 

m = mI + m2 for mI (top), m2(bottom) separately. Uniform design on [-3,3]2, using local 

linear smoother. 
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Figure 8: Variance (left), bias2 (middle) and MASE (right) by bandwidth hI in model m = 

ml + 77/,'2, for ml(top), m2(bottom) separately. Standard normal design with cov= 0.0, using 

local linear smoother. 

elements of the bandwidth vector h and its off-diagonal elements can be derived from 

the covariance matrix. In addition we included a factor 6 which allows us to control the 

influence of the off-diagonal elements. Hence, for the two dimensional model one gets: 

Note that for 6 = 0 we would get the results of the previously applied estimation proce­

dure. This can be checked from the tables of section 3.4. Defining the bandwidth matrix 
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Figure 9: Variance (left), bias2 (middle) and MASE (right) by bandwidth hI in model 

m = ml + m2, for ml(top), m2(bottom) separately. Standard normal design with cov= 0.8 

, using local linear smoother. 
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Figure 10: Variance (left), bias2 (middle) and MASE (right) by bandwidth hI in model m = 

m3 + m4, for m3(top), m4(bottom) separately. Standard normal design with cov= 0.0 , using 

local linear smoother. 

in this way we were able to run the estimation on a grid for 6. The table 6 presents 

our results for the standard normal design for COV(XI, X2) = 0.4 and COV(.TI, X2) = 0.8. 

They show MASE together with the value of 6, by which it is minimized, for trimmed 

data in brackets. To compare the results with the former one we present them in the 

following table together with the MASE which we got for diagonal bandwidth matrices 

in the integration procedure. Obviously the fit can be improved significantly if we use 

a proper off-diagonal element in the bandwidth matrices. Since interpretation using a 

nondiagonal bandwidth matrix is different for the backfitting, due to its iterative charac-
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Figure 11: Variance (left), bias2 (middle) and MASE (right) by bandwidth hI in model m = 

m3 + m4, for m3(top), m4(bottom) separately. Standard normal design with cov= 0.0 , using 

local linear smoother. 

ter and smoothing always in univariate subspaces, we skipped this investigation for the 

backfitting. However, such an investigation in theory and practice would be interesting 

for that method, too. 

Using the local linear smoother, the optimal bandwidth matrix to estimate the linear 

function ml should be huge or even infinite on the first diagonal, but we cannot ameliorate 

the results by changing the off-diagonals. For that reason we skipped models that include 

ml' 

3.5 Singular and Eigenvalue Analysis 

Eigendecomposition of the smoother matrix of an estimator can be used to describe the 

behavior of the smoother, especially when this matrix is symmetric and thus the eigen­

values are real. In that case this is much like the use of a transfer function to describe 

a linear filter for time series. This connection is made precise in Hastie and Tibshirani 

(1990). If the smoother matrix is not symmetric we have to turn to the singular value 

analysis since a eigendecomposition often would lead to complex eigenvalues. 

In the following we present the first respectively the biggest singular values of the weight 

matrices. These smoothing matrices are symmetric for the backfitting, using local poly­

nomial kernel smoothing but they are not symmetric for the integration estimator. Thus 

we did a singular value analysis for the integration procedure. 

In figure 12 to 15 we give the calculated values. Again in all figures the lines for the 

integration estimator are solid, for the backfitting estimator dotted. For each design 
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TABLE 6: PERFORMANCE (MASE) WITH VS WITHOUT OFF-DIAGONALS r5min 

IN THE BANDWIDTH MATRIX USING LOC. LIN. SMOOTHER 

COV(Xl,X2} Model mj r5min MASEin.t . 
w~th 

MASEint. old 

m=m2+ m 3 m2 0.9 (0.7) 0.090 (0.040) 0.105 (0.064) 

m3 0.5 (0.6) 0.144 (0.030) 0.191 (0.055) 

0.4 m=m2+ m 4 m2 1.5 (0.6) 0.045 (0.022) 0.048 (0.026) 

m4 0.0 (0.1) 0.480 (0.061) 0.480 (0.061) 

m=m3+ m 4 m3 0.2 (0.2) 0.049 (0.022) 0.049 (0.022) 

m4 1.5 (1.5) 0.590 (0.217) 0.603 (0.265) 

m = m2 +m3 m2 0.6 (0.5) 0.244 (0.167) 3.490 (0.782) 

m3 0.5 (1.5) 0.246 (0.038) 1.499 (0.186) 

0.8 m=m2+ m 4 m2 0.4 (1.1) 0.079 (0.045) 0.089 (0.078) 

m4 1.5 (0.8) 1.463 (0.194) 1.322 (0.151) 

m=m3+ m 4 m3 0.1 (0.4) 0.074 (0.052) 0.056 (0.041) 

m4 1.5 (1.5) 2.385 (1.008) 2.413 (1.020) 

distribution presented we give the results for two randomly drawn samples. 

; ....................... . i.' .•.•...• . 
. ........ \ .. . 

; , . 

.............. ...... 
. ... 

Figure 12: Eigen-/Singular value analysis Figure 13: Eigen-/Singular value analysis 

using local linear smoother. Plotted are using local linear smoother. Plotted are 

Xl(toP), .T2(bottom) vs eigen/singular val- Xl(toP), x2(bottom) vs eigen/singular val­

ues for two uniformly distributed samples ues for two normal (cov= 0.0) distributed 

(left, right). samples (left, right). 

The slope of the eigen or singular values, see figure 12 to 15, gives us an idea of the 

smoothness of the specific estimator. They almost always cross, often the backfitting 

eigenvalue is a little bit steeper, what depends on the bandwidth choice, but there seems to 

be no remarkable difference between t,he integration and the backfitting method regarding 
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Figure 14: Eigen-/Singular value analysis Figure 15: Eigen-/Singular value analysis 

using local linear smoother. Plotted are 

Xl(toP), .T2(bottom) vs eigen/singular val­

ues for two normal (cov= 0.4) distributed 

samples (left, right). 

the eigenvalue analysis. 

3.6 Degrees of Freedom 

using local linear smoother. Plotted are 

Xl(toP), x2(bottom) vs eigen/singular val­

ues for two normal (cov= 0.8) distributed 

samples (left, right). 

Another parameter we looked at is the degree of freedom of the smoothers. Hastie and 

Tibshirani (1990) give various interpretations for degrees of freedom in the context of 

nonparametric estimation as well as for testing nonparametrically. One of them is that 

they giYe us the amount of fitting. Further they can be used to approximate the distri­

bution of test statistics. They also state that we can draw out of them some information 

about the smoothness of the estimator. So they propose for a fair comparison of different 

estimators to choose those smoothing parameters that give equal degrees of freedom for 

the different estimators. Our experience was that this leads to unreasonable bandwidths. 

So we have to doubt these interpretations at least for the integration estimator. 

For all smoothing matrices we calculated the values for three different definitions of degrees 

offreedom, tr(W), tr(WWT) and n - tr(2W - WVVT), but restrict ourselves in presenting 

only tr(H'). The other results can be requested. 

As already mentioned at the beginning of this paragraph the chosen asymptotically 'op­

timal' bandwidth led us to totally different degrees of freedom as defined above. 

Looking at table 7, where the degrees are defined as the trace of W, we see that the 

degrees of freedom for the backfitting are almost always bigger than the degrees for the 

integration estimator. For both estimators the degrees are bigger in the case of normal 
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TABLE 7: DEGREES OF FREEDOM MEASURED BY trace(W), USING LOC. LIN. 

Distribution: U2 N(.O) N(.4) N(.8) U2 N(.O) N(.4) N(.8) 

'In = mQ +mf3 m=ml +m2 m =ml +m3 

back. 3.63 4.19 4.01 2.43 3.60 4.19 4.00 2.43 
rhQ 

into 3.52 3.96 3.31 2.11 3.64 3.61 3.29 2.11 

back. 8.42 7.54 8.30 8.86 12.70 8.15 8.87 8.19 
'lnf3 into 8.53 8.00 6.66 3.84 12.99 8.65 7.39 3.52 

back. 13.05 12.73 13.30 12.29 17.30 13.33 13.87 11.62 
rh 

into 11.05 10.96 8.97 4.95 15.64 11.26 9.68 4.63 

rn = mQ +mf3 m =ml +m4 m=m2+ m 3 

back. 3.65 4.22 4.04 2.45 9.16 9.32 9.52 10.37 
rhQ 

into 3.71 3.85 3.86 2.24 8.37 8.78 7.21 6.09 

back. 5.88 5.38 6.17 6.75 12.49 8.04 8.05 6.88 
rh{3 

into 6.17 5.81 4.58 2.48' 13.00 8.69 7.36 6.15 

back. 10.53 10.59 11.20 10.19 22.64 18.37 18.56 18.25 
rh 

into 8.88 8.66 7.44 3.72 20.37 16.46 13.58 11.24 

'In = mQ +m{3 m = m2 +m4 m =m3 +m4 

back. 9.33 9.37 9.61 10.41 13.73 10.02 10.26 9.51 
'lh Q into 9.34 8.78 8.34 6.09 13.80 9.23 9.24 5.69 

back. 5.78 5.31' 5.49 5.49 5.70 5.31 5.39 5.67 
'lh{3 

into 6.33 5.73 6.33 5.22 6.25 5.79 6.33 5.22 

back. 16.10 15.69 16.10 16.89 20.43 16.32 16.65 16.18 
m 

into 14.67 13.52 13.66 10.31 19.05 14.02 14.56 9.916 

distributed designs but it is hardly possible to detect a systematic difference in the degrees 

for the increasing correlation of the explanatory variables. \\That can be seen clearly is 

that the degrees of freedom are varying strongly with the choice of the model. This holds 

true for both estimators. 

Note that the degrees ofthe function m in the integration method is the result of summing 

the degrees of its additive components minus one, as a result of eliminating in each 

estimation the sample mean. In the backfitting you take the sum of the degrees of the 

additive components and add one, see Opsomer and Ruppert (1997). 

When we considered tr(WWT), this is certainly different. Further, in the local linear 

case, considering tr(WWT) led to different results at all. Here now the degrees were often 

much bigger for the integration method. However, since interpretation is hardly possible 

in that case, we skipped the presentation of these results. 
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3.7 The Equivalent Kernel Weights of the Estimators 

What price do we pay to overcome the curse of dimensionality by choosing an additive 

model structure? To examine this we compared the two additive model estimators, back­

fitting and integration procedure, with the bivariate Nadaraya Watson kernel smoother. 

Equivalent kernels are defined as the linear weights w of the estimates to fit the regression 

function at a particular point, in our case at (0,0). For the integration estimator we used 

only a diagonal bandwidth matrix as in the beginning, even for the strongly correlated 

designs. We have considered n = 100, bivariate normal distributed designs with mean 

zero, variance 1 and increasing correlation p = 0.0, 0.2, 0.4, 0.6 and 0.8, but give only 

figures for 0.0, 0.4 and 0.8. Please note that equivalent kernel weights depend only on 

the kernel function, the bandwidths and X but not on Y. So the results in figure 16 to 

24 presented hold for any underlying two dimensional model. 

Since the local linear smoother is also taking into account the first derivative of the 

functions, we would get, depending on the data generating functions, positive and negative 

weights varying from point to point. Thus for the local linear smoother the pictures shown 

beneath would look like wild mountain scenery and so we skipped their presentation. 

As we would have expected, both additive model estimators get their strength from the 

local panels orthogonal to the axes of Xl and X 2 instead of uniformly in all directions like 

the bivariate N adaraya Watson smoother. Since they are composed by components that 

behave like univariate smoothers, they can overcome the curse of dimensionality. For the 

bac:kfitting this was already stated by Hastie and Tibshirani (1990). We can see clearly 

now that the integration estimator behaves very similar. The pictures for the additive 

smoothers look almost the same, except that the backfitting can also get some negative 

weights whereas the integration estimator cannot by its construction. 

Both estimators run into deep problems to estimate properly in designs \vith increasing 

correlation. In contrast to the bivariate Nadaraya Watson smoother this can be seen in 

the figures for the backfitting as well as for the integration method. But we are not able 

to discoyer visually the reason why the integration estimator is doing worse for highly 

correlated explanatory variables than e.g. the backfitting. 

3.8 Do the Asymptotics hold empirically? 

For restricting our presentation on n = 100 observations we had mainly two reasons. 

First, in our simulations we had the same findings also for n different from 100, what 

is indicated also in this section, see below. Second, for n > 100 the difference between 

integration and backfitting method decreases in such an amount that it even would be 
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Figure 17: 

BACKFITTING EST., 

X: DATI.IJ 
Y: 0"TI,2J 
Z: OATI.3J '-ID -2 1 

CQV=0.8 

1.25% 
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tting estimator, using 

5.00% 

-2.0 -1.0 0.0 
Cll.ll.C21.11.C)(.11.C.[.1J,C~[.11.lIXt.lJ 

Figure 18: quiva ent ernels. tting estimator, using 

Nadaraya Watson. Regressors are standart normal with eav = O.B. 

hard to illustrate them at all. To answer the question about the asymptotics, we did a 

simulation study, using the local linear smoother, as follows. 
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Figure 19: Equiva ent contour pot or t e Integration estimator, using 

Nadaraya Watson. Regressors are standart normal with cov = 0.0. 
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Figure 20: 
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Nadaraya Watson. Regressors are standart normal with cov = 0.4. 
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Figure 21: Equiva ent 3-D and contour plot for the Integration estimator, using 

Nadaraya Watson. Regressors are standart normal with cov = 0.8. 

We considered the model 
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Figure 24: Equiva ent ernels. 3-D and contour plot for the Multidimensional Nadaraya 

Watson estimator. Regressors are standart normal with cov = O.B. 

with ml(x) = 2x, m2(x) = x2 - E(x2) and c = O. The error term c has been normal 
distributed with mean zero and variance 0.5, the design X was uniform on [-3,3]2 dis-: 
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tributed. For n = 250,500,1000 and 20.00 observations we calculated the estimates 7Th, 
7Th at x = -1.5, -0.75,0.0,0.75 and 1.5 and determined their biases B ( which is always 

mentioned as b . h2 in theory) and variances V for each n. The bandwidths have been 

hI := hn = hon-1/5 with ho ~ 0.69 and h2 := 9n = 2hn/3 for the nuisance direction. 

Our first question was whether the rate of convergence mentioned by the theory holds 

also empirically. Therefore we considered the following regression 

In(V) - ,81In(nhn) 

In(B) ,82In(nhn). 

For the integration estimator we got for all five points ,81 ~ ,82 ~ -1.003, for the back­

fitting ,81 ~ -1.02 and ,82 ~ -1.05 which ensures the theory concerning the rate of 

convergence. 

The second question we were interested in was the comparison of the empirical biases and 

variances calculated in our simulation study with the analytical ones. We present results 

only for the function ffi2 in the above mentioned setting, but have to remark that the 

biases certainly depend on the particular data generating model as well as on the chosen 

design, at least in practice. To consider the function ffil that is linear in this model is 

useless since we know that a local linear estimator is fitting such a function almost always 

exactly by definition and thus this would not be typical in practice. For the comparison 

see table 8 for the analytical values and table 9, 10 for the empirical values. 

TABLE 8: ANALYTICAL BIAS AND VARIANCE 

n 250 500 1000 2000 

variance (equal for all points) 0.0147 0.0085 0.0048 0.0028 

bias (equal for all points) 0.0529 0.0400 0.0306 0.0225 

As we can see the estimator is doing very well for an increasing number of observations 

and at least for a low dimensional model the integration estimator obviously reaches his 

asymptotics pretty fast. 

Since we could not calculate (in GAUSS) with weight matrices for the backfitting proce­

dure when n was?:: 1000, we had to determine the empirical bias and variance by doing 

400 replications for huge n and did the regression described above separately for 250 and 

500, respectively for 1000 and 2000. We can conclude from ,81 and ,82 that bias and vari­

ance also diminish almost in the theoretical one dimensional rate. Obviously the constant 

ho of the bandwidth is chosen too big here, as can be seen in table 19. The variance 

calculated with the aid of the weight matrices is smaller than expected whereas the bias 

is much bigger. 

27 



TABLE 9: SMALL SAMPLE BIAS AND VARIANCE FOR INTEGRATION ESTIMATOR 

n 250 500 1000 2000 

-1.5 0.01897 0.00986 0.00535 0.00305 

-0.75 0.01813 0.00999 0.00536 0.00303 

variance at +0.0 0.01825 0.01019 0.00548 0.00306 

+0.75 0.01807 0.00996 0.00535 0.00301 

+1.5 0.01765 0.00978 0.00546 0.00309 

-1.5 0.06237 0.04866 0.03206 0.02552 

-0.75 0.06681 0.04932 0.03196 0.02509 

bias at +0.0 0.05892 0.04705 0.03303 0.02567 

+0.75 0.06410 0.04853 0.03139 0.02453 

+1.5 0.07067 0.05071 0.03313 0.02471 

TABLE 10: SMALL SAMPLE BIAS AND VARIANCE FOR BACKFITTING ESTIMATOR 

n 250 500 1000 2000 

-1.5 0.01431 0.00793 0.01503 0.00619 

-0.75 0.01411 0.00798 0.01231 0.00684 

variance at +0.0 0.01404 0.00801 0.01509 0.00755 

+0.75 0.01409 0.00796 0.01073 0.00528 

+1.5 0.01391 0.00791 0.01417 0.00684 

-1.5 0.31041 0.22552 0.16990 0.11953 

-0.75 0.30895 0.22489 0.16621 0.12171 

bias at +0.0 0.31176 0.22576 0.17181 0.13314 

+0.75 0.31097 0.22529 0.17411 0.13399 

+1.5 0.31137 0.22625 0.18929 0.12787 

Since in this subsection we were not interested in the direct comparison of the MSE or 

something similar for backfitting and integration method, we did not look for an optimal 

bandwidth in each direction neither for each method. So one should only look on the 

tables respectively the asymptotic behavior of the estimates, but not for a comparison of 

the absolute values. 

28 



3.9 In higher dimensions 

Due to the excess of information in this paper we only present results for d = 4, n = 500. 

Other simulations we did result in the same statements made for this special case. Here we 

did 100 replications and calculated bias and variance empirically by doing 400 replications. 

We took the analytically optimal bandwidth for the estimation of the additive functions, 

compare our discussion at the very beginning of our simulation study. The additive 

functions in our model have been 

ml(X) - 2x , m2(x) = x2 - E(x2) , 

m3(x) - exp(x) - E{exp(x)} and m4(x) = 0.5· sin(-1.5x) . 

Some final results are presented in table 11 together with the bandwidth we used. The 

bandwidth for the directions not of interest in the integration estimator has been chosen as 

0.45. The trends already discovered in the simpler cases were enforced in that study. The 

regression function itself is estimated well by backfitting whereas the marginal influences 
of the explanatory variables sometimes are better estimated by the integration estimator. 

Since the integration estimator suffers much more from boun~ary effects and data sparse­

ness, what is especially the case in higher dimensions, the average mean squared error 

looks quite often worse. This concerns mainly the simulation example where the design 

is normal distributed. 

TABLE 1~: MASE IN HIGHER DIMENSIONS (d = 4) 

FOR ADDITIVE COMPONENTS AND REGRESSION FUNCTION 

Estimated mj : ml m2 m3 m4 
Distribution U2 N(O.O) U2 N(O.O) U2 N(O.O) U2 N(O.O) 

hI 20 20 0.212 0.211 0.138 0.194 0.309 0.307 

back. 0.051 0.018 0.180 0.159 0.078 0.036 0.074 0.075 
MA SE 

into 0.041 0.056 0.100 0.037 0.156 0.057 0.135 0.106 

4 Conclusion 

m 
U2 N(O.O) 

0.028 0.024 

0.250 0.540 

A common misunderstanding of the integration method is that it must inherit the poor 
properties of the high dimensional regression estimator. Of course, this is absurd. It 

amounts to saying that the sample mean must behave poorly because the individual ob­

servations from which it is constructed are inconsistent estimates of the mean themselves. 

In any event, we have not found this to be the case. In fact, we have found many simi­

larities between the integration and backfitting methodologies in terms of what they do 
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to the data (for example the eigenanaly~is) and indeed their statistical performance. In 

particular, both integration and backfitting suffer some small sample cost. The backfit­

ting method seems to work better at boundary points and when there is high correlation 

among the covariates, while the integration method works better in most of the other 

cases and especially in estimating the components as opposed to the function itself. 
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