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1. Introduction 

Suppose X I, ... ,Xn are i.i.d. according to a distribution F on the line. Consider the 

problem of constructing a level 1 - a confidence interval for f.l(F), the mean of F. The 

distribution F is assumed to belong to a large class F of distributions. Clearly, F must be 

restricted somewhat since we are assuming f.l(F) exists. If In is a random interval (or set), 

define the coverage level over F to be 

In fact, even if we assume F consists of all distributions F having finite moments of all 

orders, Bahadur and Savage (1956) proved the negative result that it is impossible to 

construct an effective confidence interval for f.l(F). In particular, if In is a random interval 

(depending on Xl' ... ' Xn) such that, even for one F, the probability under F that In is 

a bounded set is one, then the coverage level over F is zero! 

Nevertheless, the aforementioned result has not deterred the search for valid inference 

procedures, especially since Efron's (1979) discovery of the bootstrap, as well as methods 

based on Edgeworth expansions, likelihood, and other resampling refinements. Indeed, 

there are several methods yielding intervals In of nominal level 1-a satisfying, for fixed F, 

(1.1 ) 

for some p > O. In fact, p = 1 for intervals whose coverage error is of the same order 

as that provided by the normal approximation, p = 2 for second-order accurate intervals 

such as the bootstrap t-interval, and p can even be larger by bootstrap iteration (under 

assumptions to ensure the validity of Edgeworth expansions); these properties are derived 

in Hall (1992). Unfortunately, all these intervals have the property that their coverage 

level over F is zero. 

The technical reason why these methods can misbehave so badly yet still satify (1.1) 

is that the convergence result in (1.1) holds for each fixed F, and is not uniform over F. 

Therefore, a question worthy of investigation is to find methods that are appropriately 

uniform, and indeed, some results are obtained in Hall and Jing (1995), by imposing 

restrictions on F. Here, however, we insist on considering only procedures whose coverage 

level over a large F is the nominal level. Uniform convergence to the nominal level over F, 
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while preferable to pointwise convergence for each fixed F, is not strong enough for our 

inferential purposes; we aim for a coverage level 1 - a for any finite sample size rather 

than in the limit only. Because of the Bahadur and Savage result, we do need to make 

some restriction. The assumption imposed then is that the unknown F has support in a 

fixed compact set, which we take to be [0,1]; otherwise, F is arbitrary (and need not be 

continuous, for example). 

The main problem considered in this paper is then the following. Let F 0 be the class 

of all distributions on [0,1]. The goal is to construct a confidence interval In for J-l(F) 

that is effective. First, among confidence intervals In whose coverage level over Fo is 

1 - a, can we find an optimality result giving a lower bound on how large the length of 

In can be? Second, can we actually construct an optimal interval? The answer to the first 

question is not that surprising, as intervals based on the normal approximation serve as 

our gold standard. Thus, if In = [Ln' Un] and Dn = nl/2(Un - Ln)/2, then the standard 

asymptotic interval Xn ± Zl_~Sn/nl/2 (where Zl-~ is the 1- ~ quantile of the standard 

normal distribution and Sn is the sample standard deviation) satisfies Dn -+ zl_~(J(F) in 

probability under F, where (J2(F) is the variance of F. Not surprisingly, in a nonparametric 

setting, this asymptotic constant zl_~(J(F) is in some sense the best attainable. 

Of course, the normal theory intervals are not fully nonparametric as their coverage 

level over F 0 is also zero. Such is the case for bootstrap intervals as well, as made clear 

in Romano (1989). To appreciate why, consider Fn E Fo with Fn the distribution that 

assigns mass Pn to 1 and 1 - Pn to 0. Fix any e in (a, 1) and choose Pn small enough (but 

not 0) so that (1 - Pn)n 2: e. Then, under Fn, a sample of size n will be a sample of all 

zeroes with probability at least e. Since the resampled or bootstrap data sets will all be 

degenerate as well, the resulting bootstrap confidence interval will not include J-l(Fn) = Pn· 

Thus, with probability at least e, the resulting bootstrap confidence interval will not cover 

the true mean, and hence the coverage probability is no bigger than 1- e < 1- a. In fact, 

since e is arbitrary in the argument, the coverage level over F 0 is zero. 

A variety of conservative methods are presented in Bickel (1992), including some 

justification for Stringer's (1963) widely used proposal. However, none of the methods 

presented there are both conservative in level and efficient. We believe our proposal is the 

first one that is both nonparametric (or conservative) and efficient. 

The paper is organized as follows. In Section 2, we derive a result which can be viewed 
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as an asymptotic efficiency result for conservative confidence intervals for the mean. In 

essence, the result says that we can not do better, in terms of length of the interval, than an 

interval based on a normal approximation. The novel aspect of the result is that its proof 

draws upon local asymptotic minimax estimation theory by looking at an appropriate least 

favorable parametric submodel, but intervals are not compared in the usual minimax way 

of worst case behavior over shrinking neighborhoods. In Section 3, we review a proposal of 

Anderson (1967), which leads to genuinely nonparametric (conservative) intervals whose 

length is of the right order, but the constant is too big. His proposal is generalized, though 

efficiency is not obtained. The reason for considering Anderson's approach is because it 

makes use of the fact that we can construct genuinely nonparametric confidence bands for 

the c.d.f. F by the usual Kolmogorov-Smirnov bands. Anderson's procedure uses these 

bands in a primary way. The efficient construction we present in Section 4 also makes use 

of the Kolmogorov-Smirnov bands, but somehow the construction relies on these bands 

in a more secondary way so that efficiency can ensue. In Section 5, we present some 

conclusions, variations, generalizations, and directions for future work. 
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2. An Asymptotic Lower Bound 

In this section, it is more convenient to index the probability distribution generating 

the data by the measure P (as opposed to the c.dJ. F). Suppose Xl, ... ,Xn are i.i.d. 

according to a probability P, concentrated on [0,1]; otherwise, nothing else is assumed 

about P. Inference focuses on the mean JL(P). The question considered in this section is 

the following. Among confidence intervals for the mean with guaranteed coverage, what is 

an asymptotic lower bound for the length of the interval? The following theorem answers 

the question. In fact, much more is shown. Specifically, the interval must be centered 

(to an appropriate order) at the sample mean, in order to be efficient. Moreover, an 

efficient interval, to order op(n-l/2) behaves like an interval provided by the usual normal 

approximation, namely Xn±er(P)zl_'i/nl/2. However, the normal approximation interval 

is not conservative, and so can not qualify to be efficient. In the statement of the theorem 

and in the proof, pn refers to the product measure of n i.i.d. observations from P. 

Theorem 2.1. Let In = (Ln' Un] be a sequence of intervals (being measurable functions 

of Xl, . .. , Xn) satisfying 

for all n and all P. Define Dn = Dn(In) = nl /2(Un - Ln)/2. Assume Dn is asymptotically 

concentrated on [0, a); that is, for every t > 0, pn{Dn < a + t} -t 1 as n -t 00. Then, 

(i) a 2: Zl-'ier(P). 

(ii) If In is an interval such that the lower bound Zl- 'i er(P) is attained, then In is centered 

at Xn in the sense 

in pn-probability. 

(iii) If In is an interval such that the lower bound Zl-'ier(P) is attained, then Dn -t 

Zl- 'i er(P) in pn-probability, and so 

- er(P)Zl-'i -1/2 
In = Xn ± n l / 2 + open ). 

Proof. Fix P = Po having mean JLo = JL(Po), standard deviation ero = er(Po), and density 

f (with respect to some er-finite measure dx). Introduce the parametric submodel {P:,e}, 
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where P7~,(J is the n-fold product measure of Pn,(J, and Pn,(J has density 

()(x - /lo) 
fn,(J = f(x)[l + n 1/ 2 ] 

for 0 :S ~c :S 1. Note that for any fixed real number (), fn,o defines a density as soon as 

n 2: ()2. Further note that f n,O has mean 

t ()2 
/l(Pn,o) = /lo + ()n-

1
/

2 lo x(x - /lo)f(x)dx = /lo + n~02· 

By the usual examination of loglikelihood ratios (see Proposition 2.3 of Millar, 1983), it 

is immediate that the experiments {P:,o} converge to {Po}, where Po is the Gaussian 

measure on the line with mean ()a-o and variance one. Indeed, the loglikelihood ratio at () 

versus () = 0 is simply 

n n n ()(X) 
log [IT fn,o(X i )/ IT fn,o(X i )] = L log[l + i 1~/l0 ]. 

i=1 i=1 i=l n 

Under Po (by a Taylor expansion and the law of large numbers), this loglikelihood ratio 

is asymptotic to ()n 1
/
2(Xn - /lo) - ()2a-512, which of course is asymptotically normal with 

mean -rPa-5/2 and variance ()2a-5 (implying contiguity). Moreoever, for this parametric 

submodel, it is then clear that the sample mean Xn is then locally asymptotically minimax 

for the mean. Now, let.e be any bounded subconvex loss function. Then, by the asymptotic 

minimax theorem (see Millar, 1983, p.146), 

limctoolimn-H)Q infTn sUPIOI$c J .e[n 1/2 (Tn - /l(Pn,O)) ]dP::,(J 

= limctoolimn-+ooinfTn SUPIOI$c J .e[a-5(Tn - ())]dP::,o = infTSUpO J .e[a-6(T - ())]dPo 

where the infimum over Tn and T refer to the infimum over all estimators available for 

experiments P::,o and P(J, respectively. But, if Q(J denotes the Gaussian distribution with 

mean () and variance one, the last expression can be evaluated as 

infTsup(J J l[a-o(a-oT - a-o())]dP(J = infTsup(J J l[a-o(T - ())]dQo = El(a-oZ), 

where Z is a standard normal variable. In particular, let .e = ld be the (subconvex) loss 

function satisfying ld(T - ()) = 1 if IT - ()I > d and is zero otherwise. The previous result 

then says 

lirnctoolimn-+ooinfTnSUPIOI<cP::,o{nl/2ITn - /l(PO,n) I > d} = P{IZI2: ~} (2.1) 
- a-o 
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for any d. Now, given the interval In = [Ln, Un], let {Ln be the estimator (Ln + Un)/2. 

Then, by the hypothesis on In, we get 

We now claim that, for any P and any E > 0, 

(2.2) 

To prove (2.2), 

and (2.2) follows. Now, under Po, Po{Dn ::; a + E} ---+ 1, by assumption. But, for 

any sequence {On} with IOnl ::; c, {P:,eJ is contiguous to {Po}. It then follows that 

P: B {Dn ::; a + E} ---+ 1 as well. Hence, by (2.2), 
, 11 

Therefore (by a subsequence argument), for any E > 0 and any fixed c, we have 

(2.3) 

Now, to prove the result a 2: Zl-~O"O, assume the opposite and let l:l = Zl-~O"O - a. 

Choose E so that (l:l- E)/o"O = y > o. Then, choose 8 small enough so that 

P{IZI > Zl-~ - y} - 8> O!. 

Finally, choose c large enough so that the result (2.1) with d = a + E gives 

But the right hand side of (2.4) is greater than or equal to 
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by choice of 6. This yields a contradiction because by (2.3), the estimator jLn would have 

a smaller asymptotic minimax risk than the bound of a which is valid for any estimator 

Tn given by (2.4). 

To prove (ii), the result (2.3) implies that jLn is almost locally asymptotic minimax, 

which would be immediate if (2.3) were true with E replaced by o. The result would then 

follow by Theorem 4.1 of Hajek (1972). Since we can not just replace E by 0 in (2.3), we 

sketch an argument based on the proof of (4.3) in Hajek (1972). For notational simplicity, 

assume 0"0 = 1. Assume n 1
/
2(jLn - Xn) fails to converge to 0 in P-probability. Then, there 

exists an E > 0 such that for all large m, 

If Z denotes an observation from the model {Pe}, then by Lemmas 3.1 and 3.2 of Ha

jek (1972), this would imply the existence of an estimator sequence ~m(Z, U) (possibly 

depending on an auxiliary randomization U, independent of Z), satisfying 

for all rn large enough, and ~m(Z, U) - () is constructed to have the same asymptotic 

properties as m 1/
2 (jLm - /1(Pe,m)); see (4.8) of Hajek. But by Lemma 2.1 of Hajek, there 

exists /3 > 0 depending only on E so that the maximum risk of ~m (Z, U) for the loss function 

fZl_~+E is at least a+/3. But, the maximum risk of ~m(Z,U) for the loss function fZl_~+E 

is asymptotically (by our (2.3)) less than or equal to a, which is within (2/1f) 1/2E of the 

best obtainable rate, since 

Hence, by choosing E small enough so that (2/1f)1/2E < /3, we get a contradiction. 

Finally, to prove (iii), writing /1 for /1(P), 

But, by result (ii), nl/2(Xn - Ln) = Dn + op(l). Therefore, invoking the asymptotic 

normality of nl/2(Xn - /1), the probability on the right side of (2.5) is 
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But, the fact that Dn is asymptotically concentrated on [0, Zl-%a(P)] and the asymptotic 

normality of n 1/ 2 (Xn - J1) with asymptotic variance a 2 (p) forces Dn --+ z1-~a(P) in 

pn _ pro ba bili ty. 

Remark 2.1. If a conservative interval In is constructed such that the lower bound 

zl-~a(P) is obtained for every fixed P, then we will call In efficient; otherwise, we will 

call the interval inefficient. 

Remark 2.2. Surprisingly, there is not a vast literature on efficiency theory in the con

struction of confidence intervals. A note able exception are Beran and Millar (1985), who 

develop an asymptotic theory for confidence sets in a decision theoretic local asymptotic 

minimax framework. More specifically, a loss function is introduced to measure the per

formance of an interval In for a real-valued parameter () (and more generally for abstract 

parameter sets) as follows. If J1 is the true parameter and interval In is used, the loss is 

g( n 1/2 SUPyE1n Iy - J11); here, 9 is an increasing function on the positive reals. Evidently, the 

loss penalizes if the interval is too wide or if it is miscentered. Now, once a loss function 

is introduced, different procedures (satisfying the constraint on level) can be compared 

by comparing their risk functions, by looking at the maximum risk over shrinking neigh

borhoods as in the local asymptotic minimax theory for estimation problems. Note that 

our simple result (while indeed making use of local asymptotic minimax ideas) does not 

compare procedures by looking at the maximum risk over shrinking neighborhoods. The 

assumption that Dn is asymptotically concentrated on [0, a] need only hold under a single 

law P, and then the conclusion is the asymptotic constant a must then be no less than 

z1_}-a(P), under P. Issues like superefficiency do not come into play once we impose the 

coverage constraint, which must hold for all P for In to even be considered. Moreover, 

the optimality result we achieve is based directly on the length of the interval. In essence, 

however, our result is an asymptotic admissibility and asymptotic minimax result of sorts. 

Indeed, one can construct an interval In whose standardized half-length Dn is strictly less 

than the bound zl_~a(P) with probability tending to some number pE (0,1). The num

ber P can be positive but it cannot be one (by the theorem), so that shorter intervals are 

possible but only at the expense of intervals that must then be bigger some of the time. 

That is, our result can be viewed as a minimax result because it says that no interval 

(sequence) can have a half-length that is asymptotically concentrated on a smaller set. 

Furthermore, if an interval achieves the lower bound on the length in the sense of part (i) 
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of Theorem 2.1, then it already must be appropriately centered in the sense of (ii) of the 

theorem. 

Remark 2.3. The theorem generalizes to parameters (j(P) other than the mean. If the 

functional (j (.) is appropriately differentiable, then, in a nonparametric setting, efficient 

intervals must behave like 

where Fn is the empirical measure and 7 2 (P) is the asymptotic variance of n 1/2(j(Fn) 

under P. 
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3. Inefficient Methods with Guaranteed Coverage 

The possibility of finding confidence intervals for the mean with guaranteed coverage, 

but which are not too big, seems plausible given the following construction, due to Ander

son (1967) (and later rediscovered by Breth, Maritz and Williams, 1978). At this point, we 

switch notation and index the probability distribution generating the sample X!, . .. , Xn 

by the cumulative distribution function (c.d.f.) F. Then, fL(F) = EF(Xi ). Here, all we 

are assuming is that F E F o, the class of all c.dJ.s supported on [0,1]. Let Fn be the 

empirical c.d.f.. For c.d.f.s F and G, let the sup (Kolmogorov) distance dK be defined by 

dK(F, G) = SUptIF(t) - G(t)l. 

Let Rn,l-a be the Kolmogorov-Smirnov uniform confidence band for F of nominal level 

1 - a defined by 

(3.1) 

where cn(l - a) is the 1 - a quantile of the distribution of nl/2dK CFn' F) under F when 

F is any continuous distribution. Note that, for any F (discrete or otherwise), 

the inequality is an equality iff F is continuous. This leads to a nominal level 1 - a 

confidence interval In,o for fL(F) as follows. In words, the value fL is included in In,o if 

there is some distribution F in Rn,l-a that has mean fL. Then, the event {F E Rn,l-a} 

implies {fL(F) E In,o} and so 

In fact, In,o = Xn ± Op(n- 1/ 2 ), which follows from the following simple proposition. 

Proposition 3.1. Let mk(F) = EF(Xf). If F and G are in Fo and dK(F, G) :::; E, then 

!mk(F) - mk(G)! :::; E. 

Proof. By integration by parts, 
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It follows immediately from Proposition 3.1 that the interval 1n,0 is contained in 

the interval Xn ± cn(l - ex)jn1
/

2
• The claim that 1n,0 = Xn ± Op(n- 1/ 2 ) follows since 

cn (1 - ex) --+ c(1 - ex), where c(l - ex) is the upper 1 - ex quantile of the distribution of 

sUPo<t<lIB(t)l, where B(·) is a Brownian Bridge process. 

In fact, it can be argued that 

The constant c(l-ex) is too big and should be compared with zl_~cr(F). For example, with 

ex = .05, c(.95) . 1.36, while zl_~cr(F) . 1.96cr(F) ~ .98 for all F. In particular, when F 

is the uniform distribution on (0,1), the asymptotically best constant is 1.96/(12)1/2 .. 57. 

The ratio 1.36/.57 . 2.4 measures the inefficiency of Anderson's procedure. Indeed, a 

sample of approximately (2.4)2n = 5.76n is needed when using Anderson's procedure to 

be as efficient as an efficient procedure based on a sample of size n. 

Anderson's procedure, with the hope of improved efficiency, is generalized in Gasko (1991). 

(who treats the one-sided case) as follows. If;fn = (Xl, ... , Xn) is a sample of size n from 

F, let Xi:n denote the i-th order statistic. Define 'lri = 'lri (;fn , F) = F(Xi+1:n) - F(Xi:n) 

for i = 1, ... ,n - 1; also, let 'lro = F(X1:n) and 'lrn = 1 - F(Xn:n). Then, 1I = lI(;fn, F) is 

a random point in the n + 1 simplex ~n in Rn+1. Note that the distribution of .rr.(;fn, F) 

under F is the same for all continuous F. 

Now, let 8n ,1-0I C ~n be a region of probability content at least 1 - ex, meaning 

(3.2) 

for all F. Then, the region 8n,1-0I induces a confidence set Cn,I-OI for F by including F 

in Cn,l-OI if lI(;fn, F) E 8n,1-0I. Clearly, 

and so Cn 1-01 is a level 1 - ex confidence set for F. , 

We can now proceed as before to construct an interval In for the mean. That is, a 

value fJ- belongs in the interval In if there is some distribution F E Cn 1-01 with mean , 



12 

Jl. Then, PF{Jl(F) E In} 2: 1 - a. However, regardless of the choice of region Sn,a the 

resulting interval In is not efficient. 

Proposition 3.2. Any region Sn,1-a satisfying (3.2) leads to a conservative 1 - a confi

dence interval In for Jl(F). However, no choice of Sn,1-a leads to efficiency. 

Proof. Fix (a sequence of regions) Sn,1-a satisfying (3.2), and let In denote the induced 

confidence interval for Jl(F). Assume efficiency holds; then, by Theorem 2.1 (iii), we must 

have 
1 = X ± Z1-~ ·G"(F) + 0 ( -1/2) 

n n n 1/ 2 p n 

for all F. Now, Sn,1-a also induced a level I-a confidence interval, M n, for the parameter 

m(F) = EF(X'f) by a similar prescription: a value m is included in Mn if there is an F in 

Cn,1-a with m(F) = m. By construction, we in fact have that (Jl(F), m(F)) E (In, Mn) 

with probability at least 1 - a for all F. 

Vie now argue that the interval for m(F) based on data;fn is the same as the interval 

for Jl(F) based on data y , where y = (Yl, ... , Yn ) and Yi = Xl- To appreciate why 
-n -n 

this is so, if the interval Mn for m(F) based on ;fn includes a value m, then there is an 

F in Cn,1-a with m(F) = m and 1r.(;fn' F) E Sn,1-a. But then, 1r.('J!.n' F) E Sn,1-a, where 

F(.) = F(.1/2) is the distribution of Yi = Xl if Xi has c.dJ. F. This follows because 

Hence, based on data y , the value 
-n 

J ydF(y) = J x2dF(x) = m 

is included in the confidence interval for the mean. Conversely, if the interval for the 

mean based on 'fLn includes m, so does the interval for the second moment based on ;fn. 

Therefore, the hypothesis that In is efficient entails Mn is efficient and so 

- z1_~G"(F) -1/2 
Mn = Yn ± n 1/ 2 + op(n ). 

We are now in a position to arrive at a contra~iction. By the bivariate Central Limit 

Theorem, 



13 

n 

= P{nl/2IXn - JL(F) I ::; zl_~O"(F), n1
/

2 In- 1 :LX; - m(F)1 ::; zl_~O"(F)} + op(l). 
i=l 

Now, the last expression converges to 

where (Zl' Z2) is bivariate normal, mean 0, Var(Zl) = 0"2(F), Var(Z2) = 0"2(F), and 

covariance Cov(XI, Xr). Hence, 

= P{IZll ::; zl_~O"(F)} - P{IZll ::; zl_~O"(F), IZ21 > zl_~O"(F)} 

= (1 - et) - P{IZll ::; zl_~O"(F), IZ21 ~ zl_~O"(F)}. 

This last probability can only be ° if Zl and Z2 are perfectly correlated, which means that 

X 1 and Xr must be linearly dependent with probability one. Clearly, this is not the case 

when Xl is uniform on (0,1), and so a contradiction is obtained. 

Remark 3.1. An alternative way to generalize Anderson's idea is to just change the 

metric. The same basic argument in the proof of Proposition 3.2 would show inefficiency. 

Remark 3.2. While no particular region Sn,l-a leads to efficiency, Gasko (1991) argues 

that improvements in efficiency at a particular Fo E F 0 are possible, and that perhaps 

Fo can be chosen adaptively. Some simulations show some improvement over Anderson's 

method, but no proof of efficiency is supplied (and it seems doubtful that one exists). 
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4. An Efficient Construction for the Mean. 

Let Xl' ... ' Xn be LLd. with c.dJ. F, mean p,(F), variance (J2(F), and set p(F) _ 

EF[lXi - p,(F)1 3]. The unknown c.dJ. F is assumed to be in Fo. Again, the goal is to 

construct a confidence In for p,(F) that contains p,(F) with probability at least 1 - et for 

every F; in addition, the interval In must be efficient. In particular, the interval must 

satisfy the square root of the sample size multiplied by the length of the interval tends in 

probability to 2z l _%(J(F), for every F E Fo. 

Let Xn = n- l L~=l Xi and In(F) be the distribution of n l /
2 (Xn - p,(F)) under F, 

with corresponding c.dJ. 

Also, let 

dn(et,F) = inf{x: In(x,F) ~ et}. 

Note that In(dn(et, F), F) 2:: et and In(dn(et, F)-, F) ::; et. Suppose (371 is a sequence of 

numbers in [0,1] converging to o. Let Rl ,1-f3n be defined by (3.1) with et there replaced 

by (3n. Define 

(4.1) 

and 

( 4.2) 

The interval we first propose is defined by 

_ . ~ et 1/2 - ~ et 
In,1 - {p, . dn,L("2) ::; n (Xn - p,) ::; dn,u(1 - "2)}. (4.3) 

This construction leads to an interval which, in fact, is determined by two one-sided con

servative level 1 - ~ intervals; as such, we are tacitly assuming et ::; 0.5. At this point, it 

is certainly not clear how to compute I n ,1 because of the sup in the definition (4.1), which 

is a sup over an infinite-dimensional set. For now, we postpone this computational issue 

and present the following result. Note, however, in the course of analyzing In,!, we will 

derive further more conservative intervals (which are efficient too), but which are directly 

computable. 
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Theorem 4.1. For each n and all F E F Q , 

Proof. 

Cl' 1/2 - Cl' n A ~ Pp{dn(-2 - f3n,F) :::; n (Xn - Jl(F)) :::; dn(1- 2 + f3n,F) FE Rn,1-.Bn} 

Cl' 1/2 - Cl' A 

~ Pp{ dn( 2 - f3n, F) :::; n (Xn - Jl(F)) :::; dn(1- 2" + f3n, F)} - Pp{F (j. Rn,1-.Bn}' (4.4) 

where we have used the trivial inequality p(AnB) ~.P(A) -P(BC
). But, (4.4) is bounded 

below by 

and the proof is complete. 

Remark 4.1. Setting f3n = 0 in the construction of I n,1 would lead to a conservative 

interval, but not one which is efficient. 

Remark 4.2. The above construction is related to the constructions presented in Loh 

(1985) and Silvapulle (1996), both of whom consider parametric testing problems. Note, 

however, that Loh's construction in essence replaces the value dn(1 - ~ + f3n, F) in the 

definition (4.1) by dn (1- ~,F), which would not lead to a conservative interval. The goal 

here is not just to produce conservative intervals, but efficient ones in a nonparametric 

setting. 

Theorem 4.2. Suppose f3n > 0 and f3n --+ 0 in such a way so that log(f3n)/n --+ 0 as n --+ 

00. Then, dn,u(l-~) --+ 0'(F)Z1-~ in probability under F; similarly, dn,L(~) --+ O'(F)z~ 
in probability under F. Therefore, I n ,1 is efficient in the sense of Theorem 2.1. 

In order to prove Theorem 4.2, we seek an upper bound for dn ,u(l - ~) which is 

analytically tractable and which tends to 0'(F)Z1_£ in probability under F. At the same 
2 

time, we constructively derive an upper bound which may be computed explicity. 
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First, let 

(4.5) 

where CBE is the smallest known universal constant valid in the Berry-Esseen Theorem. 

Then, let on,a(F) be defined as follows: 

In (4.6), <1>(.) denotes the standard normal c.dJ .. 

Proposition 4.1. The following bound holds: 

(4.7) 

Therefore, 

and 

Proof of Proposition 4.1. Let r = rn,a(F) = 1 + on,a(F). By the Berry-Esseen 

Theorem, 

By definition of on,a(F) (and hence r), 

Therefore, by the triangle inequality, 

a 
In(zl-~+{3n(J(F)r, F) - (1- "2 + (3n) ~ 0, 

and (4.7) follows, as then do (4.8) and (4.9). 

Now, in order to use the bounds (4.8) and (4.9), we first need to understand the 

behavior of on,a(F). Indeed, on,a(F) is order n- 1/ 2 in probability; in fact, the following is 

true. Of course, ifJ(·) denotes the standard normal density. 
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Lemma 4.1. For all n large enough 

the bound holds for n satisfying c/>2(Zl-~+f3J > 2(27re)-1/2~n(F), which holds for all 

large n. 

The proof of the lemma will be deferred to the appendix. Now, define Lin and 6n to 

be 

(4.10) 

and 

Also, define 

a-n,u = sup{O"(F): FE Rn,l-f3n}' (4.12) 

From (4.8) and (4.9), this leads to the following bounds. 

Proposition 4.2. 
A et A 

dn ,u(l - "2) S; Zl-~+f3n (1 + 6n )a-n ,u (4.13) 

A et A 

dn L(-) > ZQ._t< (1 + 6n )a-n u , 2 - 2 fJn , 
(4.14) 

Note, from Lemma 4.1, we have 

( 4.15) 

as soon as the term in brackets is nonnegative. So, to bound 6n in (4.13) and (4.14), it 

suffices to und,erstand the behavior of Lin. But, using the (crude) inequality p(F) S; 0"2(F) 

(for F E F o), we get 

where a-n,L is defined by 

( 4.17) 



18 

Therefore, to complete our series of successive approximations, it is only necessary to 

bound cr(F) (in both directions) as F varies in Rn,1-f3n' We will appeal to the following 

lemma. 

Lemma 4.2. Fix F and G, c.dJ.s in Fo. If dK(F, G) ~ E, then 

Therefore, 

Icr(F) - cr(G)1 ~ (3E)1/2 (4.18) 

or 

Icr(F) - cr(G)1 ~ 3E/cr(F). ( 4.19) 

Proof. Apply Proposition 3.1. 

Now, for F E Rn ,1-f3n, it follows from (4.19) (noting we could have employed (4.18)) 

that 

( 4.20) 

and so the following is true. 

Proposition 4.3. 

(4.21 ) 

( 4.22) 

Theorem 4.3. Suppose j3n satisfies log(j3n)/n -+ 0 as n -+ 00. Let 

( 4.23) 

Then, In,2 contains In,1 (hence is conservative) and In,2 (hence In,1) is efficient in the sense 

of Theorem 2.1. 
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Proof of Theorems 4.2 and 4.3. It suffices to show In -+ 0 in probability under F 

and o-n,U -+ a(F) in probability under F. First, to show o-n,U -+ a(F) in probability, by 

the law of large numbers and (4.21), it suffices to show cn(1- (3n)/n 1/2 -+ o. But, by the 

Dvoretsky-Kiefer-Wolfowitz inequality, there is a universal constant CDKW such that 

so that Cn (1 - (3n) satisfies 

which implies 
c~(l-(3n) l Z (CDKW) "":":"";---'- < - og . 

n - 2n (3n 

The right hand side tends to 0 by our hypothesis on (3n. Thus, o-n,U -+ a(F) in probability. 

By the same reasoning, o-n,L -+ a(F) in probability. Therefore, by (4.16), An -+ 0 in 

probability, and by (4.15), I n -+ 0 in probability. The proof is complete. 

Remark 4.3. Actually, the bounds used in the proof show much more. Specifically, 

if, for example, (3n satisfies (3n = n-P for any p > o. Furthermore, i Z 1-¥-+!3n - zl-~i = 
O(f3n). Also, by (4.16) and (4.20)' An = Op[(Zog(n)jn) 1/2], and so 6n is this same order, 

by Lemma 4.1. Hence, for j = 1,2, 

or 
1 "= X- ± -1/2 <> (F) + 0 ((3n + [ZOg((3n)]1/2]) 

n,J n n Zl- 2
a p n1/2 n . (4.24) 

Taking f3n = O(n-1/2) then yields the following corollary. 

Corollary 4.1. If f3n = O(n- 1/ 2 ), then 

- 1/2 Zog(n) 
In J" = Xn ± n zl_ga(F) + Op( ). 

, 2 n (4.25) 
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Of course, the intervals In,j are conservative in level, but asymptotically satisfy 

as n --+ 00, for any fixed nondegenerate F. In fact, the proof shows a much stronger 

statement. Let FT be all distributions F on [0,1] with (J(F) ~ T. Then, the arguments in 

this section show the following. 

Corollary 4.2. For any 'T > 0 and for j = 1,2, 

as n --+ 00. 

Remark 4.4. By now, the constructive approach used clearly shows efficient intervals 

can even be computed by hand. Indeed, by employing even cruder approximations while 

still retaining efficiency, use Proposition 4.3 to get the following conservative and efficient 

interval: 
- -1/2 A 3cn(1- (3n) A 

In,3 = Xn ± n Z1-~+f3n (J(Fn) + n 1/ 2(J(Fn) )(1 + 8n,u), 

where bn,u is obtained by replacing Lin in (4.11) by 

tacitly, we are assuming the term in brackets is positive for such an approximation to be 

employed (which happens with probability tending to one). The reasoning follows from 

inequalities (4.16) and (4.22). 
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5. Conclusions and Directions for Future Work 

In this paper, we have demonstrated that it is indeed possible to construct confidence 

intervals for the mean that have a finite sample nonparametric validity and large sample 

efficiency, if it assumed the observations lie in a compact set. Our approach was construc

tive and made use of some crude inequalities (so there is hopefully room for improvement); 

nevertheless, we have proved existence of efficient intervals which can even be calculated 

by hand. Ultimately, we would not want to employ the most conservative of the intervals, 

In,3, and we seek better ways at approximating In,l. 

There are obvious approaches based on simulation, but we have deliberately avoided 

these in this present work because we wanted to present a construction free of simulation 

error which might destroy our finite sample conservativeness (unless properly accounted 

for). Clearly, however, one can always do what amounts to many bootstraps by sampling 

from distributions in our Kolmogorov band for F. Then, dn ,u(l - %) in (4.1) can be 

approximated by the largest value of dn(1- % + i3n, F) as F ranges over a random selection 

of F in Rn ,I-13n. 

Alternatively, we could consider replacing dn ,u(1 - %) by the bootstrap quantile 

dn(1 - -i + i3n, Fn), as long as we can account for the variation of In(F) as F varies in 

Rn ,I-13ft; indeed, the Berry-Esseen theorem can be utilized, though better approximations 

are desired. 

Our method can be generalized in a number of directions. First, the Kolmogorov 

Smirnov distance played a role but only a minor one; however, it proves to be convenient 

at this time. Second, instead of basing the interval on the distribution of Xn - J-L(F), it 

may be better to look at a studentized quantity with hopes of higher efficiency. Next, 

the basic interval In,l defined in (4.3) applies to other parameters; simply, replace J-L(F) 

by the parameter B(F), Xn by On and let In(F) be the distribution of nl/2(On - B(F)) 

under F. Extensions to two (or more) sample problems are immediate as well; individual 

confidence bands for the unknown laws are constructed and utilized appropriately. Finally, 

when the observations are no longer real-valued, we no longer have the convenience of 

distribution-free confidence bands for the unknown distribution. But, these bands really 

play a secondary role, and we can utilize exponential inequalities for the sup distance 

between the empirical measure and the true measure to get conservative bands which may 
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be good enough. 

As a final, more philosophical point, we advocate that the goal of constructing pro

cedures that have finite sample validity requirements should be a primary consideration. 

There are many methods that enjoy excellent properties, such as (1.1) with p = 2. Rather 

than finding methods that satisfy (1.1) withp = 3, for example, we should only do so when 

we do not have to compromise on finite sample validity. Thus, now that we have intervals 

that are conservative and efficient, can we retain these two properties and still have (1.1) 

with p large? 
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Appendix 

Proof of Lemma 4.1. For purposes of the proof, set z = Zl-~+.Bn' .6. = .6. n (F), 0 = 
on,o.(F) and r = 1 + o. By Taylor's theorem, 

where z* is between z and Zf. But, cp'(z*) :s 0 and Icp'(z) I is maximized when z = 1, which 

leads to 

So, it suffices to choose r large enough so that the right hand side of the last expression is 

greater than or equal to .6.; equivalently, it suffices to choose 0 large enough so that 

Solving the quadratic leads to choosing 0 so that 

where c = 2(27re)-1/2. (As in the statement of the lemma, we are assuming cp2(z) ~ z.6..) 

By expanding the function f(.6.) = (cp2(z) - c.6.)1/2, so that 

for some .6.* between 0 and .6., it suffices to choose 0 so that 

So, by monotonicity in .6. *, it suffices to choose 0 so 

Hence, the smallest 0 that will work is no bigger than the right hand side of this last 

expression. 
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