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1 Introduction 

In this paper we discuss the estimation of binary choice models with individual effects 

when the data are time series of independent cross-sections, that is, when we observe 

independent samples of individuals over time. This kind of models are relevant for 

empirical applications. For example, when we estimate demand systems using house

hold data, we find that, for some goods, a substantial percentage of households do 

not buy the good (alcohol and tobacco are clear examples). If this is the case, we will 

need to consider the household decision of whether to buy the good, and therefore, 

we will need to estimate a binary choice model. An important issue in this kind 

of models is that in many cases, the household purchasing decision is influenced by 

some household characteristics that are unobservable to the econometrician. If these 

unobservable effects are correlated with the explanatory variables, the model cannot 

be identified using a single cross-section. Nevertheless, if the unobservable effects are 

constant over time, the model can be identified using panel data. 

The problem that arises at this stage is that for some countries, as for the VK, 

there are no panel data on household expenditures. However, in most of those coun

tries a large survey on household consumption is carried out with a regular periodicity 

(in the VK the Family Expenditure Survey provides detailed information on annual 

expenditures). The difference of this type of data, compared to panel data, is that we 

observe different individuals for different periods of time. Therefore, the estimation 

methods for panel data can no longer be used with the individual observations. 

Deaton (1985) proposed an alternative approach to estimate linear models of 

individual behaviour using micro data. If we have time series of independent cross

sections, we can divide the population into groups (cohorts) on the basis of a certain 

characteristic. This characteristic has to be constant over time for each individual 

in the population. The variable most widely used to define the cohorts in applied 

research is the year of birth. The key idea of this approach is that at the population 

level, the groups contain the same individuals over time, and therefore, the cohort 

population means have a panel structure. Although we do not observe the cohort 

population means, we can nevertheless consider the cohort sample means as estimates 
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of the cohort population means, what will provide a panel with measurement errors. 

The advantage compared to the usual errors in variables problem is that, in this 

case, we can estimate the variances of the measurement errors using the individual 

data. For linear models, Deaton (1985) and Collado (1997) showed that the estimated 

variances can be used to correct the classical estimators for panel data. 

The researcher has to decide how to define the cohorts. Notice that the larger 

the cohorts are, the less important the measurement error problem will be. However, 

since the cross-section dimension of the data set is finite, if the cohorts contain a 

large number of individuals, the number of groups will be small, and therefore, the 

cross-section dimension of the cohort panel will not be very large. In most applied 

research using cohort data (see Browning, Deaton and Irish (1985), Attanasio and 

vVeber (1993) and Blundell, Browning and Meghir (1994)), the sample is divided in a 

small number of groups with a large number of observations to avoid the measurement 

error problem. Verbeek and Nijman (1992) analyze the conditions for this approach 

to be valid for linear models. The definition of the cohorts is an interesting question 

for applied research, nevertheless, in this article, we will not discuss the cohort design. 

vVhen we estimate linear models with individual effects using panel data, the 

usual approach is to transform the model into first differences or deviations from 

time means to eliminate the individual effects (see Hsiao (1986), and Arellano and 

Bover (1990) among others). Unfortunately, this approach is no longer possible in the 

case of binary choice models and we need additional assumptions for identification. 

Chamberlain (1984) proposed to parameterize the conditional expectation of the in

dividual effects as a linear function of the explanatory variables. Then, the latent 

variable on each period is a function of all leads and lags of the explanatory variables, 

and the reduced form parameters can be estimated using panel data. Once we have 

the reduced form estimates, the structural parameters can be estimated by minimum 

distance. The problem of this approach, when we have time series of independent 

cross-sections, is that any individual is just observed one period, and therefore, we do 

not observe any lead or lag of the explanatory variables. In this article, we propose 

to use the cohort sample means instead of the individual observations as explanatory 

variables. Consequently, we will have a model where the explanatory variables are 
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correlated with the disturbances. However, under normality, the covariance between 

the explanatory variables and the disturbances is a known function of the variances of 

the measurement errors. As mentioned above, the measurement error variances can 

be estimated using the individual observations. Therefore, we can correct the clas

sical estimators for binary choice models and we will show how to obtain consistent 

estimates of the reduced form parameters. Using the reduced form estimates, we will 

derive an optimal minimum distance estimator of the structural parameters. 

In the context of panel data, Bover and Arellano (1997) proposed a within-groups 

estimator of the structural parameters. This estimator is also based on the reduced 

form estimates, and it is easier to calculate than the minimum distance estimator. 

In this article, we show that it is also possible to obtain a consistent within-groups 

estimator using cohort data. 

The paper is organized as follows. In section 2, we present a binary choice model 

\vith individual effects. We obtain a consistent estimator of the reduced form para

llleters and we derive its asymptotic distribution. Using this estimator, we can obtain 

Cl consistent estimator of the structural parameters by minimum distance. In section 

3, we consider a within-groups estimator of the structural parameters, and we calcu

late its asymptotic distribution. The finite sample performance of the estimators is 

Clnalyzed in section 4. We carry out some :Monte Carlo Simulations and we compare 

the results for different values of the parameters. Section 5 concludes. 

2 A Binary Choice Model with Individual Effects 

\Ve consider the following linear model with individual effects 

(t = 1, ... ,T, i = 1, ... ,N) (1) 

where Xii is a k x 1 vector of exogenous variables such that 

E( Vit I XiI, ... ,XiT, 'Tli) = 0 

'Tli is the unobservable individual effect and it is potentially correlated with the ex

planatory variables. The dependent variable Y;t is not observed. What we observe 

3 



is the binary variable Yit defined by Yit = l(Y;t > 0), where l(A) is the indicator 

function. Given that Y;t is not observable, we do need additional assumptions on the 

distribution of 'fJi to identify [3. Chamberlain (1984) proposed to parameterize the 

conditional expectation of 'fJi given the exogenous variables as a linear function of the 

Xit's: 

(2) 

We can then substitute (2) in (1) to get the reduced form model 

(t = 1, ... ,T, i = 1, ... , N) (3) 

where '!rts = As if t =J. S , '!rtt = {3 + At, and Cit = Vit + Bi is the error term, which is 

uncorrelated with the Xit'S. If we observed the same individuals over time (i.e. if we 

had panel data), the reduced form parameters ('!rt, t = 1, ... , T) could be estimated 

using the classical estimators for binary choice models. Thus, once we had the reduced 

form estimates, /3 could be estimated by minimum distance, or alternatively, a withill

groups estimator of {3 could be obtained as proposed by Bover and Arellano (1997). 

The purpose of this paper is to obtain a consistent estimator of (3 when the 

data available are time series of independent cross-sections. We will begin with the 

estimation of the reduced form parameters in (3). The problem in this case is that 

the Xis'S S =J. t in (3) are not observed since the individuals are different from period 

to period. However, as explained above, the population can be divided in groups 

with fixed membership over time (cohorts) on the basis of a certain characteristic 

(see Deaton (1985), Collado (1997)). Let 9 be the random variable determining the 

cohort membership for each individual (i.e. individual i belongs to cohort c if and 

only if gi E le). vVe define the cohort population means as X~t = E(Xit I gi E le), and 

we can assume that for any individual in a given cohort c 

<;it V' iid(O,~) 
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Then, we can calculate the cohort sample means as 

where (ct = ~ L (it V'\ iid (0, ~~) 
ne ne 

9i Ele 

(4) 

where ne is the number of individuals per cohortl. 

We can write (3) in terms of the cohort sample means as 

(t = 1, ... , T, i = 1, ... , N) (5) 

where c:t = Cit +7r~(Xi -xc) = cit+7r~( (i -(c), 7rt = (7r~l' ... , 7r~T)' , Xi = (X~l' ... ,x~T)" 

Xc = (X~l,···,x~T)" (i = ((~l""'(~T)" (c = «l""'<T)' 2. The problem in (5) is 

that the disturbances are correlated with the xc's. However, assuming that the joint 

distribution of the disturbances and the Xc's is normal, the conditional expectation 

can be estimated using the individual data. We will propose a measurement error 

corrected probit estimator of the reduced form coefficients in (5). 

Under normality, the conditional expectation of the disturbances given Xc is given 

by 

where I:22 = var(:rc ) = I: x , and I:12 =COV((i - (c, xc) is a block-diagonal matrix with 

T blocks k x k. 

The s-th block is 

(G) 

and the t-th block is 

The reason why the covariances (6) and (7) are different is the following: given that 

the individuals are different from period to period, the i-th individual in period t is 

1 Vie are assuming that ne is constant across cohorts and over time to simplify notation, but this 
assumption can be easily relaxed. 

2Notice that the individuals are different from period to period, and therefore, in model (5), the 
i index in period t does not correspond to the same individual than the i index in period s. 
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not observed in any other period. Therefore, C;it is included in the average C;ct but C;is 

is not included in c;cs:3. 

We can also calculate the conditional variance of the disturbances given Xc 

and 

var( C;i - C;C I xc) = ~1l - ~12~2l~~2 = S1 

where ~1l = var(C;i - c;c) is a block-diagonal matrix with T blocks k x k. 

The t-th block is 

(8) 

and the s-th block s =/=- t is 

s ne + 1 
~1l = var(C;iS - C;cs) = ~ 

ne 
(9) 

The reason why the variances (8) and (9) are different is the same as explained 

above for the covariances (6) and (7). 

If \ve define 
+ e7t - E(e7t I xc) 

e °t = .....::..::..r====;:===::::=~ 
Z jvar(e:t I xc) 

then et I Xc '-'" iidN(O, 1). Thus, we have that 

"'/e can estimate 7rt (up to scale CT E ) by pseudo-maximum likelihood relying on 

estimates of ~ and ~x. Once we have estimated 7rt, t = 1,2, ... ,T, we can estimate 

(3 and A by minimum distance. Let e = ((3', X)" A = (A~, ... , A~)', IT = (7rl,"" 7rT), 

IT = (7fl, ... ,7fT), 7r = vec(IT) and 7f = vec(IT), the minimum distance estimator of e 

is given by 

(hiD = arg mino (7f - 7r(e))'w-1(7f - 7r(e)) 

3Notice that C;cs is the average of the measurement errors for those individuals belonging to the 
same cohort than i in period s. 
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where the optimal choice for W is any consistent estimator of the asymptotic variance 

of fr. We obtain the asymptotic distribution of fr in the Appendix. The asymptotic 

distribution of B!If D is given by 

where D = o7f(B)/oB and W is the asymptotic variance of fr. The asymptotic variance 

of BM D can be estimated as 

where fJ = 07f(BAID )/oB. 

3 A Within-Groups Estimator for the Binary Choice 
Model 

\Ve are going to cOllsider an alternative estimator of (3 for the binary choice model. 

In the context of panel data, Bover and Arellano (1997) proposed a within-groups 

estimator of (3 based on a consistent estimator of 7f. The advantage of this estimator, 

compared to the minimum distance estimator, is that it is very easy to calculate and 

it does not involve the estimation of the nuisance parameters A. The disadvantage is 

that it is less efficient than the optimal minimum distance estimator. Nevertheless, 

Bover and Arellano (1997) show that it is possible to obtain a linear GMM estimator 

which is asymptotically equivalent to the optimal minimum distance. Following this 

approach, we are going to consider a within-groups estimator of (3 when the data 

available are time series of independent cross-sections. 

Let us come back to the model for the latent variable (1). We can consider the 

random variable 9 defined above, which determines the cohort membership for each 

individual. Taking expectations conditional on 9i in model (1) we get 

* *'(3 * * Yet = x et + TJe + Vet' (t = 1, ... ,T, c = 1, ... ,C) 

where X~t = E(Xit I 9i E le), Y~t = E(Y;t I 9i E le), 17~ = E(17i I 9i E le) and 

7'~t = E(Vit 19i E le). We can write the model for the cohort population means as a 
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system of equations 

(10) 

where y~ = (Y~l"'" Y~T)" X; = (X~l"'" x;T)" v~ = (v~l"'" V~T)" and e is a T x 1 

vector of ones. We can transform the variables in (10) into deviations from time 

means to eliminate the cohort effects. Let fj~ = Qy~, X~ = Q X~, and v~ = Qv~, 
where Q = Ir - ee'IT 

(11) 

Let us now consider model (3). Taking expectations conditional on gi, we can 

write the system of T equations as 

We can now apply the deviations from time means operator Q to obtain 

(12) 

From (11) and (12) we get the following set of restrictions 

X;(3 = QIT'x~ ( 13) 

Notice that, contrary to what happens in the true panel case, the cohort populatioll 

means in (13) are not observed. However, we can write the set of restrictions in terlllS 

of the cohort sample means. We can define 'l1e = (<;"cl,'" ,<;"eT)' and <;"e = vec('l1~). 

The IT matrix can be written as IT' = (IT 0 (3' + i 0 A') and therefore 

~./Iu1tiplying by Q we get 

(14) 

Adding (13) and (14) we get the following set of restrictions between IT and (3: 

(15) 

and multiplying by X~ we obtain 

(16) 
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Therefore, using a consistent estimator of IT, we can obtain a within-groups estimator 

of (3 which is consistent. This estimator is given by 

(17) 

Substracting (3 from (17) we get 

c c 
L X~Xc((JWG - (3) = L X~(ft'xc - Xc(3) 
c=l c=l 

and using (15) we obtain 

c c 
L X~Xc((JWG - (3) = L X~(ft - IT)'xc 
c=l c=l 

We can rewrite the expression above as 

and the asymptotic distribution of (3WG is given by 

where VV is the asymptotic variance of K. The asymptotic variance of (3wc can be 

estimated by 

where TV is a consistent estimator of W. 

4 Monte Carlo Simulations 

In the previous sections we have derived the asymptotic distribution of the minimum 

distance estimator and the within-groups estimator for the binary choice model, using 

time series of cross-section data. However, it also interesting to analyze the small 
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sample performance of the estimators that we have proposed. For this purpose, we 

have carried out some Monte Carlo simulations for different values of the parameters 

of the model. 

We consider a binary choice model with just one explanatory variable, where the 

model for the latent variable is 

(18) 

The data have been generated as follows. First, we have generated the cohort popu

lation means for the explanatory variable using an AR( 1) model. 

The initial values for the x:o's have been generated as iidN(O,rr;o), the Wit are also 

iidN(O,rr;,) and the first ten cross-sections were discarded. Notice that the variance 

of the cohort population means is given by 

Then, for different values of p, we will change a; to keep constant the variance of the 

cohort population means. For each cohort, we generate the individual observations 

for the explanatory variable as 

c;it V' iidN(O, a~) 

vVe generate T x nc observations per cohort, and for each period we keep in the 

sample nc observations corresponding to different individuals. The individual effects 

are generated as 

and we generate the latent variable y7t using (18). The binary variable is Yit 1( 

Y;t > 0). 

We carried out experiments for different values of the variances and different values 

of the correlation parameter p. The results for a thousand replications are summarized 
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in table 1. The time dimension is T = 5, the number of cohorts C = 100 and the 

number of individuals per cohort is ne = 25. The structural parameter f3 = 1 and 

the nuisance parameters (the A's) are all equal to one. 

We considered the optimal minimum distance (MD) estimator and the within

groups (WG) estimator and we have calculated the standard errors based on the 

asymptotic distribution of the estimators. As we can see in Table 1, the finite sample 

bias of both MD and WG estimators is quite small for any value of the parameters, 

and it is even smaller for the WG. The standard deviation of the MD estimator 

is smaller than the standard deviation of WG. This reflects the fact that the WG 

estimator is less efficient than the optimal MD. Another important issue is that the 

mean of the asymptotic standard errors is very similar to the standard deviation for 

all the values of the parameters that we have considered. If we now compare the 

performance of the estimators for the different values of p, we can see that the bias is 

quite similar when the autocorrelation of the explanatory variables is not very large. 

However, when p is large (p = 0.8) the bias is larger. The standard deviation of the 

estimators increases with p. Finally, we are going to analyze the behaviour of the 

estimators for different values of the variance of the measurement errors (()~) and 

different values of the variance of the cohort population means (()~). As expected, 

both the bias and the standard deviation of the estimators are smaller. the smaller 

the variance of the measurement errors, while the performance of the estimators is 

better the larger the variance of the cohort population means. 
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Table 1 
Means, standard deviations and standard errors of the estimators 

C = 100, nc=25, T=5 

MD WC MD WC 

(12 = 1 x a; = 0.5 

(12 = 1 c; p=O Mean 0.9691 1.0236 0.9557 1.0338 
St. Dev. 0.0624 0.0704 0.0785 0.0924 
Mean SE 0.0613 0.0678 0.0794 0.0893 

p=0.5 Mean 0.9641 1.0267 0.9501 1.0366 
st. Dev. 0.0764 0.0854 0.0955 0.1104 
Mean SE 0.0739 0.0836 0.0940 0.1060 

P = 0.8 Mean 0.9328 1.0494 0.9095 1.1188 
St. Dev. 0.1068 0.1360 0.1270 0.3333 
Mean SE 0.1065 0.1336 0.1375 0.4181 

(1; = 0.5 p=o lVlean 0.9880 1.0089 0.9867 1.0138 
St. Dev 0.0497 0.0511 0.0644 0.0646 
~Iean SE 0.0478 0.0508 0.0617 0.0655 

p = 0.5 rdean 0.9873 1.0137 0.9794 1.0126 
St. Dev 0.0645 0.0664 0.0810 0.0830 
Mean SE 0.0602 0.0656 0.0759 0.0816 

p = 0.8 lVlean 0.9710 1.0189 0.9640 1.0310 
St. Dev. 0.0975 0.1037 0.1136 0.1252 
l'.'Iean SE 0.0882 0.0999 0.1112 0.1237 
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5 Conclusions 

We analyzed in this paper the estimation of binary choice models with individual ef

fects, when the data are time series of independent cross-sections. We first obtained a 

measurement error corrected estimator of the reduced form parameters using the co

hort sample means and we derived its asymptotic distribution. Based on the reduced 

form estimates, we proposed a minimum distance estimator and a within-groups es

timator of the structural parameters. We also obtained the asymptotic distribution 

of those estimators. 

Finally, we -carried out some Monte Carlo simulations to study the small sample 

behaviour of our estimators. The main conclusions are that both estimators perform 

quite well in relatively small samples, but while the minimum distance has a smaller 

standard deviation, the within-groups is less biased in small samples. Another im

portant result is that the asymptotic standard errors are very similar to the standard 

deviations. 
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Appendix. Asymptotic Distribution of the Probit Estimator 

The maximum likelihood estimator of 7ft, t = 1, ... ,T, is asymptotically equiva

lent to a Generalized Methods of Moment estimator (GMM) that uses the optimal 

set of instruments (see Chamberlain (1987)). Thus, we will derive the asymptotic 

distribution using the GMM estimator. The conditional expectation of Yit given Xc 

is given by 

(19) 

The expression' above can be written as 

and therefore 

Let Uit = Yit - F(xc, 7ft, 2:, 2:x ), the conditional variance of Uit is given by 

The optimal set of instruments is therefore 

1 8F(xc, 7ft, 2:, 2:x ) 

(72(xc) 87ft 

and t he moment concli t ions are given by 

[ 
1 8F(xc, 7ft, 2:, 2:x )] 

E (Yit- F (xc , 7ft,2:,2:x )) ?() 8 =0 
(7- Xc 7ft 

The model is just identified, and the method of moments (MM) estimator ii"~ 

solves the following system of equations 

The optimal instruments are not observable since they depend on 7ft, and therefore, 

the MM estimator ii"; is not feasible. However, we can consider 7ft in the instruments 

as an argument to be estimated and then the MM estimator is given by 
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(20) 

where a-2 (xe) = F(xe, nt, E, Ex) x (1-F(xe, nt, E, Ex)). The MM estimator nt coincides 

with the maximum likelihood estimator. The reason is that (20) are the first order 

conditions for the maximization of the log-likelihood function. 

Expression (20) can also be written as 

where 

1 
Yet = - L Yit ne 

gi Ele 

(21) 

Unfortunately, E and Ex are not observed but they can be estimated using the 

moment conditions: 

[( )( '] ne-1 EXit - Xct Xit - Xed = E 
ne 

The expectations can be replaced by their sample counterparts 

c 
l",A A 
C L..Ee = E 

e=l 

where 

and 
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Substituting ~ and ~x by t and tx in (21), our MM estimator solves the system 

C A A A 

~ ~( _ F( A t t)) 1 8F(xc, 7rt,~, ~x) = 0 
C 6 Yct Xc,7rt" x A 2() £:) 

c=l a Xc U7rt 

2 A A A A 

where iT (xc) = F(xc, irt,~, ~x) x (1 - F(xc, irt,~, ~x)). 

The expression above can be written as 

C 

~ L 1/;t(wct, irt , i) = 0 
c=l 

t = 1, .. . ,T (22) 

where Wct = (Yet, x~)' and i = (vech(t)', vech(tx )')'--1. We can write the systems of T 

equations in (22) as 
C 

~ L 1/;( Wc, ir, i) = 0 
c=l 

(23) 

where Wc = (W~l' ... ' w~r)' , IT = (ir1 , ... , irr) and ir = vec(IT). Using a Taylor 

expansion we can write 

Let 

D7r E (81/;(W;~7r' 'Y)) 

D 'Y = E ( 81/; ( w;~ 7r, 'Y) ) 

The D7r matrix is block-diagonal with T blocks. The t-th block is 

D = E (81/;t(Wct,7rt,'Y)) 
7rt £:) U7rt 

Then, we have 

~The vech operator vectorizes a p x p symmetric matrix by selecting the p x (p + 1)/2 elements 
in the lower triangular part of the matrix. 
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where 'Ye = (vech(i:e)"vech((xe - X)(Xe - x)')')'. We can rewrite (24) as 

where 

<p(We , 7r,1) = ( 1P~:~~1) ) 

and the asymptotic distribution of IT is 

where Vo = E(<p(we , 7r, 1)<P(We , 7r, 1)'). The asymptotic variance of IT can be estimated 

by 

where 

and 
c 

v, 1 ~ ( ") ( " )' = C L<P W e ,7r,1 <p W e ,7r,1 
e=l 

17 



References 

[1] Arellano, M. and O. Bover (1990), "La Econometrfa de Datos de Panel", Inves

tigaciones Econ6micas, Vol 14, pp 3-45. 

[2] Attanasio, O.P. and G. Weber (1993), "Consumption Growth, the Interest Rate 

and Aggregation", Review of Economic Studies, Vol. 60, pp. 631-649. 

[3] Blundell, R., M. Browning, and C. Meghir, "Consumer Demand and the Life

Cycle Allocation of Household Expenditures", Review of Economic Studies, Vol 

61, pp. 57-.;80. 

[4] Bover, O. and M. Arellano (1997), "Estimating Dynamic Limited Dependent 

Variable Models from Panel Data", Investigaciones Economicas, Vol. 21. 

[5J Browning, M., A. Deaton and M. Irish (1985), "A Profitable Approach to Labour 

Supply and Commodity Demand over the Life-Cycle", Econometrica, Vol. 53, 

pp.503-543. 

[6] Chamberlain. G. (1984), "Panel Data", in Z. Griliches and M.D. Intrilligator 

(eds.), Handbook of EconometTics, vol Il, Elsevier Science. 

[7] Chamberlain, G. (1987), "Asymptotic Efficiency in Estimation with Conditional 

Moment Restrictions", Journal of Econometrics, Vol. 34, pp. 305-334. 

[8] Collado, :-'lD. (1997), "Estimating Dynamic Models from Time Series of Inde

pendent Cross-Sections", Journal of Econometrics, Vol. 82, pp. 37-62. 

[9J Deaton, A. "Panel Data from Time Series of Cross-Sections", Journal of Econo

metrics, Vol. 30, pp.109-126. 

[lOJ Hsiao. C. (1986), Analysis of Panel Data, Cambridge University Press. 

[l1J Verbeek, :t\/f.and T. Nijman (1992), " Can Cohort Data be Treated as Genuine 

Panel Data?, Empirical Economics, Vol. 17, pp. 9-23. 

18 


