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1 Introd uction 
2 

Many economic time series exhibit important changes in their mean and variance. These series 

are often said to be integrated, since it is possible to simulate the most important features in their 

patterns with sums of an increasing number of weakly-dependent random variables. Integrated 

series can be expressed in terms of the unobserved components model, where one of the components 

is a stochastic trend. On the other hand, the fact that remo te shocks have a permanent influence 

on the levels of these series is known as the long-memory property. 

In sorne cases, the changes in mean behaviour may be correlated accross series. Pairs of series 

which exhibit a common long-memory component or stochastic trend are said to be cointegrated. 

~he concept of cointegration was coined by Granger (1981 [14]), and la ter developed by Engle and 

G~anger, (1987 [7]). In the context of macroeconomics and finance, certain models suggest the 

presence of economic or social force s preventing two or more series from drifting too far apart from 

each other. Well-known examples of cointegrating relationships can be found between income and 

expenditure, prices of a particular good in different markets, interest rates in different parts of a 

country, etc. 

Underlying the idea of cointegration is the existence of an equilibrium (i.e. a deterministic relation­

ship that holds on the average) between two integrated variables, Xt, Yt. A strict (linear) equilibrium 

exists when for sorne a #- O, one has Yt = aXt. This unrealistic situation is replaced, in practice, by 

that of a (linear) cointegrating relationship, in which the equilibrium error Zt = Yt - aXt is different 

from zero but fiuctuates around this value much more frequently than the individual series, while 

the size of these fluctuations is much smaller. 

However, there is no reason to believe that those equilibrium relationships are linear. In fact, most 

macroeconomic dynamic models are nonlinear by construction. Similar nonlinear relationships are 

derived from consumer and production theory. Therefore we need to introduce time series measures 

of dependence that allow us to formally discuss nonlinear cointegration. This was first pointed by 

Granger and Hallman (1991)0. Here we propose an alternative framework which has the advantage 

of detecting nonlinearities without having to estimate the nonlinear cointegrating relationship. 

In summary, in this paper we review the concepts of mean-reversion, short(long)-memory, and 

cointegration, and introduce a new characterization of the linear cointegration concept, which can 

be easily generalized to a nonlinear contexto This willlead us to proposing sorne new schemes for 
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exploratory data analysis. 

The structure of the paper is as follows. Section 2 introduces several measures of linear dependence 

in the context of time series that are integrated of order d, l(d), where d can be any real or integer 

number. In section 3, a new measure of linear cointegration is introduced. We find its relation 

with the usual concepts for 1(1) series and for series with long memory (fractional cointegration). 

In section 4, the relationship is analyzed in the frequency domain. In section 5, we introduce a 

measure of departure from linearity in the cointegrating relationship, based on the mutual infor­

mation. By doing a bootstrap simulation exercise, it is shown that a nonparametric estimator of 

this nonlinear index seems promising. Finally, section 6 presents sorne conclusions. 

2 Definitions of memory in linear time series 

In this section we briefly review the standard characterizations of memory in time series. 

An interesting way of representing memory in terms of serial dependence measures. In the linear 

case, the standard measure is the autocorrelation function (ACF), say Px( T, t) for the series Xt, 

which may not necessarily be wide-sense stationary. We define Px(T, t) as 

( ) 
cov(xt,Xt-r) 

Px T, t = --'--:---7""'­
var(xt-r) 

An early definition of memory in time series has to do with the concept of mean reversion: 

Definition 1 A proeess Xt is said to be mean-reverting ifVt limr--too Px(T, t) = O. 

(1) 

Intuitively, the process Xt is mean-reverting if Xt - E(xt} changes sign with nonzero probability. 

When the process is not mean-reverting, its memory span is necessarily larger since limr--too Px( T, t) > 

0, and thus any two infinitely distant variables from the process are still correlated. 

However, even for a mean-reverting process, the memory span can be very large in the sense that 

its decays very slowly as T grows. This motivates the distinction between short and long memory: 

Definition 2 A proeess Xt is said to be short-memoryl Vt 3bt < 00 su eh that Loo \Px(T, t)\ = bt· 

Definition 3 A proeess Xt is said to be long-memory ifVt Lr>o IPx(T, t)1 = oo. 

lThe concept of short-memory is directly related to that of asymptotic uncorrelation -see White, 1984[28]-. Notice 

also that mean reversion is a necessary condition for short-memory 
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Based on these definitions, we could define the concept of integration in the following way: 

Definition 4 A time series of Xt is said to be integrated of order d, in short Xt '" I(d), if 

LT>O Ipx(r, t)1 = 00, Vt, and d is the smallest real number such that LT>O Ipz(r, t)1 < 00, Vt with 

Zt = (1 - B)dXt • 

Remark: 

From the previous definitions it follows that processes that are not mean-reverting must necessarily 

have long memory. This could be in the form of either stochastic or deterministic trends. On the 

contrary, processes that are mean-reverting can be either long-memory or short-memory, depending 

o~ the rate at which their ACF vanishes with increasing lag. 

\ 

A particular case ofintegrated time series are those generated with ARIMA models, whose definition 

goes as follows: 

Definition 5 A time series Xt is said to be ARI M A(p, d, q), (d E R), if after being differenced d 

times, 'Ít has a stationary ARM A(p, q) representation, where p, q are nonnegative integers. 

Thus if Xt '" ARI M A(p, d, q) there exists polynomials <I>(B) and 8(B) in the delay operator B, 

of order p 2 O and q 2 O respectively, and with all roots outside the unit circle and no factors in 

common, such that we can write 

(2) 

where Et is gene rally assumed to be a sequence of zero-mean, independant and identically Normally­

distributed errors. 

If we define ~ as the first difference operator, that is, ~Xt = (1 - B)xt = Xt - Xt-l, it turns out 

that when d is not an integer we can write (e.g. Hosking, 1981 [22]) 

00 dI 
L k!(d ~ k)! (-B)k Xt 

k=O 

1 2 1 3 
1 - dB - 2d(1 - d)B - 6d(1 - d)(2 - d)B - ... , (3) 

When the parameter in this model is fractional, it is sometimes referred to as the long-memory 

parameter, and it determines the rate of decay of the ACF of Xt with increasing lag. Only when 

d < 1, Xt is mean-reverting. If d > O the process has long memory, while it has short-memory when 
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d = o. Moreover, if d < ~ then Xt is stationary, while it is nonstationary for d 2: ~ (see Granger 

and Joyeux, 1980 [20]). 

It is known that if Xt is Gaussian and short-memory then its ACF, px(r, t), will converge at an 

exponentially rate to zero as r grows to infinity (Box and Jenkins, 1970 [5]), while this rate would 

only be hyperbolical for d > o. 

3 Linear cointegration in the time domain 

Let Xt, Yt be two zero-mean integrated time series of orders dx, dy E ~+, respectively. In short, 
\ d d 
x~ '" I(dx ), Yt rv I(dy ), which means that (1- B) "'Xt = €t, (1- B) YYt = ~t, where €t,~t are 

sh'tirt-memory series. And let Zt = Yt - axt, for sorne generic nonzero real number, a. 

Definition 6 (Granger, 1981 [14j) Two I(d) time series Xt, Yt. with d > O, are said to be (linearly 

2) cointegrated if"3 a E R - O such that the series Zt = Yt - aXt is I(dz ) with dz < d. 

Remarks: 

• That Xt, Yt are cointegrated means that these series tend to move jointly in the long-run, even 

though their short-run movements may not be "aligned" . 

• From the macroeconomic point of view, a most important case is when d = 1, dz = O, 

since this situation can be clearly interpreted as the existence of a (linear) equilibrium for 

the series. However, the previous definition of cointegration does not imply the existence of 

an equilibrium between the two I(d) series (d > O), since for the latter we need that their 

cointegration residuals Zt be I(dz ) with dz < min(l,d). That is, an observable equilibrium 

also requires that Zt be mean-reverting (dz < 1). 

Figure 1 illustrates a simulation example of linear cointegration between a pair of correlated random 

walks and for a = 0.72. The scatter plot clearly shows the linearity of the relationship between Xt 

and Yt. 

The Engle and Granger (1987) [7] standard tests for cointegration can be decomposed in two stages: 

2In Granger (1981) [14], there is no explicit mention to the term linear, although it is implicit. 
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• A test for long-memory in the variables, say Xt '" I(dx ), Yt '" I(dy ), and estimation of the 

long-memory parameters dx, dy. If we cannot reject the hypothesis that dx = dy then we 

make d = dx = dy and go to the next step. Otherwise, the series cannot be cointegrated . 

• A test for long-memory in the cointegrating residuals Zt = Yt - axt, and estimation of its 

long-memory parameter, dz • Then a test of significance for the stochastic difference v = 

d - dz . Values of v significantly larger than O, can be taken as evidence of the existence of a 

cointegrating relationship between Xt and Yt. 

A most investigated case corresponds to where the long-memory features of the variables are gen­

erated by unit roots (i.e. dx = dy = 1). This simplifies the testing procedure since there is no 

need to estimate the long-memory parameter. Onlya test for unit roots is needed to confirm this 

hypothesis (see Fuller, 1976 [12]; Phillips, 1987 [26]; Mackinnon, 1990 [25]). 

In the sequel, we propose an alternative characterization of linear cointegration. We will restrict 

our discussion to the non-trivial case where all series are mutually dependent. Let Xt, Yt denote two 

I(d) time series, and let Py,x( r, t) represent the cross-correlation functíon (CCF) of Xt, Yt, which we 

define as 

( 
.) _ cov(Yt, Xt-T) 

Py,x r, t. - ( ). var Xt-T 
(4) 

Once again, we consider a possible time dependence of py,x(r, t) so as to allow for sorne degree of 

heterogeneity in the series. 

Proposition 1 A paír of I(d) time series a.:t, Yt are said to be linearly cointegrated if and only 

íf 

l · py,x(r, t) b \.1 1m - vt. 
T-too px(r, t) - , (5) 

with b equal to a nonzero and finite real number. 

PROOF: 

Using definition 5, it is easy to see that when linear cointegration holds then there exists a nonzero 

finite real number, b, such that 

lim pyx(r,t) = b lim px(r,t) + lim pzx(r,t) 
í-too ' T---+OO T---+OO ' 

(6) 

Thus 

l· Py,x (r, t) b + l· Pz,x( r, t) 1m = 1m . 
T-too px(r, t) T-too px(r, t) 

(7) 



Now since Zt must be an 1(d' ) series, with d' < d, and since Xt is 1(d) then: 
7 

(8) 

(9) 

with Ut, Vt representing zero-mean 1(0) series. By inversion of the differencing operator, we obtain 

the following binomial expansions: 

Thus: 

00 

Zt = L(hVt-k 
k=O 

00 

Xt-r = L <Pk'Ut-r-k'· 
k'=O 

E(ZtXt-r) = L L <Pk,(hcov(ut-r-k', Vt-k). 
k k' 

(10) 

(11) 

(12) 

Now, recalling that the cross-spectrum of Zt and Xt (see Granger and Hatanaka, 1964 [17]) is given 

by 

Sz,x(..\) = L E(Ztxt-r )exp( -j)..r) , 
r 

with )2 = -1, we obtain: 

where 

Sz,x()..) (2: 2: <Pk,Okexp[-j)"(k - kl)]) Su,v()..) 
k k' 

= cI>*()")8()")Su,v()..), 

cI>*()") = L cfJkexp(j)"k) = [1 - exp(j)..)]-d 
k 

8()") = 2: Okexp( -j)"k) = [1 - exp( -j)..)rd'. 
k 

Since uf! Vt are 1(0) processes, as ).. approaches O we have: 

Sz,x()..) ex: cI>*()")8()"), 

and thus 

Finally, using the inversion formula 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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and recalling that the Fourier transform of Ixl-P is equal to IAI1-p up to a scale factor, we have 

that 

( ) 
d+d'-l 

COV Zt, Xt-r <X r , (20) 

for r sufficientIy large. Therefore 
COV(Zt, Xt-r) d'-d 

( )
<xr, 

cov Xt,Xt-r 
(21) 

for r large enough. And this converges to zero, since cointegration implies that d' < d. 

The converse follows using the same argumento As an example, we show here below how the state-

ment in the proposition is not satisfied by a pair of non-cointegrated time series. 

Example 1: 

Consider the following pair of non-cointegrated series: 

Yt = qt + Vt 

(22) 

(23) 

where Wt, qt are independent I(d) series, and where ~t, Vt are series from ARM A(p, q) processes 

with possibly different AR and M A orders, and independent of Wt and qt, respectively. For any a 

we can write Yt = aXt + Zt with Zt = qt - aWt + Vt - a~t· We also have 

(24) 

The covariance cov (vt, ~t-T) will tail off exponentially as r grows to infinity. On the contrary, 

cov(xt,Xt-r) will either be a constant (case where d = 1), or decay hyperbolically with growing r. 

Thus our condition in the proposition follows with b = O. 

Example 2: 

Consider the following linear common factor model: 

(25) 

with a :f:. O and where Wt = Wt-l + Et and (Vt,~t,Et) are independent sequences of independent 

and identically Normally distributed r.v.'s with zero mean and joint covariance matrix equal to the 
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identity rnatrix. Let {3~ = (a, 1), where {3~ is the transpose of 13.1. .. Thus the orthogonal cornplernent 

of {3~ is {J' = (1, -a). The cointegrating relationship is therefore obtained as 

where Zt = Vt - a~t and is obviously 1(0). 

If we now define the ACF of Xt as 

( ) 
_ cov(Xt, Xt-T) 

Px 7, t - 2 ' a
Xt

_
T 

with a Xt _
T 

= Jvar(Xt-T)' we obtain after sorne algebra 

(t - 7)a; 
Px(7,t) = (t- ) 2+ 2' 

7 a€ af, 

(26) 

(27) 

(28) 

which dearly converges to 1 as 7 -7 00, for any 7. Sirnilarly, it is easy to show that Py,x(7, t) -7 a 

as 7 -7 oo. Thus, since a i= O by assurnption, we rnay condude that the series Yt, Xt are linearly 

cointegrated. 

Example 3: 

Consider the following pair of non-cointegrated series: 

Xt = Wt + ~t 

Yt 

with 

Wt = Wt-l + Et 

(29) 

(30) 

(31) 

(32) 

where VIl ~t, Et, 'T]t are independent sequences of i.i.d. r.v.'s. For any a we can write Yt = aXt + Zt 

with Zt = qt - aWt + Vt - a~t. We also have 

(t - 7)a; 

(33) 

(34) 

(35) 
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with a =1= O and where Wt = Wt-l + Et and (Vt,et,Et) are independent sequences of independent 

and identically Normally distributed r.v.'s with zero mean and joint covariance matrix equal to the 

identity matrix. Let {J~ = (a, 1), where {J~ is the transpose of {Ji-' Thus the orthogonal complement 

of {J~ is {J' = (1, -a). The cointegrating relationship is therefore obtained as 

z, ~ P' ( :: ) ~ y, - ax, 

where Zt = Vt - aet and is obviously 1(0). 

If we now define the ACF of Xt as 

( ) 
cov(Xt, Xt-r) 

Px T, t = 2 ' 
cr Xt--r 

with crXt_-r = Jvar(Xt-r), we obtain after sorne algebra 

(t-T)cr; 
Px ( T, t) = (t _ ) 2 + 2' 

T crf crf, 

(26) 

(27) 

(28) 

which c1early converges to 1 as T --+ 00, for any T. Similarly, it is easy to show that Py,x(T, t) --+ a 

as T --+ oo. Thus, since a =1= O by assumption, we may conc1ude that the series yt, Xt are linearly 

cointegrated. 

Example 3: 

Consider the following pair of non-cointegrated series: 

Xt = Wt + ~t 

with 

Wt Wt-l + Et 

(29) 

(30) 

(31) 

(32) 

where Vt, ~t, Et, r¡t are independent sequences of i.i.d. r.v.'s. For any a we can write Yt = aXt + Zt 

with Zt = qt - aWt + Vt - a~t. We also have 

(t - T)cr; 

(33) 

(34) 

(35) 
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Finally, we have 

(36) 

= o. 

Thus py,x(r, t) = O \Ir, t, and the series are not linearly cointegrated according to our criterion. 

Remarks: 

• The condition in the proposition need not be checked in the limit for most practical cases 

where we look for cointegration. For example, suppose Yt = aXt + Zt, where a f:. O, Xt, Yt are 

1(1) and Zt is a sequence of i.i.d. r.v.'s and independent of Xt. In this case, py,x(r, t)j px(r, t) = 

a 'tIr. If we now allow for sorne memory in Zt then the constancy of this ratio will only take 

place for r's beyond sorne value. 

• Intuitively, the proposition states that, under linear cointegration, the remote past of Yt should 

be as useful as the remo te past of Xt in long-term forecasting Xt. 

• The proposition implies that the rates of convergence of py,x(r, t) and of px(r, t) as r increases 

without bound, should be the same. For example, suppose Py,x( r, t) rv b r-(3 and that 

px(r, t) rv r-a for large r. In general, we expect a ::; (3, but equality should hold under 

linear cointegration. In a preliminary analysis, a plot of py,x(r,t)jpx(r,t) versus r should 

help in identifying the existence of a linear cointegrating relationship. 

• Obviously, this approach to linear cointegration using the cross-correlation or any other mea­

sure of mutual dependence is not useful for the analysis of non-cointegration with independent 

long-memory variables. 

• Notice that if the series are short-memory then the ratio of the CCF to the ACF could also 

eventually converge to a nonzero value, and thus we need to impose that the individual series 

be long-memory. 

We propose now an alternative condition for linear cointegration that implicitely constraints the 

individual series to be long-memory. Let s~,x) = ¿~=1 py,x(r, t). 
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Proposition 2 The series Yt, Xt are long-memory and linearly cointegrated if and only if as 

n -+ oo. 

1. The sequence of partial sums s~,x) diverges. 

2. The ratio of sequences sW'x) / s~x,x) converges to a nonzero and finite real number, b. 

PROOF: 

First, let us prove that our conditions are necessary if the series are long-memory and linearly 

cointegrated. Under the latter assurnption, frorn proposition 1, there exists a nonzero and finite 

real number b such that 

(37) 

where o (Px(T, t)) denotes a function of T and t, which converges towards O faster than Px(T, t). On 

the other hand, since Xt is long-rnernory, s~'x) diverges. Now, taking partial surns in the previous 

equation, it is inmediate that s~'x) rnust also diverge, whereas the ratio s~'x) / s~x,x) will converge 

to b as n grows to infinity. 

Now, for the converse, we prove that our two conditions in the proposition are sufficient to ensure 

that the individual series are both long-rnernory and linearly cointegrated. First, let us prove that 

if condition 1 holds then the individual series are necessarily long-rnernory. To see this, rernark 

that we have Py,x(T, t) ~ Gx Px(T, t) and Py,x(T, t) ~ Gy Py(T, t), for sorne positive constants Gx , Gy 

and for sufficiently large T'S. Thus there exists finite constants Gl , G2 such that 

s(y,x) < C2 + e s(y) 
n y n 

And since s~'x) diverges, both s~x) and s~) rnust also diverge. 

(38) 

(39) 

Now, let us prove that if condition 2 in the proposition holds then the individual series are linearly 

cointegrated. To see it, rernark that condition 2 can be rewritten as 

s(y,x) = b s(x,x) + o (s(x,x») 
n n n' (40) 

for sorne nonzero and finite b. Or equivalently, that 

(41) 

and thus lirn py,x(T,t) = b, which by proposition 1, establishes the linear cointegration of the T--+oo p", (T,t) 

long-rnernory series Xt, Yt. 
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Corollary 1 11 Yt, Xt are 1(d), respectively, with d restricted to the interval [0,1], then a necessary 

and sufficient for the series to be cointegrated with d = 1, or equivalently, not jointly linearly 

mean-reverting is that limT-too Py,x(T, t) = b, with b =1 O. 

PROOF: 

That the condition is necessary follows from the fact that Px(T, t) --+ 1 if Xt rv 1(1), and that 

limT-toopy,x(T,t)jPx(T,t) = b for a nonzero finite b, when the individual series Xt,Yt are linearly 

cointegrated. 

To prove that the condition is also sufficient we remark that, 1 Py,x(T, t) I:S ex 1 Px(T, t) 1, for a pos­

itive constant CX' Thus the condition implies that 1 b I:s Cx limT-too 1 Px(T, t) 1, and therefore that 

limT-too 1 Px(T, t) I~ O. It follows that Xt is not mean-reverting. And since Xt rv 1(d) with d E [0,1], 

the only possibility is that d = 1. Since I Py,x(T, t) I:S Cy I Py(T, t) I for sorne positive constant Cy, 

using the same argument we can prove that Yt rv 1(1). Finally, that limT-too (Py,x(T, t)jPx(T, t)) = b 

follows automatically, since Px(T, t) = 1 \17, and the proof is complete. 

Remarks: 

• The name of joint mean-reversion conveys the idea that the mean of one series reverts around 

the mean of the other. Therefore under linear cointegration there cannot be joint mean-

reversion, and viceversa . 

• There is no loss of generality by restricting dx , dy to lie within the unit interval, since by 

proper differencing of the series we can determine the integers closest to dx and dy • 

Corollary 2 1f Yt, Xt are 1(dy), 1(dx), respectively, with dx, dy restricted to the interval [0,1], then 

a necessary and sufficient condition for the series to be fractionally linearly cointegrated, or 

that they are cointegrated with O < dx = dy < 1 is that 

1. limT-toopy,x(T,t) = O. 

2. The sequence s}f'x) diverges as n grows to infinity. 

3. The ratio of sequences s}f'x) / s~x,x) converges to a nonzero and finite real number, b, as n 

grows to infinity. 
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PROOF: 

That the conditions are necessary follows from the fact that if the individual series are (linearly) 

mean-reverting then limr -+oo pz( T, t) = O Vt and for Z = x, y. Therefore if, in addition, the series 

are linearly cointegrated, then by propositions 1 and 2, conditions 1 to 3 aboye follow. For the con­

verse, conditions 2 and 3 aboye are sufficient to ensure that the individual series are long-memory 

and linearly cointegrated. If condition 3 also holds then the individual series must be linearly 

mean-reverting, that is Xt, Yt "-' I(d) with ° < d < 1. 

Remark: 

Once we know that O < d < 1, we can inquire as to whether d < 1/2 (in which case the series are 

stationary) or noto To answer the question we only need to test whether the variance of Xt diverges 

or noto 

Based on the new characterization aboye, we propose the following exploratory approach to linear 

cointegration testing. Again, we assume that the series have been differenced to such extent that 

their long-memory parameters lie within the interval [0,1]: 

1. Estimate by OLS the regression parameter a in the linear regression equation Yt = aXt-r + Zt 

for an increasingly large number of values of T. Plot these estimates, say o'r as a function of 

T. If the sequence of estimates o'r converges to a nonzero value then there is room to believe 

that the series are not jointly linearly mean-reverting. If not proceed to the next step. 

2. Check the convergence of the ratio of partial sums s}? ,x) / s~x,x) as n grows without bound. If 

this sequence appears to diverge then there are good chances that the series are fractionally 

linearly cointegrated. If not, we may suspect that the series are not linearly cointegrated. 

4 Linear cointegration in the frequency domain 

Consider again Xt "-' I(dx ), Yt "-' I(dy ), and the series Zt formed as Zt = Yt - aXt. To illustrate the 

meaning of linear cointegration in the frequency domain, let us also assume that we can define the 

spectral and cross-spectral densities for the different series (see Granger and Hatanaka, 1964[17], 

and Granger, 1983[15]). From the definition of Zt, it is easy to see that 

(42) 
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where Su(A) and Sy,x(A) represent the spectrum of Ut (u = x,y,z) and the cross-spectrum of the 

pair Xt,Yt, respectively, and S;,x(A) denotes the complex conjugate of Sy,x(A). Since ISy,x(A)12 ::; 

Sx(A)Sy(A), and Sx(A) rv AxA-2d"" Sy(A) rv AyA -2dy as A -+ O, it is clear that the term A-2max(d""dy) 

will dominate at low frequencies, and thus Zt rv l(max[dx , dy]) in general. 

However, the previous algebraic rule breaks down under cointegration, that is, a situation in which 

Xt, Yt rv l(d), d > O and :1 a E lR - {O} such that Zt = Yt - aXt rv l(dz )' dz < d. Defin­

ing Su(O) = lim).-too Su(A) (u=x,y,z), it is also straightforward to see that under cointeg;ration, 

there exists a nonzero finite real number e such that Sy(O)jSx(O) = e, and on the other hand, 

Sz(O)j Sx(O) = O (Granger, 1980[14]). Therefore, (a2 + e)Sx(O) - aSy,x(O) = O, and since both a and 

e are nonzero, the ratio Sy,x(O)jSx(O) must be nonzero and finite, as implied by proposition 2 in 

the previous section. Intuitively, this means that Xt, Yt have the long-wave component in common 

( comovement). 

It is also possible to re-write the statement of proposition 1 in the frequency domain. For this, 

consider the inverse discrete Fourier transforms of the sequences Py,x(T) and Px(T). That is, the 

representations: 

Px(T) Sx(O) + L Sx(A)exp(jT27rA) 
).>0 

Py,x(T) = Sy,x(O) + L Sy,x(A)exp(jT27rA), 
),>0 

(43) 

(44) 

where P = -1. Now, if Xt, Yt are long-memory, the long-wave component (i.e. the spectral 

component at frequency A = O) will tend dominate the spectrum as the lag, T, goes to infinity. A 

heuristic explanation for this could be that the terms in the sum on the left of the previous equation 

tend to cancel each other because of the rapidly oscillating exponentials (as T -+ 00). Thus we can 

write: 
lim Py,x(T) _ Sy,x(O) 

T-tOO Px(T) - Sx(O) , 
(45) 

which by propositions 1 and 2, is known to be nonzero and finite. A more formal way of showing 

the previous equivalence is the following. Recalling that 

Sy,x(O) s~,x) 
(46) 

Sx(O) --x,x 
Sn 

= 
2:0 0 Py,x(T) (47) 
2:T>O Px(T) . 
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Now let us take an arbitrarily large positive real number, T, and split the correlation sums in both 

the denominator and numerator, so that we can write 

¿OO py,x(r) ¿O<r<T py,x(r) + ¿r>T py,x(r) 
¿r>Opx(r) - ¿O<r<TPx(r) + ¿r~TPx(r) . 

(48) 

Finally, divide every term in the righthand si de ratio by ¿r~T Px (r), which is unbounded íor any 

finite T. Thus we obtain 
Sy,x(O) _ ¿r>T py,x(r) 

Sx(O) ¿r~T px(r) 
(49) 

Now, letting T tend to infinity, we obtain our result: 

(50) 

Notice that both propositions 1 and 2 point to the same spectral result, namely that under linear 

cointegration, the ratio Sy,x(O) / Sx (O) is nonzero and finite. The later result also suggests using the 

distance between the time domain estimator of py,x«r)) , as r approaches infinity, and the spectral 
Px r 

estimator of StcW, as a way oí testing the hypothesis oí linear cointegration. In one such test, if 

the hypothesis is rejected then it could be because either the series are not long-memory or because 

there is no comovement at the zero frequency. 

5 Detecting nonlinearities in cointegration 

All the measures of memory and serial dependence discussed so far are linear. In order to extent 

those indices to a nonlinear context we have to introduce new concepts that take into account even­

tual nonlinear dependencies. Only few works consider the simultaneous treatment of long-memory 

and nonlinearity. See for example Escribano (1986,1987)[8, 9], Granger and Hallman (1991)[18, 19], 

Granger and Terasvirta (1993)[21], Granger (1995)[16], Aparicio(1995)[2, 4, 3], Escribano and Mira 

(1997)[10, 11], and Aparicio and Escribano (1997)[1]. Several papers have analyzed the concept 

of 1(0) versus 1(1), or of long-memory in a general contex, by considering that a series is 1(0) if 

it satisfies a functional central limit theoremj see for example Lo (1991)[24]. Kwiatkowski et al. 

(1992)[23], and Escribano and Mira (1997) [10]. Those papers are based on the concept of mixing 

as a measure of dependence. Alternatively, we could have considered the concept of near epoch 

dependence (NED) (see Gallant and White, 1988[13]) instead of that of mixing (see Escribano and 

Mira, 1997 [11] for the use of the NED concept in error correction models). Finally, in Aparicio 

(1995)[2, 4, 3] and in Aparicio and Escribano (1997)[1] the concept of mutual information is used 
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as a measure of serial dependence and of cross-dependence. 

Henceforth we consider the problem of discriminating between linear and nonlinear cointegration. 

One way to detect the presence of nonlinearity in a relationship, which bypasses the previous diffi­

culties, is by comparing a measure of cross-dependence for the given pair of series and for pairs of 

series constructed in such a way as to preserve the linear part of the relationship while obliterating 

any higher-order dependence. A candidate test statistic for this detection problem could be the 

following one: 

By = lim (iy,X(T) _ Sy,x(O)) 
,x 'T~OO ix(T) Sx(O) , (51) 

where ix(T) and iy,x(T) represent measures of dependence and cross-dependence which generalize 

the auto- and cross-correlation function, respectively. The concepts of mixing and that of mutual 

information (see Aparicio and Escribano, 1997 [1]) offer sorne possibilities to implement these mea-

sures. 

Suppose we construct a pair of series (x~, yD from the given pair (Xt, yd, satisfying the following 

constraints: 

Sx' (>') = Sx(>.) (52) 

Sy' (>') = Sy(>') (53) 

ISY',x'(>')1 = ISy,x(>') I (54) 

To detect the presence of neglected nonlinearity in a cointegration relationship using this technique, 

the linear features of the relationship between Xt and Yt must be preserved in the linear replicas, 

x~ and y~. Suppose that Xt = CYt + f(yd + Et, where f(.) is a nonlinear function and Et is a 

short-memory disturbance. Therefore, we may obtain an estimate of the Fourier transfer function 

Hy,x(>') = Fx(>.)/Fy(>'), where Fu(>') denotes the discrete Fourier transform of the sequence Ut. 

Remark that the linear part of the relationship between Xt and Yt "lives" only in ¡Hy,x(>')¡. Now 

let H~,x(>.j) = IHy,x(>'k)1 exp[j</>(>'k)], where </>(>'k) is an i.i.d. sequence (indexed by k) of r.v.'s. 

Obtain y~ as the inverse discrete Fourier transform of Fx(>')/H~,x(>'). Notice that each i.i.d. phase 

sequen ce </>(>'k) serves to generate one linear replica. The relationship between the series x~, y~ 

preserves the linear features of the one between Xt and Yt, but should be devoid of the nonlinearity 

in the latter. This difference will translate into a value of the statistic Ry,x significantly larger than 

zero. 

Bootstrap replicas could also be obtained in the time domain. To do so, we first bootstrap the 
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linear residuals of one of the series, say Xt, fitted with a sufficiently long autoregressive model. In 

this way, we generate the x~ replica. The second step is to generate y~ as y~ = ax~ + z~ where 

a is the OL8 estimate of the parameter of the regression of Yt on Xt (this is the simplest of aH 

possible linear cointegration models, but we may also consider models including several lags of Xt, 

or aHowing for delays of one series with respect to the other), and zf represent the bootstrap linear 

regression residuals. 

Clearly, the problem with a parametric (time-domain) bootstrapping approach is that there is a 

high risk of uncorrectly specifying the model for Xt (i.e. misspecification will certainly occur if Xt is 

fractionally integrated, since the fitted AR model order will necessarily be finite). In the sequel, any 

pair of bootstrapped series (x~, yf) which preserve the linear structure of the relationship between 

Xt and Yt, will be referred to as linear bootstrap replicas of the pair (Xt, yt). Our next step could be 

to define a nonlinear coherence measure. 

" { 1 iy,x(7)/ix(7) - iyl,XI(7)/ixl(7) 1, 
r¡(x,y,x ,y ;7) = 

0, otherwise 

8ince the pair (x~, yf) preserves only the dependencies in (xt, Yt) captured by their amplitude cross­

spectrum, r¡( X, y, x' , y'; 7) will provide a measure of the higher-order dependencies living at any lag, 

7. To reduce the variability of r¡(x, y, x', y'; 7) we could average this statistic or a transformation of 

it on a number M of linear replicas (x~, yf). For instance, we may consider the nonlinear average 

M 

R (M ) - 1 M- 1 " ( ,(m) ,(m). ) y,x ,7 - - ~ r x,y,x ,y ,7 (55) 
m=l 

with 

( 
J(m) ,(m). ) _ (r¡(x,y,x,(m),y,(m);7)) 

r x, y, X ,y ,7 - exp 
0"1) 

(56) 

where O"~ represents a bootstrap estimate of the variance in the sequence {r¡(x, y, x,(m), y,(m); 7) } m. 

The statistic Ry,x(M,7) provides a measure of nonlinearity in the cointegrating relationship, for 

sufficiently large 7. This measure is confined to the interval (0,1] and behaves in a simple way. 

Indeed, as the incidence of nonlinearity is higher, the statistic will approach 1, while it will tend 

to concentrate around ° as m grows, when the relationship is truly linear. In fact, we expect 

that for a linear relationship, assuming sufficient moment conditions are satisfied by the sequence 

r¡(x, y, x,(m), y,(m); 7), indexed by m, it may be possible to find a scaling law M a with a > ° so that 

the standardized sum M a Ry,x(M, 7) has a well-defined limiting distribution. Obviously, the stan­

dardized sum will diverge towards infinity under the alternative of nonlinearity in the relationship. 
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Finally, if the series Xt, Yt are not cointegrated, Ma Ry,x(M, r) will diverge but with wandering signo 

In practice, we can test the linearity of the long-run relationship without knowing the limiting distri­

bution of our statistic under any hypothesis. In this case, for a given M and sufficiently large r, we 

can estimate the empirical critical value ba for a one-sided test, such that P (Ry,x(M, r) > ba ) = a 

under linearity, for a given significance level, a. The null hypothesis will be rejected at this level 

whenever Ry,x(M, r) > ba. 

In the sequel we present sorne simulation results obtained by using for ix{r) and iy,x{r) in 1]{.), 

the mutual informatíon functíon introduced in Aparicio and Escribano (1997 [1]). That is, here 

we take ix{r) = EtI{Xt,Xt- r ), and iy,x{r) = EtI{yt,Xt- r ) where Et is a time-averaging operator, 

and I(V, W) represents the mutual information of the r.v.'s V, W, which can be defined as 

( ) [ 
fv w(V, W) ] 

1 V, W = E log fv(V)fw(W) , (57) 

with fy,x(Y, X) and fx(X) representing joint and univariate probability density functions, respec­

tively. The function íx(r) was evaluated using the following estimator by Robinson (1991) [27], 

where N is the sample size, 

with 

{ 

1 + 'Y, for t odd 
Ct(,) = 

1 - 'Y, for t even 

(58) 

where 'Y ~ O, N y = N for Neven, and N y = N + 'Y, for N odd. Here, !y,x(.,.) and !x(.) are 

estimators of the corresponding bivariate and univariate pdf's (which may be time-varying), and 

the set S is introduced to make explicit the exclusion of certain inocuous summands, which can 

occur, for example, when !y,x(.,.) ~ O or !x(.) ~ O, or when logarithms cannot be taken. The 

densities can be estimated using kernel smoothers (Breiman et al., 1977 [6]). 

We simulated M = 1,5,10,50, and 100 replications of cointegrated and non-cointegrated series, 

with varying sample sizes, N = 500, 1000. The linear cointegrated series were generated as in fig­

ure 1. The nonlinearly cointegrated ones were computed applying third polynomial transformations 
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to a common random walk. The coefficients of the polynomials were chosen at random. Finally, 

the non-cointegrated series were either pairs of independent random walks (H2,1) or mutually de­

pendent short-memory series (H2,2). In the latter case, the series were generated according to the 

model Yt = Xt + Et, Zt = ao + al Xt + a2x~ + a3x~ + E~, where Xt = a4et-2et-l + et, Et, E~, et are 

i.i.d. sequences, and the ai were chosen at random. For the experiment, we took a sample size of 

N = 1000 and a lag of r = O. The linear bootstrap replicas were generated in the time-domain, by 

resampling the linear OL8 residuals of one of the series, and the linear regression residuals Zt from 

the simple regression model Yt = aXt + Zt. 

We found that the values of Ry,x(M, O) were comparatively low under linear cointegration, but ex­

hibited a small negative bias, probably caused by the asymmetry in the distribution of the statistic 

under Ho. In spite of this small negative bias in M 1/ 2 Ry,x(M, O), there was a remarkable difference 

between the values of this statistic under linear cointegration, and those under nonlinear cointe­

gration. In the former case, these values were small in magnitude and negative, while in the latter, 

they were general1y positive and comparatively large (by at least one order magnitude for M = 1). 

Under non-cointegration, most of the times, M 1
/

2 Ry,x(M, O) took values comparable in magnitude 

to those under nonlinear cointegration (sometimes much larger), but with varying signo 

For the sample sizes N = 500,1000, M 1/
2 Ry,x(M, O) was positive in approximately 90% of the 

replications under nonlinearity, while it was only positive in 60% of the replications, for N = 100. 

In table 2, we show the sample mean, absolute mean, and standard deviation (between brackets) 

of Ry,x{l, O) for N = 500,1000, from an experiment involving 100 replications of linear, nonlinear 

and non-cointegrated (independent random walks) series. As N was increased, Ry ,x(1, O) tended to 

take systematically positive values in the inteval (0,1), under H 1 This was so to such extent that it 

seemed possible testing for linearity in cointegration from just the sign fluctuations of this statistic 

in moderate to large samples. 

The frequency of rejection of the linearity hypothesis (assuming cointegration) for a one-sided test 

based on Ry ,x(1, O) and applied to 100 replications of nonlinearly cointegrated series, was approxi­

mately 90% for both sample sizes, using the bootstrap critical values estimated under Ho of linear 

cointegration, from 1000 bootstrap replications. Moreover, the inconsistency of the sample mean of 

R y ,x(1, O) under non-cointegration, and the positivity of this statistic under H 1 of nonlinearity in 

moderate to large samples, suggest a way of testing the hypothesis H 2 of non-cointegration against 

the joint hypothesis of cointegration (H1 , Ho). For instance, one may generate a sufficiently large 

number of linear replicas of the pair (y, x), preserving only their linear relationship, and estimate 
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R y ,x(l, O) for each one. Each pair of linear replicas could be considered as an independent realiza-

tion from the linear part of the model which produced (y, x). Under non-cointegration, the values 

of the statistic will exhibit wandering signs, but large absolute values, contrary to its expected 

behaviour under either H1 or Ho (as we show under H1, it takes very often comparatively large 

positive values, while it has a small absolute value under Ho). 

6 Conclusions 

In this paper we have proposed an alternative characterization of long-memory and of linear coin­

tegration, both integer and fractional, in the univariate case. It is based on simple statistics 

constructed from a defintion of the autocorrelation and cross-correlation functions of the series, 

that allows for heterogeneity in the latter. We formulated this characterization in both the time 

and the frequency domains, and showed the equivalence between them. Finally, we showed how it 

can be used to test for linear cointegration and for nonlinearities in a cointegrating relationship. 

The results obtained with sorne sirnulation experirnents seerned support the validity of the nonlin­

earity testing device. 
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Figure 1: Two simulated linearly cointegrated random walks (a) and their scatter plot (b). The 

series, Xt, X~ were generated with the model: Xt = aWt + Et, x~ = Wt + E~, Wt = Wt-l + ~t, where 

Et, E~, ~t are independent sequences of i.i.d. Gaussian r.v.'s. 
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Test statistic linear cointeg. nonlin. cointeg. non-cointeg. I 
E(Ry ,x(l, O), (N = 500) -0.052 (0.213) 0.221 (0.91) 0.231 (1.349) 

E(IRy ,x(1, 0)1), (N = 500) 0.087 0.56 0.83 

E(Ry ,x(l, O), (N = 1000) -0.05 (0.157) 0.425 (0.735) 0.048 (1.304) 

E(IRy ,x(1,O)I), (N = 1000) 0.086 0.464 0.822 

Table 1: Means, absolute means and standard deviations of a mutual-information-based statistic 

for testing linearity in cointegration. 


