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1 Introd uction 

This paper improves the specification pro ce dures proposed in Tedisvirta (1994) for testing 

Smooth Transition Autoregressive (STAR) models and provides useful suggestions for the 

empirical practitioner. STAR models are a general class of state-dependent, non-linear, time-

series models in which the transition between states is generally, endogenously generated.1 

Together with Hamilton's regime-switching model2 (where the transition between states 

is exogenously determined by a Markov Chain), state-dependent models are reduced-form 

models that allow for different dynamic responses that depend on the "state." These models 

are therefore, particularly well suited to accommodate the asymmetric behavior of economic 

fluctuations that has been reported in a variety of recent studies.3 

V/e find two main results in this paper, which rely on a Taylor series approximation of the 

transition function (between states) around the scale parameter.4 First, we introduce an 

alternative specification strategy for the choice between the logistic and exponential transition 

functions. This alternative strategy has higher correct-selection frequencies of the right 

model, avoids sorne of the pitfalls of the rules proposed in Tera,svirta (1994) and is much 

simpler to apply. Second, we suggest that in sorne scenarios, tests of the null hypothesis of 

linearity against STAR-type nonlinearity5 should include up to fourth order terms to gain 

power against alternatives in which an Exponential STAR is involved. These results are 

supported by Monte Carlo evidence and are implemented using the data in Tedisvirta and 

1 In addition, STAR models encompass other popular families of non-linear time-series models such as the 
Threshold Autoregressive (TAR) and the Exponential Autoregressive (EAR). See Haggan & Ozaki (1981), 
Tsay (1989) and Granger and Terasvirta(1993). 

2 See Hamilton (1989). 

3 See Neft~i (1984), Rothman (1991), and Terasvirta and Anderson (1992) for example. 

4 Luukkonen, Saikkonen and Terasvirta (1988a), based on Davies (1977), introduced this solution for 
STAR models. 

5 Note: this alternative is an assumption imposed by the practitioner. This allows one to narrow down 
general nonlinearity into a workable family of general non-linear models - STAR models. 
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Anderson (1992). 

The paper is organized as follows: Section 2 briefly reviews STAR models and nonlin-

earity testing; Section 3 discusses the decision rule proposed by Terasvirta (1994) and then 

introduces our alternative; Section 4 reports the Monte-CarIo study for the new alternative 

procedures; Section 5 presents an empirical application; and Section 6 concludes. 

2 STAR Models and Nonlinearity Testing 

2.1 Overview 

Consider the following STAR model: 

(1) 

where Yt is a scalar; Xt = (l,Yt-l, · .. ,Yt-p)' = (l,x~)'; 7T' = (7To, 7Tl, ... , 7Tp) = (7To,7f'); 8' = 

(80,8 1 , ... , 8 p) = (80,8') and 1 ::;;; d ::;;; p. Zt-d is usually Yt-d itself, (although it could be 

any exogenous variable), Ut is a martingale difference sequence with constant variancé and 

Yt is assumed to be stationary and ergodic. The function F (Zt-d, ')', e) is at least fourth order 

continuously differentiable with respect to the scale parameter ')'. 

The exponential STAR model (ESTAR) has a transition function F, defined by: 

(2) 

Note that when 80 = e = O and Zt-d = Yt-d, \Ve have the exponential autoregressive model 

(EAR) of Haggan and Ozaki (1981) - a particular case of the ESTAR. 

The logistic STAR model (LSTAR) has as transition function: 7 

6 This assumption is useful to derive the LM tests below. See White (1984). 

7 The term ~ is added here merely for convenience and does not affect the results. 
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F (Zt-d,', e) = [{1 + exp (-, (Zt-d - e))} -1 - ~] (3) 

Testing linearity against STAR-type nonlinearity implies testing the null hypothesis, Ho : 

e' =Q in Equation 1. However, under the null, the parameters " and e are not identified. 

Alternatively, we could choose H¿ : l' = ° as our null hypothesis in which case, neither e nor 

e' would be identified. Davies (1977) first showed that conventional maximum likelihood 

theory is not directly applicable to this problem. A solution, (proposed in Luukkonen et 

al. (1988a) and adopted in Terasvirta (1994)), is to replace F(Zt-d",e) with a suitable 

Taylor series approximation. Dnder the null of linearity, the LM test is shown to possess 

asymptotically, the usual X2 distribution.8 

In practice, the test is performed by constructing the following auxiliary regression: 

Yt = 7r'Xt + [e'xnF')' (Zt-d, l' = O, e)] + Vlt (4) 

where F')'(.) indicates the first derivative of F(Zt-d, l' = O,e) with respect to ,- ,F')'(.) is 

obviously the first term of the Taylor approximation of F around 1'. Substituting the value 

of F')'(.) into 4 gives: 

• .' - (J' - (J' - 2 Yt = uo + u1 Xt + 1 XtZt-d + 2Xt Zt_d + Vlt (5) 

where the null hypothesis of linearity becomes Hb : (Ji = (J~ = Q. Call this test NL2. Note 

that Equation 5 is explosive and generally not a meaningful time series model (see Granger 

and Andersen (1978)).9 Luukkonen et al. (1988a) realized that this test would have low 

power against alternatives where e' is "small" and eo is "large" in absolute value if the 

8 The delay parameter d is usually unknown. Based on Tsay (1989), Tedisvirta (1994) proposes choosing 
d that minimizes the p-value of the nonlinearity test. 

9 AIso note that the alternative hypothesis will include models other than the STAR. 
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model is LSTAR. To overeome this diffieulty, they proposed to include up to third order 

powers. The final version of their test, therefore beeomes: 

(6) 

where the null hypothesis is Ha : .8í = .82 = .83 =Q. The LM test based on running the 

auxiliary regression 6 (which we wiU eall NL3) is the test adopted by Terasvirta (1994) -

the basis of our study. 

2.2 Properties of the Taylor Approximation 

The transition function of a STAR model exhibits two important features. First, the logistie 

function (see Equation 3) has a single infieetion point, while the exponential function (see 

Equation 2) has two infieetion points. Seeond, the even powers of the Taylor expansion of a 

logistic function are all zero, while the odd powers of the Taylor expansion of an exponential 

function are all zero. 10 The first feature suggests ways to improve the nonlinearity test 

NL3. In the next section we will show how use the seeond feature to propose an alternative 

seleetion rule. 

The immediate eonsequenee resulting from the differenee in shape between the logistic 

and the exponential functions is that we need a secand arder Taylar expansion in order to 

capture the two infieetion points of the exponential function. This means that the auxiliary 

regression 6 would need to be expanded with fourth order terms. In particular: 

1 2 
F(Zt-d", e) ~ F,(Zt-d, ' = 0, eh + 2FII(Zt-d" = 0, eh (7) 

which for the exponential beeomes: 

10 This will become clear in Section 3. 
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(8) 

(Note that the second term of a Taylor expansion vanishes for the logistic). Hence, after 

combining terms, the auxiliary regression (Equation 6) proposed in Luukkonen et al. (1988a) 

should be: 

(9) 

where the null hypothesis that we want to test now is Hg' : ,8i = ,8~ = ,83 = ,8~ =Q. We call 

this test NL4.1 1 Recall that under the null, sorne of the parameters of the original model 

are unidentified. As we mentioned, Davies (1977) first pointed out that this computational 

problem can be solved by deriving an LM test while keeping the unidentified parameters, e, 

fixed and then selecting the value of the statistic corresponding to SUPe LM(e J. Saikkonen 

and Luukkonen (1988), Terasvirta et al. (1994), and Terasvirta (1994) suggest the following 

procedure to avoid this problem. First, estimate Equation 9 under the null hypothesis by 

OLS and calculate the sum of squared residuals, SSRo. Second, using the residuals from 

the previous step, estimate a model that contains the regressors in Equation 9 to compute 

the sum of squared residuals SSRl. Third, the statistic T(SSRo-SSRlJ/SSRo will have a X2 

distribution with degrees of freedom given by the number of auxiliary regressors. In practice, 

it is recommended to use the approximation given by the F - distribution because of the 

good size and power properties of the test in small samples. An alternative approach is to 

use the \Vald test of Hansen (1996). This procedure approximates the unknown limiting 

distributions by generating p-values based on simulation methods.12 

11 V"hen Zt-d = Yt-d, this test is similar to a high order RESET test. 

12 See Pesaran and Potter (1997) for an interesting application of this technique. 
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Empirical application of the test involves several important steps, such as choice of lag 

length of the AR model, choice of delay parameter d, and others which are all well documented 

in Terasvirta (1994). However, notice that NL4 requires p extra regressors for the auxiliary 

regression. This lack of parsimony becomes troublesome with small sample sizes and/or when 

the order of the AR polynomial (P) is high. Luukkonen et al. (1988a) (who use Equation 6 

as the auxiliary regression) recognized this lack of parsimony and suggested an augmented 

fi:rst arder procedure based on Equation 5 - the spirit of which can be applied to NL4 for 

particular cases.13 

3 Choosing between LSTAR or ESTAR 

3.1 Tedisvirta's (1994) Decision Rule 

Upon rejecting the null hypothesis of linearity (with any of NL2, NL3 or NL4), one might 

consider using a STAR model as a useful non-linear alternative. Terasvirta (1994) introduces 

the following model selection procedure (which we will denominate TP for short) based on 

Equation 6: 

1. Test the null: H03 : /3~ =Q (versus the alternative H 13 : /3~ :f:Q) with an F-test 

(F3)' According to Terasvirta, rejection of this null would imply rejection of the 

ESTAR specification since cubic powers of Zt-d in a first order approximation of 

F(Zt-d, 'Y, e) are O. 

2. Test the null: H02 : /32 = QI/3~ =Q with an F-test (F2). Terasvirta's reasoning is 

that zZ-d terms of a first order approximation to a logis tic function are zero when 

e = 80 = O (see Equation 1). However, these terms will be nonzero in the ESTAR 

case (except in the unlikely case when 8' =Q). Failure to reject this null is taken 

13 The equivalent augmented version of NL4 would consist of equation 5 expanded with the terms: ZLd' Zt-d 
and ZLd' See Escribano and Jordá (1997). 
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as evidence in favor of a LSTAR model. Nevertheless, rejection of H02 is not very 

informative one way or the other. 

3. Test the null: HOl : .8~ =Q 1.8~ = .83 =Q with an F-test (H). Following Terasvirta, 

failing to reject HOl after rejecting H02 points to an ESTAR model. On the other 

hand, rejecting HOl after failing to reject H02 supports the choice of LSTAR. 

4. Note which hypotheses are rejected and compare the relative strengths of the 

rejections. If the model is LSTAR, typically HOI and H03 are rejected more 

strongly than H02. Therefore, if the p-value of F2 is the smallest of F I , F2, F3 

select a ESTAR specification, otherwise select LSTAR. 

To analyze the problems with TP, recall the terms of the Taylor approximations to each 

nonlinear state in Equation 1: 

for the logistic third order expansion, and 

for the exponential second order expansion (all zero terms omitted in both equations).14 

TP has several problems: First, whenever e # 0, the expansion of the fourth order power 

in Equation 11 will include non-zero XtZLd terms, thus invalidating the reasoning behind 

H03. This pitfall is particularly problematic when the DGP is an ESTAR model with e # 0, 

and/or nonzero constants (see Equation 1), namely 7f0 and 8 0 , In addition, when the variance 

of the error term is "large," the distribution of the data into each state around the threshold 

14 As a reminder, these approximations were used in developing the auxiliary regression for NL4 in Equation 
9. 
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e is asymmetric. As a result, H02 : f3~ = QIf3~ =Q does not allow one to discriminate between 

a LSTAR with e =1= ° and an ESTAR in general. 

The second source of problems lies in the design of the rule itself: The three F-tests are 

nested. This feature proves to be problematic when e =1= O. For example, if the true model is 

LSTAR, it is unclear that by conditioning on the cubic terms to be zero (that is, restricting 

f3~ = O), the joint significance of the square terms, XtZF-d (which are non-zero since e =1= 0, 

see Equation 10) will be also zero since these terms are left to approximate the transition 

function (an approximation that the cubic terms presumably were successfully capturing). 

3.2 A New Alternative Selection Procedure 

Consider the following example. Assume that e = O. It is clear then that (based on Equation 

10) if the model is LSTAR, the terms XtZLd for j = 2,4,6, ... are exactly zero (Le. f3~ = f3~ =Q 

in Equation 9). Alternatively, if the model is ESTAR, (based on Equation 11) the terms 

Xtzf_d for j = 1,3,5, ... are exactly zero (i.e. f3i = f3~ =Q in Equation 9). This suggests 

the following alternative selection procedure (which we will call EJP for short) based on 

Equation 9 (again, conditional on rejecting linearity with any of NL2, NL3, NL4): 

1. Test the null: HOE : f3~ = f3~ =Q (against the alternative, H 1E : f3~ =l=Q, f3~ =l=Q) with an 

F-test (FE)' 

2. Test the null: H OL : f3i = f3~ =Q (against the alternative, H IL : f3i =l=Q, f3~ =l=Q) with an 

F-test (FL)' 

3. If the minimum p-value corresponds to FL, select LSTAR, otherwise, if it corresponds 

to FE, select ESTAR. 

Note that when e =1= 0, the test is still effective since we are relying on testing the joint 

significance of linear and cubic terms relative to the joint significance of quadratic and fourth 
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order terms without conditioning. In addition, EJP provides information about non-zero 

thresholds, c. Linear and cubic terms are exactly zero when c = O and the model is ESTAR. 

Quadratic and fourth order terms are exactly zero when c = O and the model is LSTAR. 

Therefore: Rejecting HOL and failing to reject HOE suggest an LSTAR model with c = O. 

Rejecting HOE and failing to reject HOL suggest a ESTAR model with c = O. This feature is 

useful to specify c = O as a good starting value in the estimation stage. 

4 Monte CarIo Experhnents 

This section examines the properties of EJP versus TP for choosing between a LSTAR or 

ESTAR specification. In addition, we report simulations regarding the power properties of 

NL4 when compared to NL3. The models in this study are taken from Luukkonen et al. 

(1988a,b) and Tedisvirta (1994). Each experiment is replicated 1,000 times. The first 100 

observations of each series are disregarded to avoid initialization problems.15 

4.1 Selection Frequencies of the EJ Selection Procedure 

In addition to having a much higher success rate than TP in correctly selecting the type 

of STAR model, EJP's success rate always increases as the sample size increases (a highly 

desirable "consistency" feature - the result of the design of the procedure). TP on the 

other hand, lacks consistency. For example, consider ¡.t = 1 in Table 4.1.1. TP's correct 

selection frequency is 12.9%, 9.5% and 3.9% for sample sizes of 50, 100 and 200 observations, 

respectively. The numbers for EJP in the same example are 62.4%, 70.4% and 76.5%, 

respectively. 

Terasvirta (1994) recognized that TP works well when the LSTAR and ESTAR models are 

not close substitutes. However, TP is less effective when the two models are close substitutes 

15 For a detailed explanation of how the experiments were constructed and additional results with other 
models, see Escribano and Jorda (1997). 
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; ,. 

and the true model is ESTAR. It is remarkable that the most impressive gains of using the 

alternative EJP occur precisely in this situation. The results are fairly conclusive ... EJP 

outperforms TP in general; it is simpler to implement (requiring only two simple F-tests and 

a straight forward choice); and is "consistent" in the sense mentioned aboye. 

4.2 Power Properties of the NL4 Test 

The key question is whether the gains in power from adding the terms Xtzt-d in NL4 outweigh 

the losses from including additional regressors in equation 9. It is clear that if the DGP is 

a LSTAR model, we will loose power because from including redundant regressors. If the 

model is an ESTAR we should expect to perform well whenever e = O. If e i= O, the benefits 

of including extra regressors will depend on each particular case. Table 4.2 reports the 

experiments based on Tedisvirta (1994). 

The results of the simulations indicate that with large sample sizes (in our case 300 

observations), there is little to no gain or loss from including the extra terms Xtzi-d' Either 

NL3 or NL4 detect non-linearity appropriately, with the power approximating 1 in most cases. 

However, for smaller sample sizes, (in our study 100 observations), while NL4 performs better 

when the true model is ESTAR (in particular when the variance of the error term is high 

and/or e and 8 0 are nonzero) there are no significant losses of power when the true model is 

LSTAR. In view of these results (with the disclaimer of their limited generality), we conclude 

that the NL4 test is probably most useful in small samples, when the AR lag length is short, 

and parsimony in the auxiliary regression is not an issue. 

5 Térasvirta and Anderson (1992) Revisited 

Terasvirta and Anderson (1992) analyze the dynamic properties of industrial production 

indices of thirteen OECD countries and a European aggregate using STAR models. The 
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data is quarterly, seasonally unadjusted,16 and spans from 1960:1 to 1986:1VP We will 

replicate nonlinearity testing and model selection by applying the techniques developed (1bove 

and comparing them to their results. Table 5.1 reports p-values of nonlinearity tests, delay 

parameter choice, and STAR model selection for those countries in which nonlinearities were 

detected (by either NL3 or NL4).18 

NL3 and NL4 obtain their minimum p-values for the same choice of delay parameter, d, 

except in the case of the U.S .A. V/hile the results of both tests are similar, NL4 fails to reject 

linearity at the usual 5% level for 3 countries. 19 With regard to EJP, the same models are 

selected as with TP except for Austria and Sweden. In the case of Japan, Terasvirta and 

Anderson (1992) report that choosing between models (LSTAR or ESTAR) lvas hard with 

TP and hence estimated both specifications. After estimation, the preferred model \Vas a 

ESTAR - a choice that. EJP selects unequivocally. 

Unfortunately, Terasvirta and Anderson (1992) did not report their estimates for Austria 

and Sweden. Consequently, we estimated both LSTAR and ESTAR specifications for these 

countries. The basic statistics of the preferred models for each specification are reported in 

Table 5.2. The estimates for Austria are harder to compare since the final models have a 

different number of parameters - Schwartz's information criterion (SIC) favors the ESTAR 

specification while Akaike's (AIC) favors the LSTAR specification. However, in the case of 

S \Veden , the final models have the same number of parameters. The preferred specification 

is the ESTAR (which \Vas selected by EJP but not by TP) with a better fit overall than its 

LSTAR counterpart. Of course, the true model is unknown, hence the value of this exercise 

16 They make the series approximately stationary by fourth lag differencing (Xt-Xt-4). 

17 Source: OECD Main Economic Indicators. 

18 Additionally, French and Italian indices were adjusted for strikes and other anomalies and therefore not 
considered here. 

19 A sample of 104 observations and the extra regressors required by NL4 probably justify this resulto 
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is in terms of checking what specification seemed to work better and what specification test 

led us to it. 

6 Conclusion 

This paper provides a new selection procedure to choose between a logistic and an exponential 

specification when the alternative to linearity considered is a STAR model. Along the way, 

we have also provided practical guidelines regarding nonlinearity testing and a way to obtain 

initial guesses for zero thresholds. This new procedure, EJP, is simpler, more intuitive, and 

has better power and consistency properties than its predecessor: TP. In addition, aH the 

tests developed here can be easily generalized for use in Smooth Transition Regression and 

multivariate models. 2o 

Empirical application of EJP is contingent on prior rejection of the null hypothesis of 

linearity with a suitable nonlinearity test: Any of NL2, NL3 or NL4. Each particular ap-

plication, given sample size and the length of the AR polynomial, will determine the best 

choice. A good strategy would be to begin with NL2 and only use a more complicated test 

(NL3 and then NL4) if at each stage linearity is not rejected. For more sophisticated users, 

this paper will be a helpful tool to understand the inner workings of specification and testing 

in the context of STAR models. 

References 

Davies, R. B., (1977), "Hypothesis Testing When a Nuisance Parameter is Present 
Only Under the Alternative," Biometrika, 64, 247-254. 

Escribano, A. and O. Jordá, (1997), "Improved Testing and specification of Smooth 
Transition Regression Models," working paper Universidad Carlos III de Madrid. 

Granger, C. Vv. J. and A. P. Andersen, (1978), An Introduction to Bilinear Time Series 
Models. Gottingen: Vandenhoeck and Ruprecht. 

20 See Escribano and Jorda (1997). 

12 



Granger, C. W. J. and T. Terasvirta, (1993),Modeling Nonlinear Economic Relation­
ships. Oxford University Press, New York. 

Haggan, V. and T. Ozaki, (1981), " Modelling Nonlinear Random Vibrations Using an 
Amplitude-Dependent Autoregressive Time Series Model," Biometrika, 68, 189-196. 

Hamilton, J. D., (1989), "A New Approach to the Economic Analysis ofNon Stationary 
Time Series and the Business Cycle," Econometrica, 57,357-384. 

Hansen, B., (1996), "Inference when a Nuisance Parameter is not Identified under the 
Null Hypothesis," Econometrica, 64, 413-430. 

Luukkonen, R, P. Saikkonen and T. Terasvirta, (1988a), "Testing Linearity Against 
Smooth Transition Autoregressive Models," Biometrika, 75, 491-499. 

Luukkonen, R, P. Saikkonen and T. Terasvirta, (1988b), "Testing Linearity in Uni­
variate Time Series Models," Scandinavian Joumal of Statistics, 15, 161-175. 

Neft<;i, S. N., (1984), "Are Economic Time Series Asymmetric over the Business Cy­
ele?" , J oumal of Political Economy, 92, 307-328. 

Pesaran, M. H. and S. M. Potter, (1997), "A Floor and Ceiling Model of U. S. Output," 
Joumal of Economic Dynamics and Control, 21, 661-695. 

Rothman, P., (1991), "Further Evidence on the Asymmetric Behavior of Unemploy­
ment Rates over the Business Cyele," Joumal of Macroeconomics, 13, 291-298. 

Saikkonen, P. and R Luukkonen, (1988), "Lagrange Multiplier Tests for Testing Non­
linearities in Time Series Models," Scandinavian Joumal of Statistics, 15, 55-68. 

Terasvirta, T. and H. M. Anderson, (1992), "Characterizing Nonlinearities in Business 
Cycles Using Smooth Transition Autoregressive Models," Joumal of Applied Econo­
metrics, 7, S119-S136. 

Terasvirta, T., (1994), "Specification, Estimation and Evaluation of Smooth Transition 
Autoregressive Models," Joumal of the American Statistical Association, vol. 89, no. 
425, 208-218. 

Terasvirta, T., D. Tj0stheim and C. W. J. Granger, (1994), "Aspects of Modelling Non­
linear Time Series," in R F. Engle and D. McFadden (eds.) Handbook of Econometrics 
Vol. 4, Amsterdam: Elsevier. 

Tsay, R., (1989), "Testing and Modelling Threshold Autoregressive Processes," Joumal 
of the American Statistical Association, 84, 231-240. 

V/hite, H., (1984), Asymptotic Theory for Econometricians, London and San Diego: 
Academic Press. 

13 



Table 4.1.1 

Relative frequencies of correct specification of STAR model. Table 4, pg. 172, Luukkonen et al. (1988). 
DGP: ESTAR. (1 = 100% accuracy selecting the correct model, O = 0% accuracy). 

Sample Size TP EJP Power NL4 

50 O 0.632 0.792 0.106 
0.3 00472 0.736 0.125 
1 0.129 0.624 0.210 

100 O 0.805 0.898 0.256 
0.3 0.552 0.830 0.317 
1 0.095 0.704 0.493 

200 O 0.899 0.963 0.616 
0.3 0.659 0.923 0.692 

1 0.039 0.765 0.881 

Table 4.1.2 

Relative frequencies of correct specification of ST AR model. Fig. 2, pg. 496, Luukkonen et al. (1988). 
DGP: LSTAR 

1tl = -0.5 1tl = 0.5 

Sample 81 TP EJP Power 81 TP EJP Power 
Size NL4 NL4 
50 -004 0.500 0.594 0.064 -lA 0.568 0.947 0.322 

O 0.039 -1 0.872 0.872 0.203 
0.5 0.736 0.736 0.072 -0.5 0.802 0.630 0.081 
1 0.853 0.871 0.170 O 0.047 
1.5 0.904 0.936 0.467 0.5 0.841 0.690 0.113 

100 -004 00459 0.811 0.122 -lA 0.594 0.978 0.744 
O 0.043 -1 0.941 0.935 0.491 
0.5 0.811 0.724 0.127 -0.5 0.898 0.814 0.118 

0.952 0.936 00498 O 0.037 
1.5 0.963 0.978 0.883 0.5 0.919 0.860 0.272 

Table 4.2 

Power simulations. Data generated from models 4.1-4.2 and 4.6, pg. 210-211, in Terasvirta (1994). 

ESTAR LSTAR ESTAR LSTAR 

Model NL3 NL4 NL3 NL4 NL3 NL4 NL3 
TC 20 - e = O 0.612 0.722 0.962 0.951 0.825 0.835 1.000 
TC20 = 0.02; e = O 0.983 0.997 0.691 0.656 1.000 1.000 0.993 
TC 20 = 0.04; e = 0.02 0.611 0.623 0.157 0.139 0.984 0.992 0.378 

Sample Size = 100 Sample Size = 300 
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Table 5.1 

Linearity testing, detennining the delay parameter and selecting between LST AR and ESTAR models 

Country Max. Lag P - vaJue P-vaJue DeJay TP EJP 
(AIC) NL3 NL4 Parameter Choice Choice 

Austria 5 DmD 0..0.33 LSTAR ESTAR 
BeJgium 5 0..0.50. 0..259 LSTAR LSTAR 
Japan 5 0..0.0.0. 0..0.0.0. '1 } ESTAR 
Norway 8 0..0.31 0..20.0. 5 LSTAR LSTAR 
Sweden 5 0..0.15 0..0.40. 3 LSTAR ESTAR 
U.K. 8 0..0.47 0..192 4 ESTAR ESTAR 
U.S.A. 6 0..0.0.6 0..0.54/0..0.16* 3/5* LSTAR LSTAR 
EUR 9 0..0.15 0..0.43 3 ESTAR ESTAR 

Note: For U.S.A. NL4 minimum p-value was for d = 5. 

Table 5.2 

Summary Statistics for ST AR model estimation: Austria and Sweden. 

AUSTRIA SWEDEN 

Summary LSTAR ESTAR Surnrnary LSTAR ESTAR 
Statistics Statistics 
R-Squared 0..70.79 0..6778 R-Squared 0..7251 0..7311 
Adj. R2 0..6819 0..660.7 Adj. R2 0..70.39 0..710.4 
SSR 0..0.50.3 0..0.554 SSR 0..0.538 0..0.526 
AIC -7.40.36 -7.3770. AIC -7.3560. -7.3781 
SIC -7.1677 -7.220.7 SIC -7.1463 -7.1684 
Durbin-Watson 2.3350. 2.0.845 Durbin-Watson 1.8476 2.0.132 
No.ofparams. 9 6 No. ofparams. 8 8 

15 


