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1. INTRODUCTION 

This paper proposes a specification test of quantile regression models consistent in 

the direction of nonparametric alternatives. 

Regression quantiles were introduced by Koenker and Bassett (1978) motivated by 

robustness considerations. Afterwards, quantile regression has also been proven very 

use fuI in applied research for describing conditional distributions, providing more 

accurate information on the relationship among the dependent and the conditioning 

random variables, than a mere conditional location estimate, like the conditional 

mean or median (see e.g. Koenker and Bassett (1982), Powell (1984, 1986), Granger 

et al. (1989), Chamberlain (1991) and Buchinsky (1994, 1995)). 

In general, the same functional form is assumed for every quantile function. Such 

assumption seems very strong in practice when heteroskedasticity is present or when 

the underlying distribution is not standard. The proposed test statistics are based on 

a marked empirical process, where the marks depend on the quantile residuals of the 

model fitted consistently under the null hypothesis. The statistic is constructed in 

a similar way than those of Hong-zhy and Bing (1991), Su and Wei (1991), Delgado 

(1993), Diebold (1995), Andrews (1996) and Stute (1995). The true model needs 

not be estimated. Therefore, unlike other consistent specification testing procedures 

based on comparing the parametric estimator - consistent under the null hypothesis 

- with another a nonparametric estimate - consistent under both, the null and alter­

native hypotheses -, our test does not depend on the choice of a particular amount 

of smoothing. The test statistics is not, in general, distribution free. In order to 

implement the test, we also propose a residual based bootstrap procedure to approx­

imate the critical values. A small simulation shows that the test works fairly well in 

practice. 

The rest of the paper is organized as fo11ows. Next Section introduces the testing 

procedure justifying its asymptotic properties. Section 3 presents the validity of 
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bootstrap approximations. Section 4 reports the results of a small Monte Carlo 

experimento Proofs are conn.ned to Section 5. 

2. TESTING PROCEDURE 

Suppose we have observations {(Yi, Xi) ,i = 1, ... , n} independent and identically 

distributed as the }R X }Rd -valued random vector (Y, X) . Let Qo (Y I X) be the () con­

ditional quantile function of Y, i.e. Qo (Y I X =x) ...:... inf {Y : Fy\x (y I X = x) ~ () } , 

where FYIX (. I .) is the conditional distribution of Y given X. We are interested in 

testing the composite hypothesis 

Ho : Pr {Qo (Y IX) = mo (X,/3o (()))) = 1 sorne /30 (()) E B C}Rb, 

and the alternative hypothesis, H¡, is the negation of Ho, where mo (.,.) is a known 

function, /30 (()) is a vector of unknown parameters and B e }Rb is the parameter 

space. Define Wo (z) = 1 (z :::; O) - (), where l(A) is the indicator function of the event 

A. Assuming that Y has a continuous distribution conditionally on X, we can write 

Ho : Pr {E [wo (Y - me (X, /30 (()))) IX] = O} = 1 sorne /30 (()) E B e ]Rb. 

Define ée = Y - me (X, (30 (())). Then we can write the tautological quantile re­

gression model, 

where Qo (éei I Xi) = O. 

Noting that 

where X = (Xl, X 2 , ••• , X d )' and x = (Xl, X2, ••• , Xd)' , the null hypothesis can be equiv­

alently expressed as 

Ho: E {[Wo (Y - mo (X,/3o (())))]b. (x)} = O, all x E]Rd and sorne /30 (()) E B e }Rb, 

(1) 
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where henceforth Li (x) = I1%=I1 (Xk :::; Xk). We will base the test statistic on the 

sample analogue of the expectation in (1). Define 

-o 1 ~ -
TnO (x) = y'n 6 WIHD.i (x), 

where WOi = Wo (éod and ~i (x) = I1%=I 1 (Xik :::; Xk) , where Xi = (XiI, Xi2 , "', X id ). 

Then, expression (1) suggests the following statistics for testing Ho, 

1: (~o (X))2 dFnx(x) = n-
I ~~ (Xi)2. 

sup \T~o (x)\ = sup \T~o (Xi) \ 
XE~d l~i~n 

(2) 

(3) 

where Fnx (x) is the empirical distribution function of the regressors X. C Mn and K Sn 

resernble in the spirit the Crarnér-vonMises and Kolrnogorov-Srnirnov test statistics 

respectively. Although the K Sn is computationally more demanding, it could be more 

powerful than the CMn against sorne alternatives (see Stute, 1995 for a discussion of 

the power of different functionals for the conditional mean specification test). This 

short of statistics has been used before for specification testing of regression rnodels 

by Hong-zhy and Bin (1991), Su and \Vei (1991), Delgado (1993), Diebold (1995) 

and Stute (1995) arnong others. Instead of ~i (x), other continuous weight functions 

can al so be considered as it has been proposed by Bierens (1982, 1990), De Jong and 

Bierens (1994), De Jong (1996) and Bierens and Ploberger (1997) for specification 

testing of continuous regression rnodels. Notice that continuity of the underlying 

quantile regression rnodel has not been irnposed. 

Althought CMn and KSn are based on a process on D (-00, OO)d , we can scale 

them into D [O, l]d by performing the quantile transformation 

CAln 1-: T~o (t) dFnu(t) = n-1 ~T~ (Ui )2 , 

KSn - sup ITr?o (t)1 = sup I~o (Uí)1 
tE[O,l]d I~i~n 

where U = (UI , .. , Ud) = (FXl (Xl)'''' FXd (Xd)) , {Ui : i = 1, .. , n} is the observed 

sarnple for U, Fnu(t) is the empirical distribution function of U and 

1 n 

T~o (t) = y'n tr WOiD.i (t) , 
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where ~i (t) = I1~=11 (FXk (Xik ) ~ tk), t = (tI, t2, "" td)' , tk = FXk (Xk) and FXk (Xk) 

is the unknown marginal distribution function of the regressor X k • Although the tests 

will always be computed using expressions (2) or (3), their asymptotic properties are 

easily discussed through T~o (t). 

Under Ho, E (1 (Y ~ mo (X,fJo (e))) IX) = e not depending on X. Hence, the 

Bernoulli random variable 1 (Y ~ mo (X,fJo (e))) is independent of X. Let us define 

(Jo = Je (1 - e). Thus, when d = 1, by Donsker's invariance principIe, (J;lT~ (t) 

converges in distribution to a standard Brownian motion on D [0,1] . This result is 

formally stated in the following proposition for the general case, d 2: 1. 

Proposition 1 .- Under Ho, 

T~o (t) - (JoBo (t) in distribution on the space D [O, l]d , 

where BO(t) = {BO(h, t2, "', td ), ° < h < 1, k = 1, "', d} is a Gaussian mndom pro­

cess on [O, l]d centered at zero and with covaT'Íance structure given by 

EO(t,8) ~ E (BO(t)BO (8)) ~ E (g 1 (Fx , (Xk ) :S min (tk, 8 k ))) 

Thus, under Ho, by the Continuous Mapping Theorem (CMT), 

_ CMoo = (J~ r BO (t)2 dt in distribution, 
J[O,l]d 

- KSoo = (J~ sup IBo (t)1 in distribution. 
[O,l]d 

It is worth remarking that when independence among explanatory variables holds, 

Eo(t, s) = TI~=l min (tk, Sk) and BO (t) is standard Brownian Motion in D[O,l]d. 

Therefore, when d = 1, or d > 1 and the X' s are independent, the asymptotic 

distribution is known and tabulated. Hence, asymptotic tests can be implemented. 

Nevertheless, in the general case, the asymptotic distribution depends on the data 

generating process and the test will be more difficult to implemento 

5 

lO 



To test the composite hypothesis, the parameter /30 (O) defined by 

/30 (O) = arg min E {((mo (X,,B) - Y) Wo (Y - mo (X,/3)))}. (4) 
,BE BcRb 

can be estimated by its sample analogue 

Notice that the interpretation of /30 (O) is different under the null and under the 

alternative hypothesis. 

The asymptotic properties of ~ (O) have been studied under different conditions on 

the data generating process under the null. Koenker and Bassett (1978, 1982) and 

Bloomfield and Stieger (1983) consider the linear model. Phillips (1991) and Pollard 

(1991) intl'oduced a different methodology. Amemiya (1982) discusses the properties 

of these sort of estimatol's for simultaneous equation models. Powell (1984, 1986) 

apply median and quantile regl'ession to censored and truncated regression models. 

Obel'hoffer (1982) proves consistency fol' the median in the nonlineal' l'egression model. 

Recentiy, Weiss (1994) has obtained the asymptotic distl'ibution of [3 (O) in general 

nonlinear dynamic models. It can be shown ( see e.g. in Ruppert and Carroll, 1980 

and \Veiss, 1994 among others) that 

n 

¿m~l) (xi ,[3(O)) Wo (Yi -mo (xi ,[3(O))) = op(n1
/

2
) , 

i=l 

(6) 

holds for the solution to the problem (5), whel'e m~l) (Xi,,B) = 8mo (Xi,,B) /8/3. Dnder 

different regularity conditions, it has been shown that [3 (O) = /30 (O) + Op (n- 1/ 2) 

under Ho. For notational convenience, we concentrate on the linear in parameters 

case, mo (Xi,,Bo(O)) = Zif3o(O) , where Zi = (l,X;)'. That is, we assume that an 

intercept is included in the model. Then, (6) becomes 

(7) 
i=l 

where 'ÍlOi = Wo (Yi - z~[3 (O)) . 
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When we replace the unknown {Jo (O) in T~ (x) by the estimator defined by (5), the 

statistic becomes 
-1 1 ~ A -

TnB (x) = r::: ~ 'l1Bi~i (x) . 
yn i=l 

Again, T~B (x) and its quantile transformation T~B (t) are identical. 

The following Proposition is use fuI in order to derive the asymptotic limiting pro­

cess of T~B (t). We require the following conditions: 

A.l Let F~8 (é I X) be the conditional distribution of éB given X. Then, we assume 

A.l.1 F~8(é I X) has, at least, one bounded continuous derivative in a neigh­

borhood of é = 0, uniformly in x. 

A.2 The regressors X have a continuous distribution such that E ¡¡X¡¡2 < oo. 

Condition for A.l.2 is satisfied '\vhen Xi and éBi are independent as it is usually 

assumed in the literature related to quantile regression. This assumption is nota­

tionally convenient but it can easily relaxed as \Ve shall discuss later. We shall also 

assume that conditions for y'ñ"-consistency of /3 (O) to (Jo (O) are satisfied. 

Proposition 2 .- Let h(X, t) be a measumblefunction such that SUPtE[O,l]d E IIh(X,t) 11
2 < 

oo. Under Ho, A.1-A.2, uniformily in t, 

In A 1 n In A 

y'ñ" t; hi(t)'l1Bi - Jñ t; hi (t)'l1Bi - f~8 (O) ; t; hi(t)Z~yñ ({J (O) - (JO (O)) = op(I), 

(8) 

Notice that if we choose hi(t) = Zil the first summand in (8) vanishes asymptoti­

cally by condition (7), so we can write, 
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Thus, from Proposition 2, and assuming feo (O) > O, we can obtain the usuallineariza­

tion of ~ (O) , just replacing hi(t) by Zi, i.e., 

A [1 n ,]-1 1 n 
Jñ({3(O)-{3o(O))=- feo(O);:t1ZiZi Jñt1ZiWoi+Op(l). (9) 

Therefore, substituting (9) in (8) and applying the Law of Large Numbers (LLN) 

when hi(t) = Lli(t) we have, uniformly in t, 

T~o (t) = T~o (t) - A (t)' R-1 )n t, ZiWOi + op (1) , (10) 

where t E [O, l]d, R = E [Z~ZI] and A (t) = E [ZILl I (t)]. From (10), it is easy to find 

the asymptotic covariance structure of T~o (t) . The following theorem provides the 

limiting process of T~o (t) under Ho. 

Theorem 1 .- Under Ho, A.1-A.2, 

T~o (t) -+ (JoB I (t) in distribution on the space D [O, l]d , 

where BI (t) is a Gaussian process centered at cero and covariance structure given by 

El (t, s) = Eo(t, s) - A (t)' R- 1 A (s). 

When the quantile function is non linear in parameters, ~l (t, s) will also de­

pend on f30 (O) and the model under the null hypothesis. In this case A (t) = 

E [m(l) (X,f3o(O)) Ll I (t)] , and R = E [m(l) (X,f3o(O))m(1) (X,f3o(O))']. If, in addi­

tion, we allow that feo(O) =J feo (O I X), the covariance structure becomes 

~l (t, s) = ~o(t, s) - A (t)' R- I A (t) - A (t)' R- I A (s) 

+A. (t)' k-v R k- 1 A. (s), 

where A(t) = E [m(l) (X,f3o(O)) feo (O I X)Ll¡ (t)] and 

k = E [feo (O I X)m(l) (X, f3o(O)) m(1) (X, f3o(O))'] . 

The test is based on the statistics, 

CM~ - ~ tT; (Xi )2 = ~ tT~ (Ui )2, 
n i=l n i=l 

f{S~ sup IT~ (Xi) I = sup IT~ (Ui)l· 
l~i~n l~i~n 
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Applying Theorem 1 and the continuous mapping theorem, the asymptotic distribu­

tion of C M~ and K S~ are immediately obtained as stated in the following Corollary. 

Corollary 1 .- Suppose A.1-A.2 hold. Then under Ho 

CM1 ~ CM1 = a2 r B1 (t)2 dt 
n 00 o J[O, lj d 

KS~ ~ KS~ = aJ sup IB1 (t)l. 
tE [O,I]d 

Under H1 

lim Pr {CM~ > e} = lim Pr {KS~ > e} = 1 for all e. 
n~oo n~oo 

Remark 1 .- When we test that the conditional quantile function is a constant, i.e. 

Ho : Pr {Q (Y IX) = (30 (O)} = 1, for so me unknown scalar (30 (O) and d = 1 or d > 1 

but the regressors are independent, then R = 1 and A(t) = t and we have that Bl(t) in 

Theorem 1 is the standard Brownian Bridge 071, D[O, 1Jd, and CM~ and KS~ share the 

same asymptotic null distribution as the Cramer-v. Mises and K olmogorov-Smirnov 

statistics employed for testing goodness of fit of the parametric distribution function. 

In general, both CM!, and K S!:, are not distribution free. However, critical values 

can be consistently approximated by bootstrap, as discussed in the following Section. 

3. BOOTSTRAP TEST 

As it has been shown, the asymptotic null distribution of any statistic based on 

T~o (x) or T~o (x) depends, in general, on certain characteristics of the data generating 

process. In order to implement the test in practice, we propose a residual based naive 

bootstrap procedure assuming independence between errors and regressors. 

First, \Ve discuss the bootstrap approximation for the simple hypothesis in which 

(3(e) is known and errors, éOi, are observable. Let X = {(Xi, éOi) : i = 1, .. , n} be 

the observed sample of the regressors and the error termo Suppose {éOi : i = 1, .. , n} 

is a random sample drawn from a multinomial distribution that puts equal weight 

on the observed errors {éOi : i = 1, .. , n}. Let us define en = n-1 Er=11 (éOi :::; O). 
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Henceforth, we will use standard bootstrap notation, i.e., we define E*(·) = E(· IX), 

Var*(-) = Var(· I X) and Pr*(.) = Pr(. I X). Define 'l10i = 1 (COi < O) - en' Next 

Proposition guarantees that the distribution of T~ (t) can be approximated by the 

one of its bootstrap analogue 

Proposition 3 With probability one 

T~;(t) -t (JoBO(t) in distribution in the space D[O, l]d. 

When f3 (B) is unknown, errors are unobserved and we will resample from the resid­

uals. Write EOi = Yi - Z:~(O), i = 1, .. , n. Now we define en = n-1 ¿~=11 (EOi :::; O) . 

By (7), taking into account that a constant is present, en = B + op(n-l/2). Now let 

E~l' ", E~n be random samples drawn from a multinomial distribution that puts equal 

weight on the residuals {EOi : i = 1, ", n} . Define ~ Oi = 1 (EOi < O) - en' By construc­

tion we have, E* [~~i] = O both under Ho and H1 , where now X = {(Yi, Xi) ,i = 1, ... , n} 

is the observed sample. Define ~* = Z:~ (O) + E~i and 

A 1 n 
(3* (O) = argmin - L (Z~(3 - ~*) (1 (r:* - Z~(3 :::; O) - O) 

f3EB n i=l 

De Angelis et al (1993) and Hahn (1995) have shown that the bootstrap distribution of 

y'Ti (~* (O) - ~ (O)) converges, in probability, to the distribution of y'Ti (~ (O) - (30 (O)) 

for the linear model and fixed regressors. However, it is straightforward to generalize 

the proof of Theorem 1 in Hahn (1995) in order to allow for stochastic regressors. 

The bootstrap analogue of T~o (t) is given by 

where ~Oi = 1 (€Oi < O) - en and €~i = r:* - Z:~* (O), i = 1, .. , n, the residuals of the 

bootstrap estimation. Define T~; (t) = n-1/ 2 L~=l ~Oi~i (t) . 
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Proposition 4 .- Let h(X, t) be as in Proposition 2. Then, under Ho, A.1-A.2, 

uniformly in t, 

1 n _ 1 n A (1 ~ ,) r.:: (A A) 
v'ñ~hdt)W~i- v'ñ~hi(t)W~i-fé/1(O) n6hi(t)Zi yn f3*(())-f3(()) 

+dn (t,~*(()) - ~(())) = op.(l), 

in probability, where 

dn (t,~*(()) - ~(())) = Jn ~ {Fn (Z~ (~*(()) - ~(()))) - F (Z~ (~*(()) - ~(()))) 
- Fn(O) + F(O)} hi(t) 

and 

v; = op' (1) in probability {:} Pr (11 V; 11 > Ó 1 X) ~ O for all Ó > O. 

This linearization is the bootstrap analogue of PropositÍon 2. Notice that now a 

bias term dn (t, ~*(()) - ~(())) appears. Next Proposition shows that this bias can 

be asymptotically approximated by a term which is constant conditionally on X and 

unconditionally vanishing. 

Proposition 5 Let O < l' < 1/2. TIten 

where 

Therefore, just mimicing steps in expression (lO),we write its bootstrap analogue, 

where ¿n(t) = op(l), which is used to prove the following theorem. 

Theorem 2 .- Under Ho, A.1-A.2, in probability, 

t~; (t) -t {}"(J B I (t) in distribution, in the space D [O, l]d , 
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Alternatively a smooth bootstrap procedure can be used, where the samples are 

drawn from a smooth nonparametric estimator of the density of the error term based 

on {ti, i = 1, .. ,n}. It has been shown in De Angelis et al (1993) that smooth 

bootstrap estimates of quantiles, work better than those based on the naive bootstrap. 

It is straightforward to check that Theorem 2 also holds for the smooth bootstrap. 

Higher order comparison of the different test are outside the scope of this paper. 

However, in Monte-Carlo experiments we have performed, the test based on smooth 

bootstrap seems to be quite sensitive to the choice of the amount of smoothing and 

it does not perform better than the naive bootstrap. 

4. SHvlULATIONS 

In the simulations, "Te consider the following design, 

(12) 

for different values of /30j, j = 1,2,3,4 and n = 30,50,100. The regressors Xi are inde­

pendently distributed U(O, 1) and the errors are generated such that QO.5(éi I Xi) = o. 
Two error distributions have been proved, éi = Ui and éi = (exp( Ui) - 1) / (exp(2) - exp(l)) 

(a standarized lognormal), where Ui are distributed iid N(O, 1). 

Tables 1 to In show the proportion of rejections on 1000 replications for each model, 

sample size and error distribution when the e Aln test is applied. 

In Table 1 we report the proportion of rejections using the asymptotic critical values 

for testing significance of the explanatory variable, that is, Ho : QO.5(Y I X) = /301. 

The proportion of rejections under Ho is quite close to the theoretical size of the test, 

even for the smallest sample sizes. Note that, under Ho, the statistic is identical for 

both error distributions. We study the power of the test when the true model is a 

linear model, /302 # O, but /303 = /304 = O. The proportion of rejections grows fast, 

both with sample size and with the value taken by /302' 

Tables n and nI illustrate the behavior ofthe bootstrap test. Here, the coefficients 

/3(B) have been estimated using the algorithm proposed by Koenker and D'Orey 
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(1987). In Table II, the null hypothesis consists of the linear model QO.5(Y I X) = 

(301 +(302X, The empirical size of the bootstrap test approximate very well the nominal 

size and it is not affected by the value taken by the parameters (301, (302. We also study 

the empirical power when the true model is quadratic ((3oi f. 0, i = 1,2,3, but (304 = 

O). The power of the test also grows fast with the sample size and with the value taken 

by (303' Since X2 is much smaller than X, the alternative hypothesis will be quite close 

to the null, except for the biggest value of (303. Such conclusions also hold for Table 

III, where the null hypothesis is quadratic QO.5(Y I X) = (301 + (302X +(303X2+(304X3 

while the data is generated by (12) with (30i f. 0, i = 1,2,3 and (304 is equal or different 

to O. 

5. MATHEMATICAL APPENDIX. 

In this Section we prove the Propositions and Theorems stated in previous Sections, 

which are based on sorne technical Lemmas proved in the Lemmatas. 

Proof of Proposition 1 

Since {WOi.6.i(t) : i = 1, .. , n} are iid with zero expectation and for t, s E [O, l]d , t'¡:' 

s, 6.i(t)6. i(s) = 6. i (min(t, s)), then E (W~i6.i(t)6.i(S)) = (J~~o (t, s) and applying the 

Levy Central Limit Theorem, the finite dimensional distribution of T~o(t) converges 

to a normal with zero mean and covariance given by ~o. 

Let DI = (s, t] = X1=1 (Sj, tj], D2 = (s', t'] = X1=1 (sj, tj] be two neighbors intervals 

in [O, l]d , i.e., they abut and for sorne j E {1, 2, .. , d}, and they have the same jth-face, 

xkh(Sk, tk] = xkh(s~, tU. Let Wn(t) be any empirical random process on D[O,l]d. 

Let define 

1 1 

Wn(D 1) = ¿ '" ¿ (_l)d- L p e
p Wn (SI + el(t1 - SI),"', Sd + ed(td - Sd))' (13) 

el=O ed=O 

Expression (2.1.8) in Gaenssler and Stute (1979) as sures that a sufficient condition 

for tightness in D[O, l]d is 
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where f-L (-) is an arbitrary finite measure with continuous marginals, b > 1, K ~ 0, 

and a are arbitrary constants. Using Markov inequality, a sufficient condition for (14) 

IS 

(15) 

Without 10ss of generality we will prove tightness for d = 2. For our process, 

expression (13) can be written as 

T~9 (Dd = 

where b. i (D j ) = 1 (Xi E Dj ). In the same way we write 

1 n 

T~o (D 2 ) = Jñ ~ WOi b.i (D2 ) • 

Lemma 5.1 in Stute (1995) assures that if {(ai,.Bd}f=1 are n iid square integrable 

random vectors with E(ad = E(.Bd = O, then 

Now, if we call ai = WOi b.i (DI) and .Bi = WOi b.i (D2 ) and taking into account that 

for our expression ai.Bi = O we have 

3n(n -1) 2 2 
< 2 E ('1101 ~1 (Dd) E ('1191 ~1 (D2)) 

n 
< [{ (Pr (Xl E DI U D2))2 . 

Thus, (15) holds and the proof is completed .• 

Proof of Proposition 2 

For the sake of brevity, we define /39 = /30 (O), ~o = ~ (O) and 

Applying the definition of the function W9i, 

14 
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Let o < 'Y < 1/10. Then 

Pr {G(Ó)} ::; Pr {I~o - ,Bol> n'Y- 1
/
2

} + Pr {G(Ó) and I~o - ,Bol::; n'Y-
1
/
2
}. 

The first surnmand tends to O by ~o y'n-consistency, and the second converges to O 

by Lemma 2 .• 

Proof of Theorem 1 

As in the proof of Proposition 1, we must show convergence of finite dimensional 

distributions and tightness. For the convergence of finite dimensional distributions, 

apply the Central Limit Theorem to the right hand side of expression (10), as it was 

done in the proof of Proposition 1. In order to prove tightness, note that expression 

(10) is the addition of two processes. By Proposition 1 the first surnmand is tight. 

Tightness of the second term follows immediately because the indexing deterministic 

function is continuous, nondecreasing and bounded. Thus, (10) is the addition of 

two tight processes. A process is said to be tight if there exists a compact set of 

the sample space, where the process is evaluated in, with arbitrary high probability, 

uniformly in n. Let [(1, [(2 the compact sets where the first and the second summand 

of (10) are evaluated in, with arbitrary high probability. By Tychonoff Theorem (See 

Dudley, 1989, th 2.2.8), the set [{3 = {k = (k 1 , k2 ) : k1 E [{l, k2 E [{2} is compact 

with the product topology. Now because the addition is a continuous operator and 

any continuous transformation preserves compactness, the set [{4 = {k = k1 + k2 : 

(k 1 , k2 ) E [{3} is a compact seto Thus, the process in (10) is evaluated in the compact 

set [{4 with arbitrary large probability uniformily in n, and tightness follows .• 

Proof of Proposition 3 

As in the proof of Proposition 1, we show weak convergence in D[O, l]d by verifying 

convergen ce of the finite dimensional distribution and tightness. First, we will prove 

the convergence of the finite dimensional distributions. Note that T~*(t) can be 

expressed as 

T~;(t) 
1 n 

- y'n t1 W~i~i(t) 
- a(t) bn(t) c~(t) 1 (Fnu(t) > O) 
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where 

r;;:-¡;;,( ) ( ) f¡o Fnu(t) * ( ) 1 ~ ,T,* A ( ) a(t) = (JO V Fu~t), bn t = _n p, ( ) , Cn t = A . / L..J 'i'OiUi t , 
(JO U t (JOn V nFnu(t) i=l 

and f¡On = Var* (WOi ) = n-1 L?=l (1 (éi ::; O) - On)2 = On (1- On)' Now suppose t > 

O. Then Fnu(t) ~ Fu(t) > O by the Glivenko-Cantelli theorem and 1 (Fnu(t) > O) ~ 

1. Thus, applying Lemma 6, it suffices to consider the convergen ce of a(t) bn (t) c~ (t), 

where a(t) is constant for fixed t, bn(t) is also deterministic conditionally on the 

sample, and tends a.s. to 1 uniformly in t by the Glivenko-Cantelli theorem and the 

strong consistency of &On' Let define 

e~ = 6. i (t)iJ!Oi 
m &On VnFnu(t)' 

Thus, c~(t) = Lf=l ~;n' It is easy to check that E* (~;n) = O a.s., Lf=l Var* (~;n) = 

1 a.s. and etrtl e;n are independent for i =1= j a.s .. Thus, {ei~' i = 1, .. , n; n = 1,2, ... } 

satisfies the conditions of triangular arrays almost surely. Now we check the Lindeberg 

condition. 

n 

LE* (c; 1 (I~tnl > ó)) 
i=l 

Now 

so 

1 (IW~il > Ó&On VnFnu(t)) - 1 (t:;n < O) 1 ((1 - O) > Ó&On VnFnu(t)) 

+1 (é:n > O) 1 (O > Ó&On VnFnu(t)) 

n "6 E* (e:; 1 (Ie:nl > ó)) < 1 ((1- O) > ó&On VnFnu(t)) + 1 (O > ó&On VnFnu(t)) 

~ O a.s, 

16 



and we can conclude that the triangular array satisfies the Lindeberg's condition for 

almost every sample X. Thus, by the CLT for triangular arrays we have, for fixed t 

c~(t) ~ N(O, 1), a.s. 

So by Lemma 6, for t fixed, 

Noting that E* (T~;(t)T~;(s)) = (jOnFnu (min(t, s)), almost sure convergence of 

finite dimensional distributions follows. 

For proving tightness, we use the same procedure followed by Stute, Manteiga and 

Presedo (1996) in the proof of their Lemma 4.3. That is, we will mimic conditionally 

on the sample all the steps given in the proof of Proposition 1. Using the same 

notation as in the referred Proposition, 

and in the same way we express 

where 6. i (Dj) is not random conditionally on the sample. Now 

E* {&;4 (T~; (D1)f (T~o (D2))2} 

&;4 E' { (~ t. w;,L>, ( DI))' (~ t. w;,L>,( D2) n 
- A} 2 t t E* (W;~W;;) (Ai(D1)6.j (D2) + 6.i(Dl)6.i(D2)Aj(Dl)Aj(D2)) 

(Jon i=l j=l 

+<I>n, (16) 

where <I>n includes terms containing, at least, one not repeated subindex. Thus <I>n = O 

because E* (W;iW;jW;kW;l) = O for i =f. j =f. k =f.l. Now, taking into account that, by 

17 



construction, !:l.i(DI)!:l.i(D2) = o and the independence among WOi and WOj for any 

i =1=- j, (16) can be written as 

(
1 n )2 

< ;;: t11(Xi E DI U D2 ) 

~ Pr(X E DI U D2)2, (17) 

which is a sufficient condition for the tightness condition (15), conditionally on the 

sample, and the proof is completed .• 

Proof of Proposition 4. 

Define ~ó = ~* (e) and G*(ó) the bootstrap analogue of G(ó), i.e., 

C'(ó) ~ {I Jn ~ h¡(t)~;¡ - (Jn ~h¡(t)il';'+ 
feo (O) ~ ~ hi (t ) z: .¡n (~; - ~o ) ) + dn (t, /3; - /30) I > ó } . 

Then 

but for any / > O, the first summand tends to O in probability by bootstrap .¡n­
consistency proved by De Angelis et al (1993) and Hahn (1995). For any / < 1/10, 

the second converges to O by Lemma 4 and the proof is completed .• 

Proof of Proposition 5 

1 (I~; - ~ol ~ n 7 -
1

/
2

) sup Idn(t,~n)1 
lI€nll~n'Y-l/2 

+1 (I~; - ~ol > n7
-

1
/
2

) Idn(t,~; - ~o)1 

sup Idn(t,~n)1 + op.(l), 
II€nll~n'Y-l/2 

by the yÍn-consistency of the estimator. 

Now 

by Lemma 1. 
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Proof of theorem 2. 

We start with express ion (11) which, applying Proposition 4, is a valid expansion 

of t~· (t) in probability, conditionally on the sample. The term dn(t) is negligible by 

Lernma 5. Now convergence of finite dimensional distributions of this expression is 

straightforward applying Lindeberg-Feller CLT as in the proof of Proposition 3 and 

Theorem 1. By Lernma 3, tightness is irnmediate if we show that the process is the 

sum of two tight processes. The proof of tightness for the first is identical to the proof 

of tightness of Proposition 3. Tightness of the second is immediate, and the proof is 

completed .• 

LEMl\1ATA A 

These Lernmata are applied in the proofs of results in Section 2. Henceforth, for 

the sake of presentation, we write Ci = COi, F(.) = F"/I (-) and j (-) = j"/I (.). 
Lemma 1 

Let /3n - (3 be a sequence such that 

for any 1 E (0,1/10). If A.l, A.2 are satisfled then 

sup I ~ f hi(t) {1 (ci :S Z;en) - F (Z~en) - 1 (ci :S O) + F(o)}1 = op(l) (18) 
l';nl~n'Y-l/2 yn i=l 

Proof. For simplicity, we prove it for X random scalar. We avoid to take the 

supremum on a inflnite set, using the same procedure in Boldin (1982). He considers 

a greed ofpoints in the range ofvariation (_n'Y- 1/ 2,n'Y- 1/ 2) where en is evaluated in, 

and 1 < 1/2. Define 

where 3mn is ofthe same order than n-('Y- 1/ 2)/4. Note that the greed becomes thinner 

as the sample size grows and the interval" also decreases with n. Let C:t be the 

value optimizing (18). For such greed, there exits a j such that O :S ejn - e:t :S 
2 n'Y-l/2 3-mn 
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Define for i = 1,2, .. , n 

X;s - Xi(l - 2 n'Y-l/2 3-mn~;;1(Xi > O)), 

X~ - Xi(l - 2 n'Y-l/2 3-mn~;nl1(Xi < O)). 

This variables satisfy the relationship (see Mukantseva, 1977 and Boldin, 1982), 

Xtj~jn :::; Xi~:;t :::; Xij~jn. Suppose for the moment that hi(t) 2:: O a.s .. Then, from 

the inequalities aboye we can write 

~ t, {1 (€i :::; Xi~~t) - F(Xi~~t) - 1 (€i :::; O) + F(O)} hi(t) 

> Jn t, {1 (éi :::; Xlj~jn)} - F(Xlljn ) - 1 (éi :::; O) + F(O)} hi(t) 

-Jn ~ {F(X;j~jn) - F(X¡j~jn)} hi(t) 

b1n(t) - b2n(t) 

Analogously 

Jn ~ {1 (éi :::; Xi~:t) - F(Xi~:t) - 1 (éi :::; O) + F(O)} hi(t) 

< ~ ~ {1 (éi :::; X;j~jn) - F(X;j~jn) - 1 (éi :::; O) + F(O)} hi(t) 

+ Jn t, {F(X;j(jn) - F(X:j~jn)} hi(t) 

- b3n (t) + b2n(t) 

Notice that there is not loss of generality assuming hi(t) 2:: O, because if it do es not 

hold, we can always write hi(t) = Ihi(t)1 (l(hi(t) ~ O) - l(hi (t) < O)) , and dividing 

the left hand side of (18) in two terms, everything follows using sorne arguments as 

for hi(t) ~ o. 
Therefore, it suffices to show that bkn(t) vanish for k = 1,2,3. Applying Liptschitz 

condition 
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- Kejn ~ t (X;j - X!j) hi(t) 
yn i=l 

- Kejn Jn t,Xi2 n'Y- 1
/

2 3-mn{in1 (l(Xi > O) - l(Xi < O)) hi(t) 

1 n 
K (2 n'Y 3-mn

)_ L IXil hi(t) 
n i=l 

- op(l). (19) 

The limit in (19) has been calculated under A.l and A.2, and because n'Y 3-mn 
I'V 

n'Y n('Y-1/2)/4 = n(5'Y- 1/ 2)/4 and it vanishes for any , < 1/10. Now 

b3n(x) Jn t, (l{éi ~ Xljejn} - F(Xljejn)) hi(t) 

1 n 

- Jñ t; (1 {éi ~ O} - F(O)) hi(t) 

Therefore, 

-7 O as n -7 oo. 

Finally, the convergen ce of b1n(x) follows using the same arguments .• 

Lernrna 2 

Under the conditions of the previous Lemma, uniformily in x 

Proof. Note that by the Mean Value Theorem 

Jn t, {F(Z~en) - F(O)} hi(t) = Jn t,f(Z~(n)Z~enhi(t) (20) 

1 n 
- f(O) Jñ ~ Z~enhi(t) + op(l). (21) 

where (n E (O, en). Now the result follows substituting (20) in Lemma 1. • 
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LEMMATA B 

The Lernmas below are applied to prove the results in Section 3. 

Lemma 3 

Under the conditions of Proposition (4), with probability one and uniformily in x 

where dn (t) = op (1) is constant wi th respect to PI' * . 

Proof. 

PI'oceed like in the proof of Lemma 1. Everything works in the same way except the 

convergen ce to O of the analogous expressions b2n (t) and b3n (t). Taking into account 

that conditionally on the sample, the regressoI's are regarded as fixed, 

- f{ (2n')'3- mn
) ~ t IXil hi(t) 

n i=l 

a.s. 

- 0(1) a.s. 

To prove negligibility of b3n (x) notice that 

b;n(t) = ~ ~ {1 (é; ::; X:}ein) - Fn(X:}ein) - 1 (é; ::; O) + Fn(O)} hi(t) 

+ ~ ~ {Fn(X:}ein) - F(X:}ein) - Fn(O) + F(O)} hi(t) 

- +dn(x, ein) 

and b:n(t) ~ O a.s. is proved analogously as in the proof of Lemma 2 .• 

Lernrna 4 

Under the conditions of the previous Lemma, with probability one 
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Proof. 

Note that 

Jn t,f(Z~[n)Z~enhi(t) (22) 

1 n 

f(O) Jñ t; Z:enhi(t) + 0(1), (23) 

because the regressors are conditionally fixed, where (n E (O, en). Now apply (22) to 

Lernma 3 and the proof is completed .• 

Lemma 5. 

Suppose the bootstrap random variable W~ verifies the decomposition W~ = Win + 
W2n where Win depends on the bootstrap sample and W2n depends only on the 

original sample (it is constant conditionally on the drawn sample). If W1*n ~ W with 

probability 1 and lV2n ~ O. Then W~ ~ 111 in probability. 

Proof. Let G~, F~ and F be the distribution function of W~, lVin and W respec­

tively. Let d(·,·) a metric on F, the space of the distribution function and suppose 

that d(., .) metricize the 'weak topology. That is, if Un and U are two random variables 

with distribution function Hn, and H respectively, 

Un ~ U ~ lim d(Hn,H) = O 
n->oo 

We will prove the validity of bootstrap approximation using the equivalence 

w~ ~ W in probability ~ d(G~, F) ~ O. (24) 

It is known that 

d(F, H) - :E~JJ h(x) dF - J h(x) dHI 

BL {h: Ih(x) - h(y)1 ~ Ix - yl; s~p Ih(x)1 ~ 1} 

metricize the weak topology (see Dudley, 1989, th. 11.3.2). The functions in BL are 

Bounded Lipschitz. 
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We have by hypothesis that W~ = Win+W2n' Because W2n is constant conditionally 

on X, we can write 

G~(x) = Pr (W~ :::; x I X) = F~(x - W2n ) 

We will prove that d(G~, F) ~ O. 

d(G~, F) - ;E~L 11 h(x) dF~(x - W2n ) - 1 h(x) dF(x)1 

:E1L 11 h(x + W2n ) dF~(x) - 1 h(x) dF(x)1 

< ;EUIL 1/ h(x + TV2n ) dF;(x) - / h(x) dF;(x)1 

+ ;E~L 1/ h(x) dF;(x) - / h(x) dF(x)1 

- aln(X) + a2n(X). 

because of (24), a2n(X) ~ O. Now applying the properties of BL 

sup l/h(X + W2n ) - h(x) dF;(x)1 
hEBL 

< sup /ITV2nl dF;(x) 
hEBL 

and the proof is completed .• 

Lernrna 6. 

IZnl ~O. 

Suppose the bootstrap random variable W~ verify the decomposition W~ = Wtn W2n 

where Wtn depends on the bootstrap sample and W2n depends only on the original 

data (it is constant conditionally on the drawn sample). If Win ~ W with proba­

bility 1, and W2n ~ 1. Then W~ ~ W with probability 1. 

Proof. Using the same notation that in the proof of Lemma 5, 

W; ~ W with probability 1 {:} d(G~, F) ~. O. (25) 

We have by hypothesis that W~ = Wtn W2n. Because W2n is constant conditionally 

on X, we can write 

G~(x) = Pr(W~ ~ x I X) = F; (~n) 
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We will prove that d(G~, F) ~. O. 

d(G~, F) - hSEuIL 1/ h(x) dF~(x/W2n) - / h(x) dF(x)1 

- :~L 1/ h(xW2n ) dF~(x) - / h(x) dF(x)1 

< :E1L 11 h(xW2n ) dF~(x) - 1 h(x) dF~(x)1 

+ :EUIL 11 h(x) dF~(x) - 1 h(x) dF(x)1 

- aln(X) + a2n(X). 

because of (25) a2n(X) ~ O. Now applying the properties of BL 

aln(x) - sup 1/ h(xW2n) - h(x) dF~(x)1 
hEBL 

< sup / Ih(xW2n) - h(x)1 dF~(x) 
hEBL 

< sup 1 I (Ti'2n - 1) xl dF~(x) 
hEBL 

- IltF2n - 11 J Ixl dF~(x) ~ 0, 

because W2n ~. 1, and the proof is completed .• 
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TABLE 1 

Asymptotic Test. 

Ro: QO.5(Y I X) = 001 

True Model: Q05(Y IX) = 4 + {302X. 

Normal Lognormal 

(302 a n=30 n=50 n=100 n=30 n=50 n=100 

0.10 0.140 0.106 0.099 0.140 0.106 0.099 

(302 = O 0.05 0.064 0.059 0.042 0.064 0.059 0.042 

0.01 0.015 0.010 0.013 0.015 0.010 0.013 

0.10 0.189 0.385 0.619 0.619 0.914 0.999 

(302 = 1 0.05 0.110 0.265 0.492 0.484 0.864 0.991 

0.01 0.024 0.090 0.276 0.235 0.666 0.956 

0.10 0.528 0.970 0.990 1.000 0.873 1.000 

{302 = 2 0.05 0.378 0.922 0.975 0.999 0.790 1.000 

0.01 0.164 0.722 0.903 0.994 0.551 1.000 

0.10 0.989 1.000 1.000 1.000 1.000 1.000 

(302 = 5 0.05 0.964 1.000 1.000 1.000 1.000 1.000 

0.01 0.826 1.000 1.000 0.990 1.000 1.000 
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TABLE 11 . 

Bootstrap test based on 500 bootstrap samples. 

Ha : QO.5(Y I X) = 1301 + 1302X 

True Model: QO.5 (Y I X) = 4 + 1302 X + 1303X2. 

Normal Lognormal 

a n=30 n=50 n=100 n=30 n=50 n=100 

0.10 0.100 0.096 0.097 0.103 0.089 0.100 
1302 = O 

0.05 0.052 0.050 0.051 0.053 0.046 0.052 
1303 = O 

0.01 0.009 0.011 0.010 0.015 0.013 0.010 

0.10 0.104 0.091 0.100 0.104 0.091 0.100 
1302 = 5 

0.05 0.055 0.047 0.052 0.055 0.047 0.052 
1303 = O 

0.01 0.015 0.013 0.008 0.015 0.013 0.008 

0.10 0.103 0.114 0.138 0.149 0.199 0.327 
1302 = 5 

0.05 0.057 0.062 0.087 0.084 0.131 0.232 
,803 = 1 

0.01 0.015 0.014 0.028 0.024 0.005 0.095 

0.10 0.214 0.471 0.784 0.593 0.977 1.000 
,802 = 5 

0.05 0.137 0.349 0.697 0.467 0.947 0.999 
,803 = 5 

0.01 0.040 0.173 0.466 0.232 0.822 0.997 

0.10 0.956 1.000 1.000 1.000 1.000 1.000 
,802 = 5 

0.05 0.912 1.000 1.000 1.000 1.000 1.000 
,803 = 25 

0.01 0.744 0.999 1.000 0.999 1.000 1.000 
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· . . . 

/304 = O 

/304 = 25 

/304 = 50 

/304 = 125 

TABLE 111 

Bootstrap test based on 500 bootstrap samples. 

Ho : QO.5(Y IX) = /301 + /302X + /303X2 

True Model: QO.5(Y I X) = 4 + 5X + 25X2 + /304X3 . 

Normal Lognormal 

a n=30 n=50 n=100 n=30 n=50 

0.10 0.094 0.113 0.096 0.103 0.104 

0.05 0.048 0.065 0.041 0.047 0.054 

0.01 0.015 0.020 0.013 0.014 0.016 

0.10 0.130 0.423 0.857 0.229 0.865 

0.05 0.062 0.281 0.786 0.131 0.774 

0.01 0.090 0.104 0.597 0.042 0.550 

0.10 0.251 0.916 1.000 0.464 0.996 

0.05 0.145 0.809 1.000 0.291 0.987 

0.01 0.094 0.543 0.999 0.094 0.962 

0.10 0.587 1.000 1.000 0.841 1.000 

0.05 0.353 1.000 1.000 0.668 1.000 

0.01 0.110 0.999 1.000 0.287 1.000 
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n=100 

0.101 

0.043 

0.010 

0.999 

0.999 

0.990 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 


