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Abstract 
It is well known that economies of scale that are external to the individual decision makers can lead 
to self-fulfilling prophecies and the multiplicity or even indeterminacy of equilibrium. We argue that 
the importance of this source of multiplicity and indeterminacy is overstated in representative agent 
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version of Matsuyama' s (1991) two-sector model with increasing returns to scale. Two main results 
are shown. First, sufficient homogeneity with respect to individual productivity leads to the 
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uniqueness of a given stationary state and the global uniqueness of equilibrium. 
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1 Introd uction 

The uniqueness of equilibrium is crucial in economic analysis. If multiple equilibria ex

ist then the concept of rational expectations equilibrium becomes inconsistent unless an 

equilibrium selection mechanism can be identified by which non-economic factors, such as 

cultural conventions or institutional constraints, coordinate individual beliefs and thereby 

select an equilibrium. Since not much is known about this coordination process, models 

with multiple equilibria typically do not lead to sharp predictions. Moreover, when there 

are multiple equilibria, the outcome of comparative static exercises depends crucially on 

the way in which beliefs are coordinated. This problem becomes worse when there is in

determinacy of equilibrium. l In this case, it is impossible to conduct comparative static 

exercises at all. For these reasons, it is an important task to identify conditions under 

which the equilibrium is determinate and conditions under which it is unique. 

This paper is about the determinacy and uniqueness of equilibrium when there are 

economies of scale that are external to the individual decision makers. Economies of 

scale lead to a strategic complementarity, implying that beliefs can be self-fulfilling and 

the equilibrium can be non-unique [Cooper and John (1988)]. More specifically, when all 

individuals believe that all other individuals will undertake the activity that is subject to 

increasing returns, they may find it optimal to undertake that activity and thereby indeed 

increase its returns.2 

We argue that the likelihood of non-unique equilibrium is overstated by most that litera

ture. The reason is that it employs dynamic general equilibrium models with representative 

agents and restricts attention to symmetric equilibria.3 By construction of these models, 

1 Following Kehoe and Levine (1985) or Farmer (1993), we call the equlibrium indeterminate if it is 
locally non-isolated, that is, in each neighborhood there is another equilbirium. 

2The implications of this phenomenon were studied by several authors in models with infinitely lived 
agents. For example, Benhabib and Farmer (1996) and Kiyotaki (1988) demonstrate that random fluctua
tions in self-fulfilling beliefs can generate business cycles, while Boldrin and Rustichini (1994) and Pelloni 
and Waldmann (1998) show that they can affect economic growth. 

3Using such a model, Benhabib and Farmer (1996) e.g. demonstrate that indeterminacy is possible for 
mild increasing returns of an order of magnitude consistent with the empirical findings of Norrbin (1993) 
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all individuals are identical, hold the same beliefs and act collectively, implying that the 

whole population can switch from one equilibrium to another one. This is crucial in the 

presence of increasing returns. There are at least two reasons why such collective switches 

may not occur. First, individuals may not be able to coordinate, for example because they 

face a free-riding problem or because they have heterogeneous information.4 The present 

paper points out why collective switches may not occur even when coordination is not an 

issue: when agents are heterogeneous with respect to their physical characteristics, not 

sufficiently many of them may find it optimal to act upon a change of beliefs.5 

We study the role of heterogeneity in a version of a model developed by Matsuyama 

(1991). There are two sectors and increasing returns to scale. Individuals are differently 

productive and choose the sector in which they will work. Matsuyama found that there 

can be multiple equilibria, one of which can even be indeterminate. Our main contribution 

is to show that whether this is the case depends critically on the distribution of individual 

productivity. More precisely, starting from an arbitrary interior stationary state and an 

arbitrary distribution of individual productivity, we define a change in heterogeneity as a 

spread of that distribution and restrict attention to a class of spreads that leave the chosen 

interior stationary state invariant. We derive three results. First, sufficient homogeneity 

gives rise to multiple stationary states and to the indeterminacy and instability of the 

chosen stationary state.6 Second, for intermediate ranges of heterogeneity there are still 

multiple stationary states but the equilibrium close to the chosen stationary state becomes 

determinate although not necessarily unique. Third, sufficient heterogeneity ensures that 

and Basu and Fernald (1997). Note, however, that this may no longer be true once one accounts for 
investment adjustment costs [Kim (1997)]. 

4In closely related but independent work, the first point is developed by Adsera and Ray (1998) and 
the second one by Karp (1999), who builds on an idea of Morris and Shin (1998). 

5Recent evidence collected by Davis et al. (1996), for example, suggests that there is considerable 
heterogeneity with respect to job creation and destruction across U.S. manufacturing plants. Moreover, 
the results of Basu and Fernald (1997) indicate that heterogeneity across firms and industries with respect 
to the degree of increasing returns cannot be neglected. 

6Note that each stationary state is an equilibrium if the initial conditions are the stationary state values 
of the relevant variables. 
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the chosen stationary state becomes unique and globally saddle-path stable and that the 

equilibrium is unique everywhere. In other words, the occurrence of multiplicity and 

indeterminacy in our model requires that there is sufficient homogeneity across agents. 

2 Economic Environment 

We use a version of Matsuyama (1991) continuous time overlapping generations economy, in 

which at any point in time a continuum of measure one of individuals is alive. Matsuyama's 

model is well suited for our purposes because individuals are different with respect to their 

productivity. Moreover, the economy is small and open, there are no barriers to trade, and 

there are perfect capital and insurance markets, so individuals can freely borrow and lend 

at the given world real interest rate r > ° to smooth their consumption. This suppresses 

general equilibrium effects on prices and allows us to focus on the role of heterogeneity. 

2.1 Technology 

There are two sectors, called agriculture and manufacturing, which produce different goods. 

We assume that their relative world market price is constant and normalize it to one. All 

individuals are taken to be equally productive when they work in agriculture, and their 

endowment of labor services is normalized to one. The technology in agriculture transforms 

one unit of labor services into one unit of the output. In contrast, individuals are differently 

productive in manufacturing. In particular, there are different types i E 1R, which are 

distributed across the population according to a cumulative distribution function G( . ). 

Assumption 1 G(·) : 1R -t [0,1] is exogenously given, time invariant, has a finite mean, 

and a continuous and positive density function g( . ). 

Note that the inverse of G( . ) exists, is continuously differentiable, and maps 1R onto [0,1]. 

We denote it by G-1 
( .). To give the different types an economic meaning, we assign the 
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endowment of e( i) units of labor services in manufacturing to type-i individuals. 

Assumption 2 e(·) : lR -t Rt is continuously differentiable with e' (i) < ° 'Vi E lR and 

has the range [~, e) C (0,00). 

This implies that liIIli-t-oo e( i) = e and limi-too e( i) =~. To avoid confusion, it should 

be stressed that a lower i is associated with a higher productivity.7 The technology in 

manufacturing has economies of scale due to an agglomeration externality that is external 

to each individual working there. In particular, individual output in manufacturing is 

assumed to be a(n)e(i), where n(t) is the fraction of the population in manufacturing at t. 

Assumption 3 a(·) : [0,1] -t Rt is continuously differentiable with a'(n) > ° 'V nE [0,1] 

and has the range [g, a] C (0, 00 ).8 

2.2 Individuals' Problem 

There is a constant death rate p > 0. If an individual dies it is replaced by a newborn of the 

same type. By the law of large numbers, the distribution of types then remains invariant 

and there is no aggregate uncertainty.9 At the beginning of its life, each individual makes 

an irreversible decision about the sector in which it will work. We assume that she chooses 

the sector with the larger expected present discounted lifetime income. lo The relevant 

information for the newborns' decisions at time t is the future path ofn, {n(s)}~t. Taking 

it as given and denoting the individual discount rate by p, p E (0,00), the formal condition 

7Note that it might seem more natural to assume that e/(·) > 0 and also to index the types directly 
by their endowments of labor services. Our choices will turn out to be convenient below but do not affect 
our results. 

8This implies that a(O) = G and a(l) = a. 
9 Judd (1985) shows that always there exists a measure such that the law of large number holds. 

lOSince there are perfect capital and insurance markets, individuals can freely borrow, and so this could 
easily be derived from a standard intertemporal maximization problem, given the choice of sector. 
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that individuals of type i born at time t choose to work in manufacturing is 

Et ([00 exp( -p(s - t))dS) ~ Et ([00 a(n(s))e(i) exp( -p(s - t))dS) , (1) 

where Et (·) denotes the individual expectation at t. Given that the death rate is p, 

the probability that an individual born at time t lives at least until time s > t equals 

exp( -p(s - t)). Using this (1) can be rewritten to 

1 100 e(i) ~ V(t) = (p + p) t a(n(s» exp( -(p + p)(s - t»ds. (2) 

where V(t) represents the annuity value ofthe output stream that one unit oflabor services 

produces in manufacturing. Note that V(t) E [g, a]. 

Since the distribution of types is over i, we want to rewrite inequality (2) as a condition 

on i. To this end, we need to extend the definition of e -1 ( . ), the inverse of e ( . ), so as to 

allow for the possibility that l/V(t) is not in the range of e( . ): 

1
-00 if V(t) < lie, 

e-1(1/V(t)) = 
00 if V(t) > 1/~. 

(3) 

Since e( . ) was assumed to be monotonically decreasing, (2) implies that all newborns of 

type i ~ e-1(1/V(t» choose manufacturing, and so the fraction of newborns choosing 

manufacturing at time t is given by F(V(t) = G(e-1(1/V(t»). 

3 Competitive Equilibrium 

Definition 1 (Competitive Equilibrium) A competitive equilibrium is an initial no, 

paths {n(t), V(t)}~o with n(O) = no, and individual choices of sector such that (i) at any 

point in time t, given V(t) each newborn's choice of sector maximizes her expected lifetime 
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income, that is, (2) holds; (ii) the paths {n(t), V(t)}~o are consistent with the newborns' 

career decisions, that is, V(t) is as in (2) and n(t) satisfies 

n(t) = n(O) + p It

[F(V(s)) - n(s)]ds. (4) 

In words, the consistency requirements (2) and (4) say that the newborns' decisions gener

ate a path for n(t) that is consistent with the path ofV(t) that the newborns take as given 

when they made their decisions. In particular, equation (4) says that at each point in time 

the share of individuals working in manufacturing equals the initial share, n(O), plus the 

mass of individuals that entered manufacturing between time 0 and t, i.e. p f~ F(V(s))ds, 

minus the mass of individuals that worked in manufacturing and died between time 0 and 

t, Le. p f~ n(s)ds. 

The equilibrium dynamics of our economy are fully characterized by the laws of motion 

for V and n. Taking the derivatives of (2) and (4) with respect to time, we get the following 

two differential equations:ll 

v = (p + p)[V - a(n)], 

it = p[F(V) - n]. 

(5a) 

(5b) 

Since (n, V) remain in the compact set [0,1] x [g, a] c lR?, the system (5) has a unique so

lution for each pair (no, Vo) of initial values; see Theorems 1.0.1 and 1.0.3 in Guckenheimer 

and Holmes (1983)0 To avoid confusion it should be stressed that many of these solutions 

violate the equilibrium conditions, so we still need to show that for each no an equilibrium 

exists. 

A stationary state of the economy is a pair (n*, V*) such that all variables are constant 

over time CV =n=O). Since we are in a small open economy, consumption is only constant 

in stationary state if the world interest rate, r, equals the effective discount rate, p + p. 

11 In what follows we will drop the time index whenever this is unlikely to cause confusion. 
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Figure 1: The Dynamics Under Assumptions 5(a) and 5(b) 
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Using (5), the conditions for a stationary state are found to be V = a(n) and V = F- 1(n). 

To ensure that an interior stationary state exists, we make 

Assumption 5 Either (a) [g, a] c [l/e, 1/~] or (b) [l/e, 1/~] c [g, a]. 

As Figure 1 illustrates, Assumption 5( a) implies that some newborns are so productive 

(unproductive) in manufacturing that they (do not) choose it even if nobody (everybody) 

works there. In other words, Assumption 5(a) excludes stationary states at the corners. 

Similarly, Assumption 5(b) implies that if everybody works in agriculture (manufacturing) 

then all newborns choose agriculture (manufacturing). In other words, Assumption 5(b) 

ensures that both corners are stationary states, that is, (O,g) and (l,a) are stationary 

states. Moreover, given that all relevant functions are continuous, Assumption 5 ensures 

that an interior stationary state exists. Generically there is an odd number of stationary 
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states. While each stationary state (n*, V*) is an equilibrium for the initial condition 

no = n*, Assumptions 1-5 ensure the existence of an equilibrium {n(t), V(t)}~o with 

71,(0) = no for each no E (0,1),12 

Since a newborn's career decision depends on how many individuals will work in manu-

facturing in the future, the model has a strategic complementarity. Changes in individual 

beliefs about future decisions of other individuals can then be self-fulfilling and lead to the 

occurrence of multiple equilibria. It is important to distinguish the multiplicity of station

ary state from the multiplicity of equilibrium. For example, in Figure 2 the economy has 

multiple stationary states in both cases, but in case (i) the equilibrium is unique for any 

initial no, whereas in case (ii) there are initial no sufficiently close to the middle stationary 

state for which it is not unique. Moreover, in case (ii) the equilibrium is indeterminate 

(i.e. not isolated) when the economy is in the middle stationary state. 

Definition 2 (Determinacy and Uniqueness) Let {n(t) , V(t)}~o be a competitive 

equilibrium with n(O) = no. (i) {n(t), V(t)}~o is unique at n(t) if V(t) is the only V E 

[a, a] for which (n(t), V) is on an equilibrium path. (ii) {n(t), V(t)}~o is determinate 

at n(t) if it is locally unique, that is, there exists an c > 0 such that V(t) is the only 

V E (V(t) - c, V(t) + c) for which (n(t), V) is on an equilibrium path. 

Note that determinacy (multiplicity of equilibrium) is a necessary but not a sufficient 

condition for the uniqueness of equilibrium (indeterminacy). 

12This follows from the facts that (i) the stationary state with the smallest n * must be saddle-path 
stable, the next one (as n* increases) must be unstable, followed by a saddle-path stable stationary state 
and so forth; (ii) for each saddle-path stable stationary state the stable manifold is differentiable in that 
stationary state and so there are two paths coming from different directions; (Ui) since the solution to (5) 
is unique, different manifolds can cross only in a stationary state. Hence, there is at least one Y(O) such 
that (no. Y(O» lie on a stable manifold. The unique solution to the dynamical system (5) with initial 
values (no. V(O» then is an eqUilibrium path with initial no. 
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Figure 2: Possible Equilibrium Dynamics Under Assumption 5(a) 
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4 Parametrization of Heterogeneity 

We borrow from Rothschild and Stiglitz (1970) and restrict our attention to those changes 

in heterogeneity that correspond to spreads of the original distribution functionP 

Definition 3 (Increase in Heterogeneity) Let Gl (·) and G2(·) be two distribution 

functions with support R There is more heterogeneity under G2 ( .) than under Gl ( .) if 

G2 ( • ) is a spread of Gl ( . ), that is, there is a single crossing point ic such that Gl (i) < G2 ( i) 

for i < ic; Gl(ic) = G2 (ic); Gl(i) > G2(i) for i > ic. If G2 (·) is a spread of Gl(·) then 

Gl (·) is a shrink ofG2 ( <) and there is more homogeneity underGl (·) than underG2 (·). 

In general, a distribution and its spread can have more than one crossing point. We 

consider only spreads and shrinks with a single crossing point because this allows us to 

13Note that we do not require the spreads to be mean preserving. If we did then our definition would 
be equivalent to first-order stochastic dominance. 
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Figure 3: Construction of a Spread 

lr-------------------~==~--~~~ 
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parameterize them in the following parsimonious way: 

G(ila, ic) = G(ai + (1 - a)ic), a E (0,00). (6) 

The idea underlying this construction is illustrated by Figure 3. It is straightforward to 

prove if a E (0,1), then G( 'Ia,ic) is a spread of G(·) and if a E (1,00), then G( 'Ia,ic) 

is a shrink of G( .). Furthermore, the parameter a measures the change in heterogeneity 

relative to the original distribution G( .): the lower is a the more heterogeneous is the 

population. Our strategy for investigating the effects of changes in heterogeneity will be 

to pick a specific interior stationary state, (n*, V*), of the economy with i distributed 

according G( . ) and then to change heterogeneity in such a way that (n*, V*) remains a 

stationary state for all a E (0,00) when i is distributed according to G( 'Ia, ic)' This 

requires us to choose ic = e- 1(1/V*),l4 For future reference it is useful to introduce 

F(Vla, V*) = G(e-1(1/V)la, e-1(1/V*)). 

14To see this, note that (i) the V = 0 locus does not depend on aj (ii) the it = 0 locus remains invariant 
at n* if and only if G(e-1 (1/V*)la,ic) = n" = G(e-1 (1/V*))j (Hi) ic is the only crossing point of the two 
spreads. 
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5 Ruling out Multiplicity and Indeterminacy: 

the Role of Heterogeneity 

Here, we analytically characterize the role of heterogeneity. The first Proposition focuses 

on the local properties of the chosen stationary state, (n*, V*), and the equilibrium. 

Proposition 1 (Saddle-Path Stability and Determinacy) Suppose Assumptions 1-

S are satisfied, (n*, V*) is an interior stationary state of the economy when i is distributed 

according to G ( . ), and 

__ -e'(e- I (1/V*))V*2 
al = a'(n*)g(e-l(l/V*)) ' 

- - [ (r - p)2]-
a2 = 1 + 4pr al· 

(7a) 

(7b) 

(i) Stability properties of (n*, V*) when i is distributed according to G( 'Ia, e-l(l/V*)): 

if a E (O,al) then (n*, V*) is locally saddle-path stable; if a E (aI, 00) then (n*, V*) 

is unstable. IS 

(ii) Determinacy properties of equilibrium close to (n*, V*) when i is distributed ac

cording to G( -la, e-l(l/V*)): if a E (0, (2) then (n* ,V*) and all equilibria with 

(n(t),V(t)) sufficiently close to (n*, V*) are determinate at these n(t); if a E (a2'00) 

then (n*, V*) is indeterminate at n*. 

The results of Proposition 1 are illustrated by Figure 4. To develop some intuition, note 

that the slope of the n = 0 locus at the chosen interior stationary state is given by the 

product of some positive constant and l/a. Thus, small a's make the n = 0 locus at 

(n*, V*) steeper than the V = 0 locus, that is, (n*, V*) locally saddle-path stable. This 

15The potential stabilizing effect of heterogeneity is not unknown in economics. Grandmont (1992), 
for instance, shows that heterogeneous preferences can ensure that the aggregate demand curve is well 
behaved. To our knowledge, however, it has not previously been investigated how heterogeneity affects 
the stability properties in a dynamic model. 
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Figure 4: The Role of Heterogeneity 
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also implies the determinacy of equilibrium close to (n*, V*). The opposite statement holds 

true for large a's. In economic terms, changing a such that (n*, V*) remains a stationary 

state changes the mass of individuals with endowments of labor services in manufacturing 

close to l/V*. For large a, that masss is relatively large. If returns are sufficiently strongly 

increasing, beliefs can then be self-fulfilling: if all individuals with endowments of labor 

services close to l/V* believe that all the others with similar endowments are going to 

enter manufacturing, that will increase output in manufacturing by enough to make it 

attractive for all them to enter. Small changes in V can then change the decisions of many 

newborns, implying that the chosen stationary state is unstable and the stationary state 

equilibrium indeterminate. The opposite statements apply for small a's. 

It is interesting to observe from (7a) that if (n*, V*) is initially locally saddle-path stable 

(unstable) then increasing heterogeneity (homogeneity) does not change this. Moreover, 

(7a) and (7b) show that if returns are strongly increasing (i.e. a'( .) is relatively large) 

or if individuals discount the future at a low rate (Le. r is small) then the entry of fewer 

individuals into manufacturing can make beliefs self-fulfilling. Moreover, if the death rate 

p is relatively large, a relatively large number of newborns make decisions at any point 

in time and the previous two effects get amplified. In all cases, more heterogeneity is 

required (Le. a2 falls) to rule out the possibility of self-fulfilling beliefs and bring about 

determinacy.16 

16Two remarks about the related literature are at order. First, our result that for any rate of time prefer
ence p = r - p enough heterogeneity makes eqUilibrium determinate complements what Matsuyama (1991) 
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Figure 5: The Role of Heterogeneity When All Stationary States are Interior 
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We now show that under Assumption 5(a) we can derive some global results. 

Proposition 2 (Uniqueness and Global Saddle-path Stability) Suppose Assump

tions 1-5 (a) are satisfied and (n *, V*) is an interior stationary state of the economy when 

i is distributed according to G( .)< There exists a unique a3 E (0, ad with al defined in 

(7a) such that: 

(i) if a E (0, (3) and i is distributed according to G( 'Ia, e-1(1/V*)) then (n*, V*) is the 

unique stationary state, (n*, V*) is globally saddle-path stable, and the equilibrium is 

unique for all initial no E [0,1J; 

(ii) if a E (a3,00) and i is distributed according to G( 'Ia, e-1(1/V*)) then (n*, V*) is 

one of multiple stationary states. 

Recalling that a3 ~ al < a2, we can summarize the results when Assumption 5(a) holds 

by Figure 5.17 Intuitively, the global results of Proposition 2 can be understood as follows. 

Assumption 5(a) ensures that individual productivity characteristics are sufficiently het

erogeneous so that there are individuals with a > 1/e(i) and individuals with a < 1/e(i). 

found, notably that for any amount of heterogeneity there is a rate of time preference such that equilib
rium is indeterminate. Second, in independent work, Schmutzler (1998) also points out that heterogeneity 
tends to work in the opposite direction from increasing returns. Since his models always has a unique 
equilibrium, he does not, however, study the effects of heterogeneity on the determinacy of equilibrium. 

17Note that one might think that a sufficient condition for the uniqueness of equilibrium is that both 
roots are real. That this is incorrect is illustrated by Figure Vb on page 646 in Matsuyama (1991). 
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Figure 6: Heterogeneity and the Uniqueness of Equilibrium under Assumption 5(a) 
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Regardless of what the other agents do, the former individuals always choose manufac

turing whereas the latter ones always choose agriculture. Since increasing heterogeneity 

spreads out individual characteristics and so increases the masses of both types, enough 

heterogeneity makes the chosen stationary state unique and saddle-path stable and the 

equilibrium unique. In graphical terms, enough heterogeneity makes the it = 0 curve 

so steep in the relevant area that it intersects exactly once with the V = 0 curve; see 

Figure 6. 18 

18In independent research, Frankel and Pauzner (1998) introduce a different form of heterogeneity into 
Matsuyama's model. In particular, they add persistent aggregate productivity shocks, which make the 
problem of identical types at different points in time different. They find that this form of heterogeneity 
can lead to the uniqueness of equilibrium too. 
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6 Conclusion 

This paper has studied the relation between the degree of heterogeneity in the population 

and the properties of equilibrium and of a chosen stationary state in Matsuyama's (1991) 

two-sector model with increasing returns to scale. We have found three results. First, suf

ficient homogeneity gives rise to multiple stationary states, to the instability of the chosen 

stationary state, and to the indeterminacy of equilibrium at that stationary state. Second, 

for intermediate ranges of heterogeneity there are still multiple stationary states but the 

equilibrium close to the chosen stationary state is determinate although not necessarily 

unique. Third, sufficient heterogeneity ensures that the chosen stationary state is unique 

and globally saddle-path stable and that the equilibrium is unique everywhere. These 

results suggest that homogeneity favors the occurrence of multiplicity and indeterminacy. 

Appendix 

A Proof of Proposition 1 

We know from the Stable Manifold Theorem that if a stationary state is hyperbolic (Le. has 

no eigenvalues with zero real part) then the stability properties of the linearized system 

close to that stationary state are the same as those of the non-linear one.19 So we replace 

G{ . ) by G{ 'Ia, e-1(1/V*)) in equations (5) and linearize the resulting system of equations 

around the chosen interior stationary state (n*, v*): 

-(p + p)al(n*)] [v - v*] . 

-p n - n* 
(A.1) 

19See Guckenheimer and Holmes (1983, page13). 
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The determinant and the eigenvalues of the above matrix are 

- [ag(e-1(1/v*))a'(n*) 1 
D(a) = pep + p) -e'(e-1(1/V*))V*2 - 1 . (A.2a) 

A - p± Jr - 4D(a) 
1~- 2 . (A.2b) 

Since pE (0,1), A1,2 have non-zero real parts and the Stable Manifold Theorem applies. 

For all a E (0, ad the determinant (A.2a) is negative and (n*, V*) is locally saddle-path 

stable. The determinant is positive for all a E (ab 00). As (A.2b) shows it is impossible 

in our model that both eigenvalues have negative real part. Thus, they must then both be 

real and positive or be complex conjugates with a positive real part, implying (n*, V*) is 

unstable. 

To prove part (ii), note that (A2a) and (A.2b) imply that the roots of (A.1) are real if 

and only if a E (0, (2)' In this cas, there is an c > ° such that any equilibrium which has 

(n(t), Vet)) E (n* - c, n* + c) x (V* - c, V* + c) is determinate at these net). The roots 

are complex conjugates if and only if a E (a2' 00). The manifold originating in (n*, V*) 

then "spirals out of' (n*, V*), which is illustrated by Figure 2. In this case, the chosen 

stationary state (n*, V*) is an indeterminate equilibrium. o 

B Proof of Proposition 2 

We start with part (i). First, we prove by contradiction that::la such that (n*, V*) is unique. 

So, suppose that this is false. Then ::Iaj E (0,1/2j) for any j E N such that the economy 

with i distributed according to G( . laj, e-1(1/V*)) has two stationary states, (n*, V*) and 

(n**(aj), V**(aj)). Since all stationary states must satisfy V = a(n) and V = F-1(n), we 

have e-1(1/a(n*)) = G-l(n*) and e- 1(1/a(n**(aj))) = G-1(n**(aj)laj,e-1(1/V*)), and 
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Furthermore, the construction of the spread given by equation (6) implies2I 

Since C-I (n*iO!j,e- 1(1/V*)) = C-I(n*), this is equivalent to 

Combining (B.1) and (B.3) and recalling that O!j > 1/2j , this gives 

(BA) is contradicted and our proof by contradiction is completed if we can show that there 
is a /'i, E (0,00) such that for all nI, n2 E [0,1] with nl =I n2 

(B.5) 

To see this, note first that e-1(1/a(· )) is continuously differentiable and monotonically 
increasing. Hence, for all nI, n2 E [0,1] nl =I n2 we have 

e- I (l/a(nr)) -e- I (1/a(n2)) de- l (l/a(n)) a'{n) (B.6) < max = max ( ) . nl - n2 - nE[O,l] dn nE[O,I] -e'(e-I l/a(n)) [a(n))2 

20 Note that Assumption 5(a) implies [l/a, l/G] c re, e] ensuring that e-1 (l/a(n)) is well defined for all nE[O,I]. 

21 Figure 3 also illustrates this. G-1 (n·) and G-1 (n**(aj)laj, e-1 (l/V*)) correspond to ic and i in the figure, respectively. 
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Since a- l
( . ) is differentiable and g( . ) is a positive and bounded density function, we 

also have that for all nl, n2 E [0,1] 

(B.7) 

(B.5) follows immediately by dividing (B.6) by (B.7) and setting 

a'(n) 
'" = max x maxg(i) 

- nE[O,I) -e'(e-1(1/a(n»)[a(n)j2 iElR 
(B.8) 

and noticing that", E (0, (0). Since (B.4) and (B.5) contradict each other, this shows that 

there must exist an a for which the chosen stationary state (n*, V*) is unique. 

Next, we show that there is a a3 such that for all a < a3 the chosen stationary state is 

unique and for all a > a3 it is not unique. From the previous step we know that the set of 

a's for which the economy has multiple stationary states has the positive lower bound 1/",. 

This implies that the infimum of that set exists and is positive. We call that infimum a3' 

Since the slope of the it = 0 locus increases everywhere as a decreases and since the V = 0 

locus does not depend on a, we know that if the V = 0 and the it = 0 locus intersect more 

than once (exactly once) for some & then they interest more than once (exactly once) for 

all a > & (a < a), But this means that for all a E (0, a3) the chosen stationary state is 

unique, whereas for all a E (a3, (0) it is not, which proves part (ii) of the proposition. 

To show the saddle-path stability part of claim (i), observe that from (A.2a) it follows 

that the chosen stationary state (n*, V*) is locally saddle-path stable iff 

'( *) dF- 1 (nla, e- l (l/V*») 
a n < dn (B.9) 

n=n* 

The uniqueness of (n\ V*) for a E (0, a2) implies that the it = 0 locus crosses the V = 0 

locus exactly once, Therefore, as (n*, V*) is a crossing point, it must be the only one, So, 

since F-l (ala, e- l (l/V*») = l/e > g = a(O), the V = 0 locus is flatter than the it = 0 
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locus in (n*, V*). This is equivalent to (B.9). 

To complete the proof of part (i), we still need to show that if the chosen stationary 

state is unique and locally saddle-path stable then it is globally saddle-path stable too. 

This can be seen in two steps. First, the saddle-path cannot start anywhere but at the 

boundary, the reason being that any other starting point would be another stationary 

state and thus contradict uniqueness. Second, the dynamics represented by the arrows on 

Figure 1b imply that any path starting at the boundary and reaching the V = 0 (n = 0) 

locus at some V =I V* (n =I n*) can never reach (n*, V*). Therefore, the chosen stationary 

state is globally saddle-path stable. Note that uniqueness and global saddle-path stability 

imply that for each no E [0,1] there is a unique V(O) such that the unique solution to the 

system (5) with initial conditions (no, V(O)) is a subset of the stable manifold. In other 

words, the equilibrium is unique if et E (0, (2) . 

Finally, we have not yet shown that a3 ::; al' This follows from Proposition 1 (which 

said that (n*, V*) is unstable for all et E (aI, 00)) and the fact that (n*, V*) is unique for 

all et E (0, (2). Since we have just seen that an unstable stationary cannot be unique, we 

must have a3 ::; al. o 
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