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1 Introduction 

The college admissions problem models a contractual process in bilateral markets where 

monetary transfers are not relevant or can be embodied in agents' preferences. In this paper 

we analyze a mechanism whose rules are inspired by real-life allocation process. In particular, 

the one used by Spanish Universities in their admissions and the allocation of civil servants 

by Spanish Public Administration. We will show how the only matching supported by any 

Subgame Perfect Nash Equilibrium is the stable matching that is Pareto optimal from the 

students' point of view. 

Early work, in particular AlCalde and Barbera [2], have shown the generic non-existence 

of strategy-proof mechanisms selecting allocations to satisfy Pareto efficiency and individual 

rationality. The design of strategy-proof mechanisms selecting Pareto efficient allocations 

can be solved in a trivial way using "hierarchic dictatorships." For instance, consider that 

each college has a fixed number of vacant positions, and the students are ranked in some 

(exogenous) specific order. The first student is admitted to the best college (according to her 

preferences) that has a vacant position. The second student is admitted to the best college 

(according to her preferences) that has a vacant position, provided that the first student has 

already been allocated, and so on. We can consider the students' ranking as a dictatorship 

hierarchy. 

This procedure is clearly strategy-proof. This is because (i) colleges have no possibility 

of rejecting students and (ii) each student obtains a position in her best college among the 

ones having a vacancy when she has to decide. This rule also selects allocations that are 
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individually rational from the point of view of students, i.e., no student is allocated to a 

college she considers to be worse than the possibility of remaining unmatched. Nevertheless, 

since colleges, when faced with this mechanism have no possibility of rejecting students, 

it fails to satisfy- individual rationality from the colleges' point of view. A way to recover 

this property is by allowing colleges to reject undesired students. These are the types of 

mechanisms this paper deals with. 

Following Alcalde and Barbera [2], this mechanism has to fail in selecting Pareto efficient 

allocations and/or it has to be manipulable by some agent. Unfortunately, both negative 

properties are satisfied by the mechanism. Nevertheless, the matching rule we have described 

above satisfies two interesting properties, which leads us to recommend its application in 

some matching problems. The first property is that its description is very simple and mimics 

some real-live matching procedures. In fact, the admissions system for Spanish Universities 

is quite similar to the rule we described (see Romero-Medina [8]), and the allocation of civil 

servants in the Spanish Public Administration is done following a rule similar to the one 

described above. The second one is that the mechanism implements a subselection of the 

core correspondence. In fact, as we will see (Theorem 4) the only matching supported by 

any Subgame Perfect Nash equilibrium is the (only) stable matching that is Pareto optimal 

from the students' point of view. Moreover, our result is independent from the order in 

which students are ranked. This property highlights the robustness of our mechanism. 

Given the symmetry that holds on both sides of the market, we also investigate the 

possibility of having a result similar to that of our Theorem 4, when the roles played by 
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students and colleges are exchanged. This similarity holds in some matching mechanisms. 

For instance, Alcalde and Romero-Medina [4] show that, in two-stage game forms, in which 

all the agents on a given side of the market play simultaneously, the core correspondence is 

implemented in Subgame Perfect Nash Equilibrium, regardless of whether the first agents 

to play are the colleges or the students. Similar results have been provided by Alcalde, 

Perez-Castrillo and Romero-Medina (3] for job markets. In this paper, we show that this 

symmetry does not hold if the first agents to play do so sequentially. In fact, the properties 

satisfied by the mechanism are not yet satisfied if the proposals are made by the colleges. In 

fact, (i) the matching supported by Subgame Perfect Nash Equilibria depends on the order 

in which colleges select their strategies and, consequently (ii) the equilibrium matching is 

not necessarily Pareto efficient from the colleges' point of view. 

The rest of the paper is organized as follows. Section 2 introduces the basic model. Sec-

tion 3 presents and analyzes the mechanism, called here the "students-sequentially-propose-

and-colleges-choose" mechanism. Conclusions are presented in Section 4. 

2 The model 

We consider a college admissions problem with n colleges and m students. Let C = 

{ Cl, "', cn } and S = {SI, ... , sm} be the set of colleges and students, respectively. Each 

college has preferences P (c) over the set of groups of students. P (c) is assumed to be 

a linear order on 28. Each student's preferences P (s) is described by a linear order on 

C u {s}. A college admissions problem is fully described by a triplet {c, Sj !: }, where !: 
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= {P (Cl)' ... , P (Cn ) ,P (SI) , ... , P (Srn)} is a list containing a full description of the agents' 

preferences and is called a profile. 

An allocation for such a problem, or matching, is a mapping I-" from C U 5 into 28 U C 

satisfying 

(i) for all c E C, I-"(c) E 28
, 

(ii) for all s E 5, I-"(s) E Cu {s}, and 

(iii) for each pair (c, s) E C X 5, [JL(s) = c ~ s E I-"(c)]. 

> From here on we will consider C and 5 to be fixed sets, thus we can identify a college 

admissions problem {C, 5;!:} with the preference profile !:.l Let M be the set of all 

possible matchings 1-". Finally, JP' denotes the set of (potential) matching markets. 

Let P be a matching market. Given a set of students A ~ 5, we denote by Chc(A) the 

maximal element on 2A under the linear order P(c). 

Definition 1 A matching I-" is said to be individually rational for P iff 

(i) Chc(l-"(c)) = I-"(c) for all c E C, and 

(ii) for all s E 5, c E C [sP(s)c ===} s fj. I-"(c)]. 

Definition 2 Let I-" be a matching for p. We say that I-" is blocked by a pair (c, s) E C x 5 

iff 

(i) c P(s) I-"(s), and 

1 For the sake of simplicity, we will employ the same notation for a preference profile and the related 
college admissions problem. The context will be made precise if p denotes a matching problem or simply a 

preference profile. 
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(ii) sE Che (f-L(C) U {s}). 

A pair (C, s) which satisfies the above two conditions is called a blocking pair for f-L. 

Definition 3 Let f-L be a matching for p. We say that f-L is (pair-wise) stable if it is indi-
~ 

vidually rational and there is no pair blocking it. 

Finally, we assume that colleges' preferences, with regard to groups of students, are sub-

stitutive. That is, for any two students s =I s' if s belongs to Che(A), then she will also belong 

to Che(A \ {s'}). This assumption is usual in the literature and guarantees non-emptiness of 

the set of stable allocations. (See Theorem 6.5 in [10]). Note that when colleges' preferences 

are substitutive, the set of (pair-wise) stable allocations coincides with the core of the related 

college admissions problem. 2 That is, given a stable allocation, no group of agents can find 

a matching to improve the utility of all its members without being matched with agents 

outside this group. Furthermore, if colleges' preferences satisfy substitutability, the set of 

stable allocations has a latticial structure. This property guarantees (i) the existence of a 

single stable allocation which is Pareto optimal from the point of view of students and, (ii) 

the existence of a single allocation which is Pareto optimal from the point of view of colleges 

(when restricted to the set of stable matchings). 

The concept of implementation that we are going to use throughout the paper is well-

known in the literature. We next formalize this for the Subgame Perfect Nash Equilibrium 

(SPE). Let ek be the set of strategies for agent k and let e = x ex be the set of strategy 
xECUS 

profiles. Associated with each strategy profile e E e we can define a message profile m (e), 

2 Proposition 6.4 in Roth and Sotomayor [lOJ establishes that stability and pair-wise stability are equiv­
alent concepts in college admissions problems with substitutive preferences. 
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or simply m, which describes the action taken by each individual when the agents choose 

such strategies. A matching mechanism is described by the set of strategies allowed to each 

agent, and an outcome function 'Y that assigns a matching to each profile of messages. We 

say that a matching mechanism implements a solution concept, say X, in Subgame Perfect 

Nash Equilibria if (i) for any e, Subgame Perfect Equilibrium of the game r := { C, S; !:; 'Y }, 

'Y (m (e)) belongs to X (!:) and (ii) for each ft in X (!:) there exists a SPE for r, say e', 

such that 'Y (m (e')) = ft· 

3 The "students-sequentially-propose-and-colleges-choose 
mechanism 

We shall now introduce the mechanism. But first, we shall fix the order in which the students 

will play. Without loss of generality, let us assume that SI is the first to play, S2 is the second 

and so on. Let us define the following m + 1 stage game form. At stage i, i = 1, ... , m, 

student Si selects a college. Thus, each student's message space coincides with the set of 

colleges (and her option of being unmatched). At stage m + 1, the last stage, colleges 

simultaneously select the set of students they want to admit, one set of students for each 

college. Thus, each college message space coincides with 2s . Finally, the outcome function, 

denoted by cI>ssc, selects the matching defined as follows: 

cI>SsC (m) = ftm, where for any S in S, 

I m(s) 
ftm (s) = S 

if sE m(m(s)) 

otherwise 

and, for each c in C, 
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J1m (c) = {s E m ( c) I c = m ( s )} 

where in is a list containing a full description of agents' messages. 

Theorem 4 shows that our mechanism yields to stable outcomes. But only one stable 

outcome can be reached by a Subgame Perfect Equilibrium of this mechanism. This is the 

optimal stable matching from the point of view of students. 

Next, we will note that the students-sequentially-propose-and-colleges-choose mechanism 

implements, in SPE, the stable solution which is optimal from the students' point of view. 

Theorem 4 Let e be a SPE for r SsC := { c, Sj !:j <pSsC 
}, and in be the vector of messages 

that agents state in e. Then <pssc (in) = J1s (!:), the optimal stable allocation from the 

students' point of view. 

Proof. We shall now show this result in a constructive way. First, we present some 

properties that any SPE has to satisfy. Then we will argue that agents' messages will lead 

to the students' optimal stable matching. 

In order to characterize the set of SPE, we will apply backward induction. At stage 

m + 1, given the students' messages, each college c has a best response, namely, m* (c) = 

arg max P (c) on {s I m (s) = c}. 3 At stage m, given messages for students other than Srn, 

3 Notice that such a strategy is not the unique best response. In fact, any best response for college c 
can be expressed by the union of such a set with any set of students S' such that c f. m (s') for all s' in S'. 
Nevertheless, all these messages are strategically equivalent. Since we are interested in equilibrium payoffs 
rather than equilibria strategies, we do not pay attention to these strategies. 
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(m (SI) , ... , m (Srn-I)), and knowing the colleges' behavior, this agent's best reply is4 

Notice that such a message coincides with f.Ls (srn; !:m), the Srn mate at the students' 

optimal stable matching for market pm, where pm (c) = P (c), for any college c; pm (Srn) = 
~ 

In order to apply an inductive argument, let's assume that Sk message, m* (Sk) coincides 

with Sk'S mate at the students' optimal stable matching for market pk-\ where pk-I (c) = 

p (c), for any college c; pI (Sh) = p (Sh) for any h 2: k; and pI (Si) = m(si) for any for any 

h < k. Note that f.Ls (Sk; !:k-I) coincides with f.Ls (Sk; !:k-l
l

) for any profile !:k-Iwhere 

I I 

pk-l (c) = pk-l (c) for any college, and pk-l (s) E {pk-l (s) ,P (s)} for each student 

s. Therefore, the message of student Sk-I should coincide with f.Ls (Sk-I; !:k-2) , where 

pk-2 (c) = P (c) for any college c; pk-2 (Sh) = m (Sh) for all h < k-l; and pk-2 (Sh) = p (Sh) 

for each h 2: k - 1. 

Finally, given that the messages that students other than SI have to be m* (Si) = 

f.LS (Si;!: ), she will select the best college she can, provided the actions she expected from 

others students. Since f.Ls (!:) is the only stable matching which is Pareto optimal from the 

students' point of view, and taking into account her colleagues' best responses, her decision 

4 Note that, when m* (srn) = Srn, such a strategy is equivalent to declaring any college C such that 
cP (srn) Srn. Nevertheless, since this college will not select that student, both messages are strategically 
equivalent. In order to provide a simple proof of our result, we assume that, whenever m* (srn) = Srn, this 
student's message will be her "stay unmatched" option. 

5 For simplicity, we identify student Si'S preference with college Cj, i.e. P( Si) = Cj' whenever this college 
is the only one for which CjP(Si)Si holds. 
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should be to select her mate in the students' optimal stable matching, /18 (SI; !:) . 
Consequently, in equilibrium, each student's message will coincide with her mate in the 

students' optimal stable matching. I 

4 Final Remarks 

This paper introduces a mechanism that implements a particular selection from the core, 

namely the students' optimal stable matching. Thus, we provide a positive answer to the 

implementability of a selection from the core in matching markets. Notice that Kara and 

Sonmez [7] show that no selection of the core can be implemented in Nash Equilibrium. 

In the particular case of marriage markets (colleges have only one position each), a 

symmetrical result for Theorem 4 can be stated by exchanging the role of students and 

colleges. In the many-to-one matching problem, the framework this paper deals with, Alcalde 

and Romero-Medina [4] show that when students play simultaneously, the role played by 

colleges and students can be exchanged without affecting the results. They implement the 

core correspondence, no matter whether it is the colleges or the students who made the offers 

(i.e. play at the first stage). Nevertheless, a similar result can not be established if offers are 

made sequentially. We shall now conclude this paper by providing an example that shows 

the above-mentioned asymmetry. 

Example 5 Let {C, S; !:} be a three colleges-four students market. The following table 
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8ummarize8 agents preference8. 

P (81) = C3C2C1 

P (82) = C2C1C3 

P (83) = C2C1C3 

P (84) = C3C1C2 

P(C1) = (83 84) (8284) (8283) (81 84) (8183) (8182) 84838281 

P (C2) = 848 3 8 28 1 

P(C3) = 838 48 18 2 

Let us consider the "colleges-sequentially-propose-and-students-choose" mechanism, rGBS. 

This is a symmetrical version of r SBG in which it is the colleges who are to make proposals in 

a sequential way. We will see that two interesting features which are satisfied by the family 

of mechanisms r SBG are not satisfied by a mechanism in rGss. First, some SPE outcomes 

can be unstable, relative to agents' preferences. In order to show this, let us suppose that 

the order in which colleges sequentially decide is Cl , C2 and C3' There is a SPE with messages 

m (84) = (C2). Notice that rGBS (m) is unstable because the pair {C183} blocks it. Secondly, 

the SPE outcomes set depends on the order in which colleges make their decisions. Indeed, 

let us consider the order for colleges in which C2 proposes first, then C3, and finally Cl is the 

last to make a proposal. In such a case the only SPE outcome is J.L (Cl) = (8182), J.L (C2) = (83) 

and J.L (C3) = (84), which is different from the SPE outcome when college Cl is the first to 

play. 
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