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Abstract 

 
 

We consider dynamic representation of spot and three month aluminium and 
copper volatilities. These are the two most important metals traded in the 
London Metal Exchange (LME). They share common business cycle factors 
and are traded under identical contract specifications. We apply the bivariate 
FIGARCH model which allows parsimonious representation of long 
memory volatility processes. Our results show that spot and three month 
aluminium and copper volatilities follow long memory processes, that they 
exhibit a common degree of fractional integration and that the processes are 
symmetric. However, there is no evidence that the processes are fractionally 
cointegrated. This high degree of commonality may result from the common 
LME trading process. 
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1. Introduction 

Aluminium and copper are the most important metals traded on the London Metal Exchange 

(LME) in terms of volume and open interest figures. They are traded under identical trading 

rules in terms of lot size, minimum price movement and delivery dates.  LME aluminium and 

copper options are also identically specified in terms of strike price gradation and tick size. 

Aluminium and copper also share common demand side fundamentals as they are used across 

the entire range of manufacturing and particularly in the construction, electrical and transport 

industries.1 These related fundamentals and identical trading processes may generate 

common or highly related volatility processes.  

 

Copper was one of the original LME metals and has been traded on the LME 

continuously since the reopening of the exchange after the Second World War. The 

aluminium industry was dominated by a group of producers who set prices on a cost plus 

basis for much of the post-War period. Trading of aluminium futures on the LME 

commenced in October 1978, and the LME price became the main world reference price 

from the mid-nineteen eighties. It has now overtaken copper as the most valuable of the 

LME’s contracts – see Figuerola-Ferretti and Gilbert (2005).2   

 

A process x may be described as integrated of degree d, i.e. as x ~ I(d), for integer 

0d ≥ if the dth difference of x is stationary, i.e. ( )1 (0)
d

L x I− : , where L is the lag operator. 

Generalization to fractional values of the differenc ing parameter d permits greater flexibility 

in describing persistence. Shocks to I(0) series decay exponentially fast. This implies that 

many processes require long lag lengths if they are adequately to account for observed 

persistence patterns. Values of d in the range 0 < d < ½ imply stationarity but with a slower 

degree of decay than for I(0) series (Parke, 1999). It is often found that fractional 

specifications allow more parsimonious specifications of time series than those required 

using conventional ARIMA (AutoRegressive Integrated Moving Average) representations. 

                                                                 
1 Although aluminium and copper are highly related in the demand side, the supply sides of the 
market are different. However supply responses are typically slower than demand responses and short 
term price movements tend to be dominated by demand movements (Ghosh et al, 1987; Gilbert, 
1995).  
2 Copper and aluminium are also traded on the Comex division of NYMEX and on the Shanghai 
Metal Exchange. Aluminium is additionally traded on the Tokyo Commodity Exchange. In both 
cases, the LME price continues to function as the world benchmark priced. 
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Robinson (2003) surveys the application of long memory processes in economics – see also 

Teyssiere and Kirman (2006). 

 

A substantial literature supports the view that the volatilities of financial asset prices 

decay more slowly than standard GARCH (Generalized AutoRegressive Conditional 

Heteroscedasticity) models suggest and that they may be represented as stationary fractional 

processes – see in particular Baillie et al. (1996) and Ding and Granger (1996). There is 

evidence that much of the short term variation in financial asset volatility is driven by the 

trading process – see French and Roll (1986), Amihud and Mendelson (1987, 1991), Stoll 

and Whaley (1990), Lyons (1996) and Chelley-Steeley (2005). We conjecture that this impact 

will be similar for contracts traded on the same exchange and often by the same individuals. 

However, it is not clear how similarity of trading conditions and mechanisms can generate 

the observed degree of volatility persistence. One possibility is that this arises out of 

persistence in trading volume (Eps and Eps, 1976; Tauchen and Pitts, 1993; Andersen, 1996).  

 

The second theme of the paper is quantification of the extent of comovement in the 

volatilities of the two commodities. In the integer case, two I(d) series x and y are said to be 

cointegrated if there exists some linear combination x y+ δ which is I(d-1). Generalizing to 

the fractional case, the two series may be said to be fractionally cointegrated if there exists a 

linear combination which is I(d’) where d’ < d (Granger, 1986). In this case, shocks to the 

linear combination are less persistent than shocks to the original series. Cointegration, and by 

extension fractional cointegration, are important concepts because they show that two series 

are more closely related in the long than in the short run. Where we observe such 

cointegration, we need to ask what factors cause this long run association. 

 

We use the bivariate constant correlation FIGARCH (Fractionally Integrated 

Generalized AutoRegressive Conditional Heteroscedastic) representation introduced by 

Teyssiere (1996) and Brunetti and Gilbert (2000, henceforth BG). BG apply a bivariate 

FIGARCH model to a single commodity (crude oil) traded in two different exchanges (the 

IPE and NYMEX). The bivariate constant correlation FIGARCH may be reparameterized 

into ECM-FIGARCH (Error Correction Mechanism FIGRACH) which allows testing for 

fractional cointegration. BG (2000) found a common order of fractional integration for the 

two crude oil contracts and tested for fractional cointegration, confirming that NYMEX and 
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IPE volatilities are indeed fractionally cointegrated. This is compatible with the view that, 

despite short run differences in the volatility movements arsing out of particular regional and 

market circumstances, the longer evolution of volatility in the two markets largely reflects 

economic fundamentals and is independent of the exchange on which the commodities are 

traded. 

 

In this paper we ask to what extent the LME copper and aluminium spot and future 

volatility processes exhibit common long temporal dependence, and whether they are 

fractionally cointegrated. These questions raise issues which are similar but not identical to 

those discussed by BG (2000). The commonality in the market fundamentals implies that the 

two prices and volatilities are likely to move together and may respond in similar ways to 

shocks.  This will be true of both spot and three month processes, but the spot vo latility 

process will also be substantially affected by the volatility of the convenience yield, less 

important for three month prices. There is no a priori basis for knowing to what extent the 

two convenience yield volatility processes are likely to be related or similar but the additional 

volatility component in the spot is likely to lead to differences between the respective spot 

and three month volatility processes.  

 

We describe two volatility processes as similar if, within the same representation, they 

have a common degree of fractional integration. If the degree of fractional cointegration is 

common, we may ask whether the two processes are also fractionally cointegrated. We 

consider the following three possibilities3 

i) Non-identical, non-cointegrated volatility processes: Despite correlation between the two 

return and volatility processes driven by common factors, the two markets are distinct 

and independent. There is no reason to expect either a common structure for the volatility 

processes or cointegration. 

ii) Identical, non-cointegrated volatility processes: If information arrival relates primarily to 

common business cycle factors driven by demand related fundamentals we would expect 

price movements to be highly related for copper and aluminium, and this might result in 

the same order of fractional integration in the two processes. Volatilities will be driven 

by a common information arrival process well mediated through a common trading 

                                                                 
3 The fourth logical possibility of non-identical cointegrated volatility processes is excluded by the 
fact that fractional cointegration presupposes a common degree of fractional integration – see 
Robinson and Marinucci (2003). 
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process. However, in the long run, supply as well as demand fundamentals become 

important, so we should not expect the volatility processes to be cointegrated 

iii)  Identical, cointegrated volatility processes: Exchange price movements are determined 

by speculative and hedging pressures and are not intimately related to economic 

fundamentals which only become known with a lag. Investors interested in taking a 

position in non-ferrous metals regard the two metals as close substitutes and trade which 

ever appears to offer the greatest trading advantage at the time of trade initiation.  The 

same is true for options. In this case, there may be a common, cointegrated, volatility 

process. 

The results support the second of these possibilities, i.e. the LME aluminium and copper 

volatility processes are identical but not cointegrated. 

 

2. The GARCH and FIGARCH classes of volatility models 

Granger and Joyeux (1980) and Hosking (1981) independently introduced the Fractionally 

Integrated ARMA or ARFIMA process  

( )(1 ) ( ) ( )d
t tL L h Lϕ − − µ = β ν        (1) 

where 
1

( ) 1
q

j
j

j

L L
=

ϕ = − ϕ∑  and 
1

( ) 1
p

j
j

j

L L
=

β = + β∑   and νt is a white noise error process. In the 

ARFIMA class of models, the short term behaviour of the time series ht is captured by the 

ARMA parameters in the ϕ and θ lag distributions, while the long run dependence is 

modelled through the fractional differencing parameter d. This model may be applied to 

variances by taking the observed ht series as the price returns ( )22 lnt t th p= ε = ∆ . A variant 

of this model substitutes the absolute returns tε  for the squared returns 2
tε . 

 

In the same way that this generalization of standard ARMA models to the ARFIMA 

class of models has proved important empirically, a corresponding move has taken place in 

modelling conditional variances. Baillie et al (1996) introduced the Fractionally Integrated 

GARCH (FIGARCH) class of models generalizing the GARCH and Integrated GARCH 

specifications. Analogously to the ARFIMA class of models for the conditional mean, a 

shock to the conditional FIGARCH variance is transitory, meaning that the influence of the 

future forecast of the conditional variance decays at a slow hyperbolic rate. 
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Squared returns are not the same as variances both because each squared return is a 

single realization and because use of the unconditional return supposes weak form market 

efficiency.  In common with the GARCH class, FIGARCH models take the variance ht as 

latent. An ARFIMA may be regarded as approximating the corresponding  FIGARCH model 

with volatility approximated by squared or absolute returns. This approximation will be good 

provided under weak form efficiency when there is little explanatory power in the first order 

process. 

 

Write the first order return process as  

( )1 ln t tL p− γ ∆ = µ + ε            (2) 

where γ(L) is of length m. Define the conditional variance of the error term in (2) as 

[ ]1|t t th Var −= ε Ω  where 1−Ω t  is the information set in period t-1. The FIGARCH(p,d,q) 

representation introduced by Baillie, et al (1996) may be represented as 

( ) [ ]2( ) 1 1 ( )
d

t tL L L vϕ − ε = ω + − β        (3) 

where the roots of ( )Lϕ  and [ ])(1 Lβ−  lie outside the unit circle. The conditional variance of 

the FIGARCH process may be written as 

( )
1 (1)th L

ω
= + λ

− β
         (4) 

where 
( )(1 )

( ) 1
1 ( )

dL L
L

L
ϕ −

λ = −
− β

. A shock to the conditional variance decays at an exponential 

rate for the covariance stationary GARCH (p,q) model. By contrast, in the FIGARCH (p,d,q) 

model the effect of shock in the future conditional variance dissipates at a slower hyperbolic 

rate of decay. The fractional differencing parameter is therefore identified by the decay rate 

of a shock to the conditional variance (or the decay rate of the autocorrelations), and not by 

its impact on the forecast for the long run conditional variance – see Bollerslev and 

Mikkelsen (1996). 

 

In an unrelated development, Bollerslev et al (1988) generalized the univariate 

GARCH to a multivariate framework. As in the univariate case, the conditional variance-

covariance matrix of the n-dimensional error term tε  in the multivariate GARCH(p,q) model 

is conditional on the information available at time t-1. Hence the elements of the covariance 

matrix follow a vector ARMA process in the squares and cross products of the innovations.  
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Setting p = q = 1 and defining the covariance as ( )1 / 2

12, 11, 22,t t th h h= ρ , Bollerslev (1990) 

developed the constant correlation bivariate GARCH(1,1) specification: 

( )

2
11, 11 1, 1 11 11, 1 1

2
22, 22 2, 1 22 22, 1 2

1 /2

12, 11, 22,

t t t

t t t

t t t

h h
h h

h h h

− −

− −

= ϕ ε + β + ω
= ϕ ε + β + ω

= ρ

       (5) 

Note that the first two lines of equation (5) may be expressed as 

2
, , 1 ( 1,2)

1
j

j j t jj j t
jj

h j−

ω
= λ ε + =

− β
       (6) 

where 
1

jj
jj

jj

ϕ
λ =

− β
.  

 

The extension of multivariate GARCH model to multivariate FIGARCH is due to 

Teyssiere (1996) and BG (2000) both of whom used the constant correlation parameterization 

– see also Dark (2004). The system may be written as  

( ) [ ]2( ) 1 1 ( )
d

t tL L B L vΦ − ε = ω + −        (7) 

where ε2, ω and ν are now vectors. In the bivariate case which we consider, Φ(L) and B(L) 

are both 2x2 lag polynomial matrices. In terms of equation (6), the bivariate constant 

correlation FIGARCH(1,d,1) implies 

( )( )1
( 1,2)

1

jd

jj
jj

jj

L L
j

ϕ −
λ = =

− β
       (8) 

The advantage of this specification is that it is highly parsimonious and positive 

definitiveness of the variance covariance matrix and stationarity is achieved under weak 

restrictions. Bollerslev and Mikkelsen (1996) showed that positive definiteness in the 

bivariate diagonal FIGARCH(1,d,1) model is assured provided 

  1
31 (2 )jj j jd dρ < β − ≤ −  and 1

2 (1 ) ( )j jj j jj jj j jd d d ϕ − − ≤ β ϕ −β +    (9) 

The conditional variance of this process will be stationary when 10 ≤≤ jd . 

 

3. Fractional cointegration 

Cointegration relates to the long run stable relationship between two or more variables which 

allow for short time divergences. Granger (1981, 1983) introduced the concept of fractional 

cointegration. Two time series )(~,1 dIy t  and )(~,2 dIy t with identical order of integration 
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d are said to be cointegrated of order (d, b) if there exists a 2 0δ ≠  so that 

1, 2 2, ~ ( )t t tz y y I d b= + δ − where  0>b . In this case, the linear combination represented by 

tz has lower order of integration than its components ty ,1  and ty ,2 . Although there is no 

reason to believe that two arbitrarily chosen series ty ,1  and ty ,2  will be integrated of the same 

order, a common order of integration is a necessary condition for finding a linear 

cointegrating relationship (Robinson and Marinucci, 2003). If the two time series are 

integrated of different orders, a non-trivial linear combination of the two series will be 

integrated of the higher of the two orders.   

 

While a considerable amount of recent work has emphasised the role of persistence of 

shocks, most of it has been directed towards testing the presence of unit roots in 

autoregressive representations of univariate and vector processes.  Thus in most cases testing 

for cointegration involved preliminary unit root test. If the series were found to be I(1) then a 

cointegration test is implemented. This has been described by Robinson and Marinucci 

(2003) as the “I(1)/I(0)” paradigm which sets d=b=1. The distinction between I(0) and I(1) 

can be too restrictive when using high frequency financial data – see Baillie and Bollerslev 

(1994) and Baillie (1996). Fractionally integrated processes are a halfway house between the 

I(0) and I(1) paradigms. In contrast to the I(0) models where the correlations decay at an 

exponential rate, the autocorrelation of an I(d) series dissipate at a slower hyperbolic rate of 

decay. This permits parsimonious representation of series which exhibit non-zero 

autocorrelations at high lags.  

 

There are two main approaches to testing for cointegration in the I(0)/I(1) case – the 

Engle and Granger (1987) and the Johansen (1988) methods. The standard test for fractional 

cointegration follows the Engle-Granger two stage approach based on inclusion of the lagged 

residuals from the OLS estimates of the cointegrating equation in the short run adjustment 

equation. The following steps are required: 

1. Determine the orders of integration, d1 and d2 of the series under consideration. 

2. Test whether 21 dd = = d (say) i.e. whether the series are integrated of a common order. 

3. Estimate the candidate cointegrating linear combination of the series and determine the 

order of integration d’ of the residuals.  

4. Test whether dd <' , i.e. the two series are fractionally cointegrated. 
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In the FIGARCH context, the initial step is implemented by estimating an unrestricted 

bivariate FIGARCH model using the specification given in equations (6) - (8). This allows 

the common degree of integration specification to be directly imposed and tested as the 

second step. If the test rejects a common order of integration, the investigation terminates. If 

not, one moves to the third and most difficult step, that of finding the cointegrating vector δ. 

Here, BG simplify by assuming a unit cointegrating vector. They justify this assumption by 

stating that it is plausible that volatilities of the same product traded in related markets should 

move uniformly together. According to the Engle-Granger Representation Theorem (Engle 

and Granger, 1987), cointegration implies the existence of an error correction representation. 

Granger (1986) shows that, in the case of bivariate FIGARCH, this may be written as  
2 2

´* ( )(1 ) ( ( )) 1 (1 ) (1 ) 'd b d b
t t tL L L v L L − Φ − ε = ω + Ι − Β − − − − ξδ ε        (10) 

where * ( ) ( ) 1 (1 ) 'bL L L − Φ = Φ + − − ξδ  . Estimation of equation (10) allows a test of the 

fractional cointegration hypothesis b > 0.4  

 

4. The LME aluminium and copper contracts 

The LME differs from other futures exchange in trading contracts which mature on every 

single trading day, rather than concentrating delivery in specific months. On any particular 

day, market liquidity in the ring focuses on the “prompt” (spot) contract, which requires 

settlement within two working days, and the three month contract, which will become prompt 

exactly three months from the day in question. Traders wishing to close out different 

contracts will do through appropriate borrowing or lending transactions through LME 

brokers. From the point of view of data analysis, this has the advantage that the LME spot 

and three month prices are the prices of “continuous futures” by construction. 

 

We use the complete set of daily LME settlement prices for cash and three month 

copper and aluminium over the period 3 October 1982 to 30 December 2005.5 Figure A1 in 

                                                                 
4 BG (2000) note that the zero order terms of the lag polynomial [ ]bL −−− )1(1  are null, it is therefore 
always possible to find an infinite order polynomial )(* LΦ satisfying equation (10) and with 

Ι=Φ *0 for any given vectors ξ  and γ . The implication is that *Φ , ζ and δ, are not identified in  
the absence of restrictions on )(* LΦ . Restrictions can be in terms of either order or diagonality or 
both. This lack of identification implies that finding db < in (10) is insufficient as a demonstration of 
fractional cointegration. In practice, estimation requires a restriction on the order of Φ *(L). 
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appendix graphs aluminium and copper spot volatilities, measured as monthly standard 

deviations of daily returns on an annualized basis (futures volatilities are similar). The 

aluminium price volatility shows an upward trend over the early period when the LME 

contract was gaining in importance. Both aluminium and copper volatilities were particularly 

high in the final years of the nineteen eighties as the consequence of tight market conditions.  

 

Figures A2 and A3 graph autocorrelation functions for the absolute values of spot 

aluminium and copper returns (Figure A2), and those of the three month returns (Figure A3) 

estimated over the complete set of daily settlement prices from 1984 through 2005. The 

autocorrelations for the four set of absolute returns remain positive for over one hundred lags 

and visually appear to exhibit long memory characteristics. In the case of the spot returns 

(Figure A2), the absolute copper price returns appear less persistent than those of aluminium 

whereas in the case the autocorrelation functions of the two sets of absolute three month 

returns (Figure A3) appear very similar. 

 

Overall, Figures A2 and A3 show a high degree of persistence, consistent with a fractional 

degree of integration, in aluminium and copper spot and three month volatilities. While the 

autocorrelation functions of the three month volatilities are very similar, those of the spot 

volatilities differ with aluminium volatilities exhibiting a greater degree of autocorrelation at 

all lag lengths.  

 

5. ARFIMA models 

We first estimate an ARFIMA(1,d,1), as specified in equation (1), for both absolute returns 

and squared returns. 6  The selected optimal models are estimated using the exact Maximum 

Likelihood (ML) estimator of the ARFIMA process under normality derived by Sowell 

(1992).7 Consistency of these estimates depends on the validity of the choice of the lag 

length. Lobato (1999) has demonstrated using Monte Carlo analysis that estimates of long 

                                                                                                                                                                                                          
5 Source: Brunetti and Gilbert (1995), updated from http://www.ecowin.com.  Aluminium has always 
been traded in US dollars. However, copper was traded in sterling until 1 July 1993. Sterling prices 
were converted into dollars at the exchange rate of the day. 
6 We also estimated more general specifications – see Figuerola -Ferretti (2002). We report the 
ARFIMA(1,d,1) results for comparability with the from the FIGARCH(1,d,1) model which follow. 
7 We use the Ox routine ARFIMA developed by Doornik and Ooms (1999). See also Ooms and 
Doornik (1998). We also estimated more highly parameterized models. We report results for the 
AFRFIMA(1,d,1) specification as being directly comparable with the FIGARCH(1,d,1). See 
Figuerola-Ferretti (2002) for estimates of higher order models. 
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memory models are particularly sensitive to the misspecification of the length of the 

autoregressive polynomial. Estimates are reported in Table 1.  

 

Table 1 
ARFIMA(1,d,1) Estimates of Fractional Differencing Parameter  

 Absolute Returns Squared Returns 
 Aluminium Copper Differences Aluminium Copper Differences 
Spot 0.4301 

(0.0317) 
0.4079 

(0.0368) 
0.3041 

(0.0362) 
0.4352 

(0.0314) 
0.4365 

(0.0383) 
0.2329 

(0.0252)) 
3 month 0.3693 

(0.0325) 
0.3993 

(0.0382) 
0.3018 

(0.0351) 
0.3436 

(0.0339) 
0.3769 

(0.0426) 
0.2480 

(0.0380) 
The table reports the estimated value of the fractional differencing parameter d in the 
ARFIMA(1,d,1) model, given by setting p = q = 1, in equation (1) for absolute and 
squared daily returns over the sample 4 October 1982 to 30 December 2005 (5866 
observations). “Differences” refer to the differences between the squared aluminium 
returns (or absolute returns) to the corresponding measure for copper. Standard errors are 
given in parentheses. Full estimates are in appendix Table A1. 

 

The estimated fractional differencing parameter is significantly greater than zero and 

is less than one half in all cases, although not significantly so for the two spot squared return 

processes processes. We can therefore conclude that aluminium and copper daily volatility, as 

proxied by absolute and squared returns exhibit long memory and that the absolute return 

processes and the squared three month processes are stationary. Taylor (1986), Ding et al. 

(1993), Granger and Ding (1995) and Ding and Granger (1996) report that absolute returns 

tend to yield a higher estimate of the fractional integration parameter d  than do squared 

returns, a phenomenon which Granger and Ding (1995) refer to as the “Taylor effect”.  This 

effect is apparent in our estimates for the three month volatility processes but not for the spot 

processes.  

 

Table 1 also reports the estimated fractional differencing parameter for the differences 

in the squared (and absolute) returns for the two metals. These differences remain fractionally 

integrated but the estimated fractional differencing parameter is substantially lower than in 

the original series. This motivates our interest in the possibility of fractionally cointegration 

see section 7. 

 

6. FIGARCH models 

We now turn to the univariate FIGARCH(1,d,1) model defined by equations (2), (3) 

and (4) which we estimate using the methodology suggested by Baillie et al. (1996). The 
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mean (first order) process is specified as second order autoregressive. The first two columns 

of Table 2 report the estimated fractional differencing parameter d. The unrestricted estimates 

(rows 1 and 4) of the fractional parameter are uniformly lower than those implied by the 

ARFIMA processes, and all four processes are now clearly both fractional and also 

stationary. The spot volatility processes are seen as being more persistent than the 

corresponding three month processes, and the copper processes as more persistent than the 

corresponding aluminium processes. Full parameter estimates are given in appendix Table 

A2, columns 1 and 4.8 

 

Table 2 
Univariate FIGARCH Hypothesis Tests 

  d1 d2 H1/H2 , H0/H1 H0/H2 
Spot prices     

H2 Unrestricted 0.3000 
(0.0568) 

0.3493 
(0.0549) 

  

H1 β11 = β22, ϕ11 = ϕ22 
0.3241 

(0.0420) 
0.3411 

(0.0405) 
χ2(2) = 0.89 

[63.9%] 
 

H0 β11 = β22, ϕ11 = ϕ22, d1 = d2 
0.3345 

(0.0386) 
χ2(1) = 0.40 

[52.5%] 
χ2(3) = 1.30 

[72.9%] 
3 month prices     

H2 Unrestricted 0.2171 
(0.0372) 

0.2942 
(0.0466) 

  

H1 β11 = β22, ϕ11 = ϕ22 
0.2541 

(0.0334) 
0.2586 

(0.0311) 
χ2(2) =2.52 

[28.4%] 
 

H0 β11 = β22, ϕ11 = ϕ22, d1 = d2 
0.2570 

(0.0299) 
χ2(1) = 0.04 

[85.0%] 
χ2(3) = 2.55 

[43.6%] 
The table gives the estimated fractional differencing parameters d1 and d2 and the 
outcomes of the likelihood ratio tests on the bivariate FIGARCH(1,d,1) model 
defined in equations (2) and (3)  with p = q  = 1 and m = 2 for aluminium and 
copper spot  and 3 month returns.  
Standard errors in “()” parentheses; tail probabilities in “[]” parentheses. 
Full estimates are reported in appendix Table A2. 

 

 The second and fourth rows of Table 4 impose symmetry in the autoregressive and 

moving average parameters. The data fail to reject these restrictions With these restrictions 

imposed, the estimated fractional difference parameters differ little between the two metals, 

in particular for the three month contracts. The third and sixth rows report estimates in which 

a common fractional differencing parameter is imposed. The data fail to reject this restriction 

                                                                 
8 Although the fractional differencing parameter d should be broadly comparable across the ARFIMA 
and FIGARCH specifications, the autoregressive and moving average parameters differ markedly. 
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and also joint imposition of the two sets of restriction. This implies that, within the univariate 

framework, we can regard the aluminium and copper volatilities as following the same 

process. 

 

Moving to the bivariate framework which allows for correlations in the two error 

processes. We confine ourselves to the bivariate FIGARCH(1,d,1) defined by equations (6) - 

(8).9 We maintain the symmetry hypotheses β11 = β22, ϕ11 = ϕ22, and d1 = d2 established in the 

univariate context and reported in section 5. 

 

Table 3 
Bivariate FIGARCH Hypothesis Tests 

  d ρ β12= β21 ϕ12= ϕ21 H0
*/ H1

* 
Spot prices      

H1
* Unrestricted 0.3510 

(0.0267) 
0.5370 

(0.0091) 
-0.0177 
(0.0047) 

-0.0057 
(0.0079) 

 

H0
* Diagonal 

0.3814 
(0.0274) 

0.5317 
(0.0091) 

  33.88 
[0.00%] 

3 month prices      

H1
* Unrestricted 0.3070 

(0.0241) 
0.5666 

(0.0087) 
-0.0165 
(0.0049) 

-0.0135 
(0.0078) 

 

H0
* Diagonal 

0.3306 
(0.0244) 

0.5638 
(0.0087) 

  19.70 
[0.00%] 

The table gives the estimated fractional differencing parameters d1 and d2 and the 
outcomes of the likelihood ratio tests on the bivariate FIGARCH(1,d,1) model 
defined in equations (2), (6), (7) and (8) with p = q  = 1 and m = 2 for aluminium and 
copper spot  and 3 month returns.  
Standard errors in “()” parentheses; tail probabilities in “[]” parentheses. 
Full estimates are reported in appendix Table A3 

 

The diagonality assumption (β12= β21=ϕ12= ϕ21=0) is fairly standard in this literature – 

see for example Bollerslev et al. (1988) although BG (2000) included off-diagonal terms. 

Imposition of diagonality implies that although the two scedastic processes may be 

correlated, they do not interact – effectively, a “seemingly unrelated” FIGARCH model. We 

start by estimating a non-diagonal model but we impose symmetry in the interaction terms, 

i.e.  β12 = β21 and  ϕ12 = ϕ21. We refer to this model as hypothesis H1
*. The symmetry 

restrictions on the off-diagonal terms are natural given the other symmetry restrictions we 

have imposed but perhaps more importantly, attempts to estimate a general model in the 

                                                                                                                                                                                                          
Measurement of volatility by the absolute or squared price changes generates substantial noise which 
may be autocorrelated. The latent volatility measure in the FIGARCH estimates is much smoother. 
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bivariate context leads to serious identification problems. We compare the model H1
* with 

off-diagonal terms with the restricted “seemingly unrelated” model H0
* which sets β12=β21=0 

and ϕ12=ϕ21=0. 

 

Table 3 summarises the estimates (given in full in appendix Table A3). The volatility 

correlations ρ are precisely determined and are do not vary across specifications. They are 

above 0.5 for both spot and three month contracts but marginally higher for the latter. The 

significance of these values demonstrates clearly that the two volatility processes not only 

share a similar structure but that they are also move closely together. Turning to the off-

diagonal interaction terms, there are estimated as small and negative. The autoregressive 

parameters and ϕ12 and ϕ21 do not differ significantly from zero while the moving average 

parameters β12 and β21 are significant, although not strongly so. Despite this lack of strong 

significance at the level of the individual coefficients, the diagonal model is decisively 

rejected for both spot and three month contracts by the likelihood ratio tests. 

 

7. Fractional cointegration 

If we take the FIGARCH(1,d,1) as the valid representation, the failure to reject the null 

hypothesis of a common fractional parameter suggests that there may be fractional 

cointegration between aluminium and copper three month volatility processes. We follow BG 

(2000) in imposing a unit cointegrating vector so that ( )' 1 1δ = − . We justify use of this 

procedure by noting that the unconditional volatilities for copper and aluminium are almost 

identical. 10 Even having imposed this restriction, we found that, although there is evidence of 

cointegration, identification was poor and that it was not possible to jointly estimate the 

cointegration parameter b and the two error correction parameters ξ1 and ξ2 in equation (10) 

with any precision.  Using these data, it appears necessary to impose a value for at least one 

of these parameters in order to determine the other two. 

 

 The ARFIMA estimates discussed in Table 1 suggest a substantially lower value 

fractional differencing parameter for the differences in squared returns relative to those 

obtained from the original squared return series. Based on these estimates, we investigated 

                                                                                                                                                                                                          
9 Identification in higher order specifications was poor. 
10 The ratio of the two unconditional spot and three month volatilities are 0.88 and 0.90 
respectively. 
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fixing the value of the parameter b to 0.2. This allows us to estimate the two reaction 

coefficients ξ1 and ξ2 conditional on these values for b. Preliminary estimates suggested the 

restriction ξ1 = ξ2, in line with the symmetry restrictions we have already imposed on the β  

and ϕ coefficients. This restriction is easily satisfied in all specifications – see appendix 

Table A4. Table 4 reports summary results for both diagonal specifications with this 

additional restriction imposed. 

 

Table 4 
ECM-FIGARCH Hypothesis Tests  

  d ξ β12= β21 ϕ12= ϕ21 H0
**/ H1

** H1
*/ H1

** 
Spot prices       

H1
** Unrestricted 0.3748 

(0.0357 
0.0477 

(0.0545) 
-0.0103 
(0.0085) 

-0.0094 
(0.0089) 

 0.37 
[54.2%] 

H0
** Diagonal 

0.3893 
(0.0258) 

0.0801 
(0.0184) 

  2.38 
[30.4%] 

 

3 month prices       

H1
** Unrestricted 0.2594 

(0.0360) 
0.0608 

(0.0293) 
-0.0333 
(0.0125) 

-0.0173 
(0.0108) 

 1.24 
[26.5%] 

H0
** Diagonal 

0.3383 
(0.0238) 

0.0423 
(0.0153) 

  5.63 
[5.98%] 

 

The table gives the estimated fractional differencing parameters d1 and d2 and the outcomes 
of the likelihood ratio tests on the bivariate FIGARCH(1,d,1) model defined in equations 
(2), (6), (7) and (10) with p = q  = 1, m = 2 and b = 0.2 for aluminium and copper spot  and 3 
month returns.  
Standard errors in “()” parentheses; tail probabilities in “[]” parentheses. 
Full estimates are reported in appendix Table A4. 
  

 Consider first the unrestricted estimates (H1
**) which allow off-diagonal β  and ϕ  

coefficients. The error correction coefficient ξ does not differ significantly from zero for the 

spot price process and only does so marginally for the three month process. If we relax the 

restriction of b from 0.2 in this specification, both the spot and three month likelihood 

functions become very flat but are maximized by allowing b to tend to zero at which point ξ 

becomes unidentified.11 These unrestricted estimates therefore offer very little support for 

fractional error correction. 

 

 It is also notable that the estimated off-diagonal β  and ϕ coefficients in the H1
** 

specification do not differ significantly from zero with the exception of β12= β21 in the three 

month equation. (This contrasts with the higher levels of statistical significant implied by the 
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estimated off-diagonal models (H1
*) reported in Table 3). These reduced levels of 

significance suggest that the fractional error correction mechanism may be performing the 

same role as the off-diagonal β  and ϕ coefficients in generating interactions between the 

aluminium and copper scedastic processes. This impress is reinforced by inspection of the 

estimated specification (H0
**) in which diagonality is imposed and where the error correction 

mechanism is the only link between the two variance processes. The ξ error correction 

coefficients do now differ significantly from zero, strongly so in the case of the spot price 

equation. In this case, unrestricted estimation of b sees it tending towards the boundary of 

b = d.12 That might be taken to imply that the difference between the two variables is I(0), but 

we know from the ARFIMA estimates reported in Table 1 that this is not the case. Instead, 

setting b = d in equation (10) collapses the model back to the FIGARCH model (7). Again, 

therefore, the estimates fail to support the presence of fractional error correction. 

 
Figure 1: Relationship between Hypotheses 

 

                                                                                                                                                                                                          
11 Estimates available from the authors on request. 
12 Estimates available from the authors on request 

H1
** ECR-FIGARCH 

unrestricted 

H0
** ECR-FIGARCH 

diagonal 

H1
* FIGARCH 

unrestricted 
 

H0
* FIGARCH 

diagonal 



 16 

Figure 1 shows the relationship between the hypotheses under consideration. The diagonal 

and unrestricted FIGARCH models (H1
* and H0

*) discussed in section 6 and the diagonal 

ECR-FIGARCH  (H0
**) are nested within the unrestricted ECR-FIGARCH (H1

**) but have 

only a single point in common – the point at which b = β12 =  β21 = ϕ12= ϕ21 = 0. Clearly H0
* 

is nested within H1
* but the diagonal ECR-FIGARCH (H0

**) and the unrestricted FIGARCH 

are non-nested – see BG (2000). The tests reported in Table 4 fail to reject restriction of H1
** 

to either H0
** or H1

* while those of Table 3 emphatically reject restriction of H1
* to H0

*. 

Despite the fact that H1
* is associated with a higher log- likelihood than H0

** for both spot and 

three month prices (see appendix Tables A3 and A4), we are unable to formally test between 

H0
** and H1

*. We could adopt a non-nested testing methodology but this seems unnecessary 

in view of the low significance of the estimated ξ coefficients, and the fact that likelihood is 

maximized for H0
** by setting b = 0, we conclude that the evidence is decisively in favour of 

a symmetric non-diagonal FIGARCH specification and against the ECM-FIGARCH model. 

 

8. Conclusions  

Using long series (eighteen years) of daily price data, we have established that the volatility 

processes for LME aluminium and copper returns exhibit long memory. Shocks to these 

volatilities are more persistent than standard low order GARCH models imply. This is true of 

both spot and three month volatilities. These processes can be parsimoniously represented by 

fractionally integrated GARCH (FIGARCH) models.  

 

There is considerable evidence of fractional integration across a wide range of 

financial many volatility series and so it is perhaps not surprising that we find that LME 

aluminium and copper volatilities conform to this paradigm. More remarkable is the fact that 

the latent volatility processes exhibit a common degree of fractional integration. Further, 

within the FIGARCH framework, we are unable to reject the hypothesis that the two 

scedastic processes are identical except for the intercept term. There would be no reason to 

expect such a result for the return volatilities of unrelated assets. This common persistence 

may result either from the shared LME trading process or by the fact that demand for the two 

metals tends to be driven by the same factors.  

 

We have also found strong evidence that the aluminium and copper scedastic 

processes interact. From a technical standpoint, this implies that imposition of diagonality in 
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the bivariate FIGARCH model is not sustainable in this context. On the other hand, the 

evidence for fractional cointegration is weak. Fractional cointegration is a second route 

through which the scedastic processes might interact, and, in our dataset, in which the 

fractional cointegration parameter appears poorly identified, it is difficult to accurately 

distinguish between the long term comovement which fractional cointegration would 

generate and the short term scedastic interactions resulting from the off-diagonal terms in the 

FIGARCH process. Despite this, the evidence favours the latter explanation over fractional 

cointegration. 

 

 Our overall conclusion is therefore that the LME aluminium and copper scedastic 

processes are both highly persistent, that this persistence allows the series to be represented 

as fractionally integrated and modelled as FIGARCH processes, that the two processes are 

identical apart from in their intercepts, that they interact (with the implication that diagonality 

cannot be imposed), but that they are not fractionally cointegrated (so there is no long term 

tendency form them to move together). The strong symmetry of the two processes suggests 

that the processes may be the outcome of common market microstructure factors.  
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Appendix 

Figure A1: Monthly Spot Volatilities, Aluminium and Copper, 1982-2005 

Figure A2: Autocorrelation Function: Aluminium and Copper Absolute Spot Returns   
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Figure A3: Autocorrelation Function: Aluminium and Copper Absolute 3 Month 
Returns  
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Table A1 
ARFIMA (1, d, 1) Estimates 

 Spot Prices 3 Month Prices 
Aluminium Squared Absolute Squared Absolute 

1ϖ  0.0002 
(0.0004) 

0.0100 
(0.0049) 

0.0002 
(0.0001) 

0.0089 
(0.0020) 

11ϕ  0.2720 
(0.0287) 

0.2794 
(0.0367) 

0.4067 
(0.0386) 

0.3079 
(0.0429) 

11β  -0.6115 
(0.0353) 

-0.5937 
(0.0482) 

-0.6308 
(0.0441) 

-0.5804 
(0.0553) 

1d  0.4352 
(0.0314) 

0.4301 
(0.0317) 

0.3426 
(0.0339) 

0.3693 
(0.0325) 

Log- likelihood 33295.65 18680.46 37007.00 19785.91 
Copper Squared Absolute Squared Absolute 

2ϖ  0.0003 
(0.0003) 

0.0115 
(0.0036) 

0.0002 
(0.0001) 

0.0100 
(0.0026) 

22ϕ  0.5928 
(0.0327) 

0.4753 
(0.0335) 

0.6079 
(0.0357) 

0.4470 
(0.0319) 

22β  -0.8233 
(0.0138) 

-0.7246 
(0.0342) 

-0.8232 
(0.0227) 

-0.7231 
(0.0342) 

2d  0.4365 
(0.0383) 

0.4079 
(0.0368) 

0.3769 
(0.0426) 

0.3993 
(0.0382) 

Log- likelihood 33889.16 18303.10 35713.89 19280.27 
Differences Squared Absolute Squared Absolute 

ϖ  0.0000 
(0.0000) 

-0.0014 
(0.0018) 

0.0000 
(0.0000) 

-0.0011 
(0.0014) 

ϕ  0.2567 
(0.0893) 

0.3832 
(0.0698) 

0.4622 
(0.1217) 

0.3805 
(0.0609) 

β  -0.3664 
(0.0976) 

-0.5663 
(0.0858) 

-0.5688 
(0.1366) 

-0.5706 
(0.0746) 

d  
0.2329 

(0.0252) 
0.3041 

(0.0362) 
0.2480 

(0.0380) 
0.3018 

(0.0351) 
Log- likelihood 32315.30 17252.57 36100.14 18597.32 
The table reports estimates of equation (1) with p = q  = 1. 
“Differences” refer to the differences between the squared 
aluminium returns (or absolute returns) to the corresponding 
measure for copper. 
Sample: 4 October 1982 to 30 December 2005 (5866 observations). 
Standard errors in parentheses. 

 



 23 

 

Table A2 
Univariate FIGARCH (1, d, 1) Estimates  

Spot Prices 3 Month Prices 
H2 

Unrestricted 
H1 

Restricted 
H0 

Restricted 
H2 

Unrestricted 
H1 

Restricted 
H0 

Restricted 

 

 
β11 = β22 

ϕ11 = ϕ22 

β11 = β22 

ϕ11 = ϕ22 

d1 = d2 

 
β11 = β22 

ϕ11 = ϕ22 

β11 = β22 

ϕ11 = ϕ22 

d1 = d2 
Aluminium       

1µ  -0.0059 
(0.0168) 

-0.0063 
(0.0168) 

-0.0069 
(0.0168) 

-0.0052 
(0.0156) 

-0.0055 
(0.0156) 

-0.0057 
(0.0156) 

11γ  0.0129 
(0.0172) 

0.0125 
(0.0174) 

0.0126 
(0.0174) 

0.0106 
(0.0175) 

0.0104 
(0.0175) 

0.0105 
(0.0176) 

12γ  -0.0587 
(0.0172) 

-0.0580 
(0.0169) 

-0.0586 
(0.0169) 

-0.0526 
(0.0171) 

-0.0519 
(0.0168) 

-0.0520 
(0.0168) 

1ϖ  0.1245 
(0.0516) 

0.0975 
(0.0245) 

0.0967 
(0.0233) 

0.1634 
(0.0683) 

0.1045 
(0.0272) 

0.1033 
(0.0260) 

11ϕ  0.1616 
(0.1267) 

0.2470 
(0.0559) 

0.2489 
(0.0555) 

0.2268 
(0.1704) 

0.3664 
(0.0669) 

0.3671 
(0.0663) 

11β  0.3690 
(0.1594) 

0.4695 
(0.0721) 

0.4719 
(0.0712) 

0.3469 
(0.1866) 

0.5169 
(0.0737) 

0.5181 
(0.0731) 

1d  0.3000 
(0.0568) 

0.3241 
(0.0420) 

0.3345 
(0.0386) 

0.2171 
(0.0372) 

0.2541 
(0.0334) 

0.2570 
(0.0299) 

Copper       

2µ  0.0400 
(0.0206) 

0.0405 
(0.0206) 

0.0399 
(0.0206) 

0.0290 
(0.0186) 

0.0298 
(0.0186) 

0.0296 
(0.0186) 

21γ  -0.0915 
(0.0172) 

-0.0909 
(0.0171) 

-0.0905 
(0.0171) 

-0.0827 
(0.0174) 

-0.0819 
(0.0174) 

-0.0819 
(0.0174) 

22γ  -0.0344 
(0.0168) 

-0.0350 
(0.0169) 

-0.0352 
(0.0168) 

-0.0163 
(0.0166) 

-0.0170 
(0.0168) 

-0.0170 
(0.0168) 

2ϖ  0.1187 
(0.0364) 

0.1314 
(0.0339) 

0.1307 
(0.0343) 

0.0992 
(0.0326) 

0.1372 
(0.0364) 

0.1372 
(0.0364) 

22ϕ  0.2833 
(0.0656) 

0.2470 
(restricted) 

0.2489 
(restricted) 

0.4180 
(0.0709) 

0.3664 
(restricted) 

0.3671 
(restricted) 

22β  0.5091 
(0.0820) 

0.4695 
(restricted) 

0.4719 
(restricted) 

0.6006 
(0.0738) 

0.5169 
(restricted) 

0.5181 
(restricted) 

2d  0.3493 
(0.0549) 

0.3411 
(0.0405) 

0.3345 
(restricted) 

0.2942 
(0.0466) 

0.2586 
(0.0311) 

0.2570 
(restricted) 

Log- likelihood -13235.51 -13235.96 -13236.16 -12396.88 -12398.14 -12398.16 
H1/H2 , H0/H1 
χ2(2), χ2(1)  

0.89 
[63.9%] 

0.40 
[52.5%]  

2.52 
[28.4%] 

0.04 
[85.0%] 

H0/H2 
χ2(3)   

1.30 
[72.9%]  

 2.55 
[43.6%] 

The table reports estimates of equations (2) and (3) with p = q  = 1 and m = 2. The log- likelihood is 
the sum of the log-likelihood for the two equations. 
Sample: 4 October 1982 to 30 December 2005 (5866 observations). 
Standard errors in “()” parentheses; tail probabilities in “[]” parentheses. 
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Table A3 
Bivariate FIGARCH (1, d, 1) Estimates  

 Spot Prices 3 Month Prices 

 
H1

* 

Unrestricted 
H0

* 

Diagonal 
H1

* 

Unrestricted 
H0

* 

Diagonal 

Aluminium     

1µ  -0.0143 
(0.0144) 

-0.0155 
(0.0144) 

-0.0088 
(0.0133) 

-0.0085 
(0.0133) 

11γ  -0.0236 
(0.0131) 

-0.0253 
(0.0130) 

-0.0425 
(0.0130) 

-0.0442 
(0.0129) 

12γ  -0.0449 
(0.0125) 

-0.0481 
(0.0124) 

-0.0324 
(0.0121) 

-0.0325 
(0.0121) 

1ϖ  0.0246 
(0.0149) 

0.0750 
(0.0134) 

0.0265 
(0.0133) 

0.0654 
(0.0120) 

Copper     

2µ  0.0025 
(0.0166) 

0.0000 
(0.0165) 

0.0010 
(0.0152) 

0.0005 
(0.0151) 

21γ  -0.0894 
(0.0128) 

-0.0912 
(0.0127) 

-0.0881 
(0.0128) 

-0.0905 
(0.0127) 

22γ  -0.0450 
(0.0124) 

-0.0473 
(0.0123) 

-0.0256 
(0.0121) 

-0.0271 
(0.0121) 

2ϖ  0.0707 
(0.0191) 

0.1084 
(0.0192) 

0.0672 
(0.0166) 

0.0943 
(0.0168) 

Common      

ϕ11 = ϕ22 0.3145 
(0.0416) 

0.3159 
(0.0352) 

0.4168 
(0.0411) 

0.4090 
(0.0364) 

ϕ12 = ϕ21 -0.0057 
(0.0079) 

 -0.0135 
(0.0078) 

 

β11 = β22 
0.5243 

(0.0493) 
0.5578 

(0.0426) 
0.5987 

(0.0444) 
0.6164 

(0.0397) 

β12 = β21 
-0.0177 
(0.0047) 

 -0.0165 
(0.0049) 

 

d1 = d2 0.3510 
(0.0267) 

0.3814 
(0.0274) 

0.3070 
(0.0241) 

0.3306 
(0.0244) 

ρ 0.5370 
(0.0091) 

0.5317 
(0.0091) 

0.5666 
(0.0087) 

0.5638 
(0.0087) 

Log- likelihood -19250.34 -19267.28 -17714.78 -17724.63 
H0

*/H1
* 

χ2(2)  
33.88 

[0.00%]  
19.70 

[0.00%] 
The table reports estimates of equations (2) and (7) with p = q  = 1 and m = 2.  
Sample: 4 October 1982 to 30 December 2005 (5866 observations). 
Standard errors in “()” parentheses; tail probabilities in “[]” parentheses. 
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Table A4 
ECM-FIGARCH (1, d, 1) Estimates  

 Spot Prices 3 Month Prices 

 
H1

** 

Unrestricted 
H0

** 

Diagonal 
H1

** 

Unrestricted 
H0

** 

Diagonal 

Aluminium     

1µ  -0.0140 
(0.0145) 

-0.0148 
(0.0144) 

-0.0088 
(0.0133) 

-0.0089 
(0.0133) 

11γ  -0.0233 
(0.0131) 

-0.0233 
(0.0131) 

-0.0431 
(0.0130) 

-0.0427 
(0.0130) 

12γ  -0.0446 
(0.0125) 

-0.0446 
(0.0124) 

-0.0324 
(0.0121) 

-0.0325 
(0.0121) 

1ϖ  0.0382 
(0.0126) 

0.0643 
(0.0120) 

0.0741 
(0.0156) 

0.0583 
(0.0111) 

Copper     

2µ  0.0027 
(0.0165) 

0.0001 
(0.0165) 

-0.0008 
(0.0151) 

-0.0005 
(0.0151) 

21γ  -0.0892 
(0.0128) 

-0.0911 
(0.0128) 

-0.0884 
(0.0128) 

-0.0904 
(0.0127) 

22γ  -0.0444 
(0.0124) 

-0.0459 
(0.0123) 

-0.0261 
(0.0122) 

-0.0268 
(0.0121) 

2ϖ  0.0830 
(0.0238) 

0.1042 
(0.0183) 

0.0450 
(0.0199) 

0.0939 
(0.0163) 

Common      

ϕ11 = ϕ22 0.3018 
(0.0399) 

0.3072 
(0.0335) 

0.4699 
(0.0625) 

0.3968 
(0.0353) 

ϕ12 = ϕ21 -0.0094 
(0.0089) 

 -0.0173 
(0.0108) 

 

β11 = β22 
0.5269 

(0.0460) 
0.5408 

(0.0414) 
0.6150 

(0.0536) 
0.6017 

(0.0395) 

β12 = β21 
-0.0103 
(0.0085) 

 -0.0333 
(0.0125) 

 

d1 = d2 0.3748 
(0.0357) 

0.3893 
(0.0258) 

0.2594 
(0.0360) 

0.3383 
(0.0238) 

ξ1 = ξ2 0.0477 
(0.0545) 

0.0801 
(0.0184) 

0.0608 
(0.0293) 

0.0423 
(0.0153) 

ρ 0.5355 
(0.0092) 

0.5328 
(0.0090) 

0.5692 
(0.0088) 

0.5639 
(0.0087) 

Log- likelihood -19249.97 -19252.29 -17713.54 -17719.02 
ξ1 = ξ2 

χ2(1) 
0.09 

[75.8%] 
0.04 

[85.0%] 
0.17 

[68.3%] 
0.01 

[91.0%] 
H1

*/H1
**   χ2(1) 

H0
**/H1

**  χ2(2) 

0.37 
[54.2%] 

2.38 
[30.4%] 

1.24 
[26.5%] 

5.63 
[5.98%] 

The table reports estimates of equations (2) and (9) with p = q  = 1, m = 2 and b 
= 0.2. Sample: 4 October 1982 to 30 December 2005 (5866 observations). 
Standard errors in “()” parentheses; tail probabilities in “[]” parentheses. 

 


