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Abstract. In competitive domains, the knowledge about the opponent
can give players a clear advantage. This idea lead us in the past to pro-
pose an approach to acquire models of opponents, based only on the
observation of their input-output behavior. If opponent outputs could
be accessed directly, a model can be constructed by feeding a machine
learning method with traces of the opponent. However, that is not the
case in the Robocup domain. To overcome this problem, in this paper
we present a three phases approach to model low-level behavior of in-
dividual opponent agents. First, we build a classifier to label opponent
actions based on observation. Second, our agent observes an opponent
and labels its actions using the previous classifier. From these observa-
tions, a model is constructed to predict the opponent actions. Finally,
the agent uses the model to anticipate opponent reactions. In this paper,
we have presented a proof-of-principle of our approach, termed OMBO
(Opponent Modeling Based on Observation), so that a striker agent can
anticipate a goalie. Results show that scores are significantly higher using
the acquired opponent’s model of actions.

1 Introduction

In competitive domains, the knowledge about the opponent can give players a
clear advantage. This idea lead us to propose an approach to acquire models of
other agents (i.e. opponents) based only on the observation of their input-output
behaviors, by means of a classification task [I]. A model of another agent was
built by using a classifier that would take the same inputs as the opponent and
would produce its predicted output. In a previous paper [2] we presented an
extension of this approach to the RoboCup [3].

The behavior of a player in the robosoccer can be understood in terms of
its inputs (sensors readings) and outputs (actions). Therefore, we can draw an
analogy with a classification task in which each input sensor reading of the
player will be represented as an attribute that can have as many values as the
corresponding input parameter. Also, we can define a class for each possible
output. Therefore, the task of acquiring the opponent model has been translated
into a classification task.

In previous papers we have presented results for agents whose outputs are
discrete [I], agents with continuous and discrete outputs [4], an implementation
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of the acquired model in order to test its accuracy [5], and we used the logs
produced by another team’s player to predict its actions using a hierarchical
learning scheme [2]. In that work, we considered that we had direct access to the
opponent’s inputs and outputs. In this work we extend our previous approach
in the simulated robosoccer domain by removing this assumption. To do so,
we have used machine learning to create a module that is able to infer the
opponent’s actions by means of observation. Then, this module can be used to
label opponent’s actions and learn a model of the opponent.

The remainder of the paper is organized as follows. Section P presents a
summary on our learning approach to modeling. Actual results are detailed in
Section Bl In Section M discusses the related work. The paper concludes with
some remarks and future work, Section [l

2 Opponent Modeling Based on Observation (OMBO)

Our approach carries out the modeling task in two phases. First, we create a
generic module that is able to label the last action (and its parameters) per-
formed by any robosoccer opponent based on the observation of another agent
(Action Labeling Module - ALM). We need this module given that in a game
in the soccer simulator of the RoboCup, an agent does not have direct access to
the other agents inputs and outputs (what the other agent is really perceiving
through its sensor and the actions that it executes at each moment). This mod-
ule can be used for labeling later any other agents actions. Second, we create a
model of the other agent based on ALM data (Model Builder Module - MBM).
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Figure [ shows a high level view of the general framework for opponent
modeling,.

2.1  Action Labeling Module (ALM)

In order to predict the behavior of the opponent (Agent A), it is necessary to
obtain many instances of the form (Input Sensors, Output Actions), so that
they can be used for learning. However, in a real match, A’s inputs and outputs
are not directly accessible by the modeler agent (Agent B). Rather, A’s actions
(outputs) must be inferred by Agent B, by watching it. For instance, if Agent
A is besides the ball at time 1, and the ball is far away at time 2, it can be
concluded that A kicked the ball. Noise can make this task more difficult.

The purpose of the ALM module is to classify A’s actions based on ob-
servations of A made by B. This can also be seen as a classification task. In
this case, instances of the form (A’s observations from B,A’s actions) are re-
quired.

A general description of the action labeling module construction is shown
in Figure
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Fig. 2. Action Labeling Module creation

The detailed steps for building the Action Labeling Module (ALM) are as
follows:
3



. The Agent A plays against Agent B in several games. At every instant, data
about A, some environment variables calculated by B, and the actions of A
are logged to produce a trace of Agent A behavior from Agent B point of
view.

. Each example [ in the trace is made of three parts: a set of features about
Agent A, F, some environment features, F, and the action of Agent A, C,
in a given simulation step ¢, that is to say I; = F; + E; + C;. From this
trace it is straightforward to obtain a set of examples D so that Agent B
can infer by machine learning techniques the action carried out by Agent
A using examples from two consecutive simulation steps. It is important to
remark that, sometimes, the soccer server does not provide with information
for two contiguous time steps. We ignore these situations.

. Let D be the whole set of available examples from Agent A trace. Each
example d; € D is made of two parts: an n-dimensional vector representing
the attributes a(d;) and a value ¢(d;) representing the class it belongs to. In
more detail, a(d;) = Fy, Et, Fy—1, Fr—1,Ci—1,V and ¢(d;) = C;. V represents
attributes computed based on comparison of features differences between
different time steps. We use 24 calculated attributes (e.g. Agent A position
differences, ball position differences, etc).

. When the actions ¢(d;) in D are a combination of discrete and continuous
values (e.g. dash 100), we create a set of instances D with only the discrete
part of the actions, and a set bj for each parameter of the action using
only the examples corresponding to the same action. That is, the name of
the action and the parameter of the action will be learned separately. For
instance, if the action executed by the player is “dash 100” only dash will
be part of D and the value 100 will be in Dy, with all the instances whose
class is dash.

. The set D is used to obtain a model of the action names (i.e. classify the
action that the Agent A carried out in a given simulation step). The D,
are used to generate the continuous values parameters associated to its cor-
responding action. We have called this way of learning the action and its
parameter separately hierarchical learning (see Figure [3).

. Once all classifiers have been built, in order to label the action carried out by
Agent A, first the classifier that classifies the action is run in order to know
which action it performed. Second, the associated classifier that predicts the
value of the action parameter is executed. This set of classifiers constitutes
the Action Labeling Module (ALM).

As kick, dash, turn, etc are generic actions, and the simulator executes in

the same way the actions independently of the agent that executes them, this
classifier will be independent of Agent A, and could be used to infer the actions
of other agents as well. Also, the classifier has to be build just once.

Model Builder Module (MBM)

Our next goal is to learn a classifier to predict Agent A’s actions based on
observations of A from Agent B’s point of view. It will be obtained from instances
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(Fy, By, ALM,) recorded during the match, where ALM; is the action classified
by ALM from observations at ¢t and ¢t — 1. The aim of this classifier is to predict
Agent A behavior.

More specifically, data consists of tuples (I's) with features about Agent A,

some environment variables, and the action that B predicted the Agent A has
performed, together with its parameter (in this case, labeled by ALM). Instead of
using a single time step, we have considered several of them in the same learning
instance. Therefore, the learning tuples will have the form (I, I;—1, ..., It_(w_l)),
where w is the window size. Like in ALM construction, we used calculated at-
tributes, V.

The detailed steps taken for obtaining the model of Agent A are as follows:

. The ALM is incorporated into Agent B, so that it can label (infer) Agent
A’s actions.

. Agent A plays against Agent B in different situations. At every instant,
Agent B obtains information about Agent A and the predicted action of
Agent A, labeled by ALM as well as its parameters. All this information is
logged to produce a trace of Agent A behavior.

. Like in the ALM construction, every example I in the trace obtained is
made of three parts: a set of features about Agent A, F', some environment
variables, E, and the action of Agent A, C (labeled by ALM), at a given
simulation step t (I; = F; + E: + C¢). In this case, we want to predict the
action of Agent A in a given simulation step and we need information about
it from some simulation steps behind. The number of previous simulation
steps used to make an instance is denoted by w.

. Let D be the whole set of instances available at a given simulation step. Each
instance d; € D is made of two parts: an n-dimensional vector representing
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the attributes a(d;) and a value c¢(d;) representing the class it belongs to. In
more detail, a(d;) =(F;, By, Fi—1, Et_1C_1, ..., Ft,(wfl), Et,(wfl), th(w71)7 V)
and ¢(d;) = C}.

5. When the actions ¢(d;) in D are a combination of discrete and continuous
values (e.g. dash 100), we create a set of instances D with only the discrete
part of the actions, and a set ﬁj for each parameter of the action using
only the examples corresponding to the same action. From here on, hierar-
chical learning is used, just like in ALM, to produce action and parameter
classifiers. They can be used later to predict the actions of Agent A.

Although the Model Builder Module could be used on-line, during the match,
the aim of the experiments in this paper is to show that the module can be built
and is accurate enough. Therefore, in our present case, learning occurs off-line.
On-line use is just a matter of the agent having some time for focusing its
computer effort on learning. Learning could happen, for instance, during the
half-time break, during dead times, or when the agent is not involved in a play.
Also, incremental algorithms could be used, so as not to overload the agent
process.

2.3 Using the Model

Predicting opponent actions is not enough. Predictions must be used somehow
by the agent modeler to anticipate and react to the opponent. For instance, in
an offensive situation, an agent may decide whether to shoot the ball to the goal
or not, based on the predictions about the opponent. The task of deciding when
to shoot has been addressed by other researchers. For instance, CMUnited-98 [6]
carried out this decision by using three different strategies: based on the distance
to the goal, based on the number of opponents between the ball and the goal,
and based on a decision tree. In CMUnited-99 [7], Stone et al. [§] considered the
opponent to be an ideal player, to perform this decision. Our approach in this
paper is similar to Stone’s work, except that we build an explicit model of the
actual opponent.

It is also important to remark that, at this point in our research, how to use
the model is programmed by hand. In the future we expect to develop techniques
so that the agent can learn how to use the model.

3 Experiments and Results

This section describes the experimental sequence and results obtained in the
process to determine whether the usefulness of using a learned knowledge gener-
ated by an Agent B by observing behavior of an Agent A, taken as a black box.
To do so we have carried out three phases: first a player of a soccer simulator
team (Agent A) plays against an Agent B to build the ALM; second, the model
m of Agent A is built; and third, the model is used by B against A.

For the experimental evaluation of the approach presented in this paper,
the player (Agent A) whose actions will be predicted is a member of the ORCA
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team [9], and the Agent B (modeler agent) is based on the CMUnited-99 code [1].
Agent A will act as a goalie and Agent B as a striker, that must make the
decision of shooting to the goal or continue advancing towards it, depending on
the predictions about the goalie.

The techniques to model Agent A actions have been, in both, ALM and
model construction, ¢4.5 [T0] and M5 [TT]. ¢4.5 generates rules and M5 generates
regression trees. The latter are also rules, whose then-part is a linear combination
of the values of the input parameters. 4.5 has been used to predict the discrete
actions (kick, dash, turn, etc.) and M5 to predict their continuous parameters
(kick and dash power, turn angle, etc.). C4.5 and M5 were chosen because we
intend to analyse the models obtained in the future, and decision trees regression
trees obtained by them are quite understandable.

3.1 ALM Construction

As it is detailed in the previous section, the data used to generate the ALM, is a
combination of the perception about Agent A from the point of view of Agent B
and the actual action carried out by Agent A. Once the data has been generated,
we use it to construct the set of classifiers that will be the ALM. Results are
displayed in TabldIl

There are three rows in Table[I. The first one displays the prediction of the
action of Agent A, while the other two lines show the prediction of the numeric
parameters of two actions: turn and dash. As Agent A is a goalie, for experi-
mental purposes, we only considered relevant the parameters of these actions.
Columns represent: the number of instances used for learning, the number of
attributes, and the number of classes (continuous for the numeric attributes).
In the last column, accuracy results are shown. For the numeric parameters,
a correlation coeflicient is displayed. These results have been obtained using a
ten-fold cross validation.

ALM obtains a 70% accuracy for the discrete classes, which is a good result,
considering that the simulator adds noise to the already noisy task of labeling
the performed action. On the other hand, the results obtained for the parameters
values are poor. Perhaps the techniques used to build the numerical model are
not the most appropriate. Or perhaps, better results could probably be achieved
by discretizing the continuous values. Usually, it is not necessary to predict
the numeric value with high accuracy; only a rough estimation is enough to take
advantage of the prediction. For instance, it would be enough to predict whether

Table 1. Results of ALM creation

Labeling task Instances Attributes Classes  Accuracy
Action 5095 69 5 70.81%
Turn angle 913 69 Continuous 0.007 C.C.
Dash power 3711 69 Continuous 0.21 C.C.

C.C.: correlation coefficient



the goalie will turn left or right, rather than the exact angle. For the purposes
of this paper, we will use only the main action to decide about when to shoot.

3.2 Model Construction

The ALM can now be used to label opponent actions and build a model, as ex-
plained in previous sections. ¢4.5 and M5 have been used again for this purpose.
Results are shown in Table

Table 2. Model creation results

Predicting Instances Attributes Classes Accuracy
Action 5352 73 6 81.13%
Turn angle 836 73 Continuous 0.67 C.C.
Dash power 4261 73 Continuous 0.41 C.C.

C.C.: correlation coefficient

Table [ shows that the main action will be perform by the opponent can be
predicted with high accuracy (more than a 80%).

3.3 Using the Model

Once the model m has been constructed and incorporated in-to the Agent B
architecture, it can be used to predict the actions of the opponent in any situ-
ation. The task selected to test the model acquired is when to shoot [§]. When
the striker player is approaching the goal, it must decide whether to shoot right
there, or to continue with the ball towards the goal. In our case, Agent B (the
striker) will make the decision based on a model of the opponent goalie.

When deciding to shoot, our agent (B) first selects a point inside the goal as a
shoot target. In this case, a point at the sides of the goal. The agent then considers
its own position and the opponent goalie position to select which point is the
shoot target. Once the agent is near the goal, it uses the opponent goalie model
to predict the goalie reaction and decides to shoot or not at a given simulation
step. For example, if the goalie is predicted to remain quiet, the striker advances
with the ball towards the goal.

In order to test the effectiveness of our modeling approach in a simulation soc-
cer game, we ran 100 simulations in which only two players take part. The Agent
A is an ORCA Team goalie and Agent B is a striker based on the CMUnited-99
architecture with ALM and the model of Agent A. For every simulation, the
striker and ball were placed in 30 different positions in the field randomly cho-
sen. This makes a total of 3000 goal opportunities. The goalie was placed near to
the goal. The task of the striker is to score a goal while the goalie must avoid it.

To test the model utility, we compare a striker that uses the model with a
striker that does not. In all situations, the striker leads the ball towards the goal
until deciding when to shoot. The striker that does not use the model decides
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Table 3. Simulation results

Striker Simulations Average of goals Average of Shots Outside
without model 100 4.65 11.18
with model 100 5.88 10.47

when to shoot based only on the distance to the goal, while the striker that uses
the model, considers this distance and the goalie predicted action.

The results of these simulations are shown in Table [3

As results show, the average of goals using the model is higher than the
average of goals without the model. They could be summarized as that every 30
shots, one extra goal will be scored if the model is used. Shots outside the goal
are also reduced. We carried out a t-test to determine that these differences are
significant at o = 0.05, which they are. So, even with a simple way of using the
model, we can have a significant impact on results by using the learned model.

4 Related Work

Our approach follows Webb feature-based modeling [12] that has been used for
modeling user behavior. Webb’s work can be seen as a reaction against previous
work in student modeling, where they attempted to model the cognitive pro-
cessing of students, which cannot be observed. Instead, Webb’s work models the
user in terms of inputs and outputs, that can be directly seen.

There are several work related to opponent modeling in the RoboCup soccer
simulation. Most of them focus on the coaching problem (i.e. how the coach can
give effective advice to the team). Druecker et al. [I3] use neural networks to
recognize team formation in order to select an appropriate counter-formation,
that is communicated to the players. Another example of formation recognition
is described in [T4] that use a learning approach based on player positions. Re-
cently, Riley and Veloso [I5] presented an approach that generate plans based
on opponent plans recognition and then communicates them to its teammates.
In this case, the coach has a set of “a priori” opponent models. Being based on
[16], Steffens [I7] presents an opponent modeling framework in Multi-Agent Sys-
tems. In his work, he assumes that some features of the opponent that describe
its behavior can be extracted and formalized using an extension of the coach
language. In this way, when a team behavior is observed, it is matched with a
set of “a priori” opponent models. The main difference with all these previous
work is that in our work, we want to model opponent players in order to improve
low level skills of the agent modeler rather than modeling the high level behavior
of the whole team.

On the other hand, Stone et al. [§] propose a technique that uses opponent
optimal actions based on an ideal world model to model the opponent future
actions. This work was applied to improve the agent low level skills. Our work
addresses a similar situation, but we construct a real model based on observation
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of an specific agent, while Stone’s work does not directly construct a model, being
his approach independent of the opponent.

In [IR] Takahashi et al. present an approach that constructs a state transition
model about the opponent (the ”predictor”), that could be considered a model
of the opponent, and uses reinforcement learning on this model. They also learn
to change the robot’s policy by matching the actual opponent’s behaviour to
several opponent models, previously acquired. The difference with our work is
that we use machine learning techniques to build the opponent model and that
opponent actions are explicitely labelled from observation.

5 Conclusion and Future Work

In this paper we have presented and tested an approach to modeling low-level
behavior of individual opponent agents. Our approach follows three phases. First,
we build a general classifier to label opponent actions based on observations.
This classifier is constructed off-line once and for all future action labeling tasks.
Second, our agent observes an opponent and labels its actions using the classifier.
From these observations, a model is constructed to predict the opponent actions.
This can be done on-line. Finally, our agent takes advantage of the predictions
to anticipate the adversary. In this paper, we have given a proof-of-principle of
our approach by modeling a goalie, so that our striker gets as close to the goal
as possible, and shoots when the goalie is predicted to move. Our striker obtains
a higher score by using the model against a fixed strategy.

In the future, we would like to do on-line learning, using perhaps the game
breaks to learn the model. Moreover we intend to use the model for more complex
behaviors like deciding whether to dribble, to shoot, or to pass. In this paper,
how the agent uses the model has been programmed by hand. In future work, we
would like to automate this phase as well, so that the agent can learn to improve
its behavior by taking into account predictions offered by the model.
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