working

UNIVERSIDAD CARLOS 11 DE sADRID pPapers .
Working Paper #08-65 Departamento de Estadistica
Statistic and Econometric Series 23 Universidad Carlos 111 de Madrid
November 2007 Calle Madrid, 126
28903 Getafe (Spain)

Fax (34-91) 6249849

Binarized Support Vector Machines *

Emilio Carrizosa, ! Belen Martin—Barragan2 and Dolores Romero Morales >

Abstract

The widely used Support Vector Machine (SVM) method has shown to yield very good results in
Supervised Classification problems. Other methods such as Classification Trees have become
more popular among practitioners than SVM thanks to their interpretability, which is an important
issue in Data Mining.

In this work, we propose an SVM-based method that automatically detects the most important
predictor variables, and the role they play in the classifier. In particular, the proposed method is
able to detect those values and intervals which are critical for the classification. The method
involves the optimization of a Linear Programming problem, with a large number of decision
variables. The numerical experience reported shows that a rather direct use of the standard
Column-Generation strategy leads to a classification method which, in terms of classification
ability, is competitive against the standard linear SVM and Classification Trees. Moreover, the
proposed method is robust, i.e., it is stable in the presence of outliers and invariant to change of
scale or measurement units of the predictor variables.

When the complexity of the classifier is an important issue, a wrapper feature selection method is
applied, yielding simpler, still competitive, classifiers.
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Abstract

The widely used Support Vector Machine (SVM) method has shown to yield very good results in Super-
vised Classification problems. Other methods such as Classification Trees have become more popular among
practitioners than SVM thanks to their interpretability, which is an important issue in Data Mining.

In this work, we propose an SVM-based method that automatically detects the most important predictor
variables, and the role they play in the classifier. In particular, the proposed method is able to detect those
values and intervals which are critical for the classification. The method involves the optimization of a Linear
Programming problem with a large number of decision variables. The numerical experience reported shows that
a rather direct use of the standard Column-Generation strategy leads to a classification method which, in terms
of classification ability, is competitive against the standard linear SVM and Classification Trees. Moreover,

the proposed method is robust, i.e., it is stable in the presence of outliers and invariant to change of scale or
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measurement units of the predictor variables.
When the complexity of the classifier is an important issue, a wrapper feature selection method is applied,

yielding simpler, still competitive, classifiers.

Keywords: Supervised Classification, Binarization, Column Generation, Support Vector Machines.

1 Introduction and literature review

Classifying objects or individuals into different classes or groups is one of the aims of Data Mining. This topic
has been addressed in different areas such as Statistics, Operations Research and Artificial Intelligence. A general
introduction of Data Mining can be found in [19].

We focus on the well-known so-called Supervised Classification problem, usually referred as Discriminant Anal-
ysis by statisticians, where we have a set of objects {2 and the aim is to build a classification rule which predicts
the class membership ¢* of an object u into one of a predefined set of classes C, by means of its predictor vector
a®. The predictor vector x takes values in a set X which is usually assumed to be a subset of IR?, such as {0,1}?,
and the components xy, £ = 1,2,...,p, of the predictor vector x are called predictor variables. The other piece of
information defining u is the class ¢* object u belongs. In this paper we restrict ourselves to the case in which two
classes exist, C = {—1,1}, since the multiclass case can be reduced to a series of two-class problems, as has been
suggested e.g. in [20, 22, 35].

Not all the information about the objects in §2 is available, but only in a subset I, called the training sam-
ple, where both predictor vector and class-membership of the objects are known. With this information, the

classification rule must be built.

The Support Vector Machines (SVM) [12] approach is based on margin maximization, which consists in finding
the separating hyperplane which is furthest from the closest object. SVM has shown to be a very powerful tool for
Supervised Classification. The most popular versions of SVM embed, via a kernel function, the original predictor
variables into a higher (possibly infinite) dimensional space, [22]. In this way one obtains classifiers with good

generalization properties but, in general, hard to interpret.



In some application fields, practitioners, such as doctors or businessmen, may be very unwilling to use a classifier
they cannot interpret. For them, Data Mining methods sometimes proceed like a black-box, so they would not feel
confident enough to use the classifier unless they can interpret it somehow.

For instance, it is easy to interpret and manage queries of type

e Is predictor variable ¢; big?

e Is predictor variable £5 small?

e Does predictor variable ¢3 attain a very extreme value?

where the concept of ‘big’, ‘small’ and ‘extreme value’ must be quantified, e.g. in the form

is predictor variable ¢ greater than or equal to b? (1)

This type of queries are used e.g. in Classification Trees. Because of its very intuitive graphical display, prac-
titioners can interpret the classifier, describing how it works. Moreover, they can detect the values of a predictor
variable critical for the classification.

We work in this paper in an SVM-based framework, where the feature space is defined by binarizing each
predictor variable, i.e., by transforming each numerical predictor variable ¢ into a large series of binary variables,
obtained by making queries of type (1) for many different cutoffs b. Since we are using SVM after binarizing the
predictor variables, we call our method Binarized Support Vector Machines (BSVM).

Our aim is to show that, if SVM is run after such binarization, the resulting classifier has valuable properties
concerning classification ability, interpretability and robustness.

First, the numerical experience reported in Section 4 shows that BSVM yields lower misclassification rates than
Classification Trees and is competitive (better in most cases we tested) against linear SVM.

Second, BSVM takes us a step forward towards interpretability of SVMs. Since the obtained classification rule
is based on queries of type (1), the critical values and intervals of the predictor variables are identified, as done by

Classification Trees.



Third, BSVM is linear, in the sense it yields a classification rule which is linear in the features selected, and can
be seen as a linear SVM after transforming the variables via a nonlinear mapping. Such mapping, which can be
visualized by means of a graphical procedure, is valuable in terms of interpretability, since it shows the way each
predictor variable influences the classifier. The capability of BSVM to capture nonlinearities presents an advantage
with respect to the standard linear SVM, with important consequences in the classification ability, as shown in our
numerical results.

Finally, the use of queries of type (1) in our method makes it appealing in terms of robustness against outliers and
changes of scale in the data. The numerical experience reported shows that our procedure behaves as Classification
Trees, and clearly better than linear SVMs in presence of outliers. Moreover, whereas the linear SVM is influenced
by the scale in the data — even a linear change of scale in the predictor variables may change the classifier and
thus the classification ability of the SVM methodology— our proposal yields a classifier which is invariant to change
of scale, in the sense that, if the data were modified by a monotonic (non-)linear transformation, the classifier

obtained would be the same.

The idea of binarizing continuous predictor variables is not new at all in the field of Classification. Indeed,
Classification Trees are precisely based on the strategy of defining, for different predictor variables, appropriate
cutoffs; moreover, binarizing is also natural in other classification procedures, such as Neural Networks, where the
well-known step activation function, already at the heart of the perceptron method, allows one to discretize any
predictor variable or combination of them. Binarizing continuous predictor variables has also been proposed in the
so-called rule extraction procedures, within SVM [3, 4, 16, 27, 29] and Neural Networks as well, e.g. [1, 2, 13]. When
a rule extraction method is applied to a classifier, one obtains an alternative classifier which hopefully have a similar
behavior on data, but is more interpretable, since it is based on simple rules, such as those derived from queries of
type (1). Whereas our method shares with rule extraction procedures the aim of enhancing interpretability of the
output of an SVM, we are not proposing to replace the SVM classifier by a more interpretable one which, based
on queries of type (1), mimics the behavior of the SVM classifier; instead, we are proposing a binarization in the

data, via queries of type (1) and obtaining the SVM classifier for such transformed data. This way, we increase



interpretability with respect to standard SVM, and, as shown in our numerical experience, provide a competitive
method in terms of misclassification rates.

As far as we are aware, there is no paper using this way binarization for Support Vector Machines, and thus
our strategy is new in the context of SVM.

The classifier proposed in this paper, BSVM, is described in Section 2, where we analyze the interpretability
of the proposed method, and propose a visualization tool for plotting the role a predictor variable plays in the
classifier. Since the number of features to be considered may be huge, the BSVM method yields an optimization
problem with a large number of decision variables. In Section 3, a Column-Generation-based algorithm is proposed
in order to solve such an optimization problem. Numerical results are presented in Section 4, to illustrate the
classification ability as well as the desirable properties of BSVM, showing that the proposed approach gives a
classifier which is competitive against the standard linear SVM or Classification Trees. Conclusions and some lines

for future research are discussed in Section 5.

2 Binarized Support Vector Machines

Queries of type (1) are simple and hence are, by themselves, easy to interpret. In Section 2.1, we introduce a
classifier which is made up by queries of this type. We propose in Section 2.2 a visualization tool which graphically
represents the role any original predictor variable plays in the classifier. The search of a good classifier is based on

SVM ideas, as described in Section 2.3.

2.1 Using simple queries

In practical applications, simple classification rules based on queries of type (1) are very desirable because of
their interpretability. For example, a doctor would say that having high blood pressure is a symptom of disease.

Choosing the threshold b from which a specific blood pressure would be considered high is not usually an easy task.



We theoretically consider all the possible queries of type (1), mathematically formalized by the function

1 ifx, >0
Pov(x) = (2)
0 otherwise
forbe IRand ¢/ =1,2,...,p. In what follows, each function of type ¢y is called feature.

Our method constructs a classifier after binarizing all predictor variables. This binarization procedure could be
done in a tedious preprocessing step, where all the possible features are created. Instead, as will be seen later, we
propose a method to generate, by means of a dynamic process, only those features which are more promising in
terms of classification ability.

The set of possible cutoff values b (and, thus the number of features) is, in principle, infinite. However, given a
training sample I, many of those possible cutoffs will yield exactly the same classification in the objects in I, which
are the objects whose information is available. In this sense, given the training sample I, for any given predictor
variable ¢, all values of b between two consecutive values of £ lead to functions ¢y, which behave identically on
the training sample I. Hence, if we construct for each predictor variable ¢, the finite set By of midpoints between
consecutive values of £ in the training sample I, it turns out that the set of functions {¢g : b € By} is, on I, as

rich as the full set of step functions {¢g : b € IR}. Instead of working with the full set of functions defined by all

possible cutoffs b € IR, the family of features under consideration in this paper is given by
f:{¢gb: be By, = 1,2,...,p}.

These features are used to classify in the following way: each feature ¢y, has associated a weight wy,, measuring
its contribution for the classification into the class —1 or 1. The weighted sum of those features plus a threshold 3
constitute the score function,
P
f@)=wo@+8=> >  wn+p (3)
(=1 {beB¢|z>b}
where ®(z) = (¢ ())beB,, t=12,...p and w' ®(z) denotes the scalar product of vectors w and ®(z), w'®(z) =

Dlm1 ven, Webde(T) = 3001 D (beBy| we>b) Wb

Objects will be allocated to class —1 if f(z) < 0, and to class 1 if f(x) > 0. In case of ties, i.e. f(x) = 0, objects



can be allocated randomly or by some predefined order. In this paper, following a worst case approach, they will
be considered as misclassified.

For a certain predictor variable £, the coeflicient wy, associated to feature ¢g, represents the amount with which
the query ‘is 2y > b?’ contributes to the score function (3). Those predictor variables ¢ for which wy, are zero for
all b € By are not needed for the classification, and can be discarded. In other words, only those values b for which
the corresponding wy, are non-zero can be considered as critical values, in terms of classification, in the predictor
variable £. Moreover, the magnitude of wy;, enables us to quantify the importance of the cutoff point b to separate
individuals of class 1 and —1.

To fix ideas, let us consider, for instance, the Wisconsin Breast Cancer Database from the UCI Machine Learning
Repository, [28], with data from cancer diagnosis. Each individual has 30 predictor variables, which, in principle,
are to be taken into consideration. However, if we use BSVM, it turns out that only some of these predictor
variables are shown to be relevant for the classification. In particular, with a specific choice of the parameter in
our model, only 12 have at least one non-zero wg,, and are thus those which need to be taken into account. Tables
1 and 2 focus on two of these relevant predictor variables, namely Mean Concave Points and Worst Radius. For
instance, for predictor variable Mean Concave Points and cutoff b = 0.0514, the weight is 0.514. For predictor
variable Worst Radius, the only cutoff is b = 17.72, and has a weight of 0.1006. Since the output of the features
proposed in this paper is always binary, the importance represented by the coefficient is always measured in the
same scale. This means that having Mean Concave Points greater than or equal to 0.0514 is more important for
the classification than having Worst Radius greater than or equal to 17.72. Moreover, for predictor variable Worst
Radius, the only important issue for classification purposes is whether this variable takes a value greater than or
equal to its unique critical value, namely, 17.72. In contrast, for variable Mean Concave Points other cutoffs are

also used in the classifier.

2.2 Visualization tool

The weight wyp, gives insightful knowledge about how predictor variable ¢ together with the cutoff b influences the

classification. In this section, we focus on the influence of predictor variable ¢ as a whole, instead of a particular



b Wep

0.0492 0.0279
0.0514 0.5140
0.0559 0.0615

Table 1: Cutoffs and weights for predictor variable Mean Concave Points.

b Wep

17.720 0.1006

Table 2: Cutoffs and weights for predictor variable Worst Radius.

cutoff.

The role of predictor variable £ in the score function is modeled by the stepwise function

s Y Q)

{bEBe| s>b}

This stepwise function is useful since it approximates the most adequate mapping to be applied to predictor variable
¢ to optimize the classification task. As an illustration, Table 3 shows, for predictor variable Worst Texture, its

cutoffs b, the corresponding weights wy, and the cumulative weights >, -, we.

b web | Dopr<p W
20.845 0.1117 0.1117
22.860 0.1508 0.2626
25.725 0.2514 0.5140
27.530 0.0279 0.5419

Table 3: Weights and cumulative weights for predictor variable Worst Texture.

We propose a plot of function (4) in order to gain insight about the contribution of predictor variable ¢ to the
classifier. This plot is a valuable tool to practitioners, who can use it to interpret the classifier, describing the role
every predictor variable plays in the classification. In particular, it allows a direct choice of the relevant predictor
variables, and detection of critical values and intervals.

In Figure 1 we show, for each of the 12 relevant predictor variables, i.e., those with at least one non-zero wy, its



contribution to the score function. Predictor variables Mean Concave Points, Worst Area and Worst Concave
Points are the most important, whereas Worst Texture and Worst Perimeter have a medium importance. Using
this graphical representation, in predictor variable Mean Concave Points, we can detect a critical value which, as
said in the previous section, is at point 0.0514. In the case of Worst Texture, in the interval between 21 and 27
the importance of this predictor variable grows up little by little, whereas outside this interval it remains constant.
We can say that in this case we have a critical interval instead of a critical cutoff.

We have also plotted in Figure 1 the median (represented by a star) and the mean (represented by a cross).
It can be seen how, although the mean or the median are sometimes a good choice for the cutoff, this does not

happen in general, and BSVM prefers other choices.
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Figure 1: Contribution of predictor variables



Graphical representations like Figure 1 can provide insight into the role a predictor variable plays in the classifier.
In Figure 2, we present three different scenarios, found by applying the proposed method to other publicly
available databases. More details can be found in Section 4. In the first case, there is just one value which is
critical for classification. The second instance suggests an S-shaped transformation, similar to Worst Texture in
Figure 1; it identifies a critical interval, within which the behavior is linear. Other types of mappings, harder to

interpret, are, of course, possible. This is the case of the third function, which suggests a logarithmic transformation.

3 4
1
2 3
0.5 2
1
0 1
05 0 0
-1 -1 -1
0 1 2 3 0 50 100 150 50 100 150 200 250

Figure 2: Transformations suggested by the method

Summing up, we have proposed a classifier that, using simple queries of type (1), allows us to visualize the role
every predictor variable plays in the classification. Now, it is time to describe the procedure for finding the weights
wyp associated to each predictor variable and cutoff. We follow an SVM-based framework, developed in the next

section.

2.3 Support vector machines

In order to choose w and g we follow an SVM-based approach which consists in finding the separating hyperplane
which maximizes the margin in the feature space, i.e. the space of the images ®(z*) of the objects u in the
training sample 7. The use of margin maximization is theoretically motivated by the bounds on the generalization
ability [31, 34, 35], where the probability of misclassifying a forthcoming individual is bounded by a function
which is decreasing in the margin. The so-called hard-margin SVM approach proposes the choice of the separating
hyperplane with maximal margin, i.e. the hyperplane which correctly classifies all objects in I and is furthest from

the closest object. In contrast, the so-called soft-margin approach, allows some objects to be misclassified. We use

10



this latter version as it has been empirically shown to avoid overfitting, a phenomenon which happens when a low
misclassification rate in I does not generalize to forthcoming objects. The soft-margin maximization problem is

formulated in this paper by

min @l +C > er &

st.: M (w'e@E)+8)+&>1 Yu el

weRY . B3eR,

where the decision variables are the weight vector w, the threshold value 8 and perturbations £ associated with
the misclassification of object w € I. || - | denotes the L; norm, C' is a constant that trades off the margin in the
correctly classified objects and the perturbations £“, and N = >"7_, #(By), where #(S) denotes the cardinality of a
set S.

An appropriate value of C' is chosen here, as detailed in Section 4.1, by inspecting a wide range of values and
then measuring the performance with respect to misclassification rates, assessed by cross-validation, [23].

SVM seeks the separating hyperplane maximizing a function of the distances. There are many different possible
choices for the distance function, which lead to different variants of SVM, [9]. Whereas the distance between points
has usually been considered in the literature as the Euclidean norm, yielding the margin to be measured by the
Fuclidean norm as well, other norms such as the L; norm and the L., norm have been considered and successfully
applied. See for instance [5, 7, 10, 24, 25, 32, 36] and the references therein. Moreover, the choice of the L., norm
to measure distances is equivalent to the use of the L; norm regularization, also called lasso penalty, [21, 33].

Contrary to the Euclidean case, in which a maximal margin hyperplane can be found by solving a quadratic
program with linear constraints, if, as in this paper, the L; norm regularization is used, then an optimal solution
of the corresponding optimization problem can be found by solving a Linear Programming (LP) problem. In [30],
empirical results show that “in terms of separation performance, L1, Lo and FEuclidean norm-based SVM tend to
be quite similar”. Moreover, the L1 norm regularization contributes to sparsity in the classifier, yielding w with
many components equal to zero, see for instance [7, 15] or [26], which states that “one of the principal advantages

of 1-norm support vector machines (SVMs) is that, unlike conventional 2-norm SVMSs, they are very effective in

11



reducing input space features for linear kernels”.

Since || - || is the Ly norm, Problem (5) can be formulated as the following LP problem,

min =1 2 beB, (wiy +wg) +C > uer &

st.t D01 beB, (wgy — wp ) dup(x®) + Bt + % > 1 Yuel
wh >0  VbeB,Vl=1,2,...,p
wp >0 Vbe By, V0 =1,2,...,p

>0 Yuel

After finding the maximal margin hyperplane in the feature space defined by F, the score function has the form
described in (3).

As said before, for each feature, the absolute value of its coefficient indicates the importance of that feature
for the classification. In particular, features whose corresponding coefficient is zero can be seen as irrelevant for
classification purposes. Using basic Linear Programming theory, it is easy to see that the number of features with

non-zero coeflicient is not larger than the number of objects in the training sample.

3 Column Generation

Problem (6) is a large scale linear program, which may be solved by any method which can handle SVM with the
L; norm regularization, including general-purpose LP procedures or more ad-hoc methods, see e.g. [15]. In this
paper, we propose Problem (6) to be solved by the well-known Mathematical Programming tool called Column
Generation, initially introduced for the cutting-stock problem [17], and successfully used, under different variants,
in different works on Support Vector Machines, such as [6, 8, 14, 26]. A brief discussion on how Column Generation
is tailored to solve Problem (6) follows.

Instead of solving directly Problem (6), which has a high number of decision variables, the Column Generation
technique solves a series of reduced problems where decision variables, corresponding to features in the set F, are

iteratively added as needed.

12



For F C F,let Master Problem (6-F) be Problem (6) with the family of features F. In each iteration, we first
solve Problem (6-F'). The next step is to check whether the current solution is optimal for Problem (6) or not, and,
in the latter case, generate a new feature ¢ improving the objective value of the current solution. The generated
feature is added to the family of features F. This process is repeated until optimality is reached.

To generate new features, we use the dual formulation of Problem (6),

max D wel Mu
stor —1<Y cpdcte(at) <1 VoeF
D ower Auct =0
0< M\ <C wel.
The dual formulation of the Master Problem (6-F) only differs from this one in the first set of constraints, which
should be attained V¢ € F' instead of V¢ € F.
Let (w*, 5*) be an optimal solution of Master Problem (6-F), and let (A}),cr be the values of the corresponding
optimal dual solution. If the optimal solution of the Master Problem (6-F) is also optimal for Problem (6), then,
for every feature ¢ € F the constraints of the Dual Problem (7) will hold, i.e.

—1< Y Acte(at) < 1. (8)

u€l
Denote T'(¢) = >, c; Aucté(a*). If (w*, 5*) is not optimal for Problem (6), then the most violated constraint gives
us information about which feature is promising and could be added to F) in the sense that adding such a feature
to the set F' would yield, at that iteration, the highest improvement of the objective function. Thus, we wish to
generate a new feature ¢ € F maximizing |I'(¢)|.
In the remainder of this Section we give a more detailed description of our implementation of the Column

Generation algorithm.

3.1 Initial set of features

In the column generation procedure new features are sequentially added to the problem, based on the dual values of

the current solution. The Column Generation technique starts with an initial Master Problem, i.e. a set of features

13



Fy must be chosen to initialize the algorithm. We have chosen to start with one feature per predictor variable,

with the cutoff set equal to its median in the objects of I.

3.2 Generation of features

Finding the best ¢ € F reduces to finding a predictor variable £ and a cutoff b € By, such that |I'(¢e)|, with ¢
defined by (2), is maximal. This can be done by full inspection of the set {%b;fv(b%; : 0=1,2,...,p}, where, for
each predictor variable £, the cutoff bj (respectively b, ) is the value in B, for which I'(¢y) is highest (respectively
lowest). In this section we describe an algorithm for, fixed the predictor variable ¢, finding the cutoff bj maximizing
I'(¢w). Finding b, can be done in a similar way.

First, we sort all the objects in decreasing order by the values of the predictor variable ¢. Denote by (i) the

object in ¢-th position. For simplicity, suppose there are not repeated values, i.e. xz(l) > xz@) > 0> x?(ﬁ(”).
The case with repeated values will be analyzed later.
Once ¢ is fixed and all the objects are sorted by the values of the predictor variable ¢, the value I'(¢yg) can

be efficiently calculated with a recursive procedure. Indeed, for certain i € {1,2,...,4(I)}, we have I'(¢p,.,) =

T(dw,) + /\Z(Hl)c“(”l), where b; denotes the cutoff chosen as M

. Moreover, since A} is nonnegative for
all u € I, we have that I'(¢s,,,) > I'(¢w,) whenever c*(+1) = 1. Hence, checking whether ¢y, is a maximum is
not needed for every i, but only for those i such that ¢*(¥) =1 and ¢*(+1) = —1.

In the case in which there are repeated values in {z} : u € I}, the rule above does not apply. Let ¢ and ¢ be
such that x?(i_l) > xz(i) = xz(iﬂ) =...= xz(iﬂ) > mz(iHH). Note that, in the set of objects where predictor
variable £ has the same value, there could be objects belonging to different classes. In this case, the value b = b;
must be checked, whatever the value of ¢*( 1D However, if ¢*() = v+ = = culitt) apd cu(+t+) = 1 we
know that setting b = b;, for any j = 4,4+ 1,...,¢ + ¢, will be improved by setting b = b;4¢11. This means that
b = b; does not give a maximum of I'(¢g). Only if ¢*() = 1 and ¢*0+t+1) = 1 it is worth to consider b = b; as a
candidate to be the maximum.

The minimization of I' is done analogously. For example, in case of no repeated values, candidates to be a

minimum correspond to objects u(i) belonging to class —1 where the next object u(i + 1) belongs to class 1.

14



Taking into account all these considerations we obtain, for a fixed predictor variable ¢, given the dual values
A%, the algorithm described below, which finds the cutoff b} (and respectively, b, ) for which F(qﬁeb;) (respectively,
F(¢sz)) is maximal (respectively, minimal).

Algorithm 1: Choosing two cutoffs for predictor variable /.
Step 0. Sort the objects decreasingly by xy : xz(i).
Step 1. Set i < 1, sum« 0, max< 0, min— 0, it «— i and i~ « q.
Step 2. Set sum<«— sum—l—)\z(i)cu(i).
Step 3. Step 3.1. If x;f(i) = zg(i+1), then, go to Step 4.
Step 3.2. Otherwise, if for some t > 0, xz(i_t_l) < x?(i_t) =...= xz(i) < xz(i)_l and there exists j
with j =1,...,t and ¢“() # ¢#(i=7) then:
o If sum>maz, then set maz «— sum and it «— .
o If sum<min, then set min < sum and i~ « i.
Step 3.3. Otherwise,
o if *() =1, 0+ = _1 and sum>maz, then set maz «— sum and it — .

o if ¢v() = —1, 40+ =1 and sum<min, then set min — sum and i~ «— i.
Step 4. Set i« i+ 1. If ¢ < (), then go to Step 2. Otherwise STOP: bZ =b;+ and b, = b;-.

We may notice that Step 0 can be performed in a preprocessing stage, of running time O(|I]log(|I])), for all
calls to Algorithm 1 for predictor variable . Hence, considering such sorting as preprocessing, it follows that each
call to Algorithm 1 runs in O(|I|) time, since Step 3 is performed at most once for each object in the training

sample, while the calculations involved in this step can be performed in constant time.

3.3 Implementation details

The column generation algorithm has been implemented as follows. The initial set of features Fjy is built, as

described in Section 3.1, using features whose cutoffs are the medians of the predictor variables. Then, Problem
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(6-Fp) is solved for such initial set of features. The dual values of the optimal solution found, are used to generate
new features.

In every step of the column generation algorithm, instead of generating just one feature (the one maximizing
IT(¢)]), we generate two features for every predictor variable ¢, given by the cutoffs b}, b, for which I'(¢g) is
respectively maximal and minimal. This is done using Algorithm 1, as described in Section 3.2. We do it for all
the predictor variables, thus obtaining 2p features. Those generated features having |I'(¢)| > 1 are added to F
and the LP problem (6-F) is solved. These steps are repeated until all the generated features have |T'(¢)| < 1, in
which case, we have found an optimal solution of Problem (6). A summary of this Column Generation Algorithm

is described as follows.

Algorithm for Column Generation.

Step 0. Set Fy < {¢1p:, P2v;, - - -+ Ppbs }, Where b} is the median of the predictor variable ¢, for £ =1,2,...,p.

Set F' «+— Fo.
Step 1. Solve Problem (6-F). Let (w*, 5*) be its optimal solution, with dual values A}, Vu € I.
Step 2. Foreach ¢ =1,2,...,p do:

Step 2.1. Run Algorithm 1 to choose b}' and b, .
Step 2.2. If I’((bebzr) > 1, then set F' «— F U {(bebzr}.
Step 2.3. If F(¢4b;) < —1, then set F' — F'U {¢Zb[}'

Step 3. If F' has been modified, then go to Step 1, otherwise STOP: we have found an optimal solution of

Problem (6).

In Step 1, we need to solve the LP problem (6-F'). In our numerical results we have used CPLEX 8.1.0 as the

LP solver.

Our numerical experience shows that the number of features used by our classifier, i.e., the ones that have been

generated by the BSVM and have non-zero coefficient in the classifier, is usually rather large. In order to obtain
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a more simple classifier, we proceed with a wrapper feature selection procedure in which features are recursively
deleted. In this procedure, which has been successfully applied in standard SVM, see [18], all the generated
features with zero coefficient in the classifier as well as the feature with non-zero coefficient having the smallest
absolute value are eliminated. Then, the coefficients are recomputed by the optimization of the Problem (6). This
elimination procedure is repeated until the number of features with non-zero coefficient is below a number given
in advance.

As reported in our numerical experience in Section 4.5, this procedure typically allows one to reduce the number

of features used in the classifier at the expense of a mild loss in the classification ability.

4 Numerical results
4.1 Databases, benchmarking methods and accuracy measure

In this section we illustrate the classification ability as well as the most desirable properties of BSVM. With
this aim, a series of numerical experiments has been performed using databases publicly available from the UCI
Machine Learning Repository [28]. Nine different databases were used, namely, the Sonar Database, called here
sonar; the Cylinder Bands Database, called here bands; the Credit Screening Database, called here credit; the
Tonosphere Database, called here ionosphere; the New Diagnostic Database, contained in the Wisconsin Breast
Cancer Databases, called here wdbc; the Cleveland Clinic Foundation Database, called here cleveland; the Boston
Housing Database, called here housing; the Pima Indians Diabetes Database, called here pima; and the BUPA
Liver-disorders Database, called here bupa.

In case of existence of missing values, as occurs for instance in bands and credit, objects with missing values
were removed from the database. In databases such as bands and credit, some of the predictor variables were
nominal. Each of these predictor variables has been replaced by a set of binary variables in the following way: for
every possible value & of the original nominal predictor variable ¢, a new binary variable is built taking value one
when z, is equal to & and zero otherwise. The housing database is a typical regression dataset, but it is often used

as a classification dataset, where the class indicates whether the median value of houses exceeds $21,000. Finally,
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for each database, the final number of objects and the number of predictor variables (all quantitative) can be found
in the second column of each table.

All databases used are of small/moderate size. Very large datasets do not seem to be so suitable for a crude
implementation of BSVM, since column generation methods are known to be time-consuming. In practice, for
databases of much larger size than those used in these experiments, it might be convenient to either select a
subsample of data with manageable size, or perform some dimensionality reduction technique such as Principal
Component Analysis to obtain an appropriate number of variables.

In order to compare the BSVM classifier with other classifiers, we have tested the performance of three different
benchmarking methods: Classification Trees, both with pruning (TreePr) and without pruning (TreeCr), linear
SVM and a benchmarking method for the SVM with the L; norm regularization, namely, the NLPSVM proposed
by Fung and Mangasarian in [15]. The classification accuracy of each method is measured by the leave-one-out
correctness, as done in [15]. Below we give a brief description of this measure.

In the leave-one-out correctness, in what follows looc, for each object, the training sample is equal to the whole
database except for this object, while the testing sample is equal to the excluded object. For each training sample,
we construct a classifier which will be applied in the corresponding testing sample, returning a 1 if the only object in
the testing sample is correctly classified and 0 otherwise. The looc is equal to the percentage of correctly classified
objects. Since looc uses all but one object to build the classifier, the provided classification can be expected to be
close to the one of the classifier trained with the complete dataset.

Given a training sample, it remains to specify the way the SVM as well as the BSVM classifiers are constructed.
Problem (6), as well as the corresponding optimization problem for the linear SVM, contains a parameter that
needs to be tuned, namely, the regularization parameter C' which trades off misclassification errors in the training
sample with the generalization error. As in [15], we limit the values of this parameter to the values 2¢ with
i =—12,—11,...,12. Parameter C is then chosen so that it minimizes the misclassification rate after performing
10-fold cross-validation in the training data (which, as said before contains all but one object.) It has been
empirically observed, e.g. [7, 11, 15], that the choice of the parameter C' may strongly influence the number of

features selected. Hence, one might have also chosen C' by balancing misclassification rates and number of features
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selected.

4.2 Classification ability

In Table 4 we report the looc of both Classification Trees, with and without pruning, linear SVM with normalized
data, NLPSVM and BSVM. Note that for NLPSVM we only have results on five databases, the ones reported
by Fung and Mangasarian [15] in their paper. From Table 4, we can see that BSVM outperforms the three
benchmarking methods in six out of the nine databases we consider in this paper. This happens in the ionosphere,
the housing and the bupa databases. For the sonar, credit and wdbc databases, Fung and Mangasarian [15] do
not report any results, but BSVM outperforms Classification Trees and linear SVM. In these six databases, the
increase in accuracy of BSVM with respect to the best reported accuracy, ranges from 0.35% for the wdbc database
up to 12.01% for the sonar database. For the bands database, we are able to outperform Classification Trees, but
not the linear SVM, which has an accuracy of 71.12% while we have 70.40%. Similarly, for the cleveland database,
we are able to outperform Classification Trees, but linear SVM and NLPSVM have a better classification accuracy,
84.51% and 85.90% respectively, while the one of BSVM is 81.44%. For the pima database, BSVM underperforms
the rest of the methods, where the decrease in accuracy of BSVM with respect to the best reported accuracy is
equal to 4.44%. As a summary, we conclude that BSVM can be seen as a CART-like method (which may very good
for practitioners, since relevant predictor variables and critical values of them are identified), with a classification
power which is at least comparable, and in some cases much better than competing benchmarking techniques such

as CART or other versions of SVM.

4.3 Interpretability

Classification Trees are widely used in applied fields as diverse as Medicine (diagnosis), Computer Science (data
structures), Botany (classification), and Psychology (decision theory), mainly because they are easy to interpret.
Therefore, high accuracy is not the only desirable property of a classifier, but also its interpretability. BSVM
improves largely the interpretability of standard SVMs by the use of queries of type (1). In this section we

illustrate how our method takes us one step further towards interpretability via the use of the visualization tool
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size TreePr TreeCr SVM NLPSVM | BSVM

sonar | 208 x 60 | 71.63 65.38  78.37 - 90.38
bands | 277 x 56 | 62.82 67.51  T71.12 - 70.40
credit | 653 x 43 | 86.22 83.31 8591 - 87.75
ionosphere | 351 x 34 | 89.17 86.32  84.90 88.00 92.31
wdbc | 569 x 30 | 92.09 92.62  96.66 - 97.01

cleveland | 297 x 13 | 78.79 68.69  84.51 85.90 81.44
housing | 506 x 13 | 83.99 84.78  85.38 85.20 86.97
pima | 768 x 8 76.43 72.92  76.17 77.10 72.66
bupa | 345 x 6 67.83 66.67  69.28 68.80 74.78

Table 4: Looc for BSVM and benchmarking methods

proposed in Section 2.2.

To do this, we have considered two databases with different characteristics, namely bupa and sonar, which have
respectively 6 and 60 predictor variables. Since the focus here is on interpretability, and not generalization ability,
the whole database have been used to build the classifier. Parameter C' has been chosen by 10-fold cross-validation
in the whole database.

If SVM is performed, bupa uses all 6 predictor variables, i.e., all predictor variables have associated a non-zero
weight. BSVM uses all 6 predictor variables as well, where we say that a predictor variable has been used if there
exists at least one feature associated to this predictor variable which has a non-zero coefficient in the classifier.
The total number of features used by BSVM is 62.

A quick look at Figure 3, with information from bupa, allows us to say that predictor variables 3, 4 and 5
have the strongest influence in the classifier. It is particularly simple to analyze from the picture the influence of
predictor variable 3. Indeed, we can see that predictor variable 3 presents an S-shaped form, with a linear behavior
within the interval with endpoints 0 and 25 and constant outside. Moreover, the slopes are negative, meaning that,
the higher the value of the predictor variable (up to 25), the stronger the tendency to be classified in the negative
class. On top of that, we see that whether predictor variable 3 takes a value of, say, 25, or, instead, a much higher

value, turns out to be irrelevant for classification purposes.
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A similar behavior is detected for predictor variable 4. From 0 to 25, the influence is linear, but after that
is stable and finally jumps around value 45. Now the slopes are positive, implying that, the higher the value of
predictor variable 4, the stronger the tendency to be classified in the positive class.

Predictor variable 5 shows a logarithmic behavior, again with positive slopes and one critical value after which

the function remains almost constant.

4 4 4
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Figure 3: Graphical representation for bupa

In general, this example shows that the presence of many cutoffs, as in predictor variables 3, 4 and 5, is not an
inconvenience for interpreting the classifier, whose behavior is easily detected via the visualization tool proposed.
Now, take the example of database sonar, which has 60 predictor variables. If SVM is performed, all 60 are used
again, whereas BSVM uses 98 features, involving 45 different predictor variables. Hence, BSVM is able to make
feature selection (it is able to detect as irrelevant for classification 25% of the predictor variables) in a database

where linear SVM would consider all variables as relevant.
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Figure 4: Graphical representation for sonar
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In Figure 4 the 45 used predictor variables are shown, renumbered for convenience. A simple look to this figure
indicates that there are only four out of the 45 predictor variables with strong influence in the classifier, namely
predictor variables 11, 20, 26 and 36. Predictor variables in positions 11 and 20 have just one main critical value,
whereas predictor variables 26 and 36 present an almost linear behavior in a clearly identified interval.

We see again that the use of BSVM allows us to choose the relevant predictor variables, interpret the way such

variables influence the classifier, and detect the critical values and intervals for each predictor variable.

4.4 Size of the BSVM classifier

Simplicity in the classifier is another desirable property for practitioners. Because both BSVM and Classification
Trees are based on simple queries of type (1), the size of the resulting classifier is a good proxy for their complexity.

In Table 5, we compare the size of the classifiers constructed by BSVM and Classification Trees. We report
average results over all the objects, i.e., over all the testing samples.

For both Classification Trees, with and without pruning, we report the total number of nodes in the final tree
as well as the number of leaf nodes. For the BSVM classifier, we report the number of used predictor variables as
well as the number of used features.

In our opinion, the fairest comparison for the complexity is to measure the number of nodes generated by
Classification Trees against the number of features used by BSVM. As the results show, the size of the Classification
Tree with pruning is always smaller. For the Classification Tree without pruning, in four out of the nine databases,
namely credit, cleveland, pima and bupa, BSVM is smaller in size, while in a fifth one, housing, both classifiers
are of similar size. This result in complexity for BSVM should be balanced with its better classification ability.
From Table 4, BSVM outperforms Classification Trees with pruning except for the pima database, with an increase
in accuracy which ranges from 1.53% for the credit database up to 18.75% for the sonar database. Similarly,
BSVM outperforms Classification Trees without pruning except for the pima database in which both methods have
basically the same accuracy. The increase in accuracy of BSVM ranges from 2.19% for the housing database up
to 25.00% for the sonar database.

From the numerical experience reported, we can assert that BSVM outperforms Classification Trees in terms
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size TreePr TreePr TreeCr TreeCr BSVM BSVM

leaf nodes nodes leaf nodes nodes | predictor variables features

sonar | 208 x 60 2.76 4.52 18.40 35.80 45.10 97.50
bands | 277 x 56 8.95 16.91 28.81 56.62 23.40 78.80
credit | 653 x 43 2.11 3.21 42.71 84.42 18.50 80.00
ionosphere | 351 x 34 3.00 5.00 18.94 36.88 27.20 71.60
wdbc | 569 x 30 5.45 9.90 16.00 31.00 26.00 74.20
cleveland | 297 x 13 5.33 9.67 23.00 45.01 12.20 32.00
housing | 506 x 13 4.58 8.16 33.84 66.67 12.00 68.30
pima | 768 x 8 4.06 7.11 69.15 137.29 8.00 61.50
bupa | 345 x 6 3.76 6.52 36.99 72.99 6.00 43.90

Table 5: Size of benchmarking classifiers

of its classification ability, at the expense of a higher complexity of the classifier, which is comparable to the

complexity of Classification Trees if no pruning is performed.

4.5 Reducing the number of used features

The complexity of the classifiers obtained by BSVM is usually high because a high number of features may be
present in the rule, as we have discussed in the previous section. With the aim of reducing the complexity of the
classifier obtained by our procedure, we have performed several experiments implementing the wrapping procedure
described in Section 3.3. Due to computational burden, we present results on five databases. The selection of the
databases has been done based on the running times, and it does not affect our conclusions. In Table 6 results on
databases sonar, ionosphere, cleveland, housing and bupa are shown.

For convenience, we repeat some of the results already given in previous tables. The third and fourth columns
report the best accuracy among all three benchmarking methods as well as the one of BSVM (when no wrapper
procedure is applied), both processed from the data in Table 4. The fifth column contains the size (measured as
number of used features) of the BSVM classifier, obtained from Table 5. The sixth column reports the accuracy

of BSVM when the size of the classifier is reduced up to a maximum of 30 features. From those results we can
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conclude that the classification ability of BSVM slightly deteriorates. More specifically, the cleveland database,
which was one in which the linear SVM outperformed BSVM, has essentially the same accuracy as before. This
is not surprising, since the average number of features used by BSVM is equal to 32, as reported in Table 5. For
the ionosphere and the housing databases, the looc remains almost the same, and therefore, BSVM outperforms
the best of the three benchmarking methods while using at most 30 features. In the bupa database, the decrease
in accuracy is equal to 1.74%, but even after this deterioration, BSVM with wrapping procedure still gives us the
best accuracy. The conclusions for the sonar database are similar. Thus, even with this limit on the number of
features, BSVM is still able to outperform the three benchmarking methods, except for the case of the cleveland
database in which, as happens without wrapping, BSVM is outperformed by the linear SVM and the NLPSVM.
We decided to further investigate those databases in which the wrapping of the BSVM classifiers did not affect
the accuracy, namely the cleveland, ionosphere and housing databases. In the housing database, the wrapped
BSVM classifier, as said above, has the best accuracy, while its size is half of that from the tree without pruning
(which is the best of the two trees in terms of accuracy). For cleveland and ionosphere, the size was not
competitive enough. Therefore, we further reduced the number of used features to a maximum of 20. The looc
of cleveland and ionosphere was exactly the same as the one obtained when the number of used features was
limited to 30. This is specially remarkable for the ionosphere database, in which we can reduce the number of

features to less than a third, from 71.60 to at most 20, while the accuracy decreases only by 0.29%.

size best reported | BSVM  BSVM | BSVM + Wrapper
looc  features looc
sonar | 208 x 60 78.37 90.38 97.50 87.50
ionosphere | 351 x 34 89.17 92.31 71.60 92.02
cleveland | 297 x 13 85.90 81.44 32.00 81.48
housing | 506 x 13 85.38 86.97 68.30 86.76
bupa | 345 X 6 69.28 74.78 43.90 73.04

Table 6: Looc of BSVM after reducing the number of features to a maximum of 30
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4.6 Presence of outliers

The classifier proposed in this paper is based on threshold functions, thus it seems that extreme observations, with
very high or very low values, will not have a strong influence in the classifier. To empirically test this conjecture,
a series of experiments has been performed where some outliers were artificially introduced. Every cell in the
database was chosen to be an outlier with probability 0.05. Those cells chosen were modified by adding p times
the range of its predictor variable in the training sample. We present here results for p = 10. For other values of p
we obtained similar results, and therefore are not reported.

As in Section 4.5, and again due to computational burden, we present results on five databases. In Table 7
results on databases sonar, ionosphere, cleveland, housing and bupa are shown. We compare BSVM against
Classification Trees and linear SVM. We do not report results on the NLPSVM since outliers are not discussed
in the paper of Fung and Mangasarian [15]. The classification ability of the linear SVM classifier dramatically
worsens when introducing outliers, and clearly underperforms the other two methods. Classification Trees and
BSVM are only slightly affected. We outperform Classification Trees in all databases excepting sonar. Therefore,

our conjecture is supported.

size TreePr TreeCr SVM | BSVM

sonar | 208 x 60 | 71.15 80.29  49.04 | 77.40
ionosphere | 351 x 34 | 88.03 86.32  67.62 | 90.60
cleveland | 297 x 13 | 74.07 74.41  52.19 | 80.13
housing | 506 x 13 | 78.06 79.45  49.01 | 83.79
bupa | 345 x 6 | 66.38 56.81  57.68 | 70.72

Table 7: Looc for BSVM and benchmarking methods. Databases with outliers

5 Conclusions and further research

In this paper a new SVM-based tool for supervised classification has been proposed. The classifier gives insightful

knowledge about the way the predictor variables influence the classification. Indeed, the nonlinear behavior of the
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data is modeled by the BSVM classifier using simple queries, of type (1), easily interpretable by practitioners.

In terms of generalization ability, BSVM is competitive against Classification Trees and SVM, since it has a
higher leave-one-out correctness in most databases tested. Moreover, by its nature, BSVM is an interesting tool
when a good classification ability is required, but also interpretability of the results is an important issue. Indeed,
even though the crude BSVM may yield a large set of features with non-zero coefficients, we have shown that
interpretability might also be possible in this situation, and we can use a graphical method for getting insight
about the role each predictor variable plays in the classifier. If needed, a wrapping procedure enables one to keep
the number of features used at a desired level, at the expense of a slight deterioration in the classification ability.

Concerning to robustness, some numerical tests have been performed to analyze how the classification ability
(slightly) deteriorates when outliers exist. We can conclude from the results that BSVM is much more robust than
linear SVM against outliers.

Several issues analyzed in this paper may deserve further study. For instance, the sets By contain, by definition,
all midpoints among consecutive values of each predictor variable in the training sample. An adequate filtering
in a pre-processing step would reduce the computational burden, specially for large datasets, and might help to
reduce the overfitting a very complex model may produce.

The binarization procedure has been applied to each predictor variable separately. If interactions between
predictor variables are expected to be relevant, more general binarization procedures might be considered. These

issues, as well as the extension to Support Vector Regression, will be addressed in the next future.
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