
Proceedings of the Second International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015)

Krakow, Poland

Jesus Carretero, Javier Garcia Blas
Roman Wyrzykowski, Emmanuel Jeannot.

(Editors)

September 10-11, 2015



NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

FriendComputing: Organic application
centric distributed computing

Beat Wolf, Loïc Monney, Pierre Kuonen

University of Applied Sciences Western Switzerland, HES-SO//Fribourg
beat.wolf@hefr.ch

Abstract

Building Ultrascale computer systems is a hard problem, not yet solved and fully explored. Combining the
computing resources of multiple organizations, often in different administrative domains with heterogeneous
hardware and diverse demands on the system, requires new tools and frameworks to be put in place. During
previous work we developed POP-Java, a Java programming language extension that allows to easily develop
distributed applications in a heterogeneous environment. We now present an extension to the POP-Java language,
that allows to create application centered networks in which any member can benefit from the computing power and
storage capacity of its members. An accounting system is integrated, allowing the different members of the network
to bill the usage of their resources to the other members, if so desired. The system is expanded through a similar
process as seen in social networks, making it possible to use the resources of friend and friends of friends. Parts of
the proposed system has been implemented as a prototype inside the POP-Java programming language.

Keywords Java, distributed computing

I. Introduction

Scientific and commercial applications face an increase
of computational resource requirements. This can be
observed in various domains, such as medical research
applications, material simulations, weather forecasts
or multimedia processing. In all those domains the
data to be analysed is produced at increasing speeds,
with data processing applications not being able to
keep up with the analysis. In the past, mainly large
organizations have addressed these types of analysis
as they had access to large computing infrastructures.
The constant improvements of computers as well as
the reduction of their prices, has attracted the interest
of small organizations to tackle this type of calcula-
tions. Nevertheless, the constantly increasing amounts
of data produced as well as the complexity of the types
of analyses to perform still restricts many small orga-
nizations to really address this domain.

Several technologies emerged over the past years to
assist these organizations to cope with the demands

of modern applications. Especially, technologies like
cloud computing enabled these organizations to ex-
pand their computing infrastructure for cases where
it is not sufficient. While for many organizations this
is an acceptable solution, it is not a solution for all
use cases. This is especially true for organizations
working with sensitive data, for example medical data,
that may not be allowed to be sent to any remote loca-
tion. This problem is even more emphasized when the
cloud provider is located in a different jurisdiction, a
likely scenario in regards to currently popular cloud
providers like Amazon.

Various commercial and academic computing grids
have been created in the last decades. They regroup the
infrastructures of several organizations into a single
grid, available for use to all members. Grids such as
the Open Science Grid (OSG) [1] or the Worldwide
LHC Computing Grid (WLCG) [2] come in the form
of traditional grids which can be used for a multitude
of applications by various users. Other grids, like
Folding@Home [3] and the BOINC [4] based grids are

1

Beat Wolf, Loïc Monney,Pierre Kuonen 117



Second NESUS Workshop • September 2015 • Vol. I, No. 1

application specific, generally used by a single user
providing the analysis tasks.

The main drawback of the approach of the grid
is due to the fact that the code must be adapted to
different operating systems and hardware present in
the grids. This leads to costly IT developments that are
often beyond the capacity of these small organizations.
This problem has been largely reduced in the clouds
thanks to the virtualization.

In addition, the setup and maintenance of a grid
environment is a complicated task and many organiza-
tions do not have the necessary technical knowledge to
do so. A use case which is quite common is that multi-
ple partners need a significant amount of computing
power to perform the same type of analysis. In such a
situation the partners often use the same software to
perform their analysis and could benefit from using
each other’s infrastructure to do so. It is this particular
use case that we address in this poster.

II. Friend computing

The concept of friend computing is to create an appli-
cation centered network of so called "friends", which
share the same goal. Multiple users of a certain soft-
ware which performs computationally complex analy-
ses can group together and benefit from each other’s
infrastructure. The group is expanded through a pro-
cess similar to how social networks work. Any new
member gets invited by an existing member and once
part of the network can access the computing power
of every other installation. This approach is similar
to the friend-to-friend computing as presented in [5],
with the main difference that in [5], authors focus on
data sharing only. In [6] the authors have shown that
friend-to-friend computing can also been applied for
sharing computing resources, an idea on which we
expand upon.

We based our first prototype implementation of
friend computing on POP-Java [9], an extension of
the Java programming language which implements the
POP (Parallel Object Programming) model [7]. The
POP programming model was initially implemented
as an extension of the C++ language, called POP-C++
[8]. POP-Java was chosen as it offers an excellent base
for the concept of friend computing.

The POP-Java language has as one of its main fea-
tures the possibility to create objects on remote com-
puters, making it possible for the programmers to
combine local and remote objects. By default POP-
Java will either use any available computer in a locally
configured POP-Java network, or a specific computer
defined by the programmer. The introduction of Friend
computing allows the programmer to search for a com-
puting resource in the friend network automatically,
with the ability to specify certain criteria such as pro-
cessing power or storage space. This can also be used
to bring calculations to the place where the data is
stored, which can reduce privacy concerns in cases
where the data itself is sensitive.

The concept of friend computing was also ap-
proached from a commercial viewpoint, giving the
users of a network an incentive to make their resources
available. Because of this an accounting system was
integrated, in which every member of the network
logs the usage of their resources by other members.
This makes it possible to bill the different users of the
network based on their usage, increasing the incen-
tive to participate in the network as well as giving the
possibility to monetize their infrastructure.

III. Prototype

We created a prototype of the concept of friend comput-
ing using POP-Java. It consists of an extended version
of the POP-Java language, as well as an example appli-
cation using those features. This prototype application
was used to verify the correct implementation of the
POP-Java implementation which includes the friend
computing extension.

The prototype allows the creation of new friend
networks, allowing to define an ID and purpose of
the friend computing network. This newly created
network can then be extended by inviting new mem-
bers to the network. To get invited, the joining party
needs to provide an IP address to a member of the net-
work and have the prototype application running. The
prototype application will show a notification of the
network invitation, and upon accepting sets up the re-
quired friend computing network configurations. Once
a member of the network, any member can launch a
simple calculation, in this case the factorization of a

2

118 FriendComputing: Organic application centric distributed computing



Second NESUS Workshop • September 2015 • Vol. I, No. 1

number. When the calculation is launched, available
resources inside the friend computing network are au-
tomatically discovered and the calculations distributed
over multiple computers.

Any usage of the resources is journaled and can later
be used to bill the individual members of the network
(if so wished).

IV. Conclusion

We showed a concept on how to approach distributed
software development in an Ultrascale world. The
ability to dynamically grow a distributed computing
network based around a specific application with the
possibility to bill other members based on their usage is
an interesting approach to use ultrascale systems. Our
current prototype has only been verified on a small
scale network and further tests will show how it scales
to larger numbers. Further work will be required to
scale the current concept to Ultrascale systems, but the
current concept already allows for the design of very
large distributed applications. This is especially true
if like in every object orientated application, the scope
of every object is limited as much as possible. This
reduces not only the complexity of the application, but
also the complexity of the network traffic between the
different distributed objects.

Other open works include the improvement of the
resource discovery protocol. While the currently used
resource discovery protocol, which is the one used by
POP-Java, works well when searching for resources
with a certain amount of RAM or CPU power, in the
context of friend computing it would be helpful to
be able to search for computing nodes which have
certain data stored locally. This would allow bringing
the computations to the data instead of the other way
around, greatly reducing data confidentially issues that
can arise in distributed systems.

The prototype and POP-Java in general also does not
yet handle firewalls and systems behind a NAT. Includ-
ing support for those would greatly help adoption on
a larger scale including commercial applications like
GensearchNGS [10], an genetic diagnostics application
which served as the initial inspiration for this project.

References

[1] R. Pordes, et al.. The open science grid. Journal of
Physics: Conference Series. Vol. 78. No. 1. IOP
Publishing, 2007

[2] D. Bonacorsi and T. Ferrari, WLCG Service Chal-
lenges and Tiered architecture in the LHC era., IFAE
2006. Springer Milan, 2007. 365-368.

[3] S. M.Larson, et al., Folding@ Home and Genome@
Home: Using distributed computing to tackle previously
intractable problems in computational biology. 2002

[4] D.P. Anderson, Boinc: A system for public-
resource computing and storage, Proceedings. Fifth
IEEE/ACM International Workshop on Grid Com-
puting. IEEE, 2004

[5] B. Popescu, et al., Safe and Private Data Sharing with
Turtle: Friends Team-Up and Beat the System, Security
Protocols, 2006

[6] U.Norbisrath, et al., Friend-to-friend computing in-
stant messaging based spontaneous desktop grid, Pro-
ceedings - 3rd International Conference on Internet
and Web Applications and Services, ICIW 2008

[7] T. A.Nguyen and P. Kuonen, A model of dynamic
parallel objects for metacomputing, The 2002 Inter-
national Conference on Parallel and Distributed
Processing Techniques and Applications, 2002.

[8] C. D.Jiogo et al., Parallel Object Programming in POP-
C++: A Case Study for Sparse Matrix-vector Multipli-
cation, Proceedings of the 20th European Confer-
ence on Object-Oriented Programming (ECOOP06),
France, 2006

[9] B. Wolf et al., POP-Java : Parallélisme et distribution
orienté objet, ComPAS 2014 : confÃl’rence en paral-
lélisme, architecture et systèmes, 2014

[10] B. Wolf et al., DNAseq Workflow in a Diagnostic Con-
text and an Example of a User Friendly Implementation,
BioMed Research International, vol. 2015

3

Beat Wolf, Loïc Monney,Pierre Kuonen 119




