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Abstract

It is known that time-weighted charts like EWMA or CUSUM are designed to be optimal to

detect a speci�c shift. If they are designed to detect, for instance, a very small shift, they can

be ine¢ cient to detect moderate or large shifts. In the literature, several alternatives have been

proposed to circumvent this limitation, like the use of control charts with variable parameters or

adaptive control charts. This paper has as main goal to propose some adaptive EWMA control

charts (AEWMA) based on the assessment of a potential misadjustment, which is translated into

a time-varying smoothing parameter. The resulting control charts can be seen as a smooth combi-

nation between Shewhart and EWMA control charts that can be e¢ cient for a wide range of shifts.

Markov chain procedures are established to analyze and design the proposed charts. Comparisons

with other adaptive and traditional control charts show the advantages of the proposals.
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1 Introduction

The research published by Walter Shewhart (1931) about the fundamentals of SPC (Statistical Process

Control) supposed a change of paradigm in the concept of quality control, because it changed the focus

from a control based on the veri�cation of the �nal speci�cations to a control based on the monitoring

of the intrinsic variability of a process. Shewhart proposed charts based on monitoring the value of

a statistic on independent samples, usually denoted as rational subgroups. These charts are known

as Shewhart Control Chart. Let X be a random variable representing a quality characteristic of a

product obtained from the process we want to monitor. Let us denote the mean and variance of X

when the process is in control as �0 and �
2; respectively. Let xi1; xi2; ::::; xin be a set of realizations

of X which conform the i-th rational subgroup of size n, being �xi its sample mean. A Shewhart �X

control chart monitors the evolution of the sequence of the independent sampling means �xi with the

aim of controlling that the process mean has not changed. Under the assumption that �X is normal,

the control limits of the Shewhart �X chart are

�0 � 3�=
p
n: (1)

These limits represent a probability interval of �X of coverage 1 � � = 0:9973: The chart triggers an

alarm if a sample mean falls outside these limits. The probability of a false alarm is then � = 0:0027.

Similarly, there are Shewhart control charts for some other statistics, like sampling variances, standard

deviations, coe¢ cient of variations and so forth.

It is well known that �X control charts and, in general, Shewhart charts, are not very sensitive to

small shifts in the process mean. For example, it is easy to �nd out that if the shifted mean �1 is

such that j�1 � �0j < 2�, the probability of detecting such change with the chart (1) is very small

for practical purposes. In order to detect small shifts we need a statistics with lower variance that,

for a given false alarm rate, can provide narrower control limits. This could be attained with a larger

subgroup size n: However, since Shewhart charts are based on independent samples, a larger rational

subgroup size might lead to a larger average time to signal (ATS), or a larger average number of

observations to signal (ANOS).

In order to increase the sensitivity of Shewhart control charts to smaller shifts, the literature

have proposed some modi�cations, such as the use of supplementary run rules. The run rules are a

set of rules that help to detect when a sequence of several points (run) in a Shewhart chart is very

unlikely when the process is in control, showing evidence of misadjustment. An unlikely run will

trigger an alarm even if the points are inside the control limits. Consequently, the shift does not need

to surpass the control limits to be detected. Runs Rules for Shewhart charts have been proposed,
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among others, by Page (1955a), Western Electric (1956), Reynolds (1971), Nelson (1984), Champ

and Woodall (1987), Davis and Woodall (1988), Davis et al. (1990), Derman and Ross (1997), Klein

(2000), Khoo and Ari¢ n (2006), Acosta-Mejía (2007), Koutras et al. (2007), and Antzoulakos and

Rakitzis (2008).

Another proposal to improve the sensitivity of Shewhart control charts to small shifts is by means

of an adaptive design of its parameters; typically, variable sample sizes (VSS), variable sampling

intervals (VSI) or some combination of both approaches. The main idea of this approach is to increase

the sampling (size or frequency) only when data show some evidence of a shift. By doing so, we could

take advantage of the larger information without incurring in a high cost. Basically, in a VSS chart,

if the point falls in the warning region, i.e. a region inside the control limits but close to them, the

next sample size should be large to increase the sensitivity of the chart. However, if the point falls

in the central region, the next sample size can be small, since there is no evidence that the process

had shifted (see Daudin, 1992; Prabhu et al., 1993, 1994; Costa, 1994; Zimmer et al., 1998; and, more

recently, Wu, 2011; Zhang and Wang, 2012, and Castagliola et al., 2012). Similarly, in a VSI chart,

the time to take the next sample should be smaller if the point falls in the warning region because

the process could need a quick adjustment. Conversely, the time to take the next sample can be

large if the current point falls in the central region, since the risk of being out of control is very low

(see Reynolds et al.,1988; Cui and Reynolds, 1988; Runger and Pignatiello, 1991; Costa, 1994, 1999a,

1999b; Tagaras, 1998; Mahadik, 2013).

An alternative procedure to reduce the variance of the monitoring statistics is to use a statistic with

memory; that is, a statistics based on some average of current and past data, instead of a statistics

based on independent samples. By doing so, we are increasing the e¤ective sample size, leading to a

reduction in the sampling variability that would ease the detection. By using a chart with memory,

we are not increasing the sampling costs. However, merging present and past observations in the same

statistics can have a negative e¤ect. If the process mean shifts, a monitoring statistics with memory

would merge data corresponding to the shifted process with previous data when the process was in

control. This e¤ect would bias the value of the statistics, masking the shift. This can also provoke a

delay in the detection. Therefore, if the shift is large, it might not be worthwhile to use a monitoring

statistics with memory. Hence, this kind of charts, denoted as memory charts or time-weighted charts,

are then useful only in the case of small shifts. The decision of whether to use a Shewhart control chart

or a memory control chart can then be interpreted as a particular case of the traditional bias-variance

trade-o¤. The most popular memory charts are the CUSUM and the EWMA charts. CUSUM control

charts were introduced by Page (1954, 1955b) and then studied, among others, by Woodall and Adams

3



(1993).

Charts with memory can be applied to monitor the information of rational subgroups; however,

they are frequently used for individual observations. Let xt; t = 1; 2; :::; be a sequence of independent

realizations of the random variable X that, when the process is in control, holds X � N(�0; �
2): The

CUSUM chart, which in fact is a two-side chart, uses two di¤erent statistics, C+
t and C�t ; that monitor

the cumulative sum of positive and negative deviations from �0; respectively, as

C+
t = max

�
0; C+

t�1 + (Xt � �0)�K
�
; (2a)

C�t = max
�
0; C�t�1 � (Xt � �0)�K

�
; (2b)

with C+
0 = C�0 = 0. If the accumulated deviation is larger than K, (in absolute value) then the

statistics C+
t or C�t will increase the memory of the chart, otherwise they are reset to 0. A small

value of K will facilitate a larger memory, and, consequently a smaller variance of the statistics.

Consequently, smaller shifts can be detected. By means of K; the CUSUM chart can be designed to

detect shifts of a speci�c size, usually expressed in terms of the standard deviation as �1 = �0 + ��.

Then, K is de�ned as K = k�, with k = j�j=2. Then the parameter k rules the memory of this chart.

A low value of k would increase the memory, which is needed to detect small shifts. Conversely, a

large value of k will only be surpassed by large deviations. When C+
t or C�t exceed a threshold value

H, the process is considered out of control. The H parameter is also de�ned according to the standard

deviation as H = h�: The optimal value of h to attain a desired Average Run length (ARL) when the

process is in control, denoted as ARL0; depends on the sensitivity parameter k (Vance, 1986; Hawkins,

1992, 1993).

The EWMA control chart proposes a di¤erent procedure to weight historical information. It was

introduced by Roberts (1959) and subsequently studied by Robinson and Ho (1978), Hunter (1986),

Waldmann (1986), Montgomery, Gardiner and Pizzano (1987), Crowder (1987a and 1989) and Lucas

and Saccucci (1990), among others. Its statistic is de�ned as

yt = �xt + (1� �) yt�1; (3)

where � 2 (0; 1]. If � < 1; the statistics (3) is a weighted average of current and past observations.

The smaller the � the larger the weight to past data and, hence, the larger the e¤ective sample size.

Therefore, if we want to detect a small shift we would use a small value of �: The variance of yt for a

large values of t converges to

�2yt = �2
�

2� �; (4)

that can be interpreted as that, at the long term, the EWMA chart averages an equivalent number

of observations of M = (2 � �)=�, that increases as � diminishes. The eventual control limits of the
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EWMA chart are then

�0 � L�
r

�

2� �; (5)

where L is a parameter that depends on the desired ARL0: Also, with the aim of improving their

performance, VSL and VSS CUSUM and EWMA control charts have been proposed by Sawalapurkar

et al. (1990), Reynolds et al. (1990), Baxley (1995), Keats et al. (1995), Reynolds (1995, 1996),

Stoumbos and Reynolds (1996, 1997), Reynolds and Stoumbos (1998), Reynolds and Arnolds (2001),

Arnolds and Reynolds (2001) and Tagaras (1998), among others.

Alternatively, adaptive CUSUM and EWMA charts can be proposed based on time-varying versions

of the parameters that control the memory of the charts; that is k in CUSUM charts and � in EWMA

charts. By adapting the memory, we can make the charts sensitive both to small and large shifts.

The intuition behind these adaptive charts is to use a measure of the potential presence of a shift.

Accordingly, the value of their parameter is increased when it is suspected that the process could be

out of control due to a large shift. Conversely, if the data show large evidence of being in control or

with a small shift, the parameters tend to be smaller, easing the detection of potential small shifts.

This kind of adaptation scheme is the one we are interested in this article.

Sparks (2000) developed adaptive CUSUM (ACUSUM) charts to detect unknown shifts. The

procedure is based on estimating the size of the potential shift, �̂, using a simple exponentially weighted

moving average and doing one-step-ahead forecasts. Then, the ACUSUM is build using k = j�̂j=2 and

appropriate control limits. Jiang et al. (2008) improves the chart of Sparks (2000) by applying

likelihood ratio testing concepts in the estimation of the potential shift. Other contributions for

ACUSUM charts can be found, among others, in Shu and Jiang (2006), Han et al. (2007) and Shu et

al. (2008).

Capizzi and Masarotto (2003) developed an adaptive EWMA chart (AEWMA) based on weighting

recent observations using an appropriate function of the current error et = xt� yt�1. The goal of this

weighting scheme is to diminish the so-called inertia problem of the EWMA charts (Yashchin, 1987),

that reduces the e¢ ciency of the detection. The resulting AEWMA chart produces a time varying

smoothing parameter � according to the evolution of the process. In particular, if et is small, the value

of � tends to be small, like in conventional EWMA chart, since the process seems to be in control.

However, if et is large the value of � tends to be large, since the risk of being out of control is higher.

Other research of interest to study adaptive EWMA charts can be found in Steiner (1999), Hang y

Tsung (2004), Costa and Rahim (2006), and Shu (2008).

In this article, alternative AEWMA charts are proposed. To that aim, several measures of the

potential shift of the process are suggested, being the proposal of Capizzi and Masarotto (2003) a
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particular case. For each measure of potential shift, alternative methods to translate such measure

into a time varying smoothing factor are discussed. Procedures to compute the ARL and optimize

the charts based on Markov chain approximations are proposed. A numerical comparison of these

alternative approaches and the main alternatives in the literature is presented.

The rest of the article is organized as follows. In Section 2 the notion of the adaptive EWMA

control chart is introduced. In Section 3 AEWMA control charts with time varying �t based on the

last observation are proposed. In Section 4 AEWMA control charts with time varying �t based on the

level of the control statistics are proposed. Section 5 proposes several comparisons between alternative

control charts and the proposed AEWMA control charts. Finally, in Section 6 some concluding remarks

are given.

2 Adaptive EWMA control chart

The design of an EWMA chart consist of selecting the values of � in (3) and L in (5). They can be

chosen in such a way that the chart is optimal for detecting a prespeci�ed shift for a given ARL0. The

in�uence of the design parameters in the performance of the EWMA has been studied by Crowder

(1987a, 1989) and Lucas and Saccucci (1990) among others. They can be based on approximating

the ARL with a discrete Markov chain. The resulting ARL is then a function of �; � and L; that

is, ARL�ARL(�; �; L): For a prespeci�ed shift ��; it can be written as ARL� =ARL(�; Lj�): Then,

the optimal values of � and L that minimize ARL(�; Lj�) can be obtained using traditional nonlinear

optimization procedures. This optimization problem can be written as

min (ARL (�; Lj�)) ;

subject to:

ARL (�; Lj� = 0) = ARL0:

We have calculated the optimal design for each shift and ARL0 = 100. The minimum ARL is

denoted by ARL�. Figure 1-a shows the comparison between the optimal design for ARL� and the

range of designs with ARL � ARL� + 5%. That is, we �nd the optimal design for each shift as well

as those designs that are nearly optimal in the sense that their ARL in each shift is not larger than

a 5% of the minimum one. Table 1 shows that, for instance, if � = 1 then it is possible to get an

ARL 2 [6:96; 7:31] for a � 2 [0:0874; 0:3158]. The Figure (1-b) shows the range (�1; �2) of � for which

the value of ARL varies in the range (ARL�; ARL� + 5%). For example, if � = 0:15, it possible to get

acceptable values of ARL (with a di¤erence lower than 5% of ARL�) for small shifts from � � 0:75 to

1:25. If � = 0:6, it is possible to get acceptable values of ARL for � > 2. However, we see that if we

want an EWMA with a good performance for all shifts, we need to change the value of �:
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� Optimal � ARL� ARL�+5% (�1 � �2)

0.10 0.0100 75.71 79.50 (0.0100-0.0800)

0.25 0.0238 38.11 40.01 (0.0100-0.0734)

0.50 0.0664 17.33 18.20 (0.0210-0.1408)

0.75 0.1211 10.28 10.79 (0.0514-0.2252)

1.00 0.1830 6.96 7.31 (0.0874-0.3158)

1.25 0.2501 5.11 5.36 (0.1278-0.4101)

1.50 0.3235 3.95 4.15 (0.1725-0.5082)

1.75 0.4051 3.18 3.34 (0.2241-0.6086)

2.00 0.4926 2.62 2.75 (0.2861-0.7070)

2.25 0.5789 2.21 2.32 (0.3559-0.7994)

2.50 0.6580 1.89 1.98 (0.4235-0.8842)

2.75 0.7276 1.64 1.72 (0.4808-0.9625)

3.00 0.7876 1.45 1.53 (0.5235-1.0000)

3.25 0.8384 1.31 1.38 (0.5994-1.0000)

3.50 0.8807 1.21 1.27 (0.5576-1.0000)

3.75 0.9150 1.13 1.19 (0.5467-1.0000)

4.00 0.9421 1.08 1.14 (0.5175-1.0000)

4.25 0.9625 1.05 1.10 (0.4726-1.0000)

4.50 0.9771 1.03 1.08 (0.4171-1.0000)

4.75 0.9869 1.02 1.07 (0.3579-1.0000)

5.00 0.9930 1.01 1.06 (0.3015-1.0000)

Table 1: Minimum ARL for each shift �� and the corresponding � .
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(6) could be rewritten as

yt = w (et)xt + (1� w (et)) yt�1;

i. e., it is an EWMA statistic with variable weights because w (e) = � (e) =e. � (e) should be monoton-

ically increasing in e; � (e) = �� (�e); � (e) � �e, when jej is small, for a suitable �; 0 < � � 1; and

�nally (e) =e � 1, when the jej value is large. Capizzi and Masarotto (2003) proposes the following

score function, based on the Huber function:

�hu (e) =

8>>><>>>:
e+ (1� �) k si e < �k

�e si jej � k

e� (1� �) k si e > k

; (7)

where, if k ! 1; then �hu (e) = �e and the AEWMA chart reduces to the traditional EWMA (3).

Moreover, when � = 1 or k = 0, the AEWMA chart performs essentially like a Shewhart chart.

This AEWMA chart can be interpreted as a chart with a time varying smoothing parameter w (et)

according to the process data. In particular, if the current observation is close to the previous value

of the EWMA statistic, then the value of w (et) must be small (conventional EWMA chart), but if

the current observation is not near the previous value of the EWMA statistic, then the value of w (et)

should be large, in that case EWMA chart will be similar to Shewhart chart (see Shewhart, 1931).

In this work we will analyze alternative strategies to get AEWMA charts with time-varying smooth-

ing parameters, using the representation

yt = �txt + (1� �t) yt�1; y0 = �0; (8)

and where the proposal of Capizzi and Masarotto (2003) is a particular case. The alarm is triggered

as soon as jyt � �0j > h�, where h is a threshold that determines the ARL0: In each case, a speci�c

statistics that quantify the evidence of a shift from data is proposed. Then, a Markov chain repre-

sentation is obtained to compute the ARL. This Markov chain representation is used to optimize the

parameters such that minimum ATL is attained for a given ARL0.

3 AEWMA charts with �t based on the last observation xt

In this section, we present some proposals for �t as a function of the potential misadjustment based on

the information provided by the last observation xt: The �rst proposal, denoted as AEWMA1, is based

on the standardized distance from xt and the target �0: The second proposal, denoted as AEWMA2,

is based on the standardized distance form xt and the last value of the monitoring statistics yt�1:

Alternative ways of translating each distance into a smoothing factor �t are proposed. The AEWMA

chart of Capizzi and Massaroto (2003) can be interpreted as a particular case of this second distance.
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3.1 The AEWMA1 chart

This adaptive control chart measures the potential missadjustment by standardizing the last observa-

tion xt. This is done by using the following statistics:

S1t =

�
xt � �0
�

�2

; (9)

which is a measure of the actual distance of the process to the target. This distance will tend to

be larger in presence of a shift, therefore it is an interesting measure of the potential misadjustment.

Given yt�1; the value of xt is a random variable. If the process is in control, and under the assumption

of normality, it holds that S1t � �21; with a cumulative distribution function de�ned as

F1t = P
�
�21 � S1t

�
: (10)

Note that F1t 2 [0; 1] and, besides, it tends to approach unity as the process departures from the

in-control state. Therefore, it could be used as �t: However, the variability of F1t can be very large,

provoking a poor performance in the AEWMA chart. It should be noted that, according to (8), a

large value of �t implies the lost of most of the memory accumulated in yt�1; and that can no longer

be recovered even if �t decreases in the following instants. This lost of memory would lead to a

large variance of the monitoring statistics yt; decreasing its sensitivity. We need, then, some e¢ cient

transformation that helps to translate F1t into a smoothing parameter �t: Many transformations can

be proposed. A simple transformation would be to limit the range of variation of F1t; doing a linear

transformation between some lower value �min and an upper value �max as follows:

�
(1)
1t = �min + (�max � �min)F1t; (11)

where �min and �max are values that are optimized to attain the lowest ARL for a given ARL0, and

computed with a procedure described below. A second alternative that adds some �exibility to the

transformation (11) is to also use a power transformation as

�
(2)
1t = �min + (�max � �min)F

a
1t; (12)

where a is can also optimized together with �min and �max. The third proposal to transform F1t into

�t is to use some threshold value, p0; such that if F1t � p0 then �t = �min: Consequently, we will

maintain a low smoothing factor unless the evidence of shift is large. If F1t > p0; we maintain a similar

transformation as in (12) in such a way that the whole transformation is continuous. The resulting
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that similarly to the previous proposal, tends to increase in presence of a shift. This statistics holds

that

S2t =

�
xt � �0
�

+
�0 � yt�1

�

�2

=

�
zt +

�0 � yt�1
�

�2

; (17)

where zt � N(0; 1): Then, conditioning on yt�1; S2t follows a non-central chi-square distribution of

one degree of freedom, �21(
t); with noncentrality parameter 
t = (�0 � yt�1) =�: The cumulative

distribution function is then

F2t = P (�21(
t) � S2t); (18)

as in the AEWMA1 chart, we could use F2t to translate S2t into a smoothing parameter, and the

transformation (12) to obtain a time-varying smoothing parameter. It can be seen, however, that the

noncentrality parameter 
t can be very small. For instance, if � = 0:1; expression (4) shows that

�2yt � 0:1�2: Therefore, since E(yt) = �0; the noncentrality parameter can be neglected for practical

purposes. Therefore, for the sake of simplicity, the conversion of S2t into a smoothing factor will be

done as

�2t = �min + (�max � �min) q2t;

q2t =

8><>:
0 if Ga2t � p0;

Ga2t � p0
1� p0

otherwise,
(19)

G2t = P (�21 � S2t):

where the parameters �min; �max; p0; and a; are optimized to minimize the ARL when the process is

out of control, for a given ARL0 using the procedure shown below. Figure 3 illustrates how �2t varies

as a function of xt; with two particular combination of parameters. Since the statistics S2t depends

on yt�1 two curves with di¤erent values of yt�1 are displayed. When yt�1 = 0; the method is similar

to the AEWMA1.

3.3 The AEWMA3 chart

This chart is a combination of the AEWMA1 and AEWMA2 charts. In order to speed up adaptation,

this chart behaves like the AEWMA1 or the AEWMA2, depending on which statistics, S1t or S2t; is

more pessimistic with respect to the evidence of misadjustment. With this aim, the AEWMA3 chart

uses the following time-varying smoothing factor:

�3t = max(�
(2)
1t ; �2t) (20)
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be used to assign an approximate value to �t in each subinterval. If xt 2  i; then

S1t �
�
ui � �0
�

�2

� ei or S2t �
�
ui � vj
�

�2

� ei

ri = P
�
�21 < ei

�
qi =

8><>:
0 if ri � p0;

rai � p0
1� p0

otherwise,

�(i) = �min + (�max � �min) qi:

Therefore, if we express (24) as

rjk = Pr
�
ZLjk �Wt;j � ZUjk

	
;

where Wt;j = (xt � �j)�t; ZLjk = �k � �j � �=2 and ZUjk = �k � �j + �=2;; then Wt;j = (xt � �j)�t �

(ui � �j)�i � wi and it is possible to calculate rjk. Finally, if N = (I�R)�1 u, we would calculate

the ARL as

ARL = N ((ms+ 1) =2) :

For a given ARL0 value, the following optimization nonlinear model with decision variables:

ARL (� (i) > 0; i = 1; 2; :::; k), �min; �max; a; b; c; d; p0; and h, should be solved as

min f (ARL (�(i)))

subject to:

ARL (� = 0; �min; �max; a; p0; h) = ARL0

; (25)

where f (�) : Rn ! R, can be
nP
i=1
(ARL (� (i))), the norm kARL (� (i))k2, or some other convenient

function. The ARL (� (i) ; � � � ; h) is calculated using the Markov Chain procedure explained above

using that xt � N(�0 + ��; �2). For simplicity, in the AEWMA2 and AEWMA3, the noncentral

chi-squared distribution is replaced by the central chi-squared distribution because it has shown that

both provide similar results.

Therefore, in a process control in zero state and ARL0 = 100 with (13), and the optimality

criteria: minimize the ARL at interval shifts [0:5; 4] (AEWMA1-1, AEWMA2-1, AEWMA3-1) and at

the interval shifts [1; 4] (AEWMA1-2, AEWMA2-2, AEWMA3-2), Table 2 shows the optimal values

of the AEWMA control chart parameters. Similarly, Table 3 shows the optimal values of parameters,

for ARL0 = 500. In this paper, for simplicity, and without loss of generality, the ARL values are

computed assuming that �0 = 0 and � = 1. Tables 4 and 5 show the corresponding ARL pro�les.
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� AEWMA1-1 AEWMA2-1 AEWMA3-1 AEWMA1-2 AEWMA2-2 AEWMA3-2

�min 0.0674 0.0653 0.0679 0.1629 0.1652 0.1643

�max 0.1074 0.1264 0.1673 0.2521 0.2343 0.2274

a 188.3826 86.7717 322.0814 23.1215 68.5651 87.1643

p0 0.7694 0.8289 0.5060 0.8701 0.3091 0.7382

h 0.3756 0.3696 0.3831 0.7024 0.7117 0.6975

Table 2: Optimal parameters of the AEWMA control chart designs. ARLo=100.

� AEWMA1-1 AEWMA2-1 AEWMA3-1 AEWMA1-2 AEWMA2-2 AEWMA3-2

�min 0.0464 0.0242 0.0410 0.0141 0.1329 0.1308

�max 0.1349 0.104 0.1428 0.1146 0.2266 0.1897

a 23.6780 8.5125 278.0239 0.4375 157.745 36.3608

p0 0.9870 0.9978 0.8973 0.3303 0.7956 0.855

h 0.4059 0.2636 0.3745 0.7371 0.7791 0.7807

Table 3: Optimal parameters of the AEWMA control chart designs. ARLo=500.

� AEWMA1-1 AEWMA2-1 AEWMA3-1 AEWMA1-2 AEWMA2-2 AEWMA3-2

0.25 40.55 40.69 41.12 47.56 47.89 47.07

0.50 17.56 17.65 17.78 19.37 19.50 19.16

0.75 10.62 10.68 10.71 10.64 10.67 10.55

1.00 7.55 7.59 7.58 7.06 7.05 7.03

1.50 4.77 4.77 4.74 4.12 4.10 4.14

2.00 3.47 3.43 3.37 2.87 2.85 2.92

2.50 2.68 2.60 2.54 2.16 2.15 2.23

3.00 2.14 2.02 1.96 1.69 1.71 1.78

3.50 1.73 1.61 1.55 1.39 1.41 1.47

4.00 1.43 1.32 1.27 1.19 1.21 1.25

5.00 1.10 1.06 1.05 1.03 1.03 1.05

Table 4: The ARL values with ARLo=100.

� AEWMA1-1 AEWMA2-1 AEWMA3-1 AEWMA1-2 AEWMA2-2 AEWMA3-2

0.25 87.25 78.40 84.88 98.76 129.87 130.43

0.50 29.64 30.58 29.70 30.78 35.96 36.21

0.75 16.83 18.56 17.13 16.42 16.78 16.90

1.00 11.65 13.28 11.95 10.95 10.39 10.43

1.50 7.13 8.40 7.37 6.47 5.77 5.75

2.00 4.99 5.98 5.20 4.56 3.94 3.91

2.50 3.65 4.41 3.82 3.54 2.94 2.92

3.00 2.69 3.21 2.81 2.91 2.26 2.29

3.50 2.00 2.30 2.07 2.48 1.78 1.88

4.00 1.54 1.69 1.57 2.20 1.44 1.59

5.00 1.11 1.14 1.12 1.94 1.09 1.19

Table 5: The ARL values with ARLo=500.
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� ARL0 = 100 ARL0 = 500

AEWMA4-1 AEWMA4-2 AEWMA4-1 AEWMA4-2

�min 0.0882 0.2467 0.0284 0.0943

�max 0.1382 1 0.7638 0.3034

a 10.0419 15.4316 3.364 9.9854

p0 0.999 0.999 0.9988 0.7347

h 0.4515 0.9043 0.29 0.6212

Table 6: Optimal parameters of the AEWMA control chart designs.

� ARL0 = 100 ARL0 = 500

AEWMA4-1 AEWMA4-2 AEWMA4-1 AEWMA4-2

0.25 40.87 50.58 78.38 105.04

0.50 17.43 20.74 29.00 31.25

0.75 10.36 10.98 17.18 15.94

1.00 7.30 7.05 12.18 10.42

1.50 4.61 3.99 7.75 6.15

2.00 3.41 2.82 5.74 4.41

2.50 2.75 2.22 4.59 3.48

3.00 2.33 1.85 3.85 2.91

3.50 2.07 1.58 3.34 2.51

4.00 1.9 1.37 2.98 2.21

5.00 1.54 1.09 2.41 1.96

Table 7: The ARL values.

Applying (25), the optimal values of the parameters can be obtained. Therefore, in a process

control in zero state and ARL0 = 100 and 500, with optimality criteria: minimize the ARL at

interval shifts [0:5; 4] (AEWMA4-1) and at the interval shifts [1; 4] (AEWMA4-2), the optimal values

of parameters are shown in Table 6. The ARL pro�les are shown in the Table 7.

5 Comparisons

In this section, the di¤erent AEWMA control charts and designs are compared. Also, they have been

compared to other control charts like traditional EWMA control charts, Shewhart control chart, the

AEWMA control charts of Capizzi and Masarotto (2003) and the ACUSUM of Jiang et al. (2008)

control charts. Zero state ARL is considered and the ARL scale used in the �gures is chosen to be

logarithmic, unless otherwise stated.

For a speci�ed in-control ARL0 = 100, Figure 6-a shows that the performance of the four proposed

AEWMA charts are similar for small shifts in the mean, in the range � 2 [0; 1:5], with AEWMA4-1

showing a slightly better performance. In the interval 1:5 < � < 5, the �rst three AEWMA charts
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� E-1, �= 0:05 E-2, �= 0:3 E-3, �= 0:5 S-1, (n = 1) C&M-1 C&M-2

0.25 39.61 74.17 80.62 80.83 40.08 47.81

0.50 17.33 40.29 49.65 49.99 17.52 19.53

0.75 10.56 21.62 28.80 29.09 10.63 10.63

1.00 7.55 12.44 17.13 17.33 7.56 7.00

1.50 4.85 5.24 7.01 7.09 4.78 4.09

2.00 3.61 2.88 3.51 3.54 3.46 2.89

2.50 2.92 1.92 2.12 2.13 2.64 2.23

3.00 2.47 1.45 1.50 1.51 2.05 1.80

3.50 2.18 1.21 1.22 1.22 1.62 1.51

4.00 1.99 1.09 1.08 1.08 1.32 1.29

5.00 1.72 1.01 1.01 1.01 1.06 1.06

Table 8: The ARL values with ARLo=100.

� E-1, �= 0:05 E-2, �= 0:3 E-3, �= 0:5 S-1,(n = 1) C&M-1 C&M-2 J-1 J-2

0.25 82.76 302.88 369.86 374.17 86.41 130.87 96.34 147.49

0.50 28.76 123.94 195.74 201.58 29.91 36.38 31.47 39.25

0.75 16.50 53.34 98.82 103.12 17.11 16.94 17.66 17.42

1.00 11.52 25.82 51.85 54.59 11.88 10.45 12.18 10.57

1.50 7.23 8.57 16.88 17.89 7.27 5.78 7.40 5.81

2.00 5.32 4.15 6.88 7.26 5.06 3.95 5.15 3.99

2.50 4.24 2.58 3.47 3.60 3.65 2.94 3.75 3.00

3.00 3.56 1.86 2.11 2.15 2.64 2.26 2.79 2.37

3.50 3.10 1.48 1.50 1.52 1.92 1.76 2.12 1.91

4.00 2.75 1.24 1.22 1.22 1.47 1.42 1.67 1.57

5.00 2.19 1.04 1.03 1.03 1.08 1.08 1.18 1.17

Table 9: The ARL values with ARLo=500.
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