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Abstract 
 
Poverty maps are an important source of information on the regional distribution of 
poverty and are currently used to support regional policy making and to allocate funds to 
local jurisdictions. But obtaining accurate poverty maps at low levels of disaggregation is 
not straightforward because of insufficient sample size of official surveys in some of the 
target regions. Direct estimates, obtained with the region-specific sample data, are 
unstable in the sense of having very large sampling errors for regions with small sample 
size. Very unstable poverty estimates might make the seemingly poorer regions in one 
period appear as the richer in the next period, which can be inconsistent. On the other 
hand, very stable but biased estimates (e.g., too homogeneous across regions) might make 
identification of the poorer regions difficult. Here we review the main small area 
estimation methods for poverty mapping. In particular, we consider direct estimation, the 
Fay-Herriot area level model, the method of Elbers, Lanjouw and Lanjouw (2003) used by 
the World Bank, the empirical Best/Bayes (EB) method of Molina and Rao (2010) and its 
extension, the Census EB, and finally the hierarchical Bayes proposal of Molina, Nandram 
and Rao (2014). We put ourselves in the point of view of a practitioner and discuss, as 
objectively as possible, the benefits and drawbacks of each method, illustrating some of 
them through simulation studies. 
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A Comparison of Small Area Estimation
Methods for Poverty Mapping

Maria Guadarrama, Isabel Molina∗and J. N. K. Rao†

Abstract: Poverty maps are an important source of information on
the regional distribution of poverty and are currently used to support
regional policy making and to allocate funds to local jurisdictions. But
obtaining accurate poverty maps at low levels of disaggregation is not
straightforward because of insufficient sample size of official surveys
in some of the target regions. Direct estimates, obtained with the
region-specific sample data, are unstable in the sense of having very
large sampling errors for regions with small sample size. Very unsta-
ble poverty estimates might make the seemingly poorer regions in one
period appear as the richer in the next period, which can be inconsis-
tent. On the other hand, very stable but biased estimates (e.g., too
homogeneous across regions) might make identification of the poorer
regions difficult. Here we review the main small area estimation meth-
ods for poverty mapping. In particular, we consider direct estimation,
the Fay-Herriot area level model, the method of Elbers, Lanjouw and
Lanjouw (2003) used by the World Bank, the empirical Best/Bayes
(EB) method of Molina and Rao (2010) and its extension, the Census
EB, and finally the hierarchical Bayes proposal of Molina, Nandram
and Rao (2014). We put ourselves in the point of view of a practitioner
and discuss, as objectively as possible, the benefits and drawbacks of
each method, illustrating some of them through simulation studies.

Keywords: Area level model; Empirical best estimator; Hierarchical
Bayes; Poverty mapping; Unit level models.

1 Introduction

Sample surveys are the primary data source for official statistics. However, the
high cost of interviews leads to an extensive use of the survey data, including
estimation for geographical levels (domains) for which they were not initially
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planned. When estimating for disaggregated domains, “direct” estimators, based
only on the domain-specific sample data, can be highly inefficient because of
small area-specific sample sizes. Domains where direct estimators do not have the
required precision are called “small areas”. Small area estimation methods are
used to obtain “indirect” estimators that use the sample data from other domains
to “borrow strength” and thus obtaining more efficient estimators. Among indirect
estimation methods, model-based approaches, which combine survey data with
other data sources such as censuses or administrative registers through linking
models, are very popular because they can increase the efficiency considerably in
very small areas; see the book by Rao (2003) and Rao and Molina (2015) for a
comprehensive description of small area estimation methods or Pfefferman (2013)
for a recent review on the topic.

In small area estimation, models are typically classified into area level and unit
level models. In area level models, direct area estimators are related to the area
level auxiliary variables. In unit level models, the values of the study variable for
the population units are related to unit-specific covariates. Both, unit and area
level models have been extensively used to estimate linear parameters, such as
totals and means. However, many poverty and inequality indicators are complex
nonlinear functions of the vector of values of the target variable (e.g. income)
in the units of the specified domain. Specific methods have been developed to
address the estimation of general nonlinear parameters.

Area level models are widely used in official statistics applications. For in-
stance, the U.S. Census Bureau uses the Fay-Herriot (FH) area level model (Fay
and Herriot 1979), to produce model-based county estimates of the number of
school-age children under poverty. Molina and Morales (2009) also used the FH
model to estimate poverty incidences and poverty gaps in Spanish provinces.

The first unit level model used to estimate poverty indicators for small areas
was proposed by Elbers, Lanjow and Lanjow (2003), and will be called hereafter
ELL method. This method has been extensively used by the World Bank to obtain
disaggregated poverty and inequality maps of many countries. A more recent
approach is the empirical best/Bayes (EB) method proposed by Molina and Rao
(2010). This method also uses a unit level model and delivers the best estimator
minimizing the mean squared error (MSE) under the assumed model. Molina,
Nandram and Rao (2014) have proposed a hierarchical Bayes (HB) analogue to
the EB method to estimate general non-linear parameters in small areas.

This paper reviews the main methods for the estimation of general non-linear
small area parameters, focusing for illustrative purposes on a specific family of
poverty indicators. Specifically, we describe direct estimation, the EBLUP based
on an area level model, ELL method, EB method together with its variation called
Census EB, and HB method. We discuss advantages and disadvantages of each
procedure from a practical point of view, and we illustrate their performance under
several scenarios, including the cases of informative sampling or the presence of
outliers.

The paper is organized as follows. Section 2 introduces the family of poverty
indicators used to illustrate the methods. Section 3 describes each small area esti-
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mation method, Section 4 presents the results of our simulation studies comparing
the methods and Section 5 gives some concluding remarks.

2 Poverty indicators

In the literature we can find many different indicators describing wellbeing of
people. The FGT class of poverty indicators introduced by Foster, Greer and
Thornbecke (1984) includes basic indicators such as the at-risk-of-poverty rate,
also called poverty incidence, and defined as the proportion of individuals with
welfare below the poverty line. Poverty indicators that do not require definition of
a poverty line are Sen Index, Fuzzy monetary and Fuzzy supplementary poverty
indicators (Betti et al., 2006). Inequality measures include Quintile Share Ratio,
Gini index, Theil index, Generalized entropy class (Theil index belongs to this
class) and Atkinson’s inequality measures. For a description of these measures
see e.g. Neri, Ballini and Betti (2005). As part of the Lisbon strategy of 2000,
which envisioned the coordination of European social policies at country level
based on a set of common goals, the European Council of Dec. 2001 established
a set of common European statistical indicators on poverty and social exclusion
called Laeken indicators (Marlier 2007). This set contains several of the indicators
mentioned above like the at-risk-of-poverty rate, Quintile Share Ratio and Gini
index.

In this paper, we will focus on the FGT family of poverty indicators. Consider
a population P of size N that is partitioned into D domains or areas P1, . . . , PD, of
sizes N1, . . . , ND. Let Edi be a measure of welfare for individual i (i = 1, . . . , Nd)
in area d (d = 1, . . . , D). Let z be the poverty line, that is, the value such that
when Edi < z, individual i from area d is regarded as “at risk of poverty”. Then,
the FGT family of poverty indicators for area d is given by

Fαd =
1

Nd

Nd∑
i=1

(
z − Edi

z

)α
I(Edi < z), α ≥ 0, d = 1, . . . , D, (1)

where I(Edi < z) = 1 if Edi < z, and I(Edi < z) = 0 otherwise. For α = 0
we obtain the proportion of individuals “at risk of poverty”, that is, the poverty
incidence or at-risk-of-poverty rate. For α = 1, we get the average of the relative
distances to non being “at risk of poverty”, called poverty gap. The poverty
incidence measures the frequency of poverty, whereas the poverty gap measures
the intensity of povert.

We remark that the unit level methods introduced in this paper can be ap-
plied to estimate any desired population characteristic that is obtained as a real
measurable function of a continuous variable, as long as this variable follows the
considered model in each method.
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3 Estimators

Estimation of population characteristics is typically based on a sample s drawn
from the population P . We denote by sd = s ∩ Pd the subsample from area d
of size nd < Nd and by rd = Pd − sd the complement of sd, of size Nd − nd.
The overall sample size is n = n1 + · · · + nD. The following subsections describe
common estimators of poverty indicators obtained from the sample data.

3.1 Direct estimators

When estimating a given domain or area d, a direct estimator uses only the nd
observations from that area provided that this area has been sampled (i.e., nd > 0).
The FGT poverty indicator (1) of order α for area d can be expressed as a linear
parameter as follows

Fαd = N−1d

Nd∑
i=1

Fαdi, Fαdi =

(
z − Edi

z

)α
I(Edi < z), i = 1, . . . , Nd.

Then, the basic direct estimator of Fαd is simply given by

F̂D
αd = N−1d

∑
i∈sd

wd,iFαdi, (2)

where wd,i = π−1d,i is the sampling weight of unit i from area d, and πd,i is the
inclusion probability of unit i in the subsample sd. Under the assumption that
the second-order inclusion probabilities πd,ij satisfy πd,ij = πd,iπd,j, i 6= j, which
holds exactly under Poisson sampling, a design-unbiased estimator of the sampling
variance of F̂D

αd is given by

v(F̂D
αd) = N−2d

∑
i∈sd

wd,i(wd,i − 1)F 2
αdi. (3)

Below we list the advantages and disadvantages of direct estimators, such as
the HT estimator (2), for small area estimation.

Advantages:

• They are (at least approximately) design-unbiased and design-consistent
(as nd → ∞). Thus, they perform well under complex sampling designs,
including informative sampling, as long as they are calculated using the
correct inclusion probabilities.

• They do not require model assumptions; that is, they are completely non-
parametric.

Disadvantages:

• They are very inefficient for areas with very small nd.

• They cannot be calculated for nonsampled areas (i.e., with nd = 0).
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3.2 Fay-Herriot model

FH area level model links the parameters of interest for all the areas, Fαd, d =
1, . . . , D, through a linear model as

Fαd = x′dβ + ud, d = 1, . . . , D, (4)

where xd is a p-vector of area level covariates, β is the regression parameter com-
mon for all areas, and ud is the area-specific regression error, also called random
effect for area d. We assume that area random effects ud are independent and

identically distributed (iid), with unknown variance σ2
u, that is, ud

iid∼ (0, σ2
u).

Note that true values Fαd are not observable and therefore model (4) cannot be
directly fitted. However, we can make use of a direct estimator F̂D

αd of Fαd. FH
model assumes that F̂D

αd is design-unbiased, with

F̂D
αd = Fαd + ed, d = 1, . . . , D, (5)

where ed is the sampling error for domain d. We assume that sampling errors ed

are independent of random effects ud and satisfy ed
ind∼ (0, ψd), where the sampling

variances ψd, d = 1, . . . , D, are assumed to be known. Combining (4) and (5), we
obtain a linear mixed model

F̂D
αd = x′dβ + ud + ed, d = 1, . . . , D. (6)

The best linear unbiased predictor (BLUP) of Fαd = x′dβ + ud under model
(6) is given by

F̃ FH
αd = x′dβ̃ + ũd, (7)

where ũd = γd(F̂
D
αd − x′dβ) is the BLUP of ud, with γd = σ2

u/(σ
2
u + ψd) and where

β̃ is the weighted least squares estimator of β, given by

β̃ =

(
D∑
d=1

γdxdx
′
d

)−1 D∑
d=1

γdxdF̂
D
αd.

In practice, the variance σ2
u of the area effects ud is unknown and needs to

be estimated. Common estimation methods are maximum likelihood (ML) and
restricted maximum likelihood (REML). REML corrects for the degrees of freedom
due to estimating β and leads to a less biased estimator of σ2

u for finite sample
size n. Let σ̂2

u be the resulting estimator. Replacing σ̂2
u for σ2

u in (7), we obtain
the empirical BLUP (EBLUP) of Fαd, denoted here as F̂ FH

αd and called simply FH
estimator.

A second-order correct estimator of MSE(F̂ FH
αd ) is given in Rao (2003, Chapter

7), assuming normality of ud and edi. Good and bad properties of FH estimator,
(7) are listed below, including particular properties for poverty mapping.
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Advantages:

• The BLUP under FH model can be expressed as a weighted combination of
the direct and the regression-synthetic estimators, that is,

F̃ FH
αd = γdF̂

D
αd + (1− γd)x′dβ̃, d = 1, . . . , D. (8)

with weight γd = σ2
u/(σ

2
u +ψd). Then, for an area d in which the direct esti-

mator F̂D
αd is inefficient, that is, with a large sampling variance ψd compared

to the unexplained between-area variability σ2
u, γd becomes small and F̃ FH

αd

borrows more strength from the other areas through the regression-synthetic
estimator x′dβ̃. On the other hand, for an area d in which the direct estima-
tor F̂D

αd is efficient, that is, with small sampling variance ψd compared to the
unexplained between-area variability σ2

u, γd is large and F̃ FH
αd attaches more

weight to the direct estimator. Thus, FH estimator automatically borrows
strength for the areas where it is needed.

• If γd > 0 for area d, it makes use of the sampling weights wd,i through

the direct estimator F̂D
αd. Thus, it is design-consistent (as nd → ∞). As a

consequence, it is less affected by informative sampling provided that the
direct estimator is calculated using the correct inclusion probabilities.

• Due to the aggregation of data, it is not very much affected by isolated unit
level outliers.

• It requires only area level auxiliary information and therefore avoids the
confidentiality issues associated with micro-data.

Disadvantages:

• The sampling variances ψd are assumed to be known, but in practice they
are estimated. It is not easy to incorporate the uncertainty due to estimation
of the sampling variances in the MSE.

• The number of observations used to fit the FH model is the number of areas
D, which is typically much smaller than the number of observations used
to fit unit level models, n. Thus, model parameters are estimated with less
efficiency and therefore the efficiency gains with respect to direct estimators
are expected to be smaller than under unit level models.

• It requires normality of ud and ed for MSE estimation. This might not hold
for very complex poverty indicators.

• If we want to estimate several indicators depending on a common continuous
variable, it requires separate modeling and searching for good covariates for
each indicator.

• Once the model is fitted at the area level, small area estimates F̂ FH
αd cannot

be further disaggregated for subdomains or subareas within the areas unless
a new good model is found at that subarea level.
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3.3 ELL method

ELL method assumes a unit level linear mixed model for a log-transformation of
the variable measuring welfare of individuals, with random effects for the sampling
clusters or primary sampling units. For comparability with the rest of the methods
presented here, in the following we assume that the sampling clusters are the
areas. In this case, the model becomes the nested error model of Battese, Harter
and Fuller (1988) for the log-transformation of the welfare variables, that is, Ydi =
log(Edi) is assumed to be linearly related with a p-vector of auxiliary variables xdi,
which may include unit-specific and area-specific covariates, and includes random
area effects ud as follows

Ydi = x′diβ + ud + edi, i = 1, . . . , Nd, d = 1, . . . , D. (9)

Here, β is a p-vector of regression coefficients, ud
iid∼ (0, σ2

u), edi
ind∼ (0, σ2

ek
2
di) where

ud and edi are independent, and kdi are known constants.
ELL estimator of Fαd is given by the marginal expectation F̂ELL

αd = E[Fαd].
This estimator, together with its MSE, are approximated by a bootstrap method.
In this bootstrap procedure, random effects u∗d and model errors e∗di are generated
from residuals obtained by fitting model (9) to survey data. Then, a bootstrap
census of Y -values is generated as

Y ∗di = x′diβ̂ + u∗d + e∗di, i = 1, . . . , Nd, d = 1, . . . , D,

where β̂ is an estimator of β. The generation is repeated for a = 1, . . . , A, obtain-
ing A censuses. Then, for each bootstrap census a, the FGT poverty indicator for
area d is calculated as

F
∗(a)
αd =

1

Nd

Nd∑
i=1

(
z − exp(Y

∗(a)
di )

z

)α

I(exp(Y
∗(a)
di ) < z).

The ELL estimator of Fαd is then approximated by averaging over the A generated
censuses, that is

F̂ELL
αd =

1

A

A∑
a=1

F
∗(a)
αd .

The MSE of F̂ELL
αd is then estimated as follows

mse(F̂ELL
αd ) =

1

A

A∑
a=1

(F
∗(a)
αd − F̂

ELL
αd )2.

Advantages and disadvantages of ELL method are listed below:

Advantages:

• It is based on unit level data, which are richer than area level data and
typically uses much larger sample size (n compared to D) to fit the model.

7



• ELL method can be applied to estimate general indicators defined as func-
tion of the model response variables Ydi.

• They are model-unbiased if the model parameters are known.

• Once the model is fitted, estimates can be obtained at whatever subarea
level.

Disadvantages:

• In terms of model MSE, ELL estimates perform poorly and can even perform
worse than direct estimators when unexplained between-area variation is
significant, see Molina and Rao (2010). In fact, for the estimation of domain
means, ELL estimates are basically equal to regression-synthetic estimators,
which assume the regression model without further between-area variation.

• They are based on a model assumption. Hence, model checking is crucial.

• They are not design-unbiased and can be seriously biased under informative
sampling.

• They can be seriously affected by unit level outliers.

• If cluster effects are included in the model instead of area effects, but area
effects are significant, ELL estimates of the model MSE can seriously un-
derestimate the true MSE. Even if area effects are included in the model,
ELL estimates of MSE do not track correctly the true MSE for each area.

3.4 Empirical Best/Bayes EB method

The EB method of Molina and Rao (2010) assumes that the population variables
Ydi follow the nested error model (9) with normality of random effects ud and errors
edi. Under that model, the area vectors Yd = (Yd1, . . . , Yd,Nd

)′ are independent

for d = 1, . . . , D and satisfy Yd
ind∼ N(µd,Vd), where µd = Xdβ and Vd =

σ2
u1Nd

1′Nd
+ σ2

eAd, for Ad = diag(k2di; i = 1, . . . , Nd). For an area parameter
δd = h(Yd), the estimator that minimizes the MSE, called the best estimator, is
given by

δ̂Bd = EYdr
[h(Yd)|Yds;θ] =

∫
h(Yd)f(Ydr|Yds;θ)dYdr, (10)

where f(Ydr|Yds;θ) is the conditional probability density function (pdf) of the
out-of-sample values Ydr in domain d given the sampled values Yds in domain d,
and θ is the vector of model parameters. Now replacing θ in (10) by an estimator,
we get the empirical best estimator, δ̂EBd .

Under the nested error model (9), the distribution of Ydr|Yds is easy to derive.
First, we decompose Xd and Vd into sample and out-of-sample elements similarly
as we do with Yd, that is,

Yd =

(
Yds

Ydr

)
, Xd =

(
Xds

Xdr

)
, Vd =

(
Vds Vdsr

Vdrs Vdr

)
.
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By the normality assumption, we have that Ydr|Yds
ind∼ N(µdr|s,Vdr|s), where the

conditional mean vector and covariance matrix are given by

µdr|s = Xdrβ + γdc(ȳdc − x̄Tdcβ)1Nd−nd
, (11)

Vdr|s = σ2
u(1− γd)1Nd−nd

1TNd−nd
+ σ2

ediagi∈rd(k2di). (12)

Here, γdc = σ2
u(σ

2
u + σ2

e/cd·)
−1, for cd· =

∑
i∈sd cdi with cdi = k2di, and ȳdc and x̄dc

are weighted sample means obtained as

ȳdc =
1

cd·

∑
i∈sd

cdiYdi, x̄dc =
1

cd·

∑
i∈sd

cdixdi. (13)

In practice, for a complex parameter δd = h(Yd), the best estimator (10)
approximated by Monte Carlo. This requires to simulate multivariate Normal
vectors Y

(a)
dr of sizes Nd − nd, d = 1, . . . , D, from the (estimated) conditional

distribution of Ydr|Yds and then to replicate for a = 1, . . . , A, which may be
computationally unfeasible. This can be avoided by noting that the conditional
covariance matrix Vdr|s, given by (12), corresponds to the covariance matrix of a

random vector Y
(a)
dr generated from the model

Y
(a)
dr = µdr|s + v

(a)
d 1Nd−nd

+ ε
(a)
dr , (14)

where v
(a)
d and ε

(a)
dr are independent and satisfy

v
(a)
d ∼ N(0, σ2

u(1− γd)) and ε
(a)
dr ∼ N(0Nd−nd

, σ2
ediagi∈rd(k2di));

see Molina and Rao (2010). Using model (14), instead of generating a multivariate

normal vector Y
(a)
dr of size Nd−nd, we just need to generate 1+Nd−nd independent

univariate normal variables v
(a)
d

ind∼ N(0, σ2
u(1 − γd)) and ε

(a)
di

ind∼ N(0, σ2
ek

2
di), for

i ∈ rd. Then, we obtain the corresponding out-of-sample values Y
(a)
di , i ∈ rd,

from (14) using as means, the corresponding elements µdi|s of µdr|s given by (11).

Using the vector Y
(a)
dr generated from (14), we construct the census vector Y

(a)
d =

(Y′ds, (Y
(a)
dr )′)′ and calculate the parameter of interest δ

(a)
d = h(Y

(a)
d ). For a non-

sampled area d (i.e., with nd = 0), we generate Y
(a)
dr from (14) with γdc = 0 and

in this case Y
(a)
d = Y

(a)
dr . The Monte Carlo approximation to the EB estimator

(10) of δd = h(Yd) is then given by

δ̂EBd ≈ 1

A

A∑
a=1

h(Y
(a)
d ). (15)

In particular, to estimate the FGT poverty indicator given in (1), Molina and
Rao (2010) assumed that Ydi = T (Edi) follow the nested error model (9), where Edi
are variables measuring welfare and T (·) is a one-to-one transformation. In terms
of the vector of transformed variables Yd = (Yd1, . . . , YdNd

)′, the FGT poverty
indicator can be expressed as

Fαd =
1

Nd

Nd∑
i=1

(
z − T−1(Ydi)

z

)α
I(T−1(Ydi) < z) = hα(Yd), (16)
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and the above EB method can be applied to the area parameter δd = hα(Yd).
In the case of complex parameters such as the FGT poverty indicators, analytic

approximations for the MSE are hard to derive. Molina and Rao (2010) obtained
a parametric boostrap MSE estimator following the bootstrap method for finite
populations of González-Manteiga et al. (2008), see Molina and Rao (2010) for
further details.

Note that both ELL and EB methods require a survey data file containing
the observations from the target variable and the auxiliary variables, that is,
{(Ydi,xdi); i ∈ sd, d = 1, . . . , D}, and a census containing the values of the
same auxiliary variables for all the units in the population, that is, {xdi; i =
1, . . . , Nd, d = 1, . . . , D}. EB method requires additionally to identify the set
of out-of-sample units r (or equivalently the sample units s) in the census P .
Linking the survey and the census files is not always possible in practice. How-
ever, typically the area sample size nd is really small compared to the popu-
lation size Nd. Then, we can use the Census-EB estimator proposed by Correa,
Molina and Rao (2012), and obtained by generating in each Monte Carlo replicate
the full census vector Yd rather than only the vector of out-of-sample observa-
tions Ydr. For this, we apply the Monte Carlo approximation (10) by generating

Y
(a)
d = µd|s + v

(a)
d 1Nd−nd

+ ε
(a)
d , where µd|s = Xdβ + γdc(ȳdc − x̄Tdcβ)1Nd

and

ε
(a)
d ∼ N(0Nd

, σ2
ediagi=1,...,Nd

(k2di)). If the sampling fraction nd/Nd is negligible,
the Census-EB estimator of δd = Fαd is practically the same as the original EB
estimator.

Good properties and drawbacks of the EB method are listed below.

Advantages:

• It is based on unit level data, which are richer than the area level data and
uses much larger sample size to fit the model.

• EB method can be applied to estimate general indicators defined as functions
of the response variables Ydi.

• Best estimators are exactly model-unbiased.

• EB estimators are optimal in terms of minimizing the model MSE for known
values of model parameters.

• EB estimators perform significantly better than ELL estimates when unex-
plained between-area variation is significant. For out-of-sample areas (with
nd = 0), EB and ELL small area estimates are nearly the same. They
are nearly the same for all areas if there is no unexplained between-area
variation (σ2

u = 0).

• Once the model is fitted, estimates can be obtained at whatever subarea
level.

Disadvantages:

• They are based on a model assumption. Hence, model checking is crucial.
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• They are not approximately design-unbiased and can be seriously biased
under informative sampling.

• They can be severely affected by unit level outliers.

• Parametric bootstrap estimates of the MSE of EB estimators are computa-
tionally intensive.

3.5 Hierarchical Bayes (HB) method

Computation of EB (and Census-EB) estimates supplemented with their MSE
estimates is very intensive and might be unfeasible for very large populations
or for very complex indicators. Note that to approximate the EB estimate by
Monte Carlo, we need to construct a large number A of censuses Y(a), where each
one might be of huge size. Moreover, to obtain the parametric bootstrap MSE
estimator, the Monte Carlo approximation needs to be repeated for each boot-
strap replicate. Seeking for a computationally more efficient approach, Molina,
Nandram and Rao (2014) developed the alternative HB method for estimation
of complex non-linear parameters. This approach does not require the use of
bootstrap for MSE estimation because it provides samples from the posterior dis-
tribution, from which posterior variances play the role of MSEs, and any other
useful posterior summary can be easily obtained.

The HB method is based on reparameterizing the nested error model (9) in
terms of the intraclass correlation coefficient ρ = σ2

u/(σ
2
u + σ2

e) and considering
only non-informative priors for the model parameters (β, ρ, σ2

e). Concretely, the
HB model is defined as

(i) Ydi|ud,β, σ2
e
ind∼ N(x′diβ + ud, σ

2
ek

2
di), i = 1, . . . , Nd,

(ii) ud|ρ, σ2
e
iid∼ N

(
0,

ρ

1− ρ
σ2
e

)
, d = 1, . . . , D,

(iii) π(β, ρ, σ2
e) ∝

1

σ2
e

, ε ≤ ρ ≤ 1− ε, σ2
e > 0,β ∈ Rp,

for ε > 0 small.
The posterior distribution can be obtained in terms of posterior condition-

als using the chain rule of probability as follows. First, note that under the HB
approach, the random effects u = (u1, . . . , uD)′ are regarded as additional param-
eters. Then, the joint posterior pdf of the vector of parameters θ = (u′,β′, σ2

e , ρ)′

given the sample values Ys is given by

π(u,β, σ2
e , ρ|Ys) = π1(u|β, σ2

e , ρ,Ys)π2(β|σ2
e , ρ,Ys)π3(σ

2
e |ρ,Ys)π4(ρ|Ys), (17)

where the conditional pdfs π1, . . . , π3 have known forms, but not π4. However,
since ρ is in a closed interval from (0, 1), we can generate values from π4 using a
grid method, for more details see Molina, Nandram and Rao (2014). Samples from
θ = (u′,β′, σ2

e , ρ)′ can then be generated directly from the posterior distribution
in (17), avoiding the use of Markov Chain Monte Carlo (MCMC) methods. Under
general conditions, a proper posterior distribution is guaranteed.
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Given θ, population variables Ydi are all independent, satisfying

Ydi|θ
ind∼ N(x′diβ + ud, σ

2
ek

2
di), i = 1, . . . , Nd, d = 1, . . . , D. (18)

Consider the decomposition of the area vector Yd = (Yd1, . . . , YdNd
)′ in terms of

sample and out-of-sample elements Yd = (Y′ds,Y
′
dr)
′. The posterior predictive

pdf of Ydr is then given by

f(Ydr|Ys) =

∫ ∏
i∈rd

f(Ydi|θ)π(θ|Ys)dθ.

Finally, the HB estimator of a domain parameter δd = h(Yd) is given by

δ̂HBd = EYdr
(δd|Ys) =

∫
h(Yd)f(Ydr|Ys)dYdr. (19)

The HB estimator can be approximated by Monte Carlo. For this, we first
generate samples from the posterior π(θ|Ys). We generate a value ρ(a) from

π4(ρ|Ys) using a grid method; then, a value σ
2(a)
e is generated from π3(σ

2
e |ρ(a),Ys);

next β(a) is generated from π2(β|σ2(a)
e , ρ(a),Ys) and, finally, u(a) is generated from

π1(u|β(a), σ
2(a)
e , ρ(a),Ys). This process is repeated a large number A of times to

get a random sample θ(a), a = 1, . . . , A from π(θ|Ys). Now for each generated

value θ(a) from π(θ|Ys), we generate the out-of-sample values {Y (a)
di , i ∈ rd} from

the distribution defined in (18). Thus, for each area d, we have generated an

out-of-sample vector Y
(a)
dr = {Y (a)

di , i ∈ rd}, and we have also the available sample

data Yds. Putting them together, we construct the full population vector Y
(a)
d =

(Y′ds, (Y
(a)
dr )′)′. Now using Y

(a)
d , we compute the area parameter δ

(a)
d = h(Y

(a)
d ).

In the particular case of estimating an FGT poverty indicator, we have δd =
Fαd = hα(Yd) given in (16) . Then, in Monte Carlo replicate a, we calculate

F
(a)
αd = hα(Y

(a)
d ). Finally, the HB estimator is approximated as

F̂HB
αd ≈

1

A

A∑
a=1

F
(a)
αd . (20)

Advantages and deficiencies of HB method are listed below.

Advantages:

• It is based on unit level data, which are richer than area level data and uses
much larger sample size to fit the model.

• HB method can be applied to estimate general indicators defined as function
of the model response variables Ydi.

• HB estimators are model-unbiased.

• HB estimators are optimal in terms of minimizing the posterior variance.

• EB and HB methods are expected to give practically the same point es-
timates, see Molina, Nandram and Rao (2014). Thus, the proposed HB
method has good frequentist properties.
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• Once the model is fitted, estimates can be obtained at whatever subarea
level.

• The proposed HB approach does not require the use of MCMC methods
and therefore avoids the need of monitoring the convergence of Monte Carlo
chains.

• Bootstrap methods for MSE estimation are not needed. Therefore, total
computational time is considerably lower than in EB method.

• Calculation of credible intervals or other posterior summaries is straightfor-
ward.

Disadvantages:

• It is based on model assumptions. Hence, model checking is crucial.

• HB estimators are not design-unbiased and can be seriously biased under
informative sampling.

• HB estimators can be severely affected by unit level outliers.

• HB method is not directly extendable to more complex models without
loosing some of the mentioned advantages like avoiding MCMC.

4 Simulation studies

This section illustrates some of the mentioned advantages and drawbacks of the
considered poverty mapping methods through simulation studies. Concretely, we
will report results of simulations under three different scenarios: (i) Nested error
model with simple random sampling. (ii) Nested error model with informative
sampling. (iii) Nested error model with outliers.

Simulations were implemented in the statistical software environment R (R
development core team 2013) using the package lme4 (Bates, Maechler, Bolker,
and Walker, 2014), which fits Gaussian linear and nonlinear mixed-effects models,
and the package sae (Molina and Marhuenda, 2015), which contains functions for
small area estimation, including calculation of direct, FH and EB estimates along
with their MSE estimates.

4.1 Nested error model with simple random sampling

We consider the same model-based simulation setup as in Molina, Nandram and
Rao (2014), where data are generated at the unit level following the nested error
model (9). However, here we will also include FH estimators derived from the
FH area level model obtained using the area means of the auxiliary variables as
covariates. In addition, we include ELL and Census-EB estimators. The popula-
tion is composed of N = 20, 000 units, distributed in D = 80 areas with Nd = 250
units in each area. We consider two auxiliary variables X1 and X2 with known
values for all the population units. Their values are generated as xk,di ∼ B(1, pkd),
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k = 1, 2, with success probabilities p1d = 0.3+0.5d/D and p2d = 0.2, d = 1, . . . , D.
Response variables Ydi are generated from the nested error model (9) and the tar-
get variables are Edi = exp(Ydi). The true values of the regression coefficients are
β = (3, 0.03,−0.04)′. Variances of area effects and errors are taken as σ2

u = 0.152

and σ2
e = 0.52 respectively. The poverty line is set to z = 12, which is approxi-

mately 0.6 times the median of {Edi; i = 1, . . . , Nd, d = 1, . . . , D} for a population
generated as described before, which is the official definition of poverty line used
in EU countries. We draw a sample sd of size nd = 50, d = 1, . . . , D, using sample
random sampling (SRS) without replacement, independently from each area d.

A total of L = 1, 000 population vectors Y(`), ` = 1, . . . , L, were generated
from the nested error model (9) with the mentioned values of model parameters
and auxiliary variables. For each Monte Carlo population ` = 1, . . . , L, we cal-
culated the true area poverty incidences and poverty gaps. Then, we selected
the sample s, which is kept fixed across Monte Carlo replicates. Using the sam-
ple data {(Ydi, x1,di, x2,di); i ∈ sd, d = 1, . . . , D} and the population data on the
auxiliary variables, we computed direct estimates, FH, ELL, EB, Census-EB and
HB estimates of poverty incidence (α = 0) and poverty gap (α = 1) for each
area d = 1 . . . , D. FH, ELL and EB estimates were obtained using REML fitting
method.

For the Monte Carlo population `, let F
(`)
αd be the true poverty indicator for

area d and F̂
(`)
αd be one of the estimates (direct, FH, ELL, EB, Census-EB or

HB). Relative bias (RB) and relative root MSE (RRMSE) of an estimator F̂αd are
approximated empirically as

RB(F̂αd) =
L−1

∑L
`=1(F̂

(`)
αd − F

(`)
αd )

L−1
∑L

`=1 F
(`)
αd

, RRMSE(F̂αd) =

√
L−1

∑L
`=1(F̂

(`)
αd − F

(`)
αd )2

L−1
∑L

`=1 F
(`)
αd

.

For each estimator F̂αd, the absolute RB (ARB) and the RRMSE are averaged
across areas as

ARBα = D−1
D∑
d=1

|RB(F̂αd)|, RRMSEα = D−1
D∑
d=1

RRMSE(F̂αd).

Figure 1 depicts the percent values of RB (left) and RRMSE (right) of the
estimators of the domain poverty gaps F1d for each area d. EB and Census-EB
estimates are not shown in these plots because they are both practically equal
to HB estimates and are plotted separately in Figure 2. We can see in Figure
1 left that direct, ELL and HB estimators are practically unbiased. In contrast,
FH estimators display a substantial negative bias. Concerning efficiency, Figure 1
right shows that HB estimators have the smallest RRMSE whereas ELL estimators
are the ones with the largest RRMSE. Conclusions for the poverty incidence F0d

are very similar.
Table 1 presents averages across areas of ARB and RRMSE of all the estima-

tors, for both poverty incidence and poverty gap. We see that, on average, FH
estimator presents a large ARB (over 6% for poverty incidence and close to 15%
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for poverty gap), whereas EB, HB and Census-HB estimators have a very small
ARB (< 1%). The latter estimators also achieve the smallest RBs (slightly over
20% for poverty incidence and over 25% for poverty gap). The largest RRMSE
is obtained by ELL estimator (over 58%). Note that both ARB and RRMSE
increase when estimating the poverty gap, because the poverty gap depends to a
greater extent on the extreme of the left tail of the income distribution, which is
more difficult to estimate correctly from a (finite) sample.

These results indicate that HB estimators are practically unbiased and clearly
the most efficient among the considered estimators when the nested error model
holds and the sample is drawn with SRS within each area. The bias of FH
estimators is due to the fact that they are attaching most of the weight to the
regression-synthetic component, which relies exactly on the model, but here data
Ydi are generated from the unit level model (9) and the area means of the covariates
X̄k,d = N−1d

∑Nd

i=1 xk,di are not linearly related with the poverty indicators Fαd.
Thus, FH model fails due to non-linearity of the poverty indicators Fαd in the
area level covariates X̄k,d, k = 1, 2, even if the unit level model holds exactly.
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Figure 1: Percent RB (left) and RRMSE (right) of direct, FH, HB and ELL
estimators of poverty gap F1d for each area d under the nested error model with
simple random sampling.

Figure 2 depicts percent RB (left) and RRMSE (right) of EB and Census-EB
estimates of the poverty gap F1d for each area d. This figure shows the great
similarity of EB and Census-EB estimates of F1d, even if sampling fractions in
this simulation study are not so small (nd/Nd = 1/5, d = 1, . . . , D).

Next we study ELL estimator of the MSE of F̂ELL
αd . Figure 3 depicts the true

MSE of ELL estimators of the poverty gap F1d, labeled “True MSE ELL” and
the means across simulations of ELL estimates of the MSE, labeled “MSE ELL”,
for each area d. This figure shows that ELL estimates of MSE do not really track
the true MSEs for each area even if we have considered here random effects for
the areas in the model (i.e., sampling clusters equal to areas). In the case that
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Table 1: Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB, Census-EB and ELL estimators of poverty incidence F0d and poverty gap F1d,
under the nested error model with simple random sampling.

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.99 1.26 28.53 36.33
FH 6.34 14.78 26.26 38.16
HB 0.48 0.65 20.15 25.43
EB 0.51 0.67 20.41 25.75

Census-EB 0.55 0.69 21.15 26.71
ELL 1.31 1.69 47.39 58.63
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Figure 2: Percent RB (left) and RRMSE (right) of direct, FH, HB and ELL
estimators of poverty gap F1d for each area d under the nested error model with
simple random sampling.

clusters are different from the areas, if we consider the original ELL method that
includes only cluster effects but area effects are significant, then ELL estimates
might seriously underestimate the MSE.

For EB estimator, the parametric bootstrap procedure proposed by Molina
and Rao (2010) approximates the true MSE reasonably well, see Molina and Rao
(2010). For HB estimator, posterior variance, approximated by Monte Carlo, is
taken as measure of uncertainty.

4.2 Nested error model with informative sampling

We consider the same setup as in the previous simulation study, with the same
population sizes, model parameters, auxiliary variables and poverty line. The only
difference is that in this simulation study, samples are drawn with informative
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Figure 3: True MSE of ELL estimators of poverty gap F1d and mean across
simulations of ELL estimator of the MSE for each area d, under the nested error
model with simple random sampling.

sampling. When the sampling is informative, the probability of a sample depends
on the values of the population vector Y. Thus, under this setup, the simulations
need to be performed with respect to the joint distribution of (Y, s); that is, in
each Monte Carlo replicate `, we draw a population vector Y(`) and, given Y(`),
we draw a sample s(`). A total of L = 1000 population vectors Y(`), ` = 1, . . . , L,
are generated from the true nested error model (9). Again, we consider that
the target variables are Edi = exp(Ydi). The sample s(`) is drawn by Poisson
sampling, with inclusion probabilities πd,i depending on a random variable Zdi
that is correlated with the unexplained part of Ydi, that is, the model errors edi.
Thus, for each population unit i from area d, we generate a Bernoulli random
value Qdi ∼ Bern(πd,i), with πd,i = b−1 exp(−aZdi), where a > 0, b > 0 and
Zdi ∼ Gamma(τdi, θdi). To choose the values of τdi and θdi, we consider two cases:
low and high level of informativeness. In the first case, we take τdi = 5(3 + 0.1edi)
and θdi = 0.25(3 + 0.1edi), which yield random values Zdi with a 20% correlation
with the model errors edi. In the second case, we take τdi = 5(4.5 + 1.5edi)
and θdi = 0.25(4.5 + 1.5edi), yielding Zdi with a 80% correlation with edi, which
represents a high level of informativeness. Note that under informative sampling,
the sample size is random because each unit in the population comes to the sample
depending on its random value Qdi. To make this simulation study comparable
with the one in previous section, we wish to have a similar average area sample
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size as before. This is achieved approximately by considering a = 0.05 and b = 2.5
when the informativeness level is low and taking a = 0.02 and b = 4 when the
informative level is high. With the sample s(`) from each population, we compute
the five estimators, namely direct, FH, EB, ELL and HB estimators. We excluded
here Census-EB estimators because of their similarity with EB estimators.

Figure 4 plots RBs (left) and RRMSEs (right) of the estimators of the poverty
gap F1d when the informativeness level is low. Again, EB estimator is excluded
because it provides nearly the same results as HB. For low level of informative-
ness, Figure 4 left shows that the negative bias of FH estimates, observed in the
simulation with SRS, still persists, while the rest of the estimators are almost
unbiased. HB estimator still presents the smallest RRMSE among the considered
estimators, and ELL estimator performs the worst in terms of RRMSE among
the considered estimators. For the poverty incidence F0d, conclusions are similar.
These conclusions are confirmed by the averages across areas shown in Table 2 for
both poverty incidence and poverty gap. On average, the direct estimator has the
smallest ARB (about 0.7% for poverty incidence and 0.9% for poverty gap), fol-
lowed by EB and HB estimators with a bias below 1.4% for both poverty incidence
and gap, the smallest RRMSE is for EB estimator (less than 21% for poverty in-
cidence and than 26% for poverty gap) and the largest for ELL estimator (over
47% for poverty incidence and over 58% for poverty gap).

Figure 5 plots RB (left) and RRMSE (right) of the estimators of the poverty
gap F1d when the level of informativeness is large. In this case, Figure 5 left
shows a negative bias for the FH estimator and a large positive bias of HB and
ELL estimators. Looking at Figure 5 right, we can see that now direct and FH
estimates, which are calculated using the true inclusion probabilities, present the
smallest RRMSE among the considered estimators. Again, conclusions are similar
for the poverty incidence F0d. Table 3 lists the averages across areas of ARB and
RRMSE for all the considered estimators of the poverty incidence and poverty
gap. In this case, the direct estimator has the smallest average absolute relative
bias (about 0.6% for poverty gap), whereas the average RRMSE of ARB ELL
estimator is the largest (99.6%).

To summarize, EB and HB methods are not greatly affected under low level
of informativeness, measured in terms of correlation between the design variable
used in the inclusion probabilities and the response variable. When the degree
of informativeness is high, these two methods are certainly affected because they
do not take into account the sampling design. The effect of informative sampling
on FH estimator seems to be smaller, and its negative bias is again due to a
non-linearity problem of FH model because data actually follows the nested error
linear regression model for log income at the unit level.

We are currently developing suitable methods to handle informative sampling
in the case of unit level models.
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Figure 4: Percent RB (left) and RRMSE (right) of direct, FH, HB and ELL
estimators of poverty gap F1d for each area d under low informativeness.
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Figure 5: Percent RB (left) and RRMSE (right) of direct, FH, HB and ELL
estimators of poverty gap F1d for each area d under high informativeness.
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Table 2: Averages across areas of percent ARB and RRMSE for direct, FH,
HB, EB and ELL estimators of incidence F0d and poverty gap F1d, under low
informativeness.

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.74 0.91 71.69 38.92
FH 10.47 19.26 30.33 43.38
HB 1.10 1.38 20.29 35.63
EB 1.04 1.25 20.48 25.86
ELL 1.63 1.98 47.39 58.65

Table 3: Averages across areas of percent ARB and RRMSE for direct, FH,
HB, EB and ELL estimators of incidence F0d and poverty gap F1d, under high
informativeness.

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.59 0.65 23.62 25.69
FH 6.94 9.21 23.83 29.40
HB 61.64 76.95 66.05 84.95
EB 61.60 73.68 66.08 84.89
ELL 61.69 76.98 72.94 97.29

4.3 Nested error model with outliers

In this section, we carry a simulation study under exactly the same conditions
as in Section 4.1, but generating the model errors edi from a mixture of normal
distributions with different variances in order to create outliers. Concretely, in this
simulation study, we generate model errors as edi ∼ (1−ε)N(0, σ2

e)+εN(0, Rσ2
e),

where ε is generated as ε ∼ Bern(p). We consider two fractions of outliers, p = 0.1
and p = 0.5, and two values for the factor R in the variance of outliers, namely
R = 10 and R = 100. Using the above mechanism to generate model errors, a total
of L = 1000 population vectors Y(`), i = 1, . . . , L, were generated from the nested
error model (9). Then, we calculated true area poverty incidences and gaps. Note
that the outliers considered in this simulation study are not recording errors in the
sample data. They are actual representative outliers appearing in the population.
Thus, they are actually realizations of the distribution with heavier tails obtained
from the normal mixture, and true values of poverty indicators actually include
the generated outliers in the population. The sample is drawn by SRS within
each area as in Section 4.1, keeping the sample units s fixed across simulations.
With each Monte Carlo sample, direct, FH, EB, ELL and HB estimators were
computed.

We report here results for the cases of less frequent mild outliers (p = 0.1
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and R = 10), and of more frequent and extreme outliers (p = 0.5 and R =
100). For the first case, results for the poverty gap are plotted in Figure 6.
Again, EB is excluded in the plots because it provides similar results as HB.
Figure 6 left and right show that direct estimators are not practically affected
by the outliers, which is expected because this estimator does not rely on any
model assumption. Similarly, FH estimator is less affected by outliers because
the observed negative bias is again due to non-linearity problems. HB and ELL
estimators show a moderate bias, but still HB estimator achieves the lowest error
in terms of RRMSE. Averages across areas of ARB and RRMSE for all estimators
of poverty incidence and poverty gap are shown in Table 4. We can see that the
ARB of EB and HB estimators is small (around 4% for pov. incidence and 5%
for pov. gap), and the RRMSE has increased only about 0.5% with respect to the
case of no outliers (see Table 2) and it is still acceptable (around 21% for pov.
incidence and 26% for pov. gap).

For the case of more frequent and extreme outliers (p = 0.5 and R = 100),
Figure 7 left shows that in this case HB, and to a greater extent ELL estimators;
present a very large positive RB, see also Table 7 reporting averages across areas.
Note that the RRMSE of ELL estimator reaches 226.63% for the poverty gap. In
this simulation study, FH estimates perform better than in the previous simulation
studies, and this could be due to the fact that, since FH model is less correct
when outliers are present, the FH estimator is attaching more weight to the direct
estimator, which is practically unbiased. EB, HB and ELL estimators are severely
biased when data contains frequent extreme outliers, performing even worse than
under high level of informative sampling, but are not too much affected under rare
and not so extreme outliers. These methods are based on model assumptions and
are not robust to strong model misspecification when the true error distribution
has very heavy tails as in the mixture model considered here with p = 0.5 and
R = 100.

We are exploring estimation methods for complex parameters that are robust
to outliers. Note that previous work on robust estimation, e.g., Sinha and Rao
(2009), focused on estimating area means only.

Table 4: Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB and ELL estimators of incidence F0d and poverty gap F1d, under under nested
error model with outliers (p = 0.01 and R = 10).

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.92 1.18 28.54 36.82
FH 6.16 14.67 26.10 37.55
HB 3.95 4.95 20.81 26.22
EB 3.88 4.79 20.99 26.42
ELL 4.93 6.14 46.65 56.52

21



Relative bias

0 20 40 60 80

−1
5

−1
0

−5
0

5
10

15

1:D

R
el

at
ive

 B
ia

s 
(%

)

DIR FH ELL HB

Relative root MSE

0 20 40 60 80

30
40

50
60

1:D

R
el

at
ive

 M
SE

 (%
)

DIR FH ELL HB

Figure 6: Percent RB (left) and RRMSE (right) of direct, FH, HB and ELL
estimators of poverty gap F1d for each area d under nested error model with
outliers (p = 0.01 and R = 10).

Table 5: Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB and ELL estimators of incidence F0d and poverty gap F1d, under under nested
error model with outliers (p = 0.05 and R = 100).

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.96 1.20 29.68 41.99
FH 5.66 14.33 26.65 36.10
HB 74.13 161.73 86.87 180.88
EB 74.11 161.59 86.95 180.81
ELL 92.64 201.97 111.32 226.63

5 Conclusions

This paper reviews popular poverty mapping procedures focusing on practical
aspects. Simulation studies compare these methods under three interesting sce-
narios that show the good properties when assumptions hold and also the worse
performance when some assumptions are not satisfied. These simulation studies
illustrate that: (i) Even if aggregation protects against model failures in FH area
level model, the linearity assumption of the model fails when data follows a unit
level model but target parameters are nonlinear functions of the model responses.
However, FH estimates are less affected by informative sampling and by symmet-
ric representative unit level outliers. (ii) EB and HB methods perform practically
the same, and are the best among the considered estimators when the nested error
model holds and sampling is noninformative. They are not very much affected by
mildly informative sampling and small proportion of mild outliers, but might be
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Figure 7: Percent RB (left) and RRMSE (right) of direct, FH, HB and ELL
estimators of poverty gap F1d for each area d under under nested error model
with outliers (p = 0.05 and R = 100)

severely affected by highly informative sampling or severe outliers in large propor-
tions. (iii) Census-EB estimators of poverty indicators are practically the same
as EB estimators and avoid linking the survey and census data files. (iv) ELL
method under a nested error model with random area effects performs the worst in
all scenarios because it does not account for unexplained between-area variation.
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