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Abstract

Financial returns often present a complex relation with previous observa-

tions, along with a slight skewness and high kurtosis. As a consequence, we

must pursue the use of flexible models that are able to seize these special fea-

tures: a financial process that can expose the intertemporal relation between

observations, together with a distribution that can capture asymmetry and

heavy tails simultaneously. A multivariate extension of the GARCH such as

the Dynamic Conditional Correlation model with Skew-Slash innovations for

financial time series in a Bayesian framework is proposed in the present docu-

ment, and it is illustrated using an MCMC within Gibbs algorithm performed

on simulated data, as well as real data drawn from the daily closing prices of

the DAX, CAC40, and Nikkei indices.

Keywords: Bayesian inference; Dynamic Conditional Correlation; Financial

time series; Infinite mixture; Kurtosis; MCMC; Skew-Slash.
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1 Introduction

Working with financial returns often presents the challenge of having to model data

with a complex relation to previous observations. This kind of data usually reflects a

heteroskedastic behavior, that could be reasonably dealt with by means of a Gener-

alized Autoregressive Conditional Heteroskedastic (GARCH) process, introduced by

Bollerslev (1986).

Financial data sets have been widely studied assuming Gaussianity for their

stochastic component; nevertheless, this kind of data usually presents a slight skew-

ness and high kurtosis. As a consequence, the normal distribution is not able to

properly perform its modeling task. Instead, we should pursue the use of more flex-

ible models that allow us to capture the characteristics of the studied data more

adequately.

A number of alternatives to Gaussian innovations have been proposed. For the

univariate case, Bollerslev (1987) proposed to capture the high kurtosis in the inno-

vations with a Student’s-t distribution and, with the same objective, Nelson (1991)

considered the Generalized Error Distribution (GED), and Bai, Russell, and Tiao

(2003) assumed a mixture of two zero mean Gaussian distributions. For the mul-

tivariate case, Galeano and Auśın (2010) present a finite mixture of Normal dis-

tributions. Extensions have also been developed to capture skewness such as the

Skew-Normal, the Skew-t, and the Skew-GED distributions of Fernández and Steel

(1998), among others. We can also find in Fioruci, Ehlers, and Andrade (2014) the

study of multidimensional financial returns with Skew-t innovations.

Nevertheless, it still has not been possible to show the existence of a single para-

metric distribution that adequately describes the behavior of financial returns in all

situations.

A couple of suitable options capable to capture both the skewness and high kur-

tosis could be the Skew-t distribution developed by Jones and Faddy (2003), as

proposed by Fioruci, Ehlers, and Andrade (2014), or the Skew-Slash distribution by
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Wang and Genton (2006), among others. Note that the Skew-Slash distribution has

already been applied successfully to describe data with similar characteristics; one

example can be found in Lachos, Garibay, Labra, and Aoki (2009 a).

We must keep in mind that the Skew-Slash distribution is an infinite mixture

of Skew-Normal distributions and, as a consequence, its probability density func-

tion (pdf) presents a complicated form that would make it very difficult to perform

Maximum Likelihood, via either constrained optimization or the EM algorithm, ap-

propriately in the financial framework, while Bayesian inference is more powerful

and is able to undertake the problem we want to present. Additionally, the Bayesian

framework naturally provides the possibility to take into account the intrinsic uncer-

tainty presented by the correlations and volatilities of the assets under study, as well

as the one to incorporate expert information, when available. Hence, our proposal for

the multivariate case is to perform inference for multidimensional financial returns

by means of a Dynamic Conditional Correlation model with Skew-Slash innovations,

from a Bayesian approach.

The rest of the paper is structured as follows. In Section 2, the multivariate Skew-

Slash distribution is introduced, and we give closed forms for its mean, variance, and

kurtosis coefficient. In Section 3, we present the Dynamic Conditional Correlation

model with Skew-Slash innovations. The methodology implemented to perform the

Bayesian estimation of the proposed model is detailed in Section 4. In section 5, we

illustrate the framework presented by estimating the proposed model for simulated

data and, afterwards, we carry out the pertinent estimations for real data conformed

by the log-returns of the DAX, CAC40, and Nikkei indices. Finally, the paper ends

with some conclusions and we expose some extensions that would be desirable in

future research in section 6.
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2 The multivariate Skew-Slash distribution

This section introduces several distributions that are required for later developments

and that help us achieve a better understanding of the Skew-Slash distribution.

2.1 Normal/independent family of distributions

We say that a d-dimensional random vector, V, follows a Normal/independent dis-

tribution, as defined by Lange and Sinsheimer (1993), with location parameter η and

scale matrix Σ if its pdf is given by

fV (v) =

∫
R+

φd
(
v|η, u−2Σ

)
dH(u); v ∈ Rd,

where η ∈ Rd, Σ ∈ Rd×d is a symmetric positive definite matrix, and H(u|ν) is the

cumulative distribution function (cdf) of a unidimensional positive random variable

U , indexed by the parameter ν, and we denote it as V ∼ NId (η,Σ;H). Also,

φd (·|η,Σ) denotes the d-dimensional multivariate normal density with mean η and

covariance matrix Σ.

Its alternative stochastic representation is given by

V ≡ η + U−1X,

where X ∼ Nd (0,Σ). Also, U and X are independent. We assume that ≡ denotes

equivalence in distribution.

Let us notice that, if V ∼ NId (η,Σ;H), then we can find general expressions

for its mean, given by

E (V) = η,

and for its variance-covariance matrix, given by

V (V) = E
(
U−2

)
Σ,

if E (U−2) <∞.
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The Normal/independent family of distributions consists of symmetric distribu-

tions that allow for heavier tails than the Gaussian one. It includes, among others,

the Student’s-t, the Slash, the Power Exponential, and the Contaminated-Normal

distributions, all of which have heavier tails than the Gaussian distribution.

2.2 Skew-Normal distribution

According to Azzalini and Dalla Valle (1996), we say that a d-dimensional random

vector, Z, follows a Skew-Normal distribution with location parameter η, scale matrix

Σ, and skewness parameter λ, denoted as Z ∼ SN d (η,Σ,λ), if its pdf is given by

fZ (z) = 2φd (z|η,Σ) Φ1

(
λ′Σ−1/2 (z− η)

)
; z ∈ Rd, (1)

where η ∈ Rd, Σ ∈ Rd×d is a symmetric positive definite matrix, and λ ∈ Rd. Also,

Φ1 (·) denotes the cdf of the univariate standard normal distribution.

Let us notice that, when λ = 0, the expression in (1) reduces to the normal

density. Also, it is useful to take into account the stochastic representation for Z,

proposed by Azzalini and Dalla Valle (1996), given by

Z ≡ η + Σ1/2
(
δ |X0|+ (I− δδ′)1/2

X1

)
, (2)

where δ = λ/
√

1 + λ′λ, which implies that ‖δ‖2 < 1, andX0 ∼ N1 (0, 1) independent

from X1 ∼ Nd (0, I).

Let us also notice that, if Z ∼ SN d (η,Σ,λ), then its mean is given by

E (Z) = η +

√
2

π
Σ1/2δ,

and its variance-covariance matrix is given by

V (Z) = Σ− 2

π
Σ1/2δδ′Σ1/2.

We may say that this is a more flexible distribution than the Gaussian one because

it allows for the presence of skewness.
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2.3 Skew-Slash distribution

According to the definition given by Wang and Genton (2006), we say that, if Z ∼

SN d (λ) is a standard Skew-Normal random vector, independent from U ∼ Be (ν, 1),

then let us define

W ≡ η + U−1Σ1/2Z. (3)

In this case, we say that W follows a d-dimensional Skew-Slash distribution with

location parameter η, scale matrix Σ, skewness parameter λ, and kurtosis parameter

ν, and it will be denoted as W ∼ SSLd (η,Σ,λ, ν).

The pdf of a Skew-Slash random vector is given by

fW (w) =

1∫
0

2νuν−1φd
(
w|η, u−2Σ

)
Φ1

(
uλ′Σ−1/2 (w − η)

)
du; w ∈ Rd,

where η ∈ Rd, Σ ∈ Rd×d is a symmetric positive definite matrix, λ ∈ Rd, and ν > 0.

From this expression, we can see that the d-dimensional Skew-Slash distribution

is a scale-mixture of a Skew-Normal distribution. This means that we are allowing

the possibility of different variances for different members of the population.

Given the definition of the Skew-Slash random vector in (3), and taking into

account the alternative stochastic representation for a random vector that follows a

Skew-Normal distribution given in (2), we get a more elaborate alternative stochastic

representation for the Skew-Slash distribution

W ≡ η + Σ1/2δX + U−1
[
Σ1/2 (I− δδ′) Σ1/2

]1/2

X1, (4)

where

δ =
1√

1 + λ′λ
λ

X = U−1 |X0| ;X0 ∼ N1 (0, 1)

X1 ∼ Nd (0, I) ; X1 ⊥ X0

U ∼ Be (ν, 1) .

6



Let us notice that, with this definition, we have that ‖δ‖2 < 1.

This stochastic representation is very useful for Bayesian inference; it is also useful

to acknowledge some of the central moments of the Skew-Slash distribution, and it

makes simulation very easy to execute.

In this case, we are able to provide closed expressions for the mean vector, the

variance-covariance matrix, and the kurtosis coefficient; nevertheless, the skewness

coefficient is intractable for the Skew-Slash distribution.

If the random vector W ∈ Rd follows a Skew-Slash distribution, as defined in (3),

according to Wang and Genton (2006), its expectation is given by

E (W) = η +

√
2

π

ν

ν − 1
Σ1/2δ, for ν > 1, (5)

and its variance-covariance matrix is given by

V (W) = Σ1/2

{
ν

ν − 2
I− 2

π

(
ν

ν − 1

)2

δδ′

}
Σ1/2, for ν > 2. (6)

Finally, we can give a closed expression for the kurtosis coefficient using Proposition

7 from Lachos, Labra, and Ghosh (2007), defined as

γ2 (W ) = E
[{

(W − µW )′Σ−1
W (W − µW )

}2
]
,

as established by Mardia (1974), that represents the extension of the kurtosis coeffi-

cient proposed by Azzalini and Capitanio (1999) for the Skew-Normal distribution.

In this case, the kurtosis coefficient is given by

γ2 (W ) =
(ν − 2)2

ν (ν − 4)
a1 − 4

(ν − 2)2

ν (ν − 3)
a2 + a3 − d (d+ 2) , for ν > 4,

where µW = E (W − η) =
√

2
π

ν
ν−1

Σ1/2δ, ΣW = V (W), and

a1 = d (d+ 2) + 2 (d+ 2)µ′WΣ−1
WµW + 3

(
µ′WΣ−1

WµW

)2
,

a2 =

(
d+

2 (ν − 1)

ν

)
µ′WΣ−1

WµW

+

(
1 +

2 (ν − 1)

ν
− π

2

(ν − 1)2

ν (ν − 2)

)(
µ′WΣ−1

WµW

)2
,

a3 = 2 (d+ 2)µ′WΣ−1
WµW + 3

(
µ′WΣ−1

WµW

)2
.
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Figure 1: Kurtosis coefficient of the 2-dimensional Skew-Slash distribution as a func-

tion of λ and ν

To illustrate the ability of the Skew-Slash distribution to generate high kurtosis,

Figure 1 shows some values of the kurtosis coefficient for a 2-dimensional Skew-Slash

random vector and, analogously, Figure 2 does the same for a 3-dimensional Skew-

Slash random vector. In both cases, we set η and Σ to satisfy E (W) = 0 and

V (W) = I. In order to be able to plot the surface, we set λ to be proportional to

a vector of ones. That way, we can plot the size of the elements in λ and ν against

the corresponding kurtosis coefficient.

It can be seen that the kurtosis gets higher as ν decreases. Besides, the size of

the elements in the illustrated λ vectors has only a small effect on the kurtosis. We

are also able to notice that, as the dimension gets higher, the kurtosis allowed for

the same parameter values gets higher as well.

Let us notice that the Skew-Slash distribution, as well as the Skew-t distribution,

defined by Azzalini and Capitanio (2003), among others, are particular members of

the Skew-Normal/independent family of distributions, defined by Lachos, Labra and

Ghosh (2007).
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Figure 2: Kurtosis coefficient of the 3-dimensional Skew-Slash distribution as a func-

tion of λ and ν

3 Dynamic Conditional Correlation model with

Skew-Slash innovations

A popular model used to describe the behavior of financial time series is the General-

ized Autoregressive Conditional Heteroskedastic (GARCH) process. The issue with

the construction of a conditional heteroskedastic model in the multivariate case is

that it must be flexible enough to be able to capture the joint behavior of the assets,

but it cannot be too highly parameterized.

To respond to the problem we pose, we decide to consider the Dynamic Condi-

tional Correlation model introduced by Tse and Tsui (2002). In the way we present

this model, we find that its structure is flexible enough to perform well with the

data sets that we are interested in, while having a reasonable amount of parameters.

Also, this model has already been successfully used to work with financial returns

by Galeano and Auśın (2010) using a finite mixture of normal distributions for the

innovations.
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Several models for multiple returns have been proposed. Among others, Boller-

slev (1990), Jeantheau (1998), Engle and Sheppard (2001), Engle (2002), Cappiello,

Engle, and Sheppard (2006), Billio, Caporin, and Gobbo (2006), and Aielli (2013)

propose some of the most popular approaches in the class of Dynamic Conditional

Correlation models.

The Skew-Slash distribution has much heavier tails than the Skew-Normal distri-

bution, as Wang and Genton (2006) explain in their paper. Also, we have identified

the analytical expressions of the mean vector and variance-covariance matrix for the

Skew-Slash distribution, which allows us to establish the restrictions that the Dy-

namic Conditional Correlation model subjects us to.

Taking into account the mentioned features presented by financial returns, as

well as the power offered by the Skew-Slash distribution, we propose a dynamic

conditional correlation model with d-dimensional Skew-Slash innovations, defined as

yt = µ+ H
1/2
t εt, (7)

where µ is the unconditional mean of the process, Ht ∈ R
d×d is the conditional

covariance matrix of yt, given the past observations {yt−1, . . . ,y0}, and εt is the

innovation at time t.

We specify

Ht = DtRtDt, (8)

where

Dt = diag

({
h

1/2
it

}d
i=1

)
∈ Rd×d (9)

is a diagonal matrix that contains the d conditional standard deviations, denoted as

h
1/2
it for i = 1, . . . , d, and Rt ∈ Rd×d is the matrix of conditional correlations. Let us

notice that Ht is a symmetric positive definite matrix if and only if Dt has a positive

diagonal and Rt is symmetric positive definite itself. We also define

hit = ωi + αi (yt−1,i − µi)2 + βiht−1,i, (10)

Rt = (1− θ1 − θ2) R + θ1Rt−1 + θ2I, (11)

10



where R is a symmetric positive definite correlation matrix with unit diagonal ele-

ments, and off-diagonal elements denoted by ρij. Further, we assume that y0,h0 ∈ Rd

are known constants, which is not a restrictive assumption from a practical point of

view, because financial data sets usually present elevated sample sizes. We also take

αi, βi > 0 and αi + βi < 1, for all i ∈ {1, . . . , d} to ensure positivity of ht and

covariance stationarity; besides, θ1, θ2 > 0 and θ1 + θ2 < 1. Let us remark that,

under this structure, Rt is a symmetric positive definite matrix and Dt has positive

diagonal elements; hence, Ht is indeed a symmetric positive definite matrix.

Finally, we will say that the innovations are independent identically distributed

random vectors, and they follow a d-dimensional Skew-Slash distribution such that

εt ∼ SSLd (η,Σ,λ, ν) ,

with E (εt) = 0 and V (εt) = I for all t ∈ {1, . . . , T}, where T denotes the size of our

time series.

4 Bayesian Inference

First of all, we must acknowledge the restrictions intrinsic to this model. We have al-

ready stated that the innovations will be modeled through a Skew-Slash distribution,

and we have established that E (εt) = 0 and V (εt) = I. Incorporating this restric-

tion to (5) and (6), we have that η = −
√

2
π

ν
ν−1

Σ1/2δ and Σ−1 = ν
ν−2

I− 2
π

(
ν
ν−1

)2
δδ′.

Therefore,

η = −
√

2

π

ν

ν − 1

{
ν

ν − 2
I− 2

π

(
ν

ν − 1

)2

δδ′

}−1/2

δ (12)

and

Σ =

{
ν

ν − 2
I− 2

π

(
ν

ν − 1

)2

δδ′

}−1

. (13)

This means that η and Σ will depend of δ and ν.

Considering that

Σ−1 =
ν

ν − 2
I− 2

π

(
ν

ν − 1

)2

δδ′,
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let us notice that we can easily find a closed form for its inverse, given by

Σ =
ν − 2

ν
I− 2 (ν − 2)2

π (ν − 1)2 − 2ν (ν − 2) δ′δ
δδ′.

Let us denote MD = I− δδ′, with inverse M−1
D = I + 1

1−δ′δ
δδ′, expressions that will

allow for a more compact notation in the expressions to come.

Introducing the parameter restrictions found in (12) and (13) into the alternative

stochastic representation for the Skew-Slash distribution presented in (4), we can

express the innovations alternatively as

εt ≡ −
√

2

π

ν

ν − 1
Σ1/2δ + Σ1/2δXt + U−1

t

[
Σ1/2 (I− δδ′) Σ1/2

]1/2

X1t,

where

δ =
1√

1 + λ′λ
λ,

Xt = U−1
t |X0t| ;X0t ∼ N1 (0, 1) ,

X1t ∼ Nd (0, I) ; X1t ⊥ X0t,

Ut ∼ Be (ν, 1) ,

Σ = Σ(δ, ν).

It is useful to take into account the fact that, because Ht = DtRtDt, we can

define H
1/2
t , such that Ht = H

1/2
t H

1/2
t , as H

1/2
t = D

1/2
t R

1/2
t D

1/2
t , where D

1/2
t =

diag

({
h

1/4
it

}d
i=1

)
and R = R1/2R1/2. Let us also define a new matrix D̃t = D

−1/2
t =

diag

({
h
−1/4
it

}d
i=1

)
. Now, we can define H

−1/2
t = D̃tR

−1/2
t D̃t. Finally, from now on

we consider axt = xt −
√

2
π

ν
ν−1

, also for compacting purposes.

Let us assume that we have observed a series of returns {yt}Tt=1. Then, under the

proposed model, the likelihood function is given by

f
(
{yt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1|δ, ν,µ, {ωi, αi, βi}

d
i=1, θ1, θ2,R

)
∝ νT

{
ν
ν−2
− 2
π ( ν

ν−1)
2δ′δ

1−δ′δ

}T/2 [ T∏
t=1

uν+dt√
det (Rt)

d∏
i=1

1√
hit

]
e
− 1

2

T∑
t=1

u2t

[
x2t+

(
yt−µ−H1/2

t axtΣ
1/2δ

)′
H
−1/2
t Σ−1/2

M−1
D Σ−1/2

H
−1/2
t

(
yt−µ−H1/2

t axtΣ
1/2δ

)]
,
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for {xt}Tt=1 > 0, 0 < {ut}Tt=1 < 1, ‖δ‖2 < 1, ν > 2, {ωi}di=1 > 0, αi + βi < 1 with

αi, βi > 0 for all i ∈ {1, . . . , d}, θ1 + θ2 < 1 for θ1, θ2 > 0, and R symmetric positive

definite

To perform the Bayesian estimation of the model, we decided to sample the joint

posterior parameter distribution through the individual sampling of the posterior

distributions (exposed further in the present document) by designing a Metropolis-

Hastings within Gibbs algorithm.

In order to move forward towards the Bayesian estimation, we need to establish

the prior distributions for all of the model parameters. For simplicity, we consider

prior distributions that are non-informative and have simple known forms that can

be easily understood intuitively, besides being able to incorporate the insight of an

expert, when available; also, we assume independence between λ, Σ, µ, ω1, . . . , ωd,

{αi, βi} for all i ∈ {1, . . . , d}, {θ1, θ2}, and R. We define H as the collection of all

the hyperparameters in the model. The a priori distributions are defined as

f (δ|H) ∝ I (‖δ‖ < 1) , .

f (ν|H) ∝ (ν − 2)aν−1 exp
{
− ν
bν

}
I (ν > 2) ; aν � bν ,

µ|H ∼ Nd (mµ,Sµ) ,

ωi|H ∼ IG (aω, bω) , for i ∈ {1, . . . , d},

f (αi, βi|H)

=
Γ(cαβ)

Γ(cαβpα)Γ(cαβpβ)Γ(cαβ(1−pα−pβ))
α
cαβpα−1
i β

cαβpβ−1
i (1− αi − βi)cαβ(1−pα−pβ)−1 ,

for i ∈ {1, . . . , d},

f (θ1, θ2|H) =

Γ (cθ)

Γ (cθp1) Γ (cθp2) Γ (cθ (1− p1 − p2))
θcθp1−1

1 θcθp2−1
2 (1− θ1 − θ2)cθ(1−p1−p2)−1 ,

R|H ∼ U
(
s.p.d. matrices with unit diagonal ∈ Rd×d

)
.

Note that the prior distributions for all pairs (αi, βi), i = 1, . . . , d, and (θ1, θ2)

are derived assuming a Dirichlet-like prior distribution. Also, IG (·, ·) denotes the

inverse Gamma distribution.
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Under this framework, exact inference is impossible, but we can derive explicit

expressions for all of the posterior distributions. Let us remember that Σ = Σ (δ, ν).

f
(
δ|ν, {εt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝ I

(
‖δ‖2

2 < 1
) [ ν

ν−2
− 2
π ( ν

ν−1)
2δ′δ

1−δ′δ

]T/2
exp

{
−1

2

T∑
t=1

u2
t

{
ε′tΣ

−1/2M−1
D Σ−1/2εt − 2axtε

′
tΣ
−1/2M−1

D δ + a2
xtδ
′M−1

D δ
}}

(14)

f
(
ν|δ, {εt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝ (ν − 2)aν−1 exp

{
− ν
bν

}
I (ν > 2) νT

[
ν
ν−2
− 2

π

(
ν
ν−1

)2
δ′δ
]T/2 [ T∏

t=1

uνt

]
exp

−1
2

T∑
t=1

u2
t

 ε′tΣ
−1/2M−1

D Σ−1/2εt − 2axtε
′
tΣ
−1/2M−1

D δ

+2
(

ν
ν−1

) [
1
π

(
ν
ν−1

)
−
√

2
π
xt

]
δ′M−1

D δ




(15)

f
(
µ|δ, ν, {ωi, αi, βi}di=1, θ1, θ2,R, {yt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝ exp

{
−1

2
(µ−mµ)′ Sµ (µ−mµ)
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
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)
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1√
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]
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(
R|δ, ν,µ, {ωi, αi, βi}di=1, θ1, θ2, {Yt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝ I (R s.p.d.)

[
T∏
t=1

1√
det (Rt)

]

exp


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



(20)

Xt|δ, ν, {εt}Tt=1, {X1, . . . , Xt−1, Xt+1, . . . , XT}, {Ut}Tt=1,H ∼ N1

(
µx, σ

2
x

)
I
(
R

+
)
,

(21)

where

µx = ε′tΣ
−1/2δ +

√
2

π

ν

ν − 1
δ′δ

and

σ2
x = u−2

t (1− δ′δ) .

By writing I (R+), we denote that the marginal posterior distribution for xt is a

normal distribution truncated to xt ∈ (0,∞).

U2
t |δ, ν, {εt}

T
t=1, {Xt}Tt=1, {U1, . . . , Ut−1, Ut+1, . . . , UT},H ∼ G (au, bu) I (0, 1) , (22)

where

au =
ν + d+ 1

2

and

bu =
1

2

{
x2
t +

[
εt − axtΣ1/2δ

]′
Σ−1/2M−1

D Σ−1/2
[
εt − axtΣ1/2δ

]}
.

By writing I (0, 1), we denote that the marginal posterior distribution for ut is a

Gamma distribution truncated to ut ∈ (0, 1).

Let us notice that almost none of the distributions exposed above have known

forms. For this reason, we designed an MCMC within Gibbs algorithm, as we men-

tioned before. Now we exhibit the pseudocode to explain the algorithm.
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1. Set m = 0 and initial values

λ(0), ν(0), µ(0), ω(0),
{
α(0),β(0)

}d
i=1

,
(
θ

(0)
1 ,θ

(0)
2

)
, R(0).

2. Simulate u
(m)
t ∼ Be

(
ν(m), 1

)
and x

(m)
0 ∼ N1 (0, 1), and compute x

(m)
t =

∣∣∣x(m)
0

∣∣∣ /u(m)
t

for all t ∈ {1, . . . , T}.

3. Compute δ(m) = 1√
1+λ(m)′λ(m)

λ(m).

4. Compute
{

h
(m)
t

}T
t=1

as in (10),
{

D
(m)
t

}T
t=1

as in (9),
{

R
(m)
t

}T
t=1

as in (11), and{
H

(m)
t

}T
t=1

as in (8).

5. Compute η(m) and Σ(m) to satisfy the null mean and unit variance restrictions

as specified in (12) and (13), respectively.

6. Compute ε
(m)
t = H

(m)−1/2
t

(
yt − µ(m)

)
for all t ∈ {1, . . . , T}.

7. Obtain a sample δ(m+1) from the distribution in (14). Compute λ(m+1) =

1√
1−δ(m+1)′δ(m+1)

δ(m+1).

8. Obtain a sample ν(m+1) from the distribution in (15).

9. Obtain a sample µ(m+1) from the distribution in (16). Execute step 4 alone.

10. Obtain a sample ω(m+1) from the distribution in (17). Execute step 4 alone.

11. Obtain samples α
(m+1)
i∗ , β

(m+1)
i∗ from the distribution in (18) for all i∗ ∈ {1, . . . , d}.

Execute step 4 alone.

12. Obtain a sample θ
(m+1)
1 , θ

(m+1)
2 from the distribution in (19). Execute step 4

alone.

13. Obtain a sample R(m+1) from the distribution in (20). Execute step 4 alone.

14. Obtain a sample x
(m+1)
t from the distribution in (21).

15. Obtain a sample u
(m+1)
t from the distribution in (22).
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16. Set m = m + 1 and repeat steps 4 thru 15 until m = M ′ for a large M ′.

For the parameters of the model, we apply Metropolis Hastings steps because it is

not possible to sample directly from their posterior distributions, but the steps that

correspond to the latent variables can be performed using a Gibbs sampler.

We simulate δ through a transformation of a normal random vector to ensure that

the restriction is satisfied. ν, ω, (αi, βi) for i ∈ {1, . . . , d}, θ are sampled by means

of logarithmic transformations based on their current values, also ensuring that their

restrictions are met. The candidate for µ is proposed using a normal distribution

centered on the current value. Finally, the potential new values for R are proposed

by standardizing a covariance matrix that takes into account the current value for

this correlation matrix. In the case of xt and ut, for t ∈ {1, . . . , T}, the posterior

distributions have known forms, so sampling is straightforward.

5 Examples

To illustrate our proposal, we present two approaches. First, we estimate the param-

eters of simulated data in order to evaluate our procedure. Afterwards, we model a

real data set that contains information about the joint behavior of the DAX, CAC40,

and Nikkei indices. In both cases, we specify the Bayesian prior hyperparameters as

aν = 100, bν = 0.01, mµ = 0, Sµ = 0.07I, aω = 0.001, bω = 0.001, cαβ = 10, pα = 0.1,

pβ = 0.85, cθ = 10, p1 = 0.9, p2 = 0.05. The MCMC within Gibbs sampler that we

designed is run for 5000 iterations to burn in and 10000 iterations in equilibrium for

the simulation case, and 20000 iterations to burn in and 25000 in equilibrium for the

real data.

5.1 Simulated data

With the purpose of testing our work, we started by modeling simulated data sets.
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Figure 3: True (solid line) and fitted (dotted line) volatilities for the 2-dimensional

simulated data.

In every case, we obtained fitted volatilities as the mean value of the fitted volatil-

ities for the 10000 parameter values of the MCMC sampler.

First, we generated a 2-dimensional time series of returns from a multivariate 2-

dimensional Skew-Slash DCCmodel with T = 2000 observations, Skew-Slash parame-

ters η = (0.0769, 0.0769)′, Σ with diagonal elements (0.6036, 0.6036) and off-diagonal

element 0.0036, λ = (−0.1,−0.1)′, ν = 5, and GARCH parameters μ = (0, 0)′,

ω = (0.001, 0.001)′, (α1, β1)
′ = (α2, β2)

′ = (0.1, 0.85)′, θ = (0.9, 0.05)′, and R with

unit diagonal and off-diagonal element ρ12 = 0.7. Notice that Σ and R are symmetric

matrices; also, keep in mind that η and Σ are set to verify the zero mean and unit

variance of the innovations.

Figure 3 shows the real volatilities (blue solid line) and the Bayesian posterior

mean volatility estimates (red dashed line), and we can see that they are almost in-

distinguishable. Figure 4 illustrates the comparison between the theoretical marginal

densities of the innovations (solid blue line), and the mean predictive marginal den-

sities (dashed red line), both compared to the marginal histograms of the real inno-
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Figure 4: True (solid line) and fitted (dotted line) predictive innovation marginal

densities compared to their histograms for the 2-dimensional data set.

(a) (b)

Figure 5: True (a) and fitted (b) predictive innovation joint densities for the 2-

dimensional simulated data.
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(a) (b)

Figure 6: Contour plots of the true (a) and fitted (b) predictive innovation densities

for the 2-dimensional simulated data.

vations presented by the 2-dimensional simulated data. Here, we find that not only

are both marginal densities very similar, but the estimation results are apparently

very good; actually, it is hard to see which function seems closer to the observations.

Finally, Figure 5 shows the joint theoretical density of the innovations in 5(a) next

to their joint predictive density in 5(b), while Figure 6 shows the contour plot of the

joint theoretical density of the innovations in 6(a) together with their contour plot of

the joint predictive density in 6(b). From both sets of figures, we can see that, even

though we are not able to superimpose them, their similarity is clear.

Second, we generate a 3-dimensional time series of returns from a multivari-

ate Skew-Slash DCC model with T = 2000 observations, Skew-Slash parameters

η = (0.0768, 0.0768, 0.0768)′, Σ with diagonal elements all equal to 0.6035 and off-

diagonal elements all with value 0.0035, λ = (−0.1,−0.1,−0.1)′, ν = 5, and GARCH

parameters µ = (0, 0, 0)′, ω = (0.001, 0.001, 0.001)′, (α1, β1)′ = (α2, β2)′ = (α3, β3)′ =

(0.1, 0.85)′, θ = (0.9, 0.05)′, and R with unit diagonal and off-diagonal elements

ρ12 = 0.5, ρ13 = 0.7, and ρ23 = 0.3. Notice that Σ and R are symmetric matrices,
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Figure 7: True (solid line) and fitted (dotted line) volatilities for the 3-dimensional

data set.

also keep in mind that η and Σ are set to verify the zero mean and unit variance of

the innovations.

Figure 7 shows the real volatilities (blue solid line) and the Bayesian posterior

mean volatility estimates (red dashed line), and we can see that they are almost in-

distinguishable. Figure 8 illustrates the comparison between the theoretical marginal

densities of the innovations (solid blue line), and the mean predictive marginal den-

sities (dashed red line), both compared to the marginal histograms of the real inno-

vations presented by the 3-dimensional simulated data. Here, we also find that both

densities are almost indistinguishable, and the estimation results appear to be very

good as well. Finally, Figure 9 shows the 2-variable marginal theoretical densities of

the innovations in 9(a) for (ε1, ε2), 9(c) for (ε1, ε3), and 9(e) for (ε2, ε3) next to their

2-variable marginal predictive densities in 9(b) for (ε1, ε2), 9(d) for (ε1, ε3), and 9(f)

for (ε2, ε3).
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Figure 8: True (solid line) and fitted (dotted line) predictive innovation marginal

densities compared to their histograms for the 3-dimensional data set.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: True (left) and fitted (right) predictive innovation 2-variable marginal

densities for the 3-dimensional simulated data.
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(a) (b)

Figure 10: Contour plots of the true (a) and fitted (b) predictive innovation 2-variable

marginal densities for the 3-dimensional simulated data.
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Figure 10 shows the contour plots of the 2-variable marginal theoretical densities

of the innovations in 10(a) together with their contour plots of the 2-variable marginal

predictive densities in 10(b). From both sets of figures, we can see that, even though

we are not able to superimpose them, their similarity is clear.

5.2 Real data example

To illustrate the usefulness of the approach proposed in the present document, in

this section, we analyze the daily log-returns of the DAX, CAC40, and Nikkei stock

market indices. Besides this, we obtained fitted volatilities as the mean value of the

fitted volatilities of the 25000 parameter values of the MCMC sampler.

The original information consists on the daily closing prices of the stock market

indices in Frankfurt (DAX), Paris (CAC40), and Tokyo (Nikkei) from October 10th,

1991 until December 30th, 1997, which leads to 1624 observations1. To obtain the

daily log-returns, we make a transformation such that the daily log-return at time t,

for a certain stock market index, is given by 100 times the logarithm of the increase

rate of the closing price of the day t, respect to the closing price of the day t−1. This

way, we lose the first observation and end up with a total of T = 1623 log-returns.

Figure 11 shows the plot of the time series generated by the log-returns of our

three stock market indices, and we will associate the DAX index to the first innovation

component, ε1, the CAC40 index to the second innovation component, ε2, and the

Nikkei index to the third (and last) innovation component, ε3. We can see that the

data is clearly heteroskedastic, and it also presents a perturbation in the end that

calls for a model that can capture heavy tails in the innovations, as we propose with

our 3-dimensional Skew-Slash DCC model. Also, we can already see that the data is

mostly symmetric in all three cases.

In fact, the univariate sample means are (0.0614, 0.0295, 0.0601)′, the standard

deviations of the separate series are (0.9988, 1.0893, 1.6101)′, the individual skewness

1The data is freely available in http://robjhyndman.com/tsdldata/data/FVD1.dat
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Figure 11: DAX, CAC40, and Nikkei log-returns between October 10th, 1991 and

December 30th, 1997.

coefficients are (−0.5799,−0.0434,−0.2078)′, and the univariate kurtosis coefficients

of the three considered log-return series are given by (8.5006, 4.4835, 18.5369)′.

Clearly, the normal distribution could not possibly be able to reflect the behavior

exhibited by this data set. This leads us to believe that it makes sense to use the

proposed Dynamic Conditional Correlation model with Skew-Slash innovations for

this data because all of the indices considered have a slight skewness and a high

kurtosis, especially the Nikkei stock market index.

Figure 12 shows the fitted volatilities, while Figure 13 shows the estimated inno-

vation marginal densities. On the other hand, in Figure 14, we can see the 2-variable

marginal predictive densities of the innovations, and Figure 15 shows their corre-

sponding contour plots.

Now, we proceed to compare the performance of our model against some of the

alternative proposals of Fioruci, Ehlers, and Andrade (2014). They perform their

main estimation using another member of the Skew-Normal/independent family: the

Skew-T (and they compare it to the performance of other reference distributions).
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Figure 12: Volatility estimates for the DAX, CAC40, and Nikkei log-returns.

Figure 13: Estimated innovation marginal densities for the DAX, CAC40, and Nikkei

log-returns.
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(c)
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Figure 14: Estimated innovation 2-variable marginal densities for the DAX, CAC40,

and Nikkei log-returns.
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Figure 15: Contour plots of the estimated innovation 2-variable marginal densities

for the innovations of the DAX, CAC40, and Nikkei log-returns.

A difference between our approaches is that they establish a null drift parameter, µ,

and do not estimate the correlation matrix, while we allow both sets of parameters

to define themselves. To compare both models, we decided to set µ = 0 as well, and

set the value of R as the correlation matrix of the data, and leave them fixed during

the estimation in order to be able to recreate an analogous scenario.

After we obtained our own estimations, we used the Deviance Information Cri-

terion (DIC), defined by Spiegelhalter, Best, Carlin, and van der Linde (2002), a

measurement already provided in their paper, for comparison.

In Table 1 we can find the Deviance Information Criterion (DIC) values for the Dy-

namic Conditional Correlation model with different innovation distributions: Gaus-

sian, Skew-Normal, Generalized Error Distribution (GED), Skew-GED, Student’s-t,

Skew-t, and Skew-Slash. In this table, we are able to show the model comparison

performed by Fioruci, Ehlers, and Andrade (2014), in which they choose the Skew-t

distribution to model the innovations, and also incorporate the comparison with our

model.
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Table 1: DIC for the Dynamic Conditional Correlation model with several innovation

distributions for the DAX, CAC40, and Nikkei data.

DIC

Normal 13957.53

Skew-Normal 13947.62

GED 13828.97

Skew-GED 13823.48

Student’s-t 13810.36

Skew-t 13803.32

Skew-Slash 13801.71

As they explain, for the DAX, CAC40, and Nikkei data, the distributions with

heavier tails exhibit a better behavior than the normal distribution. In fact, the

best performance they select is the one exhibited by the mentioned Skew-t distri-

bution, obtaining a DICSkT = 13803.32. We obtained a smaller, but similar value

DICSSL = 13801.7153. Therefore, the better performance is attained by the Dynamic

Conditional Correlation model with Skew-Slash innovations, although the difference

with the Skew-t distribution is small.

6 Conclusions and Extensions

In the present document, we have studied the Skew-Slash distribution, a distribution

able to capture the slight skewness and high kurtosis that are often observed in the

residuals of financial time series of returns after fitting a conditional heteroskedastic

model.

We proposed to model the structure of multidimensional time series of financial

returns by means of the Dynamic Conditional Correlation model with Skew-Slash

innovations and, while we explained our proposal, we constructed a methodology for

the model fitting from a Bayesian point of view.
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To illustrate the abilities of our proposed model and methodology, we applied our

ideas to simulated series of returns and, later on, we estimated a real data set that

has already been studied by Fioruci, Ehlers, and Andrade (2014), using a Dynamic

Conditional Correlation model with Skew-t innovations.

We compared our models using the DIC, that manifested a better performance of

our model capturing the essence of the data set under study, but not with a very big

difference, which lead us to believe that, for this kind of data sets, different members

of the Skew-Normal/independent family of distributions might have a similar perfor-

mance fitting their features, but maybe each data set has its own better partner, to

call it some way.

There are a number of subjects that are related to the work presented in this

document, and that we find interesting, but have not been able to explore yet.

First of all, we believe that it would be very interesting to open up to the possibil-

ity of a Dynamic Conditional Correlation model with Skew-Slash innovations, based

in the structure of a model of the form GARCH({pi, qi}di=1).

Second, we think that one of the reasons that give relevance to finding a way to

model financial data sets that allows us to capture the essence of the behavior of the

data in the best way possible is the necessity of the investors for a good assessment

of the risk they would be incurring in if they decided to include certain assets in their

portfolio. One possible way of answering this inquietude could be to implement our

model to the characterization of certain risk measures, such as the Value at Risk or

the Conditional Value at Risk.

Finally, it would be interesting to address the possibility of working with a dis-

tribution that can not only capture the lack of symmetry or the presence of heavy

tails, but allows for more flexibility in the structure of the kurtosis parameter; for

instance, we could try to study the possibility of a kurtosis parameter with more

than one component.
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