
Departamento de Tecnolóıa Electrónica

TRABAJO FIN DE GRADO

Design and Implementation of a
Multi-Level Monte Carlo
Accelerator for Option

Pricing on the Zynq-7000 EPP

Autor: Helena Lázaro Garćıa

Director: José Antonio Garćıa Souto
Tutor: Celia Lopez Óngil

Leganés, Febrero 2013

ii

Copyright c©2013. Helena Lázaro Garćıa
Esta obra est licenciada bajo la licencia Creative Commons
Atribucin-NoComercial-SinDerivadas 3.0 Unported (CC BY-NC-ND 3.0).
Para ver una copia de esta licencia, visite
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.es o enve una carta a
Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,
94041, EE.UU.
Todas las opiniones aqu expresadas son del autor, y no reflejan necesariamente
las opiniones de la Universidad Carlos III de Madrid.

iii

Ttulo: Design and Implementation of a Multi-Level Monte Carlo
Accelerator for Option Pricing on the Zynq-7000 EPP
Autor: Helena Lázaro Garćıa
Director: José Antonio Garćıa Souto
Tutor: Celia Lopez Óngil

EL TRIBUNAL

Presidente:

Vocal:

Secretario:

Realizado el acto de defensa y lectura del Trabajo Fin de Grado
el da de de ... en, en la Escuela Politcnica
Superior de la Universidad Carlos III de Madrid, acuerda otorgarle
la CALIFICACIN de:

VOCAL

SECRETARIO PRESIDENTE

Agradecimientos

Agradezco a mi tutora, Celia, principalmente, debido a que gracias a ella
pude llevar este proyecto fin de grado en el extranjero con su supervisión desde
España. También me gustaŕıa agradecer a la Universidad de Kaiserslautern que
me aceptó como free mover y siempre tuvo sus puertas abiertas para todo lo
que necesitara, aśı como mis co-tutores en el extranjero Christian y el profesor
Wehn, que me brindaron y facilitaron en la medida de lo posible el entrar a
formar parte de su equipo de investigación y a trabajar con ellos. Por último,
pero no menos importante, todo el apoyo y ánimo que me ha aportado mi familia
durante todo el proceso.

iv

Abstract

Current trends in financial modeling aim to predict the market prices of dif-
ferent financial instruments, specially derivatives as Options. These models and
prediction algorithms are run in server farms in order to meet the demand of
data processing. As a result an increase on the number of such processing com-
pounds has arisen, at a point that there is not enough energy to supply them. In
this work we present a novel concept for High Performance Computing, which
comprises the use of Embedded Systems Theory, specially the use of FPGA
based hardware, in order to accelerate computing algorithms. To the best of
our knowledge, we implement the first hardware accelerator of the Heston Model
in a leading-edge technology development board (Zynq EPP).

Tendencias actuales en modelos de financieros intentan predecir los precios
de mercado de distintos instrumentos financieros, especialmente en derivados
de opciones. Estos modelos y algoritmos predictivos se corren sobre granjas de
servidores para alcanzar la demanda del procesamiento de datos. El resultado
obtenido ha sido un gran incremento del procesamiento, hasta el punto de no
tener suficiente enerǵıa para alimentarlo. En este trabajo se presenta un nuevo
concepto de alto rendimiento computacional, el cual comprende el uso de teoŕıa
de sistemas empotrados, especialmente el uso de FPGAs basadas en hardware,
con el fin de acelerar algoritmos computacionales. Con lo mejor de nuestro
conocimiento, hemos implementado el primer acelerador de hardware basado
en el modelo de Heston en una tarjeta de desarrollo de tecnologia punta (Zynq
EPP).

Keywords: FPGA, Hardware, Accelerator, Zynq.

v

Contents

Agradecimientos iv

Abstract v

1 Introduction 1

2 Background 2
2.0.1 Option Pricing . 2

2.1 Multi-Level Monte Carlo Simulation 2
2.2 Zynq-7000 EPP - An Extensible Processing Platform Family . . 4

2.2.1 ZedBoard - Hardware Development Platform 5
2.3 Xillybus - IP Cores and Design Services 6
2.4 Xillinux - A Linux Distribution for the Zedboard 8
2.5 Previous Work . 9

3 Implementation 12
3.1 Setting up Xillinux . 12

3.1.1 Unzipping the boot image kit 14
3.1.2 Generating the processor netlist 15
3.1.3 Generating the bitstream file 15
3.1.4 Creating the boot.bin image 15
3.1.5 Loading the image (Linux) 16
3.1.6 Copying the boot image file into the SD card 16

3.2 Booting up Xillybus . 17
3.2.1 Jumper settings . 17
3.2.2 Attaching peripherals . 17
3.2.3 Powering up the board . 17
3.2.4 Allow remote SSH access 19
3.2.5 Shutting down . 19
3.2.6 Taking it from here . 20

3.3 Hardware Development . 20
3.3.1 FIFOs Overview . 21
3.3.2 Testing initial FIFOs’ funcionality 21
3.3.3 Adding a second FIFO . 21
3.3.4 AXI4 Stream FIFOs . 23
3.3.5 Integration with Serializer Interfaces 26

3.4 Final Design . 29

vi

CONTENTS vii

4 Results 33
4.1 First Architecture: Without the Accelerator 33

4.1.1 Resource Utilization . 33
4.2 Second Architecture: With the Accelerator 34

4.2.1 Resource Utilization . 34
4.3 Trade-offs of the design flow . 35
4.4 Future Work . 35
4.5 Conclusion . 36

Bibliography 37

Acronyms 39

List of Figures

2.1 Hypothetical evolution of a multi-level Monte Carlo Simulation . 3
2.2 Zynq 7000 family . 5
2.3 Functional blocks of the Zynq-7000 All Programmable SoC . . . 6
2.4 ZedBoard . 7
2.5 Simplified FPGA block diagram of Xillybus 8
2.6 Block Diagram of the System’s Architecture. In dark blue: soft-

ware running in a host machine. In green: random number gen-
eration cores. In orange: accelerator’s external datapath. In light
blue: accelerator’s internal datapath. 10

2.7 Graphical representation of the packets queue in the system. The
first subscript represents the id of the path, the second represents
the iteration number. 11

3.1 Hardware and Software implementation. The Hardware part is
represented in blue and the Software part in green. 13

3.2 General block diagram of the work flow followed in this project.
Near each process appears the tools we use for this section, for
Xilinx tools we use the Version 14.2. 14

3.3 Jumper settings highlighted on the Zedboard 18
3.4 Hardware development work flow for new custom logic integration. 20
3.5 Two terminals, one writes the data in the FIFO and the other

receives the data. 22
3.6 Adding a second FIFO in the loopback 23
3.7 FIFO AXI4-Stream block. 23
3.8 FIFO AXI4-Stream block. 24
3.9 AXI4-FIFO Timing Diagram . 24
3.10 Connection between standard and AXI4-Stream FIFOs 25
3.11 Block diagram of the complete accelerator 32

viii

List of Tables

3.1 AXI4-S FIFOs input and output ports 24
3.2 Serial-to-parallel AXI4-S interface input and output ports 27
3.3 Parallel-to-serial AXI4-S interface input and output ports 28
3.4 Accelerator input and output ports 30
3.5 Accelerator input data array . 31
3.6 Accelerator output data array . 31

4.1 Resource utilization without the accelerator. 34
4.2 Resource utilization with the accelerator 34

ix

1. Introduction

Modern financial mathematics consume more and more computational power
and energy. Finding efficient algorithms and implementations to accelerate cal-
culations is therefore a very active area of research. In the University of Kaiser-
slautern, Germany, an interdisciplinary cooperation rose up between the Mi-
croelectronic System Design Research Group (http://ems.eit.uni-kl.de and
the Stochastics and Financial Mathematics Department (http://www.mathematik.
uni-kl.de/~wwwfm/index_eng.html) to try to build optimal designs.

Today, pricing of derivates (particularly options) in financial institutions is
a challenge. Besides the increasing complexity of the products, obtaining fair
prices requires more realistic (and therefore complex) models of the underly-
ing asset behavior. Not only due to the increasing costs, energy efficient and
accurate pricing of these models becomes more and more important

In the University of Kaiserslautern they are currently designing a highly par-
allel architecture for field programmable gate arrays based on the multi-level
Monte Carlo method. It is optimized for high throughput and low energy con-
sumption, compared to GPGPUs.

My work throughout this thesis will be the migration of the previous hardware
accelerator developed by Pedro Torruela[3] in his Master thesis to the ZedBoard
for the purpose of opening the doors to the finally implementation of a hardware-
software-co-design flow.

Thanks to the Zynq-7000, that combines a high performance multicore pro-
cessing subsystem ARM-based with FPGA structure, we are able to migrate
the complete previous hardware accelerator to the new board, integrating also
the host inside the board. For that we will install an operative system (Linux
distribution) in the board.

1

http://ems.eit.uni-kl.de
http://www.mathematik.uni-kl.de/~wwwfm/index_eng.html
http://www.mathematik.uni-kl.de/~wwwfm/index_eng.html

2. Background

In this section we will address general concepts needed in order to understand
the next chapters of this work. We begin by briefly explaining some of this
concepts and finish by making a quick summary of the previous work.

2.0.1 Option Pricing

The pricing of options is a very important problem encountered in financial
markets today. Fisher Black and Myron Scholes developed in 1973 a method
to determine the value of derivates [10]. This method was referred in the later
on publication of Robert C. Merton, ”Theory of Rational Option Pricing ”[11].
This model was called Black-Scholes and provides a conceptual framework for
valuing options, such as calls or puts. But for many other options, either there
are no closed from solutions, or if such closed form solutions exist, the for-
mulas exhibiting them are complicated and difficult to evaluate accurately by
conventional methods. Monte Carlo methods provide the highest flexibility in
application and are very robust, therefore we go for MC methods in this work.

2.1 Multi-Level Monte Carlo Simulation

The name Monte Carlo was applied to a class of mathematical methods first
used by scientists (Ulam and Metropolis) working on te development of nuclear
weapons in Los Alamos in 1940s [8]. The essence of the method is the invention
of games of chance whose behavior and outcome can be used to study some
interesting phenomena, such as a new product’s sales or stock prices (in the
financial area). It is, in essence, a computerized mathematical technique that
allows people to account for risk in quantitative analysis and decision making.

Monte Carlo simulation offers an alternative to analytical mathematics for
understanding a statistic’s sampling distribution and evaluating its behavior in
random samples. Monte Carlo simulation does this empirically using random
samples from known populations of simulated data to track a statistic’s behav-
ior. The basic concept is straightforward: If a statistic’s sampling distribution
is the density function of the values it could take on in a given population, then
its estimate is the relative frequency distribution of the values of that statistic
that were actually observed in many samples drawn from that population. Be-
cause it usually is impractical for social scientists to sample actual data multiple
times, we use artificially generated data that resemble the real thing in relevant

2

2.1. MULTI-LEVEL MONTE CARLO SIMULATION 3

ways. The recent availability of high-speed computers makes this approach now
widely practical.

The gambling analogy notwithstanding, Monte Carlo simulation is a legiti-
mate and widely used technique for dealing with uncertainty in many aspects
of business operations. For our purposes, it has been shown to be an accurate
method of pricing options and particularly useful for path-dependent options
and others for which no known formula exists.

In 2001 Stefan Heinrich [7] was the first who study MC approximations to high
dimensional parameter dependen integrals. Heinrich surveyed the multi-level
variance reduction technique introduced by himself and presented extensions
and new developments of it. Seven years later, Giles introduced multi-level
Monte Carlo path simulation method [6] where he shows that multigrid ideas
can be used to reduce the computational complexity of estimating an expected
value arising from a stochastic differential equation using MC path simulations.
Although the details of both multi-level Monte Carlo methods are quiet different,
the analysis of the computational complexity is quiet similar.

In its most general form, multi-level Monte Carlo (MLMC) simulation uses a
number of levels of resolution, l = 0, 1, ..., L, with l = 0 being the coarsest, and
l = L being the finest. In the context of a SDE simulation, level 0 may have
just one timestep for the whole time interval [0, T], whereas level L might have
2L uniform timesteps 4tL = 2−LT . This improves the computational efficiency
of Monte Carlo path simulation by combining results using different numbers of
timesteps.

Figure 2.1: Hypothetical evolution of a multi-level Monte Carlo Simulation

Summarizing, in the multi-level Monte Carlo Simulations, the Brownian or
random values used to compute the next value of a path, are added for a certain
number of loops, and then used to compute a coarse next value that will be used

4 2. BACKGROUND

later on in the final calculation [4]. The use of this approach has demonstrated
to reduce the complexity of Monte Carlo Path Simulations [Giles, 2008]. Figure
2.1 shows the evolution of an hypotethical multi-level Monte Carlo Simulation.
Notice that the path in green only has 4 information points, that correspond to
the evolution of the path every three fine steps.

2.2 Zynq-7000 EPP - An Extensible Processing
Platform Family

Zynq-7000 All Programmable SoCs (AP SoC) are extensible processing plat-
forms, a new generation of SoCs that combine high performance multicore pro-
cessing subsystems ARM-based with FPGA structure.

The Zynq-7000 family combines an industry-standard ARM dual-core Cor-
tex(TM) -A9 MPCore(TM) processing system with Xilinx’s scalable 28nm pro-
grammable logic architecture. It supports parallel development of software for
the dual-core Cortex-A9 processor-based system and custom accelerators and
peripherals in the programmable logic. The ARM Cortex-A9 CPUs are the
heart of the PS and also include on-chip memory, external memory interfaces,
and a rich set of peripheral connectivity interfaces. Software developers can
leverage the open source Eclipse platform, Xilinx Platform Studio Software De-
velopment Kit (SDK), ARM Development Studio 5 (DS-5) and ARM RealView
Development Suite (RVDS), or compilers, debuggers, and applications from dif-
ferent vendors.

The flexible nature of programmable logic and its tight integration to the
ARM based processing system offers the possibility to add virtually any periph-
eral we want and create accelerators to extend the performance of the Zynq-7000
devices. This makes Zynq-7000 devices the ideal solution for our work.

The Zynq-7000 architecture enables implementation of custom logic in the
PL and custom software in the PS. It allows for the realization of unique and
differentiated system functions. The integration of the PS with the PL allows
levels of performance that two-chip solutions (e.g., an ASSP with an FPGA)
cannot match due to their limited I/O bandwidth, latency, and power budgets.

The inclusion of an application processor enables high-level operating system
support, e.g., Linux. Other standard operating systems used with the Cortex-
A9 processor are also available for the Zynq-7000 family.

The PS and the PL are on separate power domains, enabling the user of
these devices to power down the PL for power management if required. The
processors in the PS always boot first, allowing a software centric approach
for PL configuration. PL configuration is managed by software running on the
CPU, so it boots similar to an ASSP.

2.2. ZYNQ-7000 EPP - AN EXTENSIBLE PROCESSING PLATFORM FAMILY5

Figure 2.2: Zynq 7000 family

2.2.1 ZedBoard - Hardware Development Platform

The ZedBoard (http://www.zedboard.org) enables hardware and software
developers to create or evaluate Zynq-7000 All Programmable SoC designs.
Nowadays it is available for purchase from Avnet Electronics Marketing (http:
//www.avnet.com/) and Digilent (http://www.digilentinc.com/).

The expandability features of this evaluation and development platform make
it ideal for rapid prototyping and proof-of-concept development. The ZedBoard
includes Xilinx XADC, FMC (FPGA Mezzanine Card), and Digilent Pmod
compatible expansion headers as well as many common features used in sys-
tem design. ZedBoard enables embedded computing capability by using DDR3
memory, Flash memory, gigabit Ethernet, general purpose I/O, and UART
technologies.

http://www.zedboard.org
http://www.avnet.com/
http://www.avnet.com/
http://www.digilentinc.com/

6 2. BACKGROUND

Figure 2.3: Functional blocks of the Zynq-7000 All Programmable SoC

2.3 Xillybus - IP Cores and Design Services

Xillybus (http://xillybus.com/) is a IP core developed by Xillybus Ltd.
company. The downloaded evaluation core is free for any use, as long as this
use reasonably matches the term ”evaluation”. This includes incorporation
the core in end-user designs, running real-life data and field testing. It is a
straightforward, intuitive, efficient DMAbased end-to-end turnkey solution for
data transport between an FPGA and a host running Linux or Microsoft Win-
dows. It’s available for personal computers and embedded systems using the
PCI Express bus as the underlying transport, as well as ARM-based processors,
interfacing with the AMBA bus (AXI3/AXI4).

The FPGA designer as well as the host application programmer interact with
Xillybus through well-known interfaces: The FPGA application logic connects
to the IP core through standard FIFOs; the user application on the host per-
forms plain file I/O operations on pipe-like device files. Streaming data moves
naturally between the FIFO and the file handler opened by the host application.
There is no specific API involved.

http://xillybus.com/

2.3. XILLYBUS - IP CORES AND DESIGN SERVICES 7

Figure 2.4: ZedBoard

For example, writing data to the lower FIFO in the diagram above makes
the Xillybus IP core sense that data is available for transmission in the FIFOs
other end. Soon, the Xillybus reads the data from the FIFO and sends it to
the host, making it readable by the user-space software. The data transport
mechanism is transparent to the application logic in the FPGA, which merely
interacts with the FIFO.

On its other side, the Xillybus IP core implements the data flow utilizing the
AXI bus, generating DMA requests on the processor core’s bus.

The Xillybus IP core communicates data with the user logic through a stan-
dard FIFO (”Application FIFO” in the diagram), which is supplied by the IP
core’s user. This gives the FPGA designer the freedom to decide the FIFO’s
depth and its interface with the application logic. This setting relieves the
FPGA designer completely from managing the data traffic with the host. Rather,
the Xillybus core checks the FIFOs ”empty” or ”full” signals (depending on data
direction), and initiates data transfers when the FIFO is ready for it.

8 2. BACKGROUND

Figure 2.5: Simplified FPGA block diagram of Xillybus

There is no kernel-space or hardware-related programming necessary on the
host side, nor any need to link with a particular software library. Any practical
programming language can be used to access Xillybus streams without a specific
extension.

The host driver generates device files that behave like named pipes: They
are opened, read from and written to just like any file, but behave much like
pipes between processes or TCP/IP streams. And like the TCP/IP socket, the
Xillybus stream is designed to work well with high-rate data transfers as well
as single bytes arriving or sent occasionally.

2.4 Xillinux - A Linux Distribution for the Zed-
board

Xillinux is a complete, graphical, Ubuntu 12.04 LTS-based Linux distribution
for the Zedboard, intended as a platform for rapid development of mixed soft-
ware / logic projects. It is developed by Xillybus Ltd. company and provided
in its web page. It is released under GPL and can be used with no restriction
like any Linux distribution such as RHEL, Fedora, Ubuntu, etc. Xillinux is a
collection of software which supports roughly the same capabilities as a personal
desktop computer running Linux. Unlike common Linux distributions, Xillinux
also includes some of the hardware logic, in particular the VGA adapter.

The distribution is organized for a classic keyboard, mouse and monitor set-
ting. It also allows command-line control from the USB UART port, but this
feature is made available mostly for solving problems.

Xillinux is also a kick-start development platform for integration between the
device’s FPGA logic fabric and plain user space applications running on the
ARM processors. With its included Xillybus IP core and driver, no more than
basic programming skills and logic design capabilities are needed to complete

2.5. PREVIOUS WORK 9

the design of an application where FPGA logic and Linux-based software work
together.

The bundled Xillybus IP cores eliminates the need to deal with the low-level
internals of kernel programming and interface with the processor, by presenting
a simple and yet efcient working environment to the application designers.

2.5 Previous Work

Nowadays the modern financial mathematics is running fast and the energy
and power consumption are becoming an important issue to approach. An in-
terdisciplinary cooperation rise up between the Microelectronic Systems Design
Research Group (http://ems.eit.uni-kl.de/) and the Stochastic and Finan-
cial Mathematics Department (http://www.mathematik.uni-kl.de/~wwwfm/
index_eng.html) in the University of Kaiserslautern, Germany. The main goal
of this cooperation is finding efficient algorithms for an implementation on ded-
icated hardware.

In the autumn 2012 Pedro Torruellal[3] proposed an implementation for a
FPGA based multi-level Monte-Carlo Hardware Accelerator for the Heston
Mode basing his study on the previous energy efficient model proposed in the
International Conference on Reconfigurable Computing and FPGAs [9]. Pedro’s
work is the first known implementation of hardware accelerator for multi-level
Monte Carlo Simulation on a FPGA. The main goal of his work was to have a
working platform and framework, with which we can continue further activities.

The image 2.6 summarizes hardware accelerator that was developed. The
blocks inside the light yellow rectangle represents the host computer, here is
where a high-level software program is running, and is in charge of doing the
payout computation to control the Monte Carlo Simulation. In the embed-
ded platform, the big second block in light purple, the hardware accelerator is
connected to CPU. This CPU in this application is a Xilinx MicroBlaze, syn-
thesized together with the accelerator in a Virtex-6 FPGA. The accelerator is
implementing directly part of the algorithm of the Monte Carlo simulation.

This accelerator will be synthesized to support a clock frequency of 100 Mhz
along with the MicroBlaze. The data representation in this accelerator will be
IEEE-754 single precision floating point standard. In general, the datapath will
have a bit width of 66 bits: 32 for the price and volatility values, and 2 more
for hit barrier status flags. It is important to maintain only valid packets inside
the datapath and it is also important to maintain their ordering. With this
assumption we were able to avoid the use of a packet identification word in
the architecture. This is critical in order to save resources on the FPGA, that
otherwise would just be transporting this constant signals without doing any
computation with them.

The data inside the datapath is handled with a packet philosophy, where each
fine and coarse path is represented by a packet, having a volatility-price pair

http://ems.eit.uni-kl.de/
http://www.mathematik.uni-kl.de/~wwwfm/index_eng.html
http://www.mathematik.uni-kl.de/~wwwfm/index_eng.html

10 2. BACKGROUND

Figure 2.6: Block Diagram of the System’s Architecture. In dark blue: software
running in a host machine. In green: random number generation cores. In
orange: accelerator’s external datapath. In light blue: accelerator’s internal
datapath.

and the barrier bits. Figure 2.7 shows this packet structure. In this example
we have six fine paths and their corresponding coarse path. The fine paths are
evolved several times before the coarse paths.

In general the architecture of the accelerator is pipelined with a cyclic inner
datapath that allows the direct feedback of data packets for the iterations of the
Monte Carlo Simulation. This is represented in Figure 2.6 as the blocks inside
the grey rectangle in the bottom. As you can see there, the accelerating logic
has two parts: the modules that feed random numbers into the datapath (in
green and orange) and the application’s datapath (in light blue), which is based
upon different cores that implement a part of the algorithm.

From this point, the use of a hardware-software-co-design flow is a need in
order to find the best possible configuration of software and hardware blocks.
This means the complete migration of the computation to the embedded plat-
form could be carried out. In the actual accelerator’s state the CPU only serves
as an interface between the data generated by the accelerator and the external

2.5. PREVIOUS WORK 11

Figure 2.7: Graphical representation of the packets queue in the system. The
first subscript represents the id of the path, the second represents the iteration
number.

host computer, so we are not exploiting our resources. At this point is where the
use of the Xilinx’s Zynq EPP is interesting, since we could use the processing
power of the ARM core to run interfacing and computing tasks.

My work throughout this thesis will be the migration of the previous hard-
ware accelerator to the ZedBoard for the purpose of opening the doors to the
finally implementation of a hardware-software-co-design flow. Afterwards there
will be no need to use a host computer, since we will implement a completely
independent system while installing an operative system (Linux distribution) in
the ZedBoard.

3. Implementation

In this section we aim to describe the general implementation procedure of
the system. Throughout this section we will first prepare the environment for
the hardware accelerator building Xillinux in the ZedBoard. At this point we
will be able to boot up the Xillybus project and test that it works properly
testing FIFO’s functionality and making small modifications over them. Later
on we will proceed to integrate our own custom logic. At the end we will have
the hardware accelerators working in the new platform, the Zynq.

Our aim is to eliminate the need of a host computer, since we will have it
implemented on our ZedBoard. We have summarized our work in the Image
3.1.

The flow of our work has different steps, some only need to be done once
(setting up the operative system, booting up for first time the proyect Xillybus),
since others take several iterations to get the desired result (IP core development,
emulation of the results). We can appreciate it in the Figure 3.2

3.1 Setting up Xillinux

The first step we have to carry out is building Xillinux distribution in the
ZedBoard.

The Xillinux distribution is intended as a development platform: A ready-for-
use environment for custom logic development and integration is built during its
preparation for running on hardware. This makes the preparation for the first
test run somewhat timely but significantly shortens the cycle for integrating
custom logic.

To boot the Xillinux distribution from an SD card, it must have two compo-
nents:

• An initial boot image environment, consisting of boot loaders, a configu-
ration bitstream for the logic fabric (known as PL), and the binaries for
booting the Linux kernel.

12

3.1. SETTING UP XILLINUX 13

ACCELERATOR

R
R
R
R
R
R
R
R
R
R

R
R

R

S
S
S
S

M

FIFO FIFO

XILLYBUS

ARM (PS)

AXI BUS

Xillinux (Host)

FPGA

8 BITS 8 BITS

Drivers

Figure 3.1: Hardware and Software implementation. The Hardware part is
represented in blue and the Software part in green.

• A root file system mounted by Linux.

The following steps must be done in the order outlined below:

• Unzipping the boot image kit.

• Generating the processor netlist.

• Generating Xilinx IP cores.

• Implementing the main logic fabric project.

• Producing a boot image file.

• Writing the raw Xillinux image to the SD card.

• Copying the boot image file into the SD card.

We obtain the needed files from the Xillybus web page(www.xillybus.com).

www.xillybus.com

14 3. IMPLEMENTATION

Setting up Xillinux

First Boot Up

Hardware Development

Hardware Emulation

Final Design

XPS
ISE

ISE

bad

good

Figure 3.2: General block diagram of the work flow followed in this project.
Near each process appears the tools we use for this section, for Xilinx tools we
use the Version 14.2.

3.1.1 Unzipping the boot image kit

The first step is unzipping the previously downloaded xillinux−eval−zedboard−XXX.zip
file into a working directory.

The bundle consists of the following directories:

• verilog - Contains the project file for the main logic and some sources in
Verilog (in the src subdirectory)

• vhdl Contains the project file for the main logic and some sources, with
the user-editable source file in VHDL (in the src subdirectory)

• cores Precompiled binaries of the Xillybus IP cores

• system Directory for generating processor-related logic

• runonce Directory for generating general-purpose logic (CoreGen FIFO
IP cores).

• boot Final stage assembly of the boot image file.

The interface with the Xillybus IP core takes place in the xillydemo.v or
xillydemo.vhd files in the respective src subdirectories. This is the file to edit
in order to try Xillybus with our own data sources and sinks.

3.1. SETTING UP XILLINUX 15

3.1.2 Generating the processor netlist

To generate the processor netlist we must launch the Xilinx Platform Studio
(XPS) and open the system.xmp file, wich is inside the ”system” directory. Once
the project is opened we must click ”Generate Netlist” to the left. We will use
the version 14.2 of XPS.

The console output says ”XST completed” and ”Done!” upon a successful
completion of the process. At this pint, close the XPS completely.

Generating Xilinx IP cores

At this point we are going to rebuilt the Xilinx IP cores:

• fifo 32x512

• fifo 8x2048

• vga fifo

Within the boot image kit, double-click the runonce.xise file in the ”runonce”
directory. This opens the Xilinx ISE Project Navigator. On the opened window
we have the three cores we need to regenerate. We are going to click on by
one and run ”Regenerate Core” (we find this option expanding the ”CORE
Generator” line in the process window).

At this point we close the ISE Project Navigator completely.

3.1.3 Generating the bitstream file

Here we can use two projects, the only difference is that one is written in
VHDL and the other in Verilog. For our project we are going to use the VHDL
one. Taking into account that, we are going to use the project saved in the
directory ”vhdl”.

The Project Navigator will launch and open the project with the correct
settings. We just need to click ”Generate Programming File”.

The procedure will produce several warnings (FPGA implementations always
do) but should not present any errors. The process should end with the output
Process Generate Programming File completed successfully. The result can be
found as xillydemo.bit in the ”vhdl” directory along with several other files.

When this task is completed successfully, we close the ISE Project Navigator
completely.

3.1.4 Creating the boot.bin image

To create the boot.bin image we need the xillydemo.bit file created before.
We will copy this file from the ”vhdl” subdirectory into the ”boot” directory.

16 3. IMPLEMENTATION

Now we need a terminal open in this directory. As we are working over a
Linux OS, to be able to carry out the next task we must run the configuration
settings of ISE tools’. After this we can run the following command:

bootgen -image xillybus.bif -o i boot.bin

This command will create the boot.bin image that we need for the SD card.

3.1.5 Loading the image (Linux)

First of all, it is important to detect the correct device as the SD card. This
is best done by plugging in the USB connector and looking for something like
this in the main log file:

In our case the name the kernel gave to the new disk is ”sdb” in the example
above.

When we know which is our disk, we proceed to uncompress the image file.

gunzip xillinux.img.gz

Afterwards we must copy the image to the SD card.

dd if=xillinux.img of=/dev/sdb bs=512

To finish we will verify is the content of the image is the same as the content
of the SD card.

cmp xillinux.img /dev/sdb

cmp: EOF on xillinux.img

Note the response: The fact that EOF was reached on the image file means
that everything else compared correctly, and that the flash has more space than
actually used. If cmp says nothing (which would normally be considered good)
it actually means something is wrong. Most likely, a regular file /dev/sdc was
generated rather than writing to the device.

If the process has been completed successfully we should have an SD card
with two partitions.

Before continuing with the next steps we should unmount the SD card.

3.1.6 Copying the boot image file into the SD card

Connect the SD card back to the computer. Then copy the boot.ini to the
FAT file system on the SD card, it is the first (and smaller) partition. This
partition only has two files: ”devicetree.dtb” and ”zImage”.

To finish we unmount the SD card properly. Now we can introduce the SD
card in the ZedBoard and start with the booting up.

3.2. BOOTING UP XILLYBUS 17

3.2 Booting up Xillybus

In this section we will set up the ZedBoard for the booting up.

3.2.1 Jumper settings

For the board to boot from the SD card, modifications in the jumper settings
need to be made. The correct setting is depicted in the image 3.3. The following
jumper changes are necessary:

• Install a jumper for JP2 to supply 5V to USB device.

• JP10 and JP9 moved from GND to 3V3 position, the three others in that
row are left connected to GND.

• Install a the jumper for JP6.

3.2.2 Attaching peripherals

The following general-purpose hardware should be attached the board:

• A computer monitor to the analog VGA connector. Since Xillinux pro-
duces a VESA-compliant 1024x768 @ 60Hz through the analog VGA plug,
it’s almost certain that any computer monitor will suffice.

• A mouse and keyboard to the USB OTG connector, through the USB
female cable that came with the board (which is also the shorter one).
The system will boot in the absence of these, and there is no problem
connecting and disconnecting the keyboard and mouse as the system runs
the system detects and works with whatever keyboard and mouse it has
connected at any given moment. Note that JP2 on the board must be
installed for this USB port to function.

• The Ethernet port is optional for common network tasks. The Linux
machine configures the network automatically if the attached network has
a DHCP server.

• The UART USB port is optionally connected to a PC, but is redundant in
most cases. Some of the boot messages are sent there, and a shell prompt
is issued on this interface when the boot completes. This is useful when
either a PC monitor or a keyboard is missing or don’t work properly.

3.2.3 Powering up the board

This paragraph describes what to expect on a proper cycle from powering up
the system.

18 3. IMPLEMENTATION

Figure 3.3: Jumper settings highlighted on the Zedboard

3.2. BOOTING UP XILLYBUS 19

Plug the SD card into the Zedboard, and power it on. The following sequence
is expected:

• Only the green POWER LED goes on. Nothing else happens.

• About 8 seconds later, the blue DONE LED goes on, and a red LED starts
blinking. Other LEDs go on as well. The VGA monitor displays a screen
saver pattern with Xillybus logo moving on white background. All these
indicate that the logic fabric (PL, FPGA) has been loaded properly with
the bitstream (xillydemo.bit).

• After some additional 14 seconds (22 seconds from power-up), Linux boot
up text appears rapidly on the VGA monitor. This looks exactly like a
PC booting, with white text on black background.

• A login prompt should appear no later than 10 seconds after the boot up
text was first seen on the VGA monitor. The system auto-logins as root,
presenting a greeting message and a shell prompt. A similar shell prompt
is also presented at the USB UART link, mostly for troubleshooting.

Type startx at command prompt to launch a Gnome graphical desktop. The
desktop takes some 15-30 seconds to initialize. If nothing appears to happen,
monitoring the activity meter on the OLED display helps telling if something
is going on.

3.2.4 Allow remote SSH access

Allowing remote SSH access is not a need but is very useful.

To install an ssh server on the board, connect the board to the Internet and
type:

apt-get install ssh-server

at shell prompt. Please note that the root password is none by default, and ssh
rightfully refuses to login someone without a password.

To rectify this, set the root password with

passwd root

at shell prompt.

3.2.5 Shutting down

To power down the system, pick the top-right icon on the desktop, and click
Shut Down.... Alternatively, type

shutdown -h now

at shell prompt.

When a textual message saying System Halted appears, its safe to power the
board off.

20 3. IMPLEMENTATION

3.2.6 Taking it from here

Our Zedboard has now become a computer running Linux for all purposes.
From now on we will interact with the logic through the Xillybus IP core. Note
that the driver for Xillybus is already installed in the Xillinux distribution.

Xillinux includes the gcc compiler and GNU make, so host applications can
be compiled natively on the boards processors. Additional packages may be
added to the distribution with apt-get as well.

3.3 Hardware Development

The Xillinux distribution is set up for easy integration with application logic.
The front end for connecting data sources and sinks is the xillydemo.vhd file.
All other HDL files in the boot image kit can be ignored for the purpose of
using the Xillybus IP core as a transport of data between the Linux host and
the logic fabric.

Additional HDL files with custom logic designs may be added to the project
regenerating the bitstream file (see paragraph 3.1.3), and then rebuilt the same
way it was done the first place. To boot the system with the updated logic, the
boot.bin needs to be regenerated as described in paragraph 3.1.4 and written
to the SD file as described in paragraph 3.1.6. There is no need to repeat the
other steps of the initial distribution deployment, so the development cycle for
logic is fairly quick and simple.

Modify Xillydemo. xise
proyect in ISE

Regenerate bitstream file

Regenerate boot.bin

Rewrite to the SD file

Figure 3.4: Hardware development work flow for new custom logic integration.

3.3. HARDWARE DEVELOPMENT 21

3.3.1 FIFOs Overview

These FIFOs have been generated with the Core Generator function from the
ISE tool. The Xilinx LogiCORE IP FIFO Generator[2] is a fully verified first-in
first-out (FIFO) memory queue for applications requiring in-order storage and
retrieval. The core provides an optimized solution for all FIFO configurations
and delivers maximum performance (up to 500 MHz) while utilizing minimum
resources.

The FIFO Generator core supports Native interface FIFOs and AXI4 interface
FIFOs. The Native interface FIFO cores include the original standard FIFO
functions delivered by the previous versions of the FIFO Generator[1] (up to
v6.2). Native interface FIFO cores are optimized for buffering, data width
conversion and clock domain decoupling applications, providing in-order storage
and retrieval.

3.3.2 Testing initial FIFOs’ funcionality

The idea about this test is to verify that the loopback indeed works. The
easiest way is by using the UNIX command-line utility cat.

We open two terminal windows, in the first one we type at command prompt:

cat /dev/xillybus_read_8

On the second terminal window we type:

$ cat > /dev/xillybus_write_8

In the first windows, the ”cat” program will print out anything it reads from
the xillybus read 8 device file, meanwhile in the second window we should no-
tice the > redirection sign, which tells ”cat” to send anything typed to xilly-
bus write 8. We can see it running in the Figure 3.5.

Now, whenever we type some text on the second terminal, and press ENTER,
the same text will appear in the first terminal. The reason nothing is sent
until ENTER is pressed, is that the standard input is designed not to bother
applications with every character.

Either ”cat” can be halted with a CTRL-C. Other trivial file operations will
work likewise

3.3.3 Adding a second FIFO

Before adding our own HDL files we add a second FIFO in a loopback. Instead
of having just one FIFO of 8 bits we modified the xillydemo.vhd file in order to
add a second one connected to the first and afterwards, connect this one to the
Xillybus. We can see the connexion between the FIFOs and the Xillybus in the
Figure 3.6.

22 3. IMPLEMENTATION

Figure 3.5: Two terminals, one writes the data in the FIFO and the other
receives the data.

To get everything running we need to follow the steps mentioned in the para-
graph 3.3:

• Modify the xillydemo.vhd file instantiating a new component of the fifo 8x2048
and connecting it properly to the previous FIFO and the Xillybus.

• Regenerate the bitstream file.

• Recreate the boot image file.

• Copy the new boot image file into the SD card.

In the next image we can see the test running properly.

This test has been made with the FIFO of 8 bits and the FIFO of 32 bits.
No problem occurred during the tests.

To complicate a bit the loopback we also add some VHDL code that modifies
the data between the FIFOs. This modification consists in adding 1 to the data
that flows between the FIFOs.

As we receive the data in ASCII, if we add 1 to an A we get B, if we add 1
to a B we get C, and so on.

3.3. HARDWARE DEVELOPMENT 23

Figure 3.6: Adding a second FIFO in the loopback

In this point we will start adding our own custom logic to the previous project.
Xillybus creators strongly recommend to not remove either substitute the FIFOs
connected to the Xillybus, so the solution would be to connect our custom logic
to the other side of one of its FIFOs, as we can see in the Figure 2.5.

3.3.4 AXI4 Stream FIFOs

The accelerator project is implemented with AXI4-Stream (AXI4-S) bus stan-
dard [5]. Due to this, as a first approach we will try to connect AXI4-Streams
to the FIFOs loopback, in order to verify the correct connexion between the
Native interface FIFOs and AXI4 interface. This action will also give us some
feedback about the Xillybus’ signals behaviour.

For this purpose, we will create a similar 8-bits FIFOs but with AXI4-Stream
connections. We also used the Xilinx LogiCORE IP FIFO Generator[2], but
selecting AXI4 interface (Figure 3.8).

ackl

aresetn

s axis tdata

s axis tvalid

s axis tready

m axis tdata

m axis tvalid

m axis tready

AXI4Stream

FIFO

Figure 3.7: FIFO AXI4-Stream block.

24 3. IMPLEMENTATION

Signal Dir Type Description

ackl in std logic Clk input
aresetn in std logic Reset input (active low)
s axis tdata in std logic vector (8) AXI4-S slave tdata input
s axis tvalid in std logic AXI4-S slave tvalid input
s axis tready out std logic AXI4-S slave tready output
m axis tdata out std logic vector (8) AXI4-S master tdata output
m axis tvalid out std logic AXI4-S master tvalid output
m axis tready in std logic AXI4-S master tready input

Table 3.1: AXI4-S FIFOs input and output ports

The AXI4 interface protocol uses a two-way VALID and READY handshake
mechanism. The information sources uses the VALID signal to show when valid
data or control information is t with AXI4-Stream connections. We also used the
Xilinx LogiCORE IP FIFO Generator[2], but selecting AXI4 interface (Figure
3.8).

ackl

aresetn

s axis tdata

s axis tvalid

s axis tready

m axis tdata

m axis tvalid

m axis tready

AXI4Stream

FIFO

Figure 3.8: FIFO AXI4-Stream block.

available on the channel. The information destination uses the READY signal
to show when it can accept the data. Figure 3.9 shows an example timing
diagram for write and read operations to the AXI4 FIFO.

Figure 3.9: AXI4-FIFO Timing Diagram

In the standard FIFOs we do not have VALID either READY signals, instead
of these we have WR EN (write enable) and FULL connected to a write agent

3.3. HARDWARE DEVELOPMENT 25

and RD EN (read enable) and EMPTY connected to a read agent. The side
connected to the write agent will be the AXI4 slave side and the side connected
to the read agent the AXI4 master side.

Firstly, proceed to analyze the slave part and the good connexion between the
control signals. In the standard FIFO WR EN is active when the write agent
is ready to send data, so it basically has the same behavior as VALID. On the
other hand, FULL means the FIFO is full, so it is not able to accept more data.
This behavior is very similar to READY but inverted, so we will put a NOT
gate in the middle of this connexion between FIFOs.

In the slave part we found the same behavior. RD EN means the read agent
is ready to receive the data, so it does the same as READY, and empty means
the FIFO has no data to send, so is similar to VALID inverted.

The connection between FIFOs is based on paragraphs above. We can see
the graphical connection in Figure 3.10.

Application

AXI4-Stream

datas axis tdata

data

Application

Xillybus

s axis tvalid

s axis tready

empty

rd en

wr en

full

m axis tdata

m axis tvalid

m axis tready

FIFO

FIFO

FIFO

Figure 3.10: Connection between standard and AXI4-Stream FIFOs

To test our design we have created the AXI4-Stream FIFO with the Xilinx
Core Generator, and later added the new files (ending in .v and .ngc) to our
ISE proyect. After that we just need to modify the VHDL top module file
adding the new component and connecting it. Afterwards we just follow the
steps described before (Figure 3.4), introduce the SD card in the ZedBoard and
turn on the board to test it.

We got satisfactory results, the same as we had only with the standard FIFOs,
which means the connection is successful since it does not interfere in the original
behaviour.

26 3. IMPLEMENTATION

3.3.5 Integration with Serializer Interfaces

This step is crucial to the correct future implementation of the whole accel-
erator in our project. The accelerator works with an input of 580 bits and an
output of 66, therefore we need an intermediate interface to transform the size
of the input/output data vector. The solution for this is the use of a serializer
interface developed in the research group by Luis Vega.

The serializer interface we will use need some changes before it fits in our
project. The initial version has a different behavior than the one we need in our
project. At this point, the correct performance of the AXI4-Stream signals is
vital, if not we would not be able to correctly send the data from the Xillybus to
the accelerator. The interface consist of two different cores, the first transforms
serial data in parallel and the second transforms parallel data in serial. The
serial-to-parallel transforms small data input in a bigger output (multiple of the
input). Likewise, but in the other direction, the parallel-to-serial transforms big
inputs in a smaller outputs.

3.3. HARDWARE DEVELOPMENT 27

Signal Dir Type Description

G RESET ACTIVE generic std logic
Specifies if the reset is
active high (1) or low (0)

WIDTH generic integer Bit width
NUM REG generic integer Number of registers

clk in std logic
Clock signal, sensitive
to positive clock edge

rst in std logic
Reset input, depends on
G RESET ACTIVE

s axis tvalid in std logic AXI4-S slave tvalid input

s axis tdata in
std logic vector

(WIDTH)
AXI4-S slave tdata input,
depends on WIDTH value

s axis tready out std logic AXI4-S slave tready output
s axis tlast in std logic AXI4-S slave tlast input, not used

reg array ready in std logic
Ready input, unit is able
to write data if ready = 1

reg array out
std logic vector

(WIDTH*NUM REG)
Data output, depends on WIDTH
and NUM REG values

reg array valid out std logic If 1 data output is valid for its use

Table 3.2: Serial-to-parallel AXI4-S interface input and output ports

As we can see in the tables above, we can handle the behavior of the AXI4-S
cores setting G RESET ACTIVE, WIDTH and NUM REG values. For exam-
ple, in the serial-to-parallel block we will set G RESET ACTIVE = 1, WIDTH
= 8 and NUM REG = 60, in order to get a block that works with a reset ac-
tive high, an input data of 8 bits (to connect the 8 bit FIFO) and an output
data of 480 bits (11 inputs of 32 bits each one and one more of 128). In the
parallel-to-serial block we will have the same configuration with the exception
of NUM REG = 9, in this case we will have an input of 4 bits (2 outputs of 32
bits and 1 more of 2 bits, so we will only use the 66 more significants) and an
output of 8 (to connect to the 8 bit FIFO).

The behavior of this blocks was modified from the original version since it
does not work with the logic of the Xillybus. Both blocks have 3 states (Read,
Load, Write). In the first state the blocks must read as much data as it needs,
in the second they modify the data in order to transform serial-to-parallel or
parallel-to-serial, and in the last one they write the transformed data in the
output.

To emulate this block we connect it to the AXI4-S FIFOs we have created
previously, the connexion is very simple as both blocks have AXI4-S interfaces.
We connect the signals from the slave part to the master and vice versa.

At the first attempt, we kept the NUM REG as 1, so the bit width in the
input and output was the same. This first approach was very helpful, since we
could debug almost all the VHDL code, finding the parts that were not working.
Afterwards, we tried by modifying NUM REG first to 3 and then to 9. In these

28 3. IMPLEMENTATION

Signal Dir Type Description

G RESET ACTIVE generic std logic
Specifies if the reset is
active high (1) or low (0)

WIDTH generic integer Bit width
NUM REG generic integer Number of registers

clk in std logic
Clock signal, sensitive
to positive clock edge

rst in std logic
Reset input, depends on
G RESET ACTIVE

reg array ready out std logic
Ready output, unit is able
to write data if ready = 1

reg array in
std logic vector

(WIDTH*NUM REG)
Data input, depends on WIDTH
and NUM REG values

reg array valid in std logic If 1, data input is valid for its use
m axis tvalid out std logic AXI4-S master tvalid output

m axis tdata out
std logic vector

(WIDTH)
AXI4-S master tdata output,
depends on WIDTH value

m axis tready in std logic AXI4-S master tready input

m axis tlast out std logic
AXI4-S master tlast output,
not used

Table 3.3: Parallel-to-serial AXI4-S interface input and output ports

cases, is a specification of our VHDL to send as many bits as number of registers
we have, in other case, our interfaces will keep waiting for more data until they
have enough to complete the output data vector.

Finally we were able to communicate our serializer interfaces with the Xillybus
properly. To conclude, we just remove the AXI4-S FIFOs from the design and
connect the serializer interfaces directly to the standard FIFOs.

3.4. FINAL DESIGN 29

3.4 Final Design

The accelerator design by Pedro consists in several IP cores, we will mention
the most important ones and shortly describe them.

• Step Generator Core: This Block implements the Step Generating function
of the Heston model. Internally it has a core generated with HLS and
interfacing logic needed to control its behavior. It has two slave and one
master AXI4-S interfaces. The current values of the price and volatility
are fed through s axis input , whilst the Brownian increments through
s axis rng .

• Correlator Core: The correlator is a block that takes two numbers and
correlates them using a given Rho constant. This core comprises a multi-
plier, an adder, and the extra logic to store partial results. The arithmetic
cores are implemented using the Xilinx Ip-Cores from the floating point
library.

• Antithetic Core: The Antithetic unit comprises two FSM. The function
of the block is to allow the run of simulations using antithetic numbers.
This allows to have only a single RNG unit, but yet, have a throughput
of two random numbers every clock cycle. This is done by negating the
sign of the input numbers from the last clock cycle.

• Barrier Checker Core: The barrier checker is just a pair of digital com-
parators, and their aim is to check whether the input (the option’s price)
has reached a certain lower or upper bound. There are two comparators
in order to check both barriers in parallel.

• Controller: This is a very simple controller implemented to synchronize the
different cores of the datapath. It does not support flushing in the middle
of the cycle, and it assumes that once the valid conf flag is asserted, is
not lowered during operation. The controller is located inside the Inner-
Datapath.

• Accumulator Core: The correlator is a block that takes two numbers and
correlates them using a given Rho constant. This core comprises a multi-
plier, an adder, and the extra logic to store partial results. The arithmetic
cores are implemented using the Xilinx Ip-Cores from the floating point
library.

After the correctness of each core, they were connected in order to form the
complete design shown in Figure 3.1. Due to all the previous work and test, it
should work with no problems and without the need of any change.

For a better understanding of the following table we need to explain that PQ
means packet queues and RNG means random number generator.

30 3. IMPLEMENTATION

Signal Dir Type Description

aclk in std logic Clk input
aclken in std logic Clk enable
aresetn in std logic Reset input (active low)

rho in std logic vector (32)
Rho input for the
correlator core

sqr rho in std logic vector (32)
Square root of Rho input
for the Correlator Core

valid config in std logic
Valid Configuration singal
for the cores

antithetic in std logic
Antithetic signal for the
antithetic unit

m axis output tvalid out std logic AXI4-S master tvalid output
m axis output tready in std logic AXI4-S master tready input
m axis output tlast out std logic AXI4-S master tlast output
m axis output tdata mx out std logic vector (32) AXI4-S master output
m axis output tdata mv out std logic vector (32) AXI4-S master output
m axis output tdata bar out std logic vector (2) AXI4-S master output
s axis pq tvalid in std logic AXI4-S slave tvalid PQ input
s axis pq tready out std logic AXI4-S slave tready PQ output
s axis pq tlast in std logic AXI4-S slave tlast PQ input
s axis pq tdata in std logic vector (128) AXI4-S slave tdata PQ input
s axis rng tvalid in std logic AXI4-S slave tvalid RNG input
s axis rng tready out std logic AXI4-S slave tready RNG output
s axis rng tlast in std logic AXI4-S slave tlast RNG input

s axis rng tdata in std logic vector (32)
AXI4-S slave tdata input with
random numbers

kappa delta in std logic vector (32) Simulation parameter kappa delta
delta in std logic vector (32) Simulation parameter delta
sqrt delta in std logic vector (32) Simulation parameter sqr delta

risk inter rate in std logic vector (32)
Simulation parameter risk
interest rate

long term avg vol in std logic vector (32)
Simulation parameter long
term average volatility

vol of vol in std logic vector (32)
Simulation parameter volatility
of volatility

top barrier in in std logic vector (32) Simulation parameter top barrier

bot barrier in in std logic vector (32)
Simulation parameter bottom
barrier

Table 3.4: Accelerator input and output ports

The table above represents all the input and output signals of the complete
accelerator. As we can see we have 12 input and 3 outputs, in total we need a
input bit width of 480 bits and an output bit width of 66. The configuration of
the serial-to-parallel interface needs to have the REG NUM set in 60 and the
parallel to serial interface set in 9. Therefore, our input and output bit will be
setting with the follow configuration, this will be the order we must follow to

3.4. FINAL DESIGN 31

send the data properly.

Singal Bit Location
s axis pq tdata 352 to 459
rho 320 to 351
sqr rho 288 to 319
s axis rng tdata 256 to 287
kappa delta 224 to 255
delta 192 to 223
sqr delta 160 to 191
risk inter rate 128 to 159
long term avg vol 96 to 127
vol of vol 64 to 95
top barrier in 32 to 63
bot barrier in 0 to 31

Table 3.5: Accelerator input data array

Singal Bit Location
trash* 66 to 95
vol of vol 64 to 65
top barrier in 32 to 63
bot barrier in 0 to 31

Table 3.6: Accelerator output data array

In the output data array the data comprised between the 66 and 95 bits
will be trash. As we don’t have enough data to complete the whole array our
parallel-to-serial interface will fill it with zeros.

32 3. IMPLEMENTATION

Figure 3.11: Block diagram of the complete accelerator

4. Results

In this chapter we will describe some practical results that we got from the
implementation of the cores and the architecture described in chapter 3. Firstly
we show the results of the complete architecture without the accelerator and af-
ter with it included. It was done in order to be able to test a simple architecture
where maybe in the future we can add a more sophisticated accelerator.

4.1 First Architecture: Without the Accelera-
tor

All the cores proposed in section 3 were successfully coded in VHDL and
implemented. The previous ISE project from the Xillybus was modified in
order to add our custom logic.

As mentioned earlier, in this architecture no accelerator was implemented in
order to have a general design where we can add future more complex acceler-
ators.

4.1.1 Resource Utilization

Table 4.1 shows resource utilization by this architecture. Synthesis and Place
and Route options were the following:

• Resource Sharing: Activated.

• Shift Register Extraction: Activated.

• Optimization Goal: Speed.

• Optimization Effort: High.

• Place and Route mode: Only Route.

• Place and Route Effort Level: High.

• PAR extra effort: Normal.

33

34 4. RESULTS

Slice Logic Utilization Used Available Utilization

Slice Registers 3.525 106.400 3%
Registers as FF 3.512
Registers as AND/OR logics 13
Slice LUT’s 3.377 53.200 6%
LUT - FF pairs 4.287
DSP48E1’s 0 220 0%
BRAMs (36E1) 0 140 0%
BRAMs (18E1) 9 280 3%
Max Freq. [MHz] 111.707

Table 4.1: Resource utilization without the accelerator.

Slice Logic Utilization Used Available Utilization

Slice Registers 3.603 106.400 3%
Registers as FF 3.590
Registers as AND/OR logics 13
Slice LUT’s 3.379 53.200 6%
LUT - FF pairs 4.466
DSP48E1’s 0 220 0%
BRAMs (36E1) 0 140 0%
BRAMs (18E1) 9 280 3%
Max Freq. [MHz] 111.707

Table 4.2: Resource utilization with the accelerator

4.2 Second Architecture: With the Accelerator

As mentioned at the beginning of this chapter, in this architecture we included
the actual accelerator to our design.

4.2.1 Resource Utilization

Table 4.2 shows resource utilization by this architecture. Synthesis and Place
and Route options were the following:

• Resource Sharing: Activated.

• Shift Register Extraction: Activated.

• Optimization Goal: Speed.

• Optimization Effort: High.

• Place and Route mode: Only Route.

• Place and Route Effort Level: High.

• PAR extra effort: Normal.

4.3. TRADE-OFFS OF THE DESIGN FLOW 35

4.3 Trade-offs of the design flow

In this work we developed a first approximation of a solution to eliminate the
need of an external host. In consequence, the communication problem between
an external host processor (ARM processor) and the desired hardware acceler-
ator (FPGA) are slashed. Moreover, we also improve the communication speed
as everything is embedded in the ZedBoard.

Nevertheless, another solution would be ”peer processing”. ”Peer processing”
means that we have two process unit within the same layer or hierarchy level.
In this case there is no need of an OS, the communication between the PS and
the PL is done through memory. We promote this as an alternative solution
because of the ARM Cortex-A9[15].

The ARM Cortex-A9 processor is combined with a rich set of embedded pe-
ripherals, interfaces, and on-chip memories to create a complete hard processor
system (HPS). The high-bandwidth on-chip backbone connecting the HPS and
FPGA fabric provides over 100 Gbps peak bandwidth, ideal for sharing data
between the ARM processor and hardware accelerators within the FPGA fabric.

The ”peer processing” is part of a new design direction, which has the FPGA
as part of a CPU systems which represents an asymmetric multi-processing
capability with extensible I/O, high speed serial transceivers, and an integrated
micro-controller in addition to the main multi-processing cores. These systems
can connect can connect to outside high performance systems such as QPI and
hyper-transport interfaces.

Summarizing, our soltion has good results for a less design effort instead of
the ”peer processing”. However, this other solution could exploit the Zynq
resources better.

4.4 Future Work

As a future line of work, we see two main fields. The first one is to implement
a brand new design in ”peer processing”, and the second to improve our design.
For the second one we would like to leave a record of those specific details that
we think could improve future designs:

• Remove the FIFOs. Remove the standard FIFOs from our design analyz-
ing in a lower level Xillybus architecture.

• Create our custom IP Xillybus core. Our own IP core bus will reduce its
design just letting the parts we are interested in. It would minimize the
power and source comsumption and therefore, increase the speed.

36 4. RESULTS

4.5 Conclusion

The embedded systems is growing faster and faster everyday. Nowadays, the
kind of things we can accomplish in an embedded environment will be much more
complex than they were 10 years ago. Being able to provide an environment
that is secure and highly available while still delivering deterministic real-time
characteristics is very important.

Therefore, is getting more difficult to overcome nowadays implementation
challenges and yet meet the always increasing demands in computing power.
For this an end-to-end optimization of all the layers of the system is needed.

In our work we had the opportunity to take a step towards this idea, by
implementing, to the best of our knowledge, the first migration of the hardware
accelerator to the ZedBoard for the purpose of opening the doors to the final
implementation of a hardware-software-co-design flow.

We experienced the advantages and disadvantaged of FPGA based designs,
being the main advantage of such platforms the reconfigurability, but having as
a counterpart the design effort, which is still very high.

We acknowledge the advantages and the potential of the migration of em-
bedded systems concepts into the HPC field, however further developments are
needed in order to further automate the implementation stage and to provide a
feasible time-to-market. The acceleration of financial algorithms is a booming
research field, and it is a very interesting playground that could be used to de-
velop design paradigms that can be used in other areas of HPC such as Physics,
Biology, Geophysics, etc.

Bibliography

[1] Xilinx (July 23, 2010). LogiCORE IP FIFO Generator v6.2 User Guide
UG175.

[2] Xilinx (July 25, 2012). LogiCORE IP FIFO Generator v9.2 Product Guide
PG057.

[3] Pedro M. Torruella Naranjo, ”FPGA Based Multi-Level Monte-Carlo Hard-
ware Accelerator for the Heston Model: an implementation proposal”. Mas-
ter Thesis in the Microelectronic System Design Research Group, Univer-
sity of Kaiserslautern.

[4] Primozic, T. (2011).Estimating expected first passage times using multilevel
monte carlo algorithm. Master’s thesis, New College, University of Oxford.

[5] Xillinx (2011). AXI Reference Guide. Xilinx Inc., v13.1 edition.

[6] Michael B. Giles, ”Multilevel Monte Carlo Path Simulation”, Operations
Research Journal, 2008, Vol. 56, no. 3, pp. 607-617.

[7] S. Heinrich. Multilevel Monte Carlo Methods, volume 2179 of Lecture Notes
in Computer Science, pages 58-67. Springer-Verlag, 2001

[8] N. Metropolis, S. Ulam, ”The beginning of the Monte Carlo method”, Jour-
nal of the American Statistical Association (American Statistical Associa-
tion), 1949-Sept, Vol. 44 No. 247, pp. 335341

[9] C. de Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen, A. Kostiuk,
R. Korn, ”An Energy Efficient FPGA Accelerator for Monte Carlo Option
Pricing with the Heston Model”, in Reconfigurable Computing and FPGAs
(ReConFig), 2011 International Conference on, Nov. 30 2011-Dec. 2 2011,
pp. 468-474 .

[10] Fischer Black and Myron Scholes, ”The Pricing of Options and Corporate
Liabilities”, The Journal of Political Economy, Vol. 81, No. 3 (May - Jun
1973), pp. 637-654.

[11] Robert C. Merton, ”Theory of rational Option Pricing”, The Bell Journal
of Economics and Management Science, Vol. 4, No. 1 (Spring, 1973), pp.
141-183.

37

38 BIBLIOGRAPHY

[12] de Schryver, C., Marxen, H., & Schmidt, D. (2011a). Hardware Accelerators
for Financial Mathematics - Methodology, Results and Benchmarking. In
Young Researchers Symposium (YRS) 2011, Proceedings on (pp. 5560).:
Center for Mathematical and Computational Modelling (CM)2; (CM)2;
Nachwuchsring.

[13] de Schryver, C., Shcherbakov, I., Kienle, F., Wehn, N., Marxen, H.,
Kostiuk, A., & Korn, R. (2011b). An energy efficient fpga accelerator for
monte carlo option pricing with the heston model. In Proceedings of the
2011 International Conference on Reconfigurable Computing and FPGAs,
RECONFIG 11 (pp. 468474). Washington, DC, USA: IEEE Computer So-
ciety.

[14] Christopher Z. Mooney, Monte Carlo Simulation Serie: Quantitative Ap-
plications in the Social Sciences, a SAGE UNIVERSITY PAPER 1997

[15] ARM 2009. White paper, The ARM Cortex-A9 Processors

Acronyms

IP Intelectual Property

ISE Integrated Software Environment

XPS Xilinx Platform Studio

FPGA Field Programmable Gate Array

MC Monte Carlo

MLMC Multi-Level Monte Carlo

PS Processing System

PL Programmable Logic

EPP Extensible Processing Platform

ASSP Application Specific Standard Product

FIFO First In First Out

GPL General Public License

CPU Central Processing Unit

HPC High Performance Computing

39

	Agradecimientos
	Abstract
	Introduction
	Background
	Option Pricing
	Multi-Level Monte Carlo Simulation
	Zynq-7000 EPP - An Extensible Processing Platform Family
	ZedBoard - Hardware Development Platform

	Xillybus - IP Cores and Design Services
	Xillinux - A Linux Distribution for the Zedboard
	Previous Work

	Implementation
	Setting up Xillinux
	Unzipping the boot image kit
	Generating the processor netlist
	Generating the bitstream file
	Creating the boot.bin image
	Loading the image (Linux)
	Copying the boot image file into the SD card

	Booting up Xillybus
	Jumper settings
	Attaching peripherals
	Powering up the board
	Allow remote SSH access
	Shutting down
	Taking it from here

	Hardware Development
	FIFOs Overview
	Testing initial FIFOs' funcionality
	Adding a second FIFO
	AXI4 Stream FIFOs
	Integration with Serializer Interfaces

	Final Design

	Results
	First Architecture: Without the Accelerator
	Resource Utilization

	Second Architecture: With the Accelerator
	Resource Utilization

	Trade-offs of the design flow
	Future Work
	Conclusion

	Bibliography
	Acronyms

