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Abstract. The paper addresses pricing issues in imperfect and/or incomplete markets

if the risk level of the hedging strategy is measured by a general risk function. Convex

Optimization Theory is used in order to extend pricing rules for a wide family of risk func-

tions, including Deviation Measures, Expectation Bounded Risk Measures and Coherent

Measures of Risk. For imperfect markets the extended pricing rules reduce the bid-ask

spread. The paper ends by particularizing the findings so as to study with more detail

some concrete examples, including the Conditional Value at Risk and some properties of

the Standard Deviation.
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1. I���	�����	�

General risk functions are becoming more and more important in finance. Since
the paper of Artzner et al. (1999) introduced the axioms and properties of their
“Coherent Measures of Risk”, many authors have extended the discussion. Hence,
it is not surprising that the recent literature presents many interesting contributions
focusing on new methods for measuring risk levels. Among others, Goovaerts et al.
(2004) have introduced the Consistent Risk Measures, Frittelli and Scandolo (2005)
have analyzed Risk Measures for Stochastic Processes, and Rockafellar et al. (2006)
have defined the Deviations and the Expectation Bounded Risk Measures.
Many classical financial problems have been revisited by using new risk functions.

So, Mansini et al. (2007) deal with Portfolio Choice Problems with complex risk
measures, Alexander et al. (2006) compare the minimization of the Value at Risk
(V aR) and the Conditional Value at Risk (CV aR) for a portfolio of derivatives,
Calafiore (2007) studies “robust” efficient portfolios if risk levels are given by standard
deviations and absolute deviations, and Schied (2007) deals with Optimal Investment
with Convex Risk Measures.
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The extension of pricing rules to the whole space in incomplete markets is a
major topic in finance. Several papers have used coherent measures of risk to price
and hedge under incompleteness, though the article by Nakano (2004) seems to be
an interesting approach that also incorporates previous and significant contributions
of other authors. Another line of research is related to the concept of “good deal”,
introduced in the seminal paper by Cochrane and Saa-Requejo (2000). A good deal
is not an arbitrage but is close to an arbitrage, so the absence of good deal may be
an adequate assumption if it is useful for pricing.
In recent papers Jaschke and Küchler (2001) and Staum (2004) extended the

notion of good deal so as to involve coherent measures of risk, and they introduced
the “coherent prices” as upper and lower bounds that every extension of the pricing
rule to the whole space must respect. They allowed for imperfections in the initial
market and also studied existence properties and other classical issues. Later Cherny
(2006) also dealt with pricing issues with risk measures in incomplete markets, though
it is not the major focus of the article.
The present paper considers an initial incomplete and maybe imperfect market

and deals with the Expectation Bounded Risk Measures and the Deviation Measures
of Rockafellar et al. (2006) in order to extend the pricing rule to the whole space. As
we will see, the Representation Theorems of Risk Measures provided by the authors
above are very appropriate to simplify the Mathematical Programming Problems
leading to Optimal Hedging Strategies and prices, which permits us to introduce new
pricing rules satisfying adequate properties and easy to compute in practice.
The paper’s outline is as follows. Section 2 will present notations and the basic

conditions and properties of the initial pricing rule π to be extended and the risk
function ρ to be used. Since the risk function is not differentiable in general, the
optimization problem giving the optimal hedging strategy is not differentiable either,
and Section 3 will be devoted to overcome this caveat. We will use Representation
Theorems of Risk Measures so as to transform the initial optimal hedging problem
in a minimax problem. Later, following an idea developed in Balbás et al. (2008b),
the minimax problem is equivalent to a new convex optimization problem in Banach
spaces. In particular, the dual variable belongs to the set of probabilities on the
Borel σ−algebra of the sub-gradient of ρ. Since this fact would provoke high degree
of complexity when dealing with the optimality conditions of the hedging problem,
Theorem 2 is one of the most important results in this section, because it guarantees
that the optimal dual solution will be a Dirac Delta, and thus we can leave the
use of general probability measures in order to characterize the optimal solutions.
The section ends by proving its second important result. Theorem 4 yields simple
necessary and sufficient optimality conditions as well as guarantees the existence of
Stochastic Discount Factors of π in the sub-gradient of ρ, a property that will imply
many consequences throughout the paper.
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Section 4 starts by introducing the extension πρ of π. Theorem 7 shows the
interesting properties of πρ, that is convex, continuous and bounded by π and ρ.
Theorem 8 states that πρ is a genuine extension of π if the initial market is free of
frictions, and reduces the transaction costs caused by π otherwise. Theorem 10 states
that the Stochastic Discount Factors of π and πρ that belong to the sub-gradient of ρ
coincide, which enables us to prevent the existence of arbitrage opportunities for πρ in
Corollary 11. The section ends by proving that πρ outperforms the classical extension
of pricing rules in incomplete (and maybe imperfect) markets if ρ is coherent.
Section 5 considers a General Deviation Measure and focuses on this particular

case. Special attention is paid to the Standard Deviation, since it is often used in
finance to extend pricing rules (see Schweizer, 1995, or Luenberger, 2001, among
others). Some relationships between the proposed extension and another classical
ones are analyzed. Section 6 deals with the CV aR, since it is becoming a very
popular Coherent and Expectation Bounded Risk Measure that respects the second
order Stochastic Dominance (Ogryczak and Ruszczynski, 2002) and has been used
for several authors in different types of Portfolio Choice Problems. Theorem 14
characterizes the proposed extension in this special case and its Corollary 15 analyses
some particular situations.
The last section of the paper points out the most important conclusions.

2. P����,������
 ��� �	����	�


Consider the probability space (Ω,F , µ) composed of the set of “states of the world”
Ω, the σ−algebra F and the probability measure µ. Consider also a couple of con-
jugate numbers p ∈ [1,∞) and q ∈ (1,∞] (i.e., 1/p + 1/q = 1). As usual Lp

(Lq) denotes the Banach space of IR−valued measurable functions y on Ω such that
E (|y|p) < ∞, E () representing the mathematical expectation (E (|y|q) < ∞, or y
essentially bounded if q =∞). According to the Riesz Representation Theorem, we
have that Lq is the dual space of Lp.
Consider a time interval [0, T ], a subset T ⊂ [0, T ] of trading dates containing

0 and T , and a filtration (Ft)t∈T providing the arrival of information and such that
F0 = {∅,Ω} and FT = F . In general, (St)t∈T will denote an adapted stochastic price
process.
Let us assume that Y ⊂ Lp is a convex cone composed of super-replicable pay-

offs, i.e., for every y ∈ Y there exists at least one self-financing portfolio whose final
pay-off is ST ≥ y (see Jouini and Kallal, 1995, and De Wagenaere and Wakker, 2001,
among many others, for further details about self-financing portfolios and pricing
issues in markets with or without transaction costs). Denote by S (y) the family of
such self-financing portfolios, and suppose that there exists

π (y) = Inf
{
S0; (St)t∈T ∈ S (y)

}
(1)
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for every y ∈ Y . We will say that π (y) is the price of y. The market will be said to
be perfect if Y is a subspace and π : Y −→ IR is linear, and imperfect otherwise. In
general, we will impose the natural conditions, sub-additivity

π (y1 + y2) ≤ π (y1) + π (y2) (2)

for every y1, y2 ∈ Y , and positive homogeneity

π (αy) = απ (y) (3)

for every y ∈ Y and α ≥ 0. Consequently, π is a convex function. Finally, we will
assume the existence of a riskless asset that does not generate any friction, i.e., almost
surely constant random variables y = k belong to Y for every k ∈ IR, and there exists
a risk-free rate rf ≥ 0 such that

π (k) = ke−rfT (4)

holds. It is easy to see that (4) leads to

π (y + k) = π (y) + ke−rfT (5)

for every y ∈ Y and k ∈ IR. Indeed π (y + k) ≤ π (y) + ke−rfT is clear, and

π (y) = π (y + k − k) ≤ π (y + k) + π (−k) = π (y + k)− ke−rfT

implies the opposite inequality.
Let

ρ : Lp −→ IR

be the general risk function that a trader uses in order to control the risk level of his
final wealth at T . Denote by

∆ρ = {z ∈ Lq;−E (yz) ≤ ρ (y) , ∀y ∈ Lp} . (6)

The set ∆ρ is obviously convex. We will assume that ∆ρ is also σ (L
q, Lp)−compact

and
ρ (y) =Max {−E (yz) : z ∈ ∆ρ} (7)

holds for every y ∈ Lp. Furthermore, we will also impose

∆ρ ⊂ {z ∈ Lq;E (z) = 1} . (8)

These are quite natural assumptions closely related to the Representation Theorems of
Risk Measures stated in Rockafellar et al. (2006). Following their ideas, and bearing
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in mind the Representation Theorem 2.4.9 in Zalinescu (2002) for convex functions,
it is easy to prove that the σ (Lq, Lp)−compactness of ∆ρ and the fulfillment of (7)
and (8) hold if ρ is continuous and satisfies:

a)
ρ (y + k) = ρ (y)− k (9)

for every y ∈ Lp and k ∈ IR.
b)

ρ (αy) = αρ (y) (10)

for every y ∈ Lp and α > 0.
c)

ρ (y1 + y2) ≤ ρ (y1) + ρ (y2) (11)

for every y1, y2 ∈ Lp.
d)

ρ (y) ≥ −E (y) (12)

for every y ∈ Lp.1, 2

It is easy to see that if ρ is continuous and satisfies Properties a), b), c) and d)
above then it is also coherent in the sense of Artzner et al. (1999) if and only if

∆ρ ⊂ Lq+ = {z ∈ Lq;µ (z ≥ 0) = 1} . (13)

Particular interesting examples are the Conditional Value at Risk (CV aR) of
Rockafellar et al. (2006), the Dual Power Transform (DPT ) of Wang (2000) and
the Wang Measure (Wang, 2000), among many others.3 Furthermore, following the
original idea of Rockafellar et al. (2006) to identify their Expectation Bounded Risk
Measures and their Deviation Measures, it is easy to see that

ρ (y) = σ (y)− E (y) (14)

is continuous and satisfies a), b), c) and d) if σ : Lp −→ IR is a continuous (or lower
semi-continuous) deviation, that is, if σ satisfies b), c),

e)
σ (y + k) = σ (y) (15)

1Actually, the properties above are almost similar to those used by Rockafellar et al. (2006) in
order to introduce their Expectation Bounded Risk Measures. These authors also impose a), b), c)
and d), work with p = 2, allow for ρ (y) =∞, and impose ρ (y) > −E (y) if y is not constant.

2According to Theorem 2.2.20 in Zalinescu (2002), if ρ satisfies a), b), c) and d) then ρ is
continuous if and only if ρ is lower semi-continuous.

3If ρ equals the Wang measure or the DPT (or other risk measures given by distortion functions)
then see Cherney (2006) for further details about ∆ρ.
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for every y ∈ Lp and k ∈ IR, and
f)

σ (y) ≥ 0 (16)

for every y ∈ Lp.

Particular examples are the p−deviation given by ρ (y) = [E (|E (y)− y|p)]1/p,

or the downside p−semi-deviation given by ρ (y) = [E (|Max {E (y)− y, 0}|p)]1/p,
among many others.

Denote by g ∈ Lp a new pay-off that we are interested in pricing and hedging. If
the trader sells g for P dollars and buys y ∈ Y in order to hedge the global position,
then he will choose y so as to solve






Min ρ (y − g)
π (y) ≤ P
y ∈ Y

. (17)

3. O&��,�� (��%��%: P��,�� ��� ���� &�	���,
 ��� 	&��,�����

�	�����	�


In general ρ will be non-differentiable and therefore so will be Problem (17). To
overcome this caveat we follow the method proposed in Balbás et al. (2008b). So,
bearing in mind (7), Problem (17) is equivalent to






Min θ
θ + E (yz)− E (gz) ≥ 0, ∀z ∈ ∆ρ
π (y) ≤ P
θ ∈ IR, y ∈ Y

(18)

in the sense that y solves (17) if and only if there exists θ ∈ IR such that (θ, y) solves
(18), in which case

θ = ρ (y − g)

holds. Notice that the objective of (18) is differentiable and even linear. The first con-
straint is valued on the Banach space C (∆ρ) of real-valued and continuous functions
on the (weak∗) compact space ∆ρ. Since its dual space isM (∆ρ), the space of inner
regular real valued σ−additive measures on the Borel σ−algebra of ∆ρ (endowed with
the weak∗ topology), the Lagrangian function

L : IR×Y ×M (∆ρ)× IR −→ IR

becomes

L (θ, y, ν, λ) =

θ
(
1−

∫
∆ρ

dν (z)
)
−
∫
∆ρ

E (yz) dν (z) +
∫
∆ρ

E (zg) dν (z) + λπ (y)− λP.
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Following Luenberger (1969) the element (ν, λ) ∈M (∆ρ)× IR is dual feasible if and
only if it belongs to the non-negative coneM+ (∆ρ)× IR+ and

Inf {L (θ, y, ν, λ) : θ ∈ IR, y ∈ Y } > −∞,

in which case the infimum above equals the dual objective on (ν, λ). Hence, bearing
in mind (2) and (3), the dual problem of (18) becomes






Max
∫
∆ρ

E (gz) dν (z)− Pλ

λπ (y)−
∫
∆ρ

E (yz) dν (z) ≥ 0, ∀y ∈ Y

ν ∈ P (∆ρ) , λ ∈ IR+

(19)

P (∆ρ) denoting the set composed of those elements inM (∆ρ) that are probabilities.

P (∆ρ) is convex, and the theorem of Alaoglu easily leads to the compactness
of P (∆ρ) when endowed with the σ (M (∆ρ) , C (∆ρ))−topology (Horvàth, 1966).
Besides, given z ∈ ∆ρ we will denote by δz ∈ P (∆ρ) the usual Dirac delta that
concentrates the mass on {z}, i.e., δz({z}) = 1 and δz(∆ρ \ {z}) = 0. It is known
that the set of extreme points of P (∆ρ) is given by

ext (P (∆ρ)) = {δz; z ∈ ∆ρ} , (20)

though we will not have to draw on this result. The objective function of dual prob-
lems in the finite-dimensional case is attained in a extreme feasible solution, which,
along with (20), suggest that the solution of (19) could be achieved in {δz; z ∈ ∆ρ}.
Let us show that this conjecture is correct. First we provide an instrumental lemma
whose statement and complete proof may be found in Balbás et al. (2008a).

Lemma 1. (Mean Value Theorem). Let ν ∈ P (∆ρ). Then there exists zν ∈ ∆ρ such
that ∫

∆ρ

E (yz) dν (z) = E (yzν) (21)

holds for every y ∈ Lp. �

Theorem 2. If (ν, λ) ∈ P (∆ρ)× IR+ solves (19) then there exists z ∈ ∆ρ such that
(δz, λ) solves (19).

Proof. Consider (ν, λ) solving (19) and take zν ∈ ∆ρ satisfying (21). Then,
for every y ∈ Y we have that

0 ≤
λπ (y)−

∫
∆ρ

E (yz) dν (z)

= λπ (y)−E (yzν)
= λπ (y)−

∫
∆ρ

E (yz) dδzν (z) .
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and

λP −

∫

∆ρ

E (gz) dν (z) = λP − E (gzν) = λP −

∫

∆ρ

E (gz) dδzν (z)

which proves that (δzν , λ) is (19)-feasible and the objective values of (19) in (ν, λ)
and (δzν , λ) are identical. �

Remark 1. The latter theorem leads to significant consequences. In particular, we
can consider the alternative and far simpler dual problem






Max E (gz)− λP
λπ (y)− E (yz) ≥ 0, ∀y ∈ Y
z ∈ ∆ρ, λ ∈ IR+

(22)

where z ∈ ∆ρ is playing the role of ν ∈ P (∆ρ). �

Proposition 3. Let be z ∈ ∆ρ. The inequality λπ (y)− E (yz) ≥ 0 for every y ∈ Y
can only hold for λ = erfT .

Proof. Indeed, the inequality leads to λe−rfT − E (z) ≥ 0 if y = 1, and
λe−rfT −E (z) ≤ 0 if y = −1, so the conclusion is obvious because E (z) = 1 for every
z ∈ ∆ρ (see (8)). �

Remark 2. The previous proposition enables us to simplify (22) once again. The
equivalent problem will be






Max E (gz)− PerfT

π (y) erfT − E (yz) ≥ 0, ∀y ∈ Y
z ∈ ∆ρ

(23)

where the λ variable has been removed. �

Notice that (4) implies that (17) is feasible, and therefore so is (18). Since we are
dealing with infinite-dimensional Banach spaces the so called “duality gap” between
(18) and (23) might arise. To prevent this pathological situation we will give the next
theorem and impose a very weak assumption with clear economic interpretation. We
will also connect the statement b) of the theorem below with classical key notions in
Asset Pricing Theory.

Theorem 4. The three following conditions are equivalent:
a) There exist P0 ∈ IR and g0 ∈ Lp such that (18) is not unbounded, i.e., there

are no sequences (yn) ⊂ Y of feasible solutions such that ρ (yn − g0) −→ −∞.
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b) The (23)-feasible set

Df =
{
z ∈ ∆ρ; π (y) e

rfT − E (yz) ≥ 0, ∀y ∈ Y
}

(24)

is non void.
c) Problem (18) is not unbounded for every P ∈ IR and g ∈ Lp.
Furthermore, in the affirmative case (18) and (23) are feasible and bounded, (23)

attains its optimal value, the dual maximum equals the primal infimum, and the
following Karush-Kuhn-Tucker conditions






θ + E (y∗z∗)− E (gz∗) = 0
θ + E (y∗z)−E (gz) ≥ 0, ∀z ∈ ∆ρ
π (y∗)− P = 0
π (y∗) erfT −E (y∗z∗) = 0
π (y) erfT − E (yz∗) ≥ 0, ∀y ∈ Y
θ ∈ IR, y∗ ∈ Y, z∗ ∈ ∆ρ

(25)

are necessary and sufficient so as to guarantee that (θ, y∗) and
(
z∗, λ = erfT

)
solve

(18) and (23) respectively.

Proof. a)⇒ b) Suppose that we prove the fulfillment of the Slater Qualification
for (18) (Luenberger, 1969), i.e., the existence of (θ0, y0) ∈ IR×Y such that

{
θ0 + E (y0z)−E (g0z) > 0, ∀z ∈ ∆ρ
π (y0) < P0

holds. Then Condition a) implies that (19) (and therefore (23)) must be feasible
because its feasible set does not depend on P0 or g0, and (18) is bounded for at least
a couple (P0, g0) (Luenberger, 1969).
In order to show the fulfillment of the Slater Qualification notice that (4) implies

that (17) is always feasible, and therefore so is (18). Moreover, given a (18)-feasible
solution (θ, y), and bearing in mind (8), the element (θ0, y0) = (θ + 2, y − 1) satisfies
the primal constraints as strict inequalities.

b)⇒ c) If Df is not empty then (23) is feasible and therefore so is (19). Thus (18)
cannot be unbounded because it is easy to verify that the primal objective is never
lower than the dual one (see also Luenberger, 1969).

c)⇒ a) Obvious.
Moreover, in the affirmative case (25) provides sufficient optimality conditions

because (18) is a convex problem, and these conditions are also necessary because, as
shown in the implication a)⇒ b), the Slater Qualification holds (Luenberger, 1969).
Finally, this Qualification also implies that the dual maximum is attained and equals
the primal infimum. �
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Assumption 1. Hereafter we will assume the existence of P0 ∈ IR and g0 ∈ Lp

such that (18) is not unbounded. Thus Conditions b) and c) in the theorem above
also hold. �

Remark 3. Since Condition b) holds Df (see (24)) is not empty, and its elements
will be called “Stochastic Discount Factors (SDF ) of (π, ρ)”. Notice that

E (yz) = π (y) erfT (26)

holds for every y ∈ Y and every z ∈ Df if the market is perfect, since −y ∈ Y for
every y ∈ Y and consequently

−π (y) erfT + E (yz) = π (−y) erfT −E (−yz) ≥ 0

must also hold. Expression (26) leads to

π (y) = e−rfTE (yz) = e−rfTEµz (y) , (27)

i.e., the current price of any asset equals the present value of its expected pay-off
once modified with the “distortion variable” z, or the present value of its expected
pay-off if the expectation is computed with the “risk-neutral probability measure” µz
such that

z =
dµz
dµ

.

(27) is closely related to the First Fundamental Theorem of Asset Pricing. Notice
that µz is actually a probability owing to (8), and will be equivalent to µ as long as

µ (z > 0) = 1.

See Jouini and Kallal (1995) and De Wagenaere and Wakker (2001), among many
others, for further details about the Fundamental Theorem of Asset Pricing and risk-
neutral or martingale measures in both perfect and imperfect markets. �

4. P�����% ����


This section will be devoted to extend the pricing rule π to the whole space Lp.
According to Theorem 4 and Assumption 1, we can define the function F : IR×Lp −→
IR by considering that F (P, g) is the optimal value of (18) and (23) for every P ∈ IR
and g ∈ Lp.

Proposition 5. The equality

F (P, g) = F (0, g)− PerfT (28)

holds for every P ∈ IR and g ∈ Lp.
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Proof. Proposition 3 and Theorem 4 point out that the Lagrange multiplier
λ = erfT of (18) continuously depends on P , so the classical sensitivity results of

Convex Programming imply that
∂F

∂P
= −erfT holds for every P ∈ IR and g ∈ Lp.

Hence, (28) is obvious. �

As a consequence of the previous proposition we can introduce the first pricing
rule we are going to deal with. Indeed, we will define

πρ (g) = F (P, g) e−rfT + P = F (0, g) e−rfT . (29)

Next let us see that the independence of πρ with respect to P , pointed out by (28)
and (29), and the independence of the solution of (23) with respect to P , obvious
consequence of the form of (23), is also fulfilled by the optimal hedging portfolios,
i.e., by the solution of (18).

Proposition 6. Suppose that (y∗, θ) solves (18) for P ∈ IR and g ∈ Lp. Then(
y∗ + αerfT , θ − αerfT

)
solves (18) for P + α ∈ IR and g ∈ Lp.4

Proof. The proof is quite easy and consequently we will simplify the exposition.
Just consider a dual solution z∗, that does not depend on P as pointed out by (23),
and bear in mind that (y∗, θ) and z∗ satisfy (25) for (P, g). Then use (5) and (8) so
as to verify that

(
y∗ + αerfT , θ − αerfT

)
and z∗ satisfy (25) for (P + α, g). �

Next let us present some interesting properties of the extension πρ above.

Theorem 7. A) πρ (g) ≤ ρ (−g) e−rfT for every g ∈ Lp.
B) πρ is sub-additive and positively homogeneous (and therefore convex).
C) πρ is continuous.
D) πρ (y) ≤ π (y) for every y ∈ Y .
E) If ρ is a coherent risk measure then πρ is increasing.

Proof. A) (29) implies that

πρ (g) = F (0, g) e−rfT = Inf
{
ρ (y − g) e−rfT ; π (y) ≤ 0, y ∈ Y

}
.

Hence, for y = 0, πρ (g) ≤ ρ (−g) e−rfT .

4Notice that this fact simplifies (25), in the sense that the equation π (y∗) = P may be removed.
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B) Taking P = 0, the absence of duality gap between (18) and (23) and the
existence of dual solutions (Theorem 4) show that

πρ (g1 + g2) =Max
{
E ((g1 + g2) z) e

−rfT ; z ∈ Df

}
.

If zg1+g2 ∈ Df denotes the dual feasible solution where the maximum is attained, then

πρ (g1 + g2) = E ((g1 + g2) zg1+g2) e
−rfT = E ((g1) zg1+g2) e

−rfT +E ((g2) zg1+g2) e
−rfT .

If zg1 ∈ Df and zg2 ∈ Df are the obvious, bearing in mind that Df does not depend
on g (see (24)) we have

E ((g1) zg1+g2) e
−rfT + E ((g2) zg1+g2) e

−rfT ≤ E (g1zg1) e
−rfT + E (g2zg2) e

−rfT

= πρ (g1) + πρ (g2) .

On the other hand, if α > 0 we have

πρ (αg) = E (αgzαg) = αE (gzαg) ≤ αE (gzg) = απρ (g) .

Analogously,

πρ (g) = πρ

(
1

α
αg

)
≤
1

α
πρ (αg)

leads to απρ (g) ≤ πρ (αg). For α = 0 we only have to prove that πρ (0) = 0, but this
equality is clear because otherwise

πρ (0) = πρ (2× 0) = 2πρ (0)

would lead to the contradiction 1 = 2.
C) Being πρ a convex function on L

p it is sufficient to see that πρ is continuous at
g = 0 (Luenberger, 1969). Since ρ is continuous, given ε > 0 there exists δ > 0 such
that ‖g‖ ≤ δ =⇒ ρ (−g) ≤ εerfT and therefore πρ (g) ≤ ε follows from Statement A).
Besides, bearing in mind B) we have that

−πρ (g) ≤ πρ (−g) ≤ ε

because ‖−g‖ ≤ δ. Hence, |πρ (g)| ≤ ε.
D) If y ∈ Y with the notations above we have πρ (y) = E (yzy) e

−rfT , and
E (yzy) ≤ π (y) erfT because zy ∈ Df .

E) If g1 ≤ g2 ∈ Lp then y − g1 ≥ y − g2 and therefore ρ (y − g1) ≤ ρ (y − g2) for
every y ∈ Y because ρ is coherent and therefore decreasing. Consequently,

Inf {ρ (y − g1) ; y ∈ Y , π (y) ≤ 0} ≤ Inf {ρ (y − g1) ; y ∈ Y , π (y) ≤ 0} ,
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so the conclusion trivially holds. �

As a consequence of the previous properties πρ “improves” the bid-ask spread (or
the transaction costs) of π. Indeed, if we consider that −πρ (−g) is the bid price of
g ∈ Lp and πρ (g) is its ask price, then Theorem 7B shows that the bid-ask spread

πρ (g) + πρ (−g) ≥ 0 (30)

cannot be negative. Analogously, (2) and (3) lead to π (y) + π (−y) ≥ 0 for every
y ∈ Y such that −y ∈ Y . Furthermore we have:

Theorem 8. A) πρ (y) + πρ (−y) ≤ π (y) + π (−y) holds for every y ∈ Y such that
−y ∈ Y .

B) If g and−g belong to Y and π (−g) = −π (g) then πρ (g) = π (g). In particular,
πρ (k) = e−rfT for every k ∈ IR. If the market is perfect then πρ extends π to the
whole space Lp.

Proof. A) It immediately follows from Theorem 7D.
B) The assumptions lead to

π (g) + π (−g) = 0,

so Statement A) and (30) imply that

πρ (g) + πρ (−g) = π (g) + π (−g) = 0.

Since Theorem 7D shows that πρ (g) ≤ π (g) and πρ (−g) ≤ π (−g) the equality above
can only hold if both inequalities become equalities. �

For imperfect markets πρ may strictly reduce the spread, and consequently it does
not necessarily equal π on Y . Next let us characterize the equality π (g) = πρ (g) and
provide a very simple counter-example.

Proposition 9. Consider g ∈ Y and a dual solution z∗.5 π (g) = πρ (g) holds if and
only if E (z∗g) = π (g) erfT .

Proof. The result trivially follows from

πρ (g) = F (0, g) e−rfT = E (z∗g) e−rfT .

�

5Recall that z∗ must exist according to Theorem 4 and does not depend on P according to (23).
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Remark 4. (Counter-example illustrating that πρ (g) < π (g) may hold). Consider
Ω = {ω1ω2}, µ (ω1) = 0.1, µ (ω2) = 0.9, and

π (α (1, 1) + β (1, 0)) =

{
α + 0.7β, if β ≥ 0
α + 0.4β, if β ≥ 0

.

The example indicates that the risk-free rate vanishes and the risky asset with pay-off
(1, 0) has a bid price equal to 0.4 and an ask price equal to 0.7. Suppose that

∆ρ = {(z1, z2) ; 0.1z1 + 0.9z2 = 1 and 0 ≤ zi ≤ 5, i = 1, 2} .

It will be seen in Section 6 that ∆ρ corresponds to the Conditional Value at Risk
with 0.8 = 80% as the level of confidence. It follows from Theorem 4 that πρ (1, 0) is
the optimal value of 





Max 0.1z1
0.4 ≤ 0.1z1 ≤ 0.7
0.1z1 + 0.9z2 = 1
0 ≤ zi ≤ 5, i = 1, 2

.

Obviously, πρ (1, 0) = 0.5 < 0.7 = π (1, 0). �

Since πρ reduces the spread and satisfies the same properties as π (Theorems 7 and
8), one could use πρ to generate a new pricing rule π

∗
ρ by applying the same method

used to construct πρ from π. Next we will prove that π∗ρ = πρ, so it is useless to
extend the pricing rule two times. However, the equality π∗ρ = πρ shows that πρ may
be an exact extension of π in particular situations, even if the market is imperfect.

Theorem 10. The Stochastic Discount Factors of (π, ρ) and (πρ, ρ) coincide.
6 Con-

sequently,

Max {E (gz) ; z ∈ Df} =
Max

{
E (gz) ; z ∈ ∆ρ, E (yz) ≤ πρ (y) e

rfT for every y ∈ Lp
}
=

Max
{
E (gz) ; z ∈ ∆ρ, E (yz) ≤ πρ (y) e

rfT for every y ∈ Y
}
,

i.e., taking P = 0, if we construct a new pricing rule π∗ρ from πρ then π∗ρ = πρ.

6In other words: If z ∈ ∆ρ then
E (yz) ≤ π (y) erfT

for every y ∈ Y if and only if
E (gz) ≤ πρ (g) e

rfT

for every g ∈ Lp.
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Proof. If z ∈ ∆ρ and E (yz) ≤ πρ (y) e
rfT for every y ∈ Lp (or just for every

y ∈ Y ) then z ∈ Df owing to Theorem 7D. Conversely, suppose that z ∈ Df and
take y ∈ Lp. Then πρ (y) e

rfT is the maximum value of E (yz′) with z′ ∈ Df , so
E (yz) ≤ πρ (y) e

rfT . �

A very important consequence of the latter theorem is that natural assumptions
on π prevent the existence of arbitrage for πρ.

Corollary 11. Suppose that there exists z∗ ∈ Df which is strictly positive, i.e.,

E (yz∗) > 0

for every y ∈ Lp such that y ≥ 0 and y �= 0.7 Then πρ does not generate arbitrage
opportunities, i.e., g ≥ 0 and πρ (g) ≤ 0 imply that g = 0 and πρ (g) = 0.

8

Proof. Suppose that g ≥ 0 and πρ (g) ≤ 0. Then E (gz∗) ≥ 0, with equality if
and only if g = 0. Besides, the latter theorem implies that

E (gz∗) ≤ πρ (g) e
rfT ≤ 0,

so the equality holds. �

Finally let us show that the proposed extension πρ also “improves” the “classical
extension”, usual in incomplete markets. So, consider g ∈ Lp and the optimization
problem 





Min π (y)
y ≥ g
y ∈ Y

and denotes by π∗ (g) the infimum of the problem above (π∗ (g) =∞ if the problem
is not feasible). Then we have:

Proposition 12. If ρ is coherent then π∗ (g) ≥ πρ (g) holds for every g ∈ Lp.

Proof. The conclusion is obvious if π∗ (g) = ∞, so assume that π∗ (g) < ∞.
Take n ∈ IN and yn ∈ Y , yn ≥ g such that

π∗ (g) ≥ π (yn)−
1

n
.

Then, yn ≥ g and Theorems 7D and 7E lead to

π∗ (g) ≥ π (yn)−
1

n
≥ πρ (yn)−

1

n
≥ πρ (g)−

1

n
,

and the result trivially follows because n ∈ IN is arbitrary. �

7or equivalently, z∗ > 0 almost surely.
8Bearing in mind (13) with a similar proof one can see that if ρ is coherent then Assumption 1

prevents the existence of the so called “strong” or “second type” arbitrage (Jaschke and Küchler,
2001), i.e., the existence of g ∈ Lp such that g ≥ 0 and πρ (g) < 0.
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5. D�����% '��( ��3����	�


If we consider a general lower semi-continuous deviation measure σ, i.e., a sub-
additive and homogeneous function satisfying (15) and (16), then, as indicated in
the second section, (14) establishes a relationship between σ and a risk measure ρ for
which we can construct the pricing rule πρ, denoted by πσ−E in this section owing to
(14).
A particular interesting case, very used in finance, arises if p = 2 and σ = σ2 is

the standard deviation given by

σ2 (y) =

(∫

Ω

(y −E(y))2 dµ

)1/2

for every y ∈ L2. In such a case L2 is a Hilbert space so, if we assume that the
market is perfect, Y is closed and π is continuous, the Riesz Representation Theorem
guarantees the existence of a unique y0 ∈ Y such that

π (y) = E (y0y) (31)

holds for every y ∈ Y . The literature has often proposed extensions of π to the whole
space L2 by considering an element y1 orthogonal to Y and defining

πy0+y1 (y) = E [(y0 + y1) y]

for every y ∈ L2.9 A particular interesting example arises if y1 = 0 since πy0 becomes
the composition of the orthogonal projection on Y and π, or, in other words, πy0 (y)
coincides with π (Π (y)) for every y ∈ L2, Π (y) denoting the element in Y closest to
y.
Obviously, the extensions above are specially useful when there exists y1 orthogo-

nal to Y and such that y0 + y1 > 0 almost surely (respectively, y0 > 0 almost surely)
because this inequality guarantees the absence of arbitrage for the pricing rule πy0+y1
(respectively, πy0).
Actually, under the general assumptions above, as far as we were able to analyze

the problem there were no clear relationships between the (non necessarily linear)
extension πσ2−E and the extension πy0+y1 . However, for those cases such that both
extensions generate arbitrage free pricing rules (see Corollary 11) πσ2−E will be larger
than πy0+y1 .

Proposition 13. Suppose that the market is perfect, Y is closed and π is continuous.
Consider the unique y0 ∈ Y such that (31) holds for every y ∈ Y . Suppose finally
that there exists z∗ ∈ L2 such that

9See, among others, Schweizer (1995) and Luenberger (2001).
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a) E (z∗) = 0, σ2 (z
∗) ≤ 1 and 1 + z∗ > 0 almost surely.

b) (1 + z∗) e−rfT − y0 is orthogonal to Y .
Then πσ2−E and π

(1+z∗)e
−rf T do not generate arbitrage opportunities and

πσ2−E (y) ≥ π
(1+z∗)e

−rf T (y)

holds for every y ∈ L2.

Proof. It is shown in Rockafellar et al. (2006) that 10

∆σ2−E =
{
1 + z; z ∈ L2, E (z) = 0 and σ2 (z) ≤ 1

}
.

Hence Condition a) imposes that 1 + z∗ is strictly positive and belongs to ∆σ2−E.
Moreover Condition b) leads to

E ((1 + z∗) y) = E
(
y0e

rfTy
)
= erfTπ (y) ,

for every y ∈ Y , which implies that 1+z∗ is in Df (see (24)). Consequently Corollary
11 implies that πσ2−E does not generate arbitrage opportunities. Similarly, 1+z

∗ > 0
almost surely leads to the absence of arbitrage opportunities for π

(1+z∗)e
−rf T . Finally,

taking P = 0 (29) and (23) lead to

πσ2−E (y)
= e−rfTMax {E (yz) ; z ∈ Df}
≥ e−rfTE ((1 + z∗) y)
= π

(1+z∗)e
−rf T (y)

for every y ∈ L2. �

Remark 5. A very particular case arises if (1 + z∗) e−rfT = y0, i.e., if π(1+z∗)e−rfT
is the composition of π and the orthogonal projection Π. This situation appears if
y0 > 0 almost surely, E (y0) = e−rfT and σ2 (y0) ≤ e−rfT , in which case πσ2−E and
πy0 do not generate arbitrage opportunities and πσ2−E ≥ πy0 holds. �

6. U
��% �(� C	�����	��� V���� �� R�
)

In this section we will focus on the Conditional Value at Risk, since it is becoming
a very well-known Coherent and Expectation Bounded Risk Measure that respects
the second order Stochastic Dominance (Ogryczak and Ruszczynski, 2002). In par-
ticular, this risk function has been used, amongst many others, by Wang (2000) in
some insurance-linked problems, Alexander et al. (2006) in portfolio choice problems

10see also Balbás et al. (2008a).
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involving derivatives, Mansini et al. (2007) in portfolio choice problems involving
bonds and shares, or Balbás et al. (2008a) in optimal reinsurance problems.

If 0 < 1 − µ0 < 1 represents the level of confidence then the CV aRµ0 may be
defined in L1 and Rockafellar et al. (2006) showed that

∆CV aRµ0
=

{
z ∈ L∞; 0 ≤ z ≤

1

µ0
and E (z) = 1

}
.

Suppose the same hypotheses as in the second section as well as Assumption 1, i.e.,
the existence of P0 ∈ IR and g0 ∈ L1 such that (17) is bounded, i.e., the value
of CV aRµ0 (y) cannot tend to −∞. According to Theorem 4 there are SDF of(
π, CV aRµ0

)
, i.e., Df is non void.

The following result characterizes primal and dual solutions for ρ = CV aRµ0 ,
as well as it allows us to compute the value πCV aRµ0 (g) for g ∈ L1 in practical
applications.

Theorem 14. Consider g ∈ L1 and suppose that (18) attains it optimal value for
g.11 Consider also z∗ ∈ Df . Then, z

∗ solves (23) if and only if there exist a partition

Ω = Ω0 ∪ Ω
∗ ∪ Ωµ0

of Ω composed of measurable sets and y∗ ∈ Y such that:
A) z∗ = 0 on Ω0 and z∗ = 1

µ0
on Ωµ0 .

B) y∗ ≤ g on Ω0, y
∗ = g on Ω∗ and y∗ ≥ g on Ωµ

0
.

C) E (z∗y∗) = π (y∗) erfT .
Furthermore, in the affirmative case we have that y∗ solves (17) and

πCV aRµ0 (g) = E (z∗g) e−rfT . (32)

Proof. Fix P1 ∈ IR and take (θ, y
∗) solving (18) for P1. If z

∗ solves (23) then
(25) shows that C) must hold and z∗ must solve






Min E (y∗z)− E (gz)
E (z) = 1
z ≤ 1

µ0

−z ≤ 0
z ∈ L∞

. (33)

11As in Proposition 6, if this property holds for a given P1 ∈ IR then it also holds for every P ∈ IR.
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The Slater Qualification holds since z = 1 belongs to ∆CV aRµ0
and satisfies the two

inequalities in strict terms. Then z∗ must satisfy the optimality conditions. Bearing
in mind that the dual space of L∞ is composed of µ−continuous finitely additive
measures on F with bounded variation (Horvàth, 1966), there exists a couple of non
negative such a measures (α1, α2) and a real number α such that






y∗ − g = α + α1 − α2∫
Ω

(
z∗ − 1

µ0

)
dα1 = 0∫

Ω
z∗dα2 = 0

.

Denote by Ω0 the set where z
∗ vanishes and by Ωµ0 the set where z

∗ = 1
µ
0

. The

second and the third condition, along with 0 ≤ z∗ ≤ 1
µ0
, lead to α1 = 0 out of Ωµ0

and α2 = 0 out of Ω0. Thus, α1 = y∗ − g − α on Ωµ0 and α2 = −y∗ + g + α on Ω0,
which shows that αi ∈ L1, i = 1, 2.
If Ω∗ = Ω\

(
Ω0 ∪ Ωµ0

)
then A) is obvious and B) holds as long as α = 0. If α �= 0

then Proposition 6 guarantees that y∗ − α solves (17) for P2 = P1 − αe−rfT , so take
this new value for the P variable and rename y∗ − α as y∗.
It only remains to prove (32). According to (29), and bearing in mind the objective

function of (23),

πCV aRµ0 (g) = P2 + F (P2, g) e
−rfT = P2 +

(
E (z∗g)− P2e

rfT
)
e−rfT ,

and (32) holds.
Conversely, suppose that the existence of the partition and y∗ ∈ Y is fulfilled.

Take {
α1 = y∗ − g on Ωµ0
α1 = 0 otherwise

and {
α2 = −y∗ + g on Ω0
α2 = 0 otherwise

and it is clear that z∗ satisfies the optimality conditions of (33). Since this problem
is linear z∗ is optimal. Hence

E (y∗z)−E (gz) ≥ E (y∗z∗)− E (gz∗)

if z ∈ ∆CV aRµ0 leads to the fulfillment of the first and the second expressions in (25)
if θ = E (gz∗)− E (y∗z∗).
Take P = π (y∗) so as to guarantee the fulfillment of the third expression in (25).

Then C) and z∗ ∈ Df show that all the expressions in (25) hold and thus z
∗ solves

(23) for P . �

Another particular interesting case arises if (33) attains “bang-bang” solutions.
More accurately we have:
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Corollary 15. Consider g ∈ L1 and suppose that (18) attains it optimal value for
g. Consider z∗ ∈ Df and suppose the existence of a partition Ω = Ω0 ∪Ωµ0 such that
z∗ = 0 on Ω0 and z

∗ = 1
µ0

on Ωµ0 . Then, z
∗ solves (23) if and only there exists y∗ ∈ Y

such that:
A) y∗ ≤ g on Ω0 and y∗ ≥ g on Ωµ0.
B) E (z∗y∗) = π (y∗) erfT .
Furthermore, in the affirmative case we have that y∗ solves (17) and (32) holds.

Proof. It immediately follows from the theorem above. �

Notice that the corollary above may be easily applied in practice. Indeed, on the
one hand E (z∗) = 1 leads to

µ
(
Ωµ0

)
= µ0, (34)

and E (z∗g) must be maximized on the other hand. Thus one must look for those
measurable subsets Ωµ0 satisfying (34) and making g as large as possible, and then
check the fulfillment of A) and B) for some y∗ ∈ Y .

7. C	����
�	�


This paper has proposed a new method to extend pricing rules in both incomplete and
imperfect markets by using general risk functions, with special focus on Expectation
Bounded Risk Measures and General Deviation Measures. It is easy to prevent the
existence of arbitrage for the proposed extensions. These are continuous, bounded
from above by the used risk function and reduce the bid/ask spread in the imperfect
market case. Furthermore, the hedging strategy has been also studied and character-
ized. Some concrete examples and relationships with another extensions presented in
the literature have been also analyzed.
The developed theory strongly depends on the duality properties of the Convex

Optimization Theory in Banach Spaces, so the paper points out once again how
Mathematical Programming may play a crucial role in Asset Pricing and Hedging,
two major topics in Finance.
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90. Daniel Dufresne, José Garrido and Manuel Morales, Fourier Inversion
Formulas in Option Pricing and Insurance, December 2006

91. Xiaowen Zhou, A Superprocess Involving Both Branching and Coalesc-
ing, December 2006

92. Yogendra P. Chaubey, Arusharka Sen and Pranab K. Sen, A New
Smooth Density Estimator for Non–Negative Random Variables, Jan-
uary 2007
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94. Arusharka Sen and Winfried Stute, A Bi-Variate Kaplan-Meier Esti-
mator via an Integral Equation, October 2007
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