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Abstract

Measuring dependence is a basic question when dealing with functional obser-
vations. The usual correlation for curves is not robust. Kendall’s coefficient is a
natural description of dependence between finite dimensional random variables.
We extend this concept to functional observations. Given a bivariate sample of
functions, a robust analysis of dependence can be carried out through the func-
tional version of a Kendall correlation coefficient introduced in this paper. We
also study its statistical properties and provide several applications to both sim-
ulated and real data, including asset portfolios in finance and microarray time
series in genetics.

1 Introduction

Many processes currently used in different fields of science and research lead to ran-
dom observations that can be analyzed as curves. We can also find a large amount
of data for which it would be more appropriate to use some interpolation techniques
and consider them as functional data. This approach turns out to be essential when
data have been observed at different time intervals. Examples of functional data are
found in areas such as meteorology, where, for example, the ozone level measured
during a day is a curve; finance, where, for example, an asset price takes values at
very close time instants, and medicine, where, the observed gene expressions over
time can also be considered as realizations of random curves.

Several multivariate methods have been extended to functional data. Multivari-
ate techniques such as regression functional version (Cardot et al. [2], He et al. [10]),
analysis of variance (Cuevas et al. [3], Delicado [4]), principal components (Pezulli
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and Silverman [16]), generalized linear model (Escabias et al. [8]) and depth for
functional data (López-Pintado and Romo [13], [14]) have already been extended to
a functional context. Other useful methodologies can be found in Ramsay and Silver-
man [17]. However, there are still some concepts that have not been fully explored for
functional data: measures of association and dependence structures between curves,
for example.

Leurgans et al. [12] considered the canonical correlation between two sets of
curves. This technique provides a pair of functions called canonical variates and the
sample correlation among these variates leads to the canonical correlation between
the two sets of curves. He et al. [10] propose an alternative way of finding the canon-
ical correlation through the extension of multivariate analysis ideas. Opgen-Rhein
and Strimmer [15] proposed an estimator of the dynamic correlation that provides
a measure of similarity between pairs of functional observations. It is based on the
concept of dynamical correlation introduced by Dubin and Muller [5] to analyze a
nonparametric method to quantify the covariation of components of multivariate lon-
gitudinal observations.

In this paper, we extend a Kendall τ correlation coefficient [11] to the functional
framework. Kendall’s τ allows us to measure dependence in the bivariate case through
the definition of concordance, which is based on the idea of order. Since there is not
total order among functions, we will use preorders that allow us to sort the functional
observations and count the concordant and discordant pairs of a bivariate sample of
curves. Once a preorder is introduced, the functional τ coefficient can be defined
in a way similar to the bivariate τ coefficient. We will show that it fulfils natural
properties for a dependence measure and we will also establish the consistency of the
sample version. Finally, we will illustrate with simulated and real data the perfor-
mance of this new dependence measure as well as its robustness, which is a principal
characteristic of the Kendall τ in its bivariate version.

We will analyze two data sets. The first one corresponds to 33 companies be-
longing to the IBEX35 and we calculate the functional τ for all possible pairs of the
companies. This coefficient informs about companies having similar behavior over
time. In finance, assets with similar dependence behavior in the same portfolio in-
crease the portfolio’s risk. Therefore, our coefficient allows us to classify the assets
to build portfolios with different behavior. The second data set corresponds to a mi-
croarray time series, from a human T-cell experiment with 58 genes, 10 time points
and 44 replications. We obtain the functional τ for each pair of genes and construct
the partial correlation matrix to compare the gene network resulting from functional
τ with those from dynamical correlation.

This paper is organized as follows. In Section 2, the functional τ is defined extend-
ing the concept of concordance for bivariate random variables. Section 3 is devoted
to presenting some properties of this correlation coefficient and to studying conver-
gence results. A summary of the classic techniques, simulation results and sensitivity
analysis are given in Section 4. In Section 5 we analyze with our methodology the
prices of the assets in companies belonging to the IBEX35. Section 6 contains a study
of dependence between genes using the genes data set. In Section 7, we present a
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robustness empirical study. Finally, in Section 8, we outline the main conclusions of
this paper. The proofs are included in the Appendix.

2 Functional Kendall correlation coefficient

Kendall [11] introduced a correlation coefficient based on the ranks of the observa-
tions. It makes use of the idea of concordance. Two random variables are concordant
if large (small) values of one are related to large (small) values of the other. When
large (small) values of one are related to small (large) values of the other, the ran-
dom variables are discordant. More formally, let (x1, y1) and (x2, y2) be two obser-
vations of a random vector (X,Y ). We say that (x1, y1) and (x2, y2) are concordant
if (x1 − x2)(y1 − y2) > 0 and discordant if (x1 − x2)(y1 − y2) < 0. This means that
they are concordant if either x1 < x2 and y1 < y2 or x2 < x1 and y2 < y1; in other
cases with strict inequality, the observations are discordant.
Kendall’s correlation coefficient is defined as the difference between the probabili-
ties of concordance and discordance in two different realizations (X1, Y1), (X2, Y2) of
(X,Y ),

τ = P{(X1 −X2)(Y1 − Y2) > 0} − P{(X1 −X2)(Y1 − Y2) < 0}.

The above expression can be also written as

τ = 2[P{X1 < X2 , Y1 < Y2} + P{X2 < X1 , Y2 < Y1}]− 1. (1)

If (x1, y1), (x2, y2) . . . (xn, yn) is a sample from (X,Y ), the sample coefficient is

τ̂ =
S(
n

2

) ,

where S = cp− dp is the difference between the number of concordant pairs (cp) and
the number of discordant pairs (dp).

The aim of this paper is to present a functional version of this correlation co-
efficient. For this purpose, we follow the same construction as that used for the
classic Kendall coefficient. Let f and g belong to the space C(I) of real continu-
ous functions on the compact interval I. First, we need to introduce relationships
allowing the comparison between curves. A natural choice is the usual order, i. e.,
f � g ⇔ f(t) ≤ g(t), for all t ∈ I. It fulfills the partial order conditions; however,
most functions are not comparable with this order. To avoid this difficulty, we waive
the antisymmetry condition and use preorders instead of orders.

Definition 1 Let f and g be in C(I). Then, we consider two alternatives.

f(t) �m g(t) ≡ max
t∈I

f(t) ≤ max
t∈I

g(t). (2)

f(t) �i g(t) ≡
∫ b

a

(g(t) − f(t))dt ≥ 0. (3)
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It follows easily that for constant functions defined in the same compact interval
I, both preorders are equivalent to the usual ordering on the real line. Given any
preorder definition among functions, we may define the concordance concept between
functions.

Definition 2 (Functional Concordance.) Let � be a preorder between functions,
and let ≺ address the case without considering ties. Two pairs of functions (f1, g1)
and (f2, g2) are concordant if either f1 ≺ f2 and g1 ≺ g2 or f2 ≺ f1 and g2 ≺ g1; in
the other case, they are discordant.

Definition 2 allows us to extend Kendall’s correlation coefficient to the functional
case, as described in the next Definition.

Definition 3 Let (x1, y1), . . . , (xn, yn) be a bivariate sample of functions in the space
C(I) of real continuous functions on the compact interval I. Then the functional τ̂ is:

τ̂ =

(
n

2

)−1 n∑

i<j

2I(xi ≺ xj and yi ≺ yj) + 2I(xj ≺ xi and yj ≺ yi)− 1.

(4)

If (X1, Y1), (X2, Y2) are copies of a bivariate stochastic process {(X(t), Y (t)) : t ∈ I},
the population version of this dependence measure is

τ = 2[P{X1 ≺ X2 , Y1 ≺ Y2} + P{X2 ≺ X1 , Y2 ≺ Y1}]− 1. (5)

Some of the asymptotical properties of the traditional Kendall τ coefficient arise from
the fact that it can be expressed as a U -statistic. To obtain an asymptotical result
in the functional fields, which will be stated in Theorem 2, we need the definition of
UB-statistics which are U -statistics taking values in a Banach space. We also need
some results of convergence for this kind of statistics. These concepts can be defined
as follows:

Definition 4 (UB-Statistics. Borovskikh [1], page 5.) Let B be a real separa-
ble Banach space with a norm ‖·‖ and let B∗ be the dual to space B. Denote by x∗(x)
the value of functional x∗ ∈ B∗ at x ∈ B. Let X1, . . . ,Xn be independent random
variables taking values in the measurable space (X,X), where X is a σ-algebra, and
all with identical distribution P . Consider a Bochner integrable symmetric function
Φ : Xm → B of m variables given on Xm and taking values in B. Then, a U -statistic
is

Un =

(
n

m

)−1 ∑

1≤i1<···<im≤n

Φ{(Xi1, . . . Xim)}. (6)

It is clear that Un ∈ B. Hence, the U -statistic (6) with a B-values kernel Φ is called
a UB-statistic. In particular, if B = R it is called a UR-statistic and if B = H,
where H is a real separable Hilbert space, it is called a UH-statistic.
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The following theorem provides an asymptotical result, which will be very useful in
what follows.

Theorem 1 (Borovskikh [1], page 73.) Assume that the B-value kernel Φ is such
that E‖Φ‖ < ∞. Then,

Un → θ a.s n → ∞,

and
E||Un − θ|| → 0.

Now, consider (X1, Y1), . . . , (Xn, Yn) to be independent copies of the bivariate
stochastic process (X(t), Y (t)) with identical distribution P and whose realizations
or paths are pairs of functions that take values in the measurable space (C[a, b] ×
C[a, b],X). Then, the functional τ̂ given in (4) can be expressed as a UB-statistic,

Un =

(
n

2

)−1 ∑

1≤i1<i2≤n

Φ{(Xi1 , Yi1), (Xi2 , Yi2)}, (7)

where Φ : C2[a, b]×C2[a, b] → R is a Bochner integrable symmetric function according
to Definition 1.3.11 in Schwabik and Guoju [19] and given by

Φ[(xi, yi), (xj , yj)] = 2I(xi ≺ xj , yi ≺ yj) + 2I(xj ≺ xi, yj ≺ yi)− 1,

where I denotes the indicator function.

3 Properties of Functional τ

We analyze in this section some desirable properties of τ as a dependence measure.
Scarsini [18] studies the measures of concordance in terms of copulas and proposes
a set of axioms that a concordance measure for ordered pairs of continuous random
variables should fulfill. The extension of these axioms to the multivariate case was
studied in Taylor [[20], [21]]. The following proposition gives the properties of the
functional τ . Some of them come from the axioms proposed by Scarsini [18]. Other
properties of Proposition 1 are a natural extension of the well known properties of
the bivariate τ itself (Kendall [11]).

Proposition 1 Let (X(t), Y (t)) be a bivariate stochastic process. Then,

1. τ(X(t), Y (t)) = τ(Y (t),X(t)). (Symmetry).

2. −1 ≤ τ(X(t), Y (t)) ≤ 1.

3. τ(−X(t), Y (t)) = −τ(X(t), Y (t)).

4. τ(X(t), g(X(t))) = 1, for any monotone increasing function g.

5. τ(X(t), g(X(t))) = −1, for any monotone decreasing g.

6. If X(t) and Y (t) are stochastically independent, then τ(X(t), Y (t)) = 0.
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7. The correlation coefficient functional is invariant under strictly increasing and
continuous transformations of the functional variables,

τ [α(X(t)), β(Y (t))] = τ(X(t), Y (t)),

where α and β are strictly increasing functions.

Note that τ with the preorder of the maximum verifies 1, 2, 4, 6 and 7, and τ with
the integral preorder 1, 2, 3, 6 but 4, 5 and 7 just for affine transformations. The
proof of Proposition 1 is given in the Appendix.

The consistency of functional τ̂ is established in the next theorem.

Theorem 2 Let (x1, y1), . . . , (xn, yn) be a sample of independent and identical func-
tional observations from (X(t), Y (t)). Then,

τ̂n → τ a.s. as n → ∞,

for the two preorders considered in Definition 1.

Proof
It is easy to check that the function

Φ[(xi, yi), (xj , yj)] = 2I(xi ≺ xj , yi ≺ yj) + 2I(xj ≺ xi, yj ≺ yi)− 1.

belongs to the interval [−1, 3]. Then, the functional τ̂ , given in (4) and expressed as
the UB-statistic (7), has associated a kernel Φ such that E‖Φ‖ is finite. Therefore,
from Theorem 1, we have that, if Φ is such that E‖Φ‖ < ∞, then the UB-statistic
will converge almost surely to the parameter τ . �

Observe that Theorem 2 is valid in general for any well-defined preorder (�).

To illustrate how the functional τ̂ works in simulated functional samples with
different kinds of dependence, we provide some examples. From now on, τ̂1, τ̂2
denote the functional τ̂ when the maximum and integral preorders are considered,
respectively. Consider five joint realizations of the processes X(t) = t2 + Z1 and
Y (t) = −(t+Z2)

2 − 8t+Z2, where (Z1, Z2) follows a bivariate standard normal dis-
tribution with correlation σ12 representing the random part of the processes. Each
pair of curves is represented by the same color. The bivariate functional sample
shown in Figure 1 was generated with a high positive value of σ12 close to 1. In this
first case, the ordering for the maximum preorder in the first group is (red > cyan
> green > blue > magenta), and for the second group it is (cyan > green > red >

blue > magenta). In both panels, the cyan and green curves are in the same relative
position with respect to the other curves. The blue and magenta curves are also in
the same position in both groups. In this case τ̂1 = 0.6. For the ordering to the
integral preorder, in the first group are (red > cyan > green > blue > magenta), and
for the second group it is (green > cyan > red > blue > magenta). In both panels,
blue and magenta curves are in the same position in the two groups. At the same
time, the remainder of the curves are almost completely ordered in the opposite way.
Therefore τ̂2 = 0.4, whose value is smaller than for τ̂1.
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On the other hand, Figure 2 shows five pairs generated from processes X(t) =
(t+Z1)

2 and Y (t) = (t+Z2)
3 with σ12 close to −1. The curves are almost completely

ordered in the opposite way between groups, except for the blue and black curves,
which yields a strong negative dependence. In this case, our functionals τ̂1 and τ̂2
take the value of −0.8.
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Figure 1: τ̂1 = 0.6 τ̂2 = 0.4
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Figure 2: τ̂1 = −0.8 τ̂2 = −0.8

4 Empirical results and comparisons

In this section, we illustrate the performance of the functional τ introduced in this
work, as well as its behavior with respect to other dependency measures already in-
troduced in the literature. We briefly describe two of them (dynamical correlation
and canonical correlation). In order to compare our results with these dependence
measures, we carry out a simulation study.

A commonly used technique to find the correlation between two groups of func-
tions is the dynamical correlation, which is a measure of similarity between two

7



curves. Dubin and Muller [5] introduced the dynamical correlation as the following
informal idea: “if both trajectories tend to be mostly on the same side of their time
average (a constant) then the dynamical correlation is positive; if the opposite occurs,
then dynamical correlation is negative”. Opgen-Rhein and Strimmer [15] proposed
an estimator for the dynamical correlation considering functional data instead of
longitudinal data. We will use in the paper the estimator of the dynamical correla-
tion proposed in [15], which is a slightly revised version of the dynamical correlation
introduced in Dubin and Müller [5]:

ρ̂d =
1

n− 1

n∑

i=1

〈xsi (t), ysi (t)〉,

where

xs(t) =
xc(t)√

1
n−1

∑n
i=1〈xci (t), xci (t)〉

,

and xc(t) are functions centered in space and time simultaneously, i.e.

xc(t) = x(t)− 〈x(t), 1〉, where x(t) =
1

n

n∑

i=1

xi(t),

and 〈·〉 is the usual inner product for functions 〈x(t), y(t)〉 =
∫
I
x(t)y(t)dt. As we can

see, ρ̂d is an estimator of the population dynamical correlation

ρd = E
〈
XS(t), Y S(t)

〉
,

that can been seen as an average of individual correlations.

Another well-known technique to measure functional dependency is the canonical
correlation, which was defined in Leurgans et al. [12]. This procedure seeks to
investigate which modes of variability in the two sets of curves are most associated
with one another. This analysis provides a pair of functions called canonical variates

(ξ(s), η(s))

such that
∫
ξXi and

∫
ηYi are well correlated with one another and the sample cor-

relation between these variables will be what in Leurgans et al. [12] was called the
canonical correlation between the two variables or groups. In a formal way, consider
n observed pairs of data curves (xi(t), yi(t)) with t in a same finite interval I and all
integrals are taken over I. Given canonical variates ξ and η, the canonical correlation
was defined by Leurgans et al. [12] as the sample squared correlation of

∫
ξxi and∫

ηyi, i.e.,

ρ̂c(ξ, η) =

{
cov

(∫
ξxi,

∫
ηyi

)}2

{
var

(∫
ξxi

)
+ λ||D2ξ||2

}{
var

(∫
ηyi

)
+ λ||D2η||2

} ,

where λ is a positive smoothing parameter and ||D2f ||2 =
∫ (

D2f
)2
, that is, the

integrated squared curvature of f that quantifies its roughness. Having a pair of
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canonical variables with fairly smooth weight functions and correlations that are not
excessively low is necessarily a good choice for the smoothing parameter. This param-
eter can be chosen subjectively, but can also be selected through a cross-validation
score if an automatic procedure is required.

Once we have defined the dependence measures that will be used to compare
the performance of our coefficient, we show through simulation exercises the behav-
ior of the measure introduced in this paper and those chosen to compare it. The
data are simulated in the following way. Consider the bivariate stochastic process
(X(t), Y (t)) = [f1(t, Z1), f2(t, Z2)] where (Z1, Z2), represents the random part of the
process, a bivariate standard normal distribution with correlation σ12. We consider a
different structure for the functions fi, i = 1, 2 as well as different values for σ12. In
each case, 50 realizations of the process (X(t), Y (t)) are generated where the paths
are discretized taking d = 50 points over the interval [0,1] and calculating the mea-
sures of dependence previously mentioned. This procedure is carried out 100 times
and the results reported refer to the average and deviation over the 100 setups.

As one can see, we calculate the dependence coefficient when the curves are dis-
cretized in a finite number of points. Therefore, it is necessary to define a finite
dimensional version for the preorders given in Definition (1). Consider t1, t2, . . . , td
to be the values of t in which the functional sample x1, x2, . . . , xn is observed. Then,� x1(t) �m x2(t) ⇔ maxt∈I(x1(t1), . . . , x1(td)) ≤ maxt∈I(x2(t1), . . . , x2(td)).� x1(t) �i x2(t) ⇔ td−t1

2d [x1(t1)+x1(td)+2
∑n−1

i=2 x1(ti)] ≤ td−t1
2d [x2(t1)+x2(td)+

2
∑n−1

i=2 x2(ti)].

The last expression corresponds to the composite trapezoidal rule of numerical inte-
gration, which we have used for calculating the values of the integrals.

Table 1 presents the average of the measures τ̂1 and τ̂2 as well as ρ̂c and ρ̂d,
which denote the canonical correlation and dynamical correlation, respectively. The
value in brackets reports the standard deviation of the measures considered. We
also include, in each case, the value of the correlation σ12. We can see that the
coefficients τ̂1 and τ̂2 in some cases take different values between them, which is
a consequence of the preorders not sorting the data in the same way. In the case
of processes in which one of them is an increasing transformation of the other, both
coefficients take value 1, which confirms the perfect dependence between the processes
considered. However, this fact does not occur in the measures used for comparison,
see for example rows 3 and 4 in Table 1. Indeed the value of ρ̂d in row 4 does not
reflect the true dependence between those processes, which is positive and perfect.
Observe that a similar conclusion can be drawn when the dependence is perfect but
negative as may be seen in row 5. There, only our coefficients were able to capture
the negative perfect dependence. Note also that in the independent case (row 11),
our coefficients reflect this fact better than the other measures. Finally, the standard
deviation of τ̂2 in most cases is the smallest among the other measures.
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Table 1: Dependence measures in simulated data

X(t) = f1(t, Z1) Y (t) = f2(t, Z2) σ12 ¯̂τ 1 ¯̂τ2 ¯̂ρc
¯̂ρd

1 (t+ Z1)
3 + (t+ Z1)

2 + 3(t+ Z1) (t+ Z2)
2 + 7

8(t+ Z2)− 10 0.8 0.4861 0.4874 0.7448 0.7098
(0.0657) (0.0711) (0.0898) (0.1139)

2 sin(t+ Z1) cos(t+ Z2) −0.7 0.3084 0.2774 0.5367 0.3605
(0.0923) (0.0835) (0.1004) (0.11)

3 (t+ Z1)
2 (t+ Z1)

4 1 1 1 0.9566 0.922
(0) (0) (0.0118) (0.0125)

4 (t+ Z1)
2 + 7(t+ Z1) + 2 ((t+ Z2)

2 + 7(t+ Z2) + 2)3 1 1 1 0.9989 0.7779
(0) (0) (0) (0.0347)

5 (t+ Z1)
2 + 7(t+ Z1) + 2 1− ((t+ Z2)

2 + 7(t+ Z2) + 2)3 1 −1 −1 0.999 −0.78
(0) (0) (0.0009) (0.0275)

6 exp(t+ Z1) (t+ Z2)
3 + (t+ Z2)

2 + 3(t+ Z2) 0.6 0.4047 0.4138 0.5098 0.5682
(0.0811) (0.0751) (0.1431) (0.1301)

7 exp(t+ Z1)
2 cos(t+ Z2) −0.8 0.3097 0.2982 0.3101 0.0408

(0.0922) (0.1035) (0.07) (0.1458)

8 sin(t+ Z1) (t+ Z2)
2 0.4 0.1080 0.1059 0.3382 0.1647

(0.1035) (0.1021) (0.1132) (0.0916)

9 (t+ Z1)
2 + 9(t+ Z1)− 5 cos(3t+ Z2) 1 −0.7198 −0.9476 0.9334 −0.7244

(0.0853) (0.0358) (0.0458) (0.0562)

10 exp(t2 + Z1) (t+ Z2)
2 − 8t+ Z2 0.9 0.3621 0.5991 0.8544 0.4620

(0.1078) (0.0706) (0.0485) (0.1215)

11 exp(t+ Z1) sin(t+ Z2) 0 −0.0076 0.0087 0.1438 0.0560
(0.1004) (0.0883) (0.0861) (0.1275)
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We can see that the canonical correlation ρ̂c is always positive, which means that
it does not capture the direction of the dependence. This is because it seeks variabil-
ity in the two sets of curves that maximize the sample correlation between the pairs
of canonical variates. Dynamical correlation ρ̂d just reflects the mean of individual
similarities rather than considering the set of curves as a whole. This makes the
dynamical correlation to capture changes only at an individual performance level,
while Kendall’s coefficient detects changes at a more general level, which is one of
the advantages of this coefficient.

Thus, the functional τ̂ is appropriate to indicate how related two functional vari-
ables are, regardless of the shape of their realizations. This coefficient measures the
joint tendency of the variables to have increasing or decreasing behavior.

As we can see, τ̂ depends on the sample size n and on the number of points to
discretize the functions d. In order to assess the stability of the functional τ̂ , with
respect to (n, d) we perform two sensitivity analysis, using the following two pairs of
stochastic processes.� Model 1: X(t) = exp(t+Z1), and Y (t) = (t+Z2)

3 +(t+Z2)
2 +3(t+Z2) with

σ12 = 0.6.� Model 2: X(t) = sin(t+ Z1) and Y (t) = cos(t+ Z2) with σ12 = −0.7.

The first analysis is with respect to the sample size n. In this case, we move
n = 25, 50, 100, 150 and 1000 without changing the number of points to discretize
the functions, which is set as d = 50. This procedure is repeated 100 times and we
reported their average. Table 2 shows that the changes in ¯̂τ1, ¯̂τ2 are negligible and
quite stable with respect to the sample size.

Now, the same scheme is made for d, the number of points in the discretization.
Fix n = 50, and move d = 25, 50, 100, 150 and 1000 points. Table 3 illustrates the
sensitivity with respect to d. It is noteworthy that the coefficients present good
stability with respect to the number of points taken to discretize the functions. We
also carry out the sensitivity analysis for other models, but we do not report them
in this work, since we obtain the same conclusions as before.

Table 2: Sensitivity to sample size
sample size Model 1 Model 1 Model 2 Model 2

¯̂τ1 ¯̂τ2 ¯̂τ1 ¯̂τ2
25 0.4035 0.4017 0.2809 0.3014

(0.1285) (0.1129) (0.1475) (0.1429)
50 0.4044 0.4190 0.3084 0.2774

(0.0719) (0.0724) (0.0923) (0.0835)
100 0.4130 0.4047 0.2882 0.2945

(0.0575) (0.0495) (0.0600) (0.0636)
150 0.4093 0.4094 0.2999 0.2880

(0.0394) (0.0485) (0.0517) (0.0489)
1000 0.4077 0.4096 0.2903 0.2945

(0.0162) (0.0185) (0.0219) (0.0196)
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It is remarkable that this study of simulation was also made with smoothed data
using B-spline with 13 basis functions and a smoothing parameter λ = 0.01 in the
calculation of τ̂1,2 and the results have many similarities with those reported in this
section.

Table 3: Sensitivity to the number of points in the discretization
number of points Model 1 Model 1 Model 2 Model 2

¯̂τ1 ¯̂τ2 ¯̂τ1 ¯̂τ2
25 0.3992 0.4168 0.2979 0.2897
50 0.4044 0.4190 0.3084 0.2774
100 0.4054 0.4135 0.2846 0.2802
150 0.4153 0.4065 0.2912 0.2801
1000 0.4089 0.4128 0.2845 0.2989

5 Ibex data

The first real data set that we use in this work corresponds to 33 companies belonging
to the IBEX35. For each company we have taken a set of 108 functional observations,
each one of them representing one day (108 days) in which the price of the asset has
been measured every 5 minutes from 9:05 until 17:40 (104 measurements). Table 4
shows the functional τ̂ coefficients, canonical correlation and dynamical correlation
for some pairs of assets. Data were smoothed using cubic B-spline with 13 basis func-
tions and a smoothing parameter λ = 0.01; recall that λ is especially used to calculate
the canonical correlation. As one can see, some companies present high dependence,
which can be interpreted as similar behavior of their prices in the course of time.
Other companies have low dependence, whereby the prices fluctuate differently. This
information given by correlation coefficients allows us to propose an alternative for
organizing a portfolio of assets, which presents low risk to the investor. To carry out
this methodology we will focus on the correlation coefficient τ̂2 and will use the IBEX
DATA.

We construct a matrix C of size 33× 33, whose inputs are τ̂2, in such a way that
each column contains the values of the coefficient τ̂2 for a company with the other
companies. In order to compare the columns of the matrix, the first component in
each column will be the correlation of the company itself, i.e, the first row of the
matrix will take the value 1. To classify the companies into groups depending on
τ̂2, we performed a cluster analysis using the nearest neighbor technique with five
groups. As results we obtain five clusters or groups where the companies are that
have similar behavior in terms of the coefficient functional τ̂2. Figures 3 to 7 show
the 5 groups. In each one of the groups, we plot the paths determined by the most
similar columns of matrix C.

Figure 8 shows the average correlation vectors for each group. The fact that
the curves are so different could indicate that each group has a different dependence
structure. The above procedure provides a good alternative for organizing a portfolio.
Assets of different groups have different behavior, which can be a useful tool to avoid
composing a portfolio with parallel assets, since it is well known that a portfolio with
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Table 4: IBEX DATA

company 1 company 2 τ̂1 τ̂2 ρ̂c ρ̂d

Antena 3 T.V. Abertis −0.3128 −0.3058 0.4464 −0.4338

A.C.S. Acerinox −0.2606 −0.2511 0.3874 −0.3664

Altadis Acciona 0.3860 0.3918 0.4926 0.4396

B.B.V.A. Bankinter 0.4363 0.4635 0.6759 0.6662

Cintra Endesa −0.1870 −0.1823 0.0808 −0.0522

Enagas F.C.C. −0.2464 −0.2464 0.4142 −0.39

Ferrovial Gamesa −0.0702 −0.0562 0.3158 −0.2056

Gas Natural Iberdrola 0.3478 0.3511 0.4261 0.4238

Iberia Indra A −0.0187 0.0177 0.0668 −0.0382

Inditex Mapfre −0.1512 −0.1291 0.3071 −0.2927

Metrovacesa Popular −0.3053 −0.3406 0.4619 −0.4494

NH Hoteles R.E.E. −0.1193 −0.1125 0.3313 −0.3179

Repsol Y.P.F. Sabadell 0.4846 0.4872 0.7633 0.7614

Santander. Sogecable 0.1199 0.1131 0.1845 0.1511

Sacyr Valle Telefónica −0.2767 −0.2687 0.3669 −0.3553

A.G.S. Barcelona Telecinco −0.1431 −0.1142 0.2172 −0.2037

Unión Fenosa Antena 3 T.V. −0.4489 −0.4502 0.7756 −0.7697

Antena 3 T.V. Altadis −0.6249 −0.6690 0.7807 −0.7745

Antena 3 T.V. F.C.C. 0.5670 0.5827 0.7718 0.7641

Antena 3 T.V. Popular 0.6663 0.6677 0.8307 0.8354

Antena 3 T.V. Telefónica −0.6967 -0.7011 0.8655 −0.8628

Antena 3 T.V. Telecinco 0.5892 0.5916 0.8032 0.7983

Abertis Acciona 0.6296 0.6126 0.8264 0.8179

Abertis Enagas 0.5686 0.5586 0.7699 0.7618

Abertis Inditex 0.5953 0.5994 0.8232 0.8107

Abertis R.E.E. 0.6147 0.6052 0.8125 0.800

Abertis A.G.S. Barcelona 0.6969 0.7068 0.9041 0.8934

A.C.S. Sacyr Valle 0.7132 0.7268 0.8969 0.8870

Acciona Endesa −0.6592 −0.6694 0.8243 −0.8130

Acciona Iberdrola 0.7550 0.7615 0.8953 0.8908

Acciona Santander 0.7587 0.7720 0.9273 0.9154

Acciona Unión Fenosa 0.7587 0.7581 0.8861 0.8766

Bankinter Sabadell 0.7941 0.8033 0.9511 0.9482

F.C.C. Popular 0.6262 0.6310 0.8439 0.8375

Iberdrola Unión Fenosa 0.8229 0.8195 0.9681 0.9655

Mapfre NH Hoteles 0.6945 0.7125 0.9065 0.9008

NH Hoteles Repsol Y.P.F. 0.7221 0.7377 0.9021 0.8982
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Figure 3: First group of companies
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Figure 5: Third group of companies
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Figure 6: Fourth group of companies
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Figure 7: Fifth group of companies
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parallel assets has a very high risk.

The functional coefficient has the advantage of taking into account the temporal
part of the data, i.e., the evolution of the asset over time that in this case is every
five minutes. Therefore, this option works with more information for the asset. This
is more meaningful and realistic than considering just the dependence between the
data at the end of the day, as it is made when the dependence is measured by the
usual covariance matrix.

6 Gene data

Existing relations among genes contain broad information on the structure and func-
tioning of living beings. Therefore, the interaction between genes allows us to un-
derstand many life phenomena. These interactions give rise to the construction of
genetic networks. By studying the structural properties of such networks, much
more information may be extracted in order to understand the complex functioning
of living organisms. Different statistical methodologies have been used to estimate
genetic networks, such as graphical models which represent stochastic conditional
dependence between the investigated variables. Graphical Gaussian models and the
Bayesian network are examples of simple graphical models (see, e.g. Whittaker [22])
but their drawback is that these methods are based on the assumption of identically
and independently distributed variables. Opgen-Rhein and Strimmer [15] studied the
graphical Gaussian models from the perspective of functional data, where these two
assumptions are not necessary.

Opgen-Rhein and Strimmer [15] considered the gene expression as a functional
observation, rather than describing the individual time points separately. They built
the networks in the following way: the network nodes are the genes and the corre-
lations are the connectivity strengths assigned to the edges of the network. They
use the dynamical correlation introduced in Section 4. However, they do not use the
dynamical correlation itself because it represents only marginal dependencies, besides
including indirect interactions between two variables, since it contains information
on the relations of each variable with the rest. They use the concept of partial corre-
lation, which describes the correlation between any two variables i and j, conditioned
on all the other variables, which is the correlation between two variables when the
effect of the other is eliminated. Therefore, if the variables are linearly and condi-
tionally associated, the partial correlation coefficient is different from zero.

The partial correlation matrix is constructed as follows: Let P = (ρkl) be the
correlation coefficients, and let Ω be the inverse relationships

Ω = P−1 = (wij),

then the partial correlations are given by

ρ̃kl =
−wkl√
wkkwll

⇒ P̃ = (ρ̃kl).
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To test the significance of these correlations and decide which are significant edges,
they employ a large-scale simultaneous hypothesis testing, the “local fdr” which is an
empirical Bayes estimator of the false discovery rate proposed by Efron [6],[7]. This
method computes the posterior probability for an edge to be present or absent in the
gene network . An important question in the use of this method is whether we can
identify a small percentage of interesting cases that deserve further investigation. In
this study, these cases will be the edges present in the network.

We propose a new form of finding connectivity strengths (edges) using the func-
tional τ̂2 and applying the “local fdr” to investigate valid relations. In order to
illustrate our procedure, we use a microarray time series data set. These data were
used in Opgen-Rhein and Strimmer [15]. The data set characterizes the response of
a human T-cell line (Jirkat) to a treatment with PMA and ioconomin. After pre-
processing the time course data, we obtain 58 genes measured across 10 time points
with 44 replications. Table 5 shows the correlation coefficients including the canon-
ical correlation ρ̂c and dynamical correlation ρ̂d for some pairs of genes. Data were
smoothed with lineal B-spline, taking four basis functions and a smoothing parame-
ter λ = 0.00001. Note how the correlations vary depending on the coefficient used,
which was considered when we analyze simulated data in Section 4.

In order to compare our results with those obtained by Opgen-Rhein and Strim-
mer, we calculate the partial correlation matrix from the correlations matrix found
with the functional τ̂2 and we use the “local fdr” algorithm in GeneNet packages,
available in library R-software, to find whether significant edges are present or ab-
sent in our network, with the same cut-off = 0.2 used for calculating the network
with dynamical correlation.

Figures 9 and 10 show the network proposed by Opgen-Rhein and Strimmer [15]
and our proposed network, respectively. The network calculated with partial dynam-
ical correlation contains 15 nodes and 9 edges, whereas the network calculated with
partial functional τ̂2 contains 22 nodes and 12 edges. In both figures, the edges in
red represent negative correlation and the nodes in red represent the common nodes
in both networks (CASP8, SOD1, MAPK9, CDC2, CCNA).

The advantage of using functional τ̂2 instead of the dynamical correlation studied in
Opgen-Rhein and Strimmer [15] is that our coefficient identifies relationships between
the variables based on the relative ordering among realizations in each group. And
it is not only based on the shape of individual realizations; our coefficient also takes
into account the temporal evolution of each gene, so it is able to identify additional
and different relationships than those given by the dynamical correlation.

Tables 6 and 7 show the results of partial correlation with dynamical correlation
and partial correlation with functional τ̂2 respectively, which were found through the
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Table 5: Gene data

GEN 1 GEN 2 τ̂1 τ̂2 ρ̂c ρ̂d

RB1 CCNG1 −0.3425 −0.3996 0.8296 −0.3266

TRAF5 CLU −0.3975 −0.3383 0.7322 −0.2461

MAPK9 SIVA 0.3298 0.3890 0.9031 0.4665

EDG9 ZNFN1A1 −0.1839 −0.3858 0.9081 −0.011

IL4R MAP2K4 0.2656 0.2706 0.9063 0.4193

JUND LCK −0.2146 −0.2114 0.9311 −0.4443

SCYA2 PPSGKA1 −0.1522 −0.2622 0.6055 −0.1518

ITGAM CTNNB1 0.0962 0.0317 0.8491 0.2373

SMN1 CASP8 −0.0338 −0.1755 0.9311 −0.7743

E2F4 PCNA 0.3869 0.4989 0.9394 0.6312

CCNC PDE4B −0.3087 −0.5687 0.8562 −0.5738

IL16 APC −0.2474 −0.3192 0.7916 −0.1763

ID3 SLA −0.4027 −0.4334 0.8905 −0.7363

CDK4 EGR1 0.1734 −0.2421 0.9605 0.2091

TCF12 MCL1 0.3467 0.2960 0.9610 0.8361

CDC2 SOD1 0.0486 0.4080 0.9749 0.4871

CCNA2 PIG3 −0.4017 −0.4820 0.9361 −0.3394

IRAK1 SKIIP −0.0560 −0.1871 0.5658 0.1197

MYD88 CASP4 0.4778 0.4376 0.9266 0.2225

TCF8 API2 −0.0063 −0.1966 0.9292 0.5261

GATA3 RBL2 0.3467 0.4038 0.9352 0.5604

C3X1 IFNAR1 0.2653 0.3805 0.8923 0.6694

FYB IL2R6 −0.0782 0.5254 0.9301 0.3324

CSF2RA MPO −0.4588 −0.4778 0.9048 0.0831

API1 CYP19 −0.3245 0.1036 0.9116 0.1227

CIR CASP7 −0.2220 −0.3827 0.8003 −0.2234

MAP3K8 JUNB −0.3044 −0.4630 0.8913 −0.6764

IL3RA NFKBIA −0.4165 −0.3848 0.7861 −0.1457

LAT AKT1 −0.3404 −0.1649 0.8210 −0.0764

RB1 MAPK9 0.5328 0.6964 0.9767 0.7740

RB1 CASP4 −0.4567 −0.4207 0.9672 −0.4748

TRAF5 LCK 0.3647 0.5856 0.8970 0.4583

TRAF5 ITGAM −0.4820 −0.5941 0.9494 −0.6519

TRAF5 CTNNB1 0.4397 0.5920 0.8145 0.2573

TRAF5 CSF2RA −0.5116 −0.6342 0.9318 −0.6458

EDG9 C3X1 0.5370 0.7030 0.9626 0.6056

ZNFN1A1 CASP8 −0.2611 −0.63 0.9467 −0.4740

IL4R ITGAM 0.4926 0.5856 0.9611 0.8036

MAP2K4 IL16 0.1078 0.1015 0.6217 0.0634

JUND SMN1 −0.5846 −0.4419 0.9528 −0.6019
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GEN 1 GEN 2 τ̂1 τ̂2 ρ̂c ρ̂d

JUND RBL2 −0.5032 −0.5370 0.9556 −0.8009

LCK CCNC 0.3499 0.6660 0.9499 0.8214

PPSGKA1 FYB −0.0159 −0.8161 0.9582 −0.6983

CASP8 PIG3 0.6755 0.6321 0.9420 0.7787

CASP8 CSF2RA 0.50 0.6660 0.9868 0.8401

CASP8 IFNAR1 0.2886 0.3848 0.9602 0.7518

PDE4B JUNB 0.5081 0.5370 0.8908 0.7173

IL16 EGR1 0.3319 0.0751 0.6167 0.6823

IL16 SOD1 −0.1290 −0.0106 0.7217 0.0573

APC FYB 0.1332 0.6829 0.9736 0.2170

TCF12 CSF2RA −0.3552 −0.6469 0.9837 −0.7988

PIG3 NFKBIA 0.5328 0.5476 0.8739 0.4362

CASP4 RBL2 −0.4440 −0.4355 0.9438 −0.7186

CSF2RA NFKBIA 0.6047 0.6448 0.9417 0.5810

CASP8

IFNAR1

JUND EGRI

IL16

SOD1MCL1

API2 NFKBIA

MAPK9 SLA

CDC2

CCNA

IL2RG API1

Figure 9: Gene dependence network using dynamical correlation
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Figure 10: Gene dependence network using functional τ̂2.

“local fdr” algorithm. Also, we can see the p-value for each of the correlations as
well as the nodes included in the networks.

Table 6: Partial correlation with dynamical correlation

Correlation node1 node2 pval prob

0.5196239 JUND EGRI 4.549748e − 09 0.9821273

0.3971803 CDC2 CCNA2 1.490676e − 05 0.9821273

0.3888355 API2 NFKBIA 2.325541e − 05 0.9821273

0.3817253 CASP8 IFNAR1 3.365286e − 05 0.9778470

0.3749201 IL16 EGRI 4.755512e − 05 0.9317983

−0.3543562 MAPK9 SLA .291719e − 04 0.9317983

0.3503031 IL16 SOD1 1.560555e − 04 0.9317983

0.3477015 IL2RG API1 1.759564e − 04 0.9079010

0.3414533 MCL1 API2 2.337537e − 04 0.8790107

Finally, to explore the relationship between the dynamical correlation and the
functional τ̂2, we make a regression analysis between the partial dynamical correlation
and partial functional τ̂2 for T-cell data. We obtain a R2 = 0.0634, which is low and
indicates a low relationship.

7 Robustness

As commented in the Introduction, we analyze the robustness of our coefficients τ̂1
and τ̂2 and compare them with the results obtained with the dynamical and canon-
ical correlation (ρ̂d and ρ̂c, respectively). We contaminate the dataset with outliers,
defining a functional outlier as in Febrero et al. [9]: a “curve [that] has been gen-
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Table 7: Partial correlation with functional τ̂2

Correlation node1 node2 pval prob

−0.3235028 PPS6KA1 FYB 2.286947e − 05 0.9599103

0.3029697 IRAK1 MPO 7.744064e − 05 0.9599103

0.3019622 SMN1 CCNC 8.202942e − 05 0.9599103

0.2990471 RB1 MAP3K8 9.678107e − 05 0.9400666

0.2932716 RB1 MAPK9 1.336132e − 04 0.9287469

−0.2842216 ITGAM SOD1 2.184800e − 04 0.9287469

−0.2839907 CDC2 CYP19 2.211905e − 04 0.8543381

−0.2687344 IL4R C3X1 4.880864e − 04 0.8543381

−0.2680201 GATA3 C3X1 5.059491e − 04 0.8543381

0.2628164 CASP8 PIG3 6.554510e − 04 0.8543381

0.2627168 CTNNB1 SKIIP 6.586726e − 04 0.8543381

0.2600964 TCF12 CCNA2 7.488866e − 04 0.8543381

erated by a stochastic process with a different distribution than the rest of curves,
which are assumed to be identically distributed”. Given this definition, we use three
types of outliers: shape outliers, magnitude outliers and shape-magnitude outliers.

We generate 50 curves for the previously studied processes. (Recall that σ12 is
the correlation between the normal random variables Z1 and Z2.)

X(t) = exp(t+ Z1), and Y (t) = (t+ Z2)
3 + (t+ Z2)

2 + 3(t+ Z2), σ12 = 0.6

and the types of outliers to be considered are:� Shape outliers. Changing the argument, t to (1− t).� Magnitude outliers. Adding a constant to the original process, X(t) to X(t)+k.
In our case we will use k = 60.� Shape-magnitude outliers. Changing the argument and adding a constant to
the original function, X(t) to X(1− t) + k.

We use different ways to contaminate the data:

1. Contaminating a group.

2. Contaminating two groups in the same position.

3. Contaminating two groups in different positions.

Each measure is calculated before contaminating the data (row 1). Once data have
been contaminated with outliers from different types, we report the relative variation
of the association measure with respect to its value in the uncontaminated data set.
We compare our results with those obtained by the dynamical correlation and canon-
ical correlation. We can see that functional τ̂1 and τ̂2 coefficients are invariant to the
presence of shape outliers, while the dynamical correlation and canonical correla-
tion coefficients are sensitive to them. For magnitude outliers and shape-magnitude
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outliers our coefficients present small variations unlike the other coefficients which
present variations up to 40 percent of the original value. The results are given in Ta-
bles 8, 9 and 10, where the values in red are those that present the largest variation
in each of the cases. We can see that the functional τ̂1 as well as the functional τ̂2
do not present a significant variation, while ρ̂d and ρ̂c present the largest variations
in almost all cases.

Table 8: Contamination with Shape Outliers

Contaminated Groups Type of Outliers No outl τ̂1 τ̂2 ρ̂d ρ̂c

none none 0 0.454 0.454 0.549 0.544

X(t) Shape 1 0 0 0.0231 0.0007

X(t) Shape 2 0 0 0.0242 0.0669

X(t) Shape 3 0 0 0.0244 0.1292

X(t) Shape 4 0 0 0.0245 0.1284

X(t), Y (t) same position Shape 1 0 0 0 0.2122

X(t), Y (t) same position Shape 2 0 0 0 0.4137

X(t), Y (t) same position Shape 3 0 0 0 0.2707

X(t), Y (t) same position Shape 4 0 0 0 0.27

X(t), Y (t) different position Shape 1 0 0 0.0296 0

X(t), Y (t) different position Shape 2 0 0 0.0301 0.0698

X(t), Y (t) different position Shape 3 0 0 0.0303 0.1446

X(t), Y (t) different position Shape 4 0 0 0.0305 0.1393
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Table 9: Contamination with Magnitude Outliers

Contaminated Groups Type of Outliers No outl τ̂1 τ̂2 ρ̂d ρ̂c

none none 0 0.454 0.454 0.549 0.544

X(t) Magnitude 1 0.0033 0.0033 0.096 0.002

X(t) Magnitude 2 0.0016 0 0.009 0.043

X(t) Magnitude 3 0.008 0.008 0.17 0.18

X(t) Magnitude 4 0.026 0.026 0.095 0.126

X(t), Y (t) same position Magnitude 1 0.008 0.009 0.16 0.34

X(t), Y (t) same position Magnitude 2 0.0131 0.0147 0.2757 0.4022

X(t), Y (t) same position Magnitude 3 0.0163 0.0196 0.3346 0.4239

X(t), Y (t) same position Magnitude 4 0.0343 0.0375 0.3419 0.4292

X(t), Y (t) different position Magnitude 1 0.0196 0.0245 0.1786 0.0079

X(t), Y (t) different position Magnitude 2 0.0212 0.0261 0.1766 0.0384

X(t), Y (t) different position Magnitude 3 0.0131 0.0196 0.1135 0.1652

X(t), Y (t) different position Magnitude 4 0.1192 0.1274 0.2091 0.1076
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Table 10: Contamination with Shape-magnitude Outliers

Contaminated Groups Type of Outliers No outl τ̂1 τ̂2 ρ̂d ρ̂c

none none 0 0.454 0.454 0.549 0.544

X(t) Shape-magnit 1 0.003 0.004 0.09 0.0008

X(t) Shape-magnit 2 0.001 0 0.006 0.028

X(t) Shape-magnit 3 0.008 0.008 0.15 0.18

X(t) Shape-magnit 4 0.02 0.02 0.079 0.11

X(t), Y (t) same position Shape-magnit 1 0.008 0.009 0.16 0.41

X(t), Y (t) same position Shape-magnit 2 0.013 0.014 0.27 0.43

X(t), Y (t) same position Shape-magnit 3 0.016 0.019 0.33 0.41

X(t), Y (t) same position Shape-magnit 4 0.034 0.037 0.34 0.41

X(t), Y (t) different position Shape-magnit 1 0.019 0.024 0.18 0.002

X(t), Y (t) different position Shape-magnit 2 0.021 0.026 0.18 0.04

X(t), Y (t) different position Shape-magnit 3 0.013 0.019 0.12 0.19

X(t), Y (t) different position Shape-magnit 4 0.119 0.127 0.22 0.11
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8 Conclusions

We have introduced a new numerical dependence measure between two sets of func-
tional data. Our technique is a natural extension of the Kendall τ coefficient when
the data are curves. In order to build this new coefficient, we also have introduced
the concordance concept between pairs of functional data. We have presented exam-
ples of applications showing the usefulness of the new coefficients introduced for both
simulated and real data.

We have compared the performance of our measure with other coefficients, such
as dynamical correlations and canonical correlations. The coefficients presented here
allow us to identify the global dependency between two groups of functional data
regardless of the shape of their realizations. Also, this coefficient’s implementation is
straightforward.

Two interesting examples with real data are studied. The first one corresponding
to 33 companies belonging to the IBEX35 coefficient informs about companies having
similar behavior over time. In finance, assets with similar dependence behavior in
the same portfolio increase its risk. Therefore, our coefficient allows us to classify the
assets to build portfolios with different behavior. The second data set corresponds
to a microarray time series from a human T-cell experiment. We obtain the partial
functional τ̂2 for each pair of genes and construct a gene network.

We also study the sensitivity of our coefficients and conclude that these coefficients
present good stability with respect to sample size and to the number of points taken
to discretize the functions. In terms of robustness, our coefficients can be considered
quite stable in the presence of functional outliers in comparison with the measures
used as a benchmark.
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9 Appendix

Proof Proposition 1

The properties 1 and 2 are immediate from the expression (5) of functional τ .

Property 3.

Proof
Let (X1, Y1) (X2, Y2) be identically distributed copies of a bivariate stochastic process
(X(t), Y (t)), and let �i be the preorder from equation (3).

Denote X̃i =
∫ b

a
Xi(t)dt and Ỹi =

∫ b

a
Yi(t)dt.

τ2(−X(t), Y (t)) = 2[P (−X1 ≺ −X2 , Y1 ≺ Y2) + P (−X2 ≺ −X1 , Y2 ≺ Y1)]− 1.

= 2[P (−X̃1 < −X̃2 , Ỹ1 < Ỹ2) + P (−X̃2 < −X̃1 , Ỹ2 < Ỹ1)]− 1

= 2[P (X̃2 < X̃1 , Ỹ1 < Ỹ2) + P (X̃1 < X̃2 , Ỹ2 < Ỹ1)]− 1

= 2[1− {P (X̃1 < X̃2 , Ỹ1 < Ỹ2) + P (X̃2 < X̃1 , Ỹ2 < Ỹ1)}] − 1

= −{2[P (X̃1 < X̃2 , Ỹ1 < Ỹ2) + P (X̃2 < X̃1 , Ỹ2 < Ỹ1)]− 1}
= −{2[P (X1 ≺ X2 , Y1 ≺ Y2) + P (X2 ≺ X1 , Y2 ≺ Y1)]− 1}.
= −τ2(X(t), Y (t))

�

Property 4.

Proof
Let�m be the preorder from equation (2) and let g be a monotone increasing function.
Then,

τ1(X(t), g(X(t))) = 2[P{max
t∈[a,b]

X1(t) < max
t∈[a,b]

X2(t)} , {max
t∈[a,b]

g(X1(t)) < max
t∈[a,b]

g(X2(t))}]

+ 2[P{max
t∈[a,b]

X2(t) < max
t∈[a,b]

X1(t)} , {max
t∈[a,b]

g(X2(t)) < max
t∈[a,b]

g(X1(t))}] − 1.

Since g is a monotone increasing function,

τ1(X(t), g(X(t))) = 2[P{max
t∈[a,b]

X1(t) < max
t∈[a,b]

X2(t)} , {max
t∈[a,b]

X1(t) < max
t∈[a,b]

X2(t)}]

+ 2[P{max
t∈[a,b]

X2(t) < max
t∈[a,b]

X1(t)} , {max
t∈[a,b]

X2(t) < max
t∈[a,b]

X1(t)}] − 1

= 1

�

The functional preorder �i from equation (3) in general, is not invariant to in-
creasing transformations. For example: Let f(t) = t+1 and g(t) = 2t be continuous
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functions in the compact interval [0, 32 ]. Then g(t) ≺ f(t) since

∫ 3
2

0
g(t)dt = 2.25 and

∫ 3
2

0
f(t)dt = 2.625

Now, let α(t) = exp(t) be an increasing function, then α(f(t)) = exp(t + 1) and
α(g(t)) = exp(2t)

∫ 3
2

0
exp(t+ 1)dt = 9.454 and

∫ 3
2

0
exp(2t)dt = 9.54

then,

g(t) ≺i f(t) but α(f(t)) ≺i α(g(t)).

Thus, the ordering is not preserved. However, for increasing affine transformations
the preorder is invariant. Suppose that α(t) = ct+ d being c > 0 and

fi(t) ≺i fj(t) ⇔
∫ b

a

fi(t)dt <

∫ b

a

fj(t)dt

→
∫ b

a

cfi(t)dt <

∫ b

a

cfj(t)dt →
∫ b

a

cfi(t)dt+ d(b− a) <

∫ b

a

cfj(t)dt+ d(b− a)

→
∫ b

a

(cfi(t) + d)dt <

∫ b

a

(cfj(t) + d)dt →
∫ b

a

α(fi(t))dt <

∫ b

a

α(fj(t))dt.

Property 6.

Proof
Let (X1, Y1) and (X2, Y2) be identically distributed copies of a bivariate stochastic
process (X(t), Y (t)), X(t) and Y (t) independent stochastic processes and

τ = 2[P (X1 ≺ X2 , Y1 ≺ Y2) + P (X2 ≺ X1 , Y2 ≺ Y1)]− 1.

Then,

τ1 = 2[P (X1 ≺ X2)× P (Y1 ≺ Y2)] + 2[P (X2 ≺ X1)× P (Y2 ≺ Y1)]− 1

= 2[P (max
t∈[a,b]

X1(t) < max
t∈[a,b]

X2(t))× P (max
t∈[a,b]

Y1(t) < max
t∈[a,b]

Y2(t))]

+ 2[P (max
t∈[a,b]

X2(t) < max
t∈[a,b]

X1(t))× P (max
t∈[a,b]

Y2(t) < max
t∈[a,b]

Y1(t))]− 1.

Also

P (max
t∈[a,b]

X1(t) > max
t∈[a,b]

X2(t)) = 1− P (max
t∈[a,b]

X1(t) < max
t∈[a,b]

X2(t)),

P (max
t∈[a,b]

Y1(t) > max
t∈[a,b]

Y2(t)) = 1− P (max
t∈[a,b]

Y1(t) < max
t∈[a,b]

Y2(t))

and P (max
t∈[a,b]

X1(t) < max
t∈[a,b]

X2(t)) = P (max
t∈[a,b]

Y1(t) < max
t∈[a,b]

Y2(t)) =
1

2

τ1 = 2[
1

2
× 1

2
] + 2[(1 − 1

2
)× (1− 1

2
)]− 1 = 0.
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Analogously for the preorder �i, from equation (3).

τ2 = 2[P (X1 ≺ X2)× P (Y1 ≺ Y2)] + 2[P (X2 ≺ X1)× P (Y2 ≺ Y1)]− 1

= 2

[
P

(∫ b

a

X1(t)dt <

∫ b

a

X2(t)dt

)
× P

(∫ b

a

Y1(t)dt <

∫ b

a

Y2(t)dt

)]

+ 2

[
P

(∫ b

a

X2(t)dt <

∫ b

a

X1(t)dt

)
× P

(∫ b

a

Y2(t)dt <

∫ b

a

Y2(t)dt

)]
− 1.

Finally,

P

(∫ b

a

X1(t)dt >

∫ b

a

X2(t)dt

)
= 1− P

(∫ b

a

X1(t)dt <

∫ b

a

X2(t)dt

)
,

P

(∫ b

a

Y1(t)dt >

∫ b

a

Y2(t)dt

)
= 1− P

(∫ b

a

Y1(t)dt <

∫ b

a

Y2(t)dt

)

and P

(∫ b

a

X1(t)dt <

∫ b

a

X2(t)dt

)
= P

(∫ b

a

Y1(t)dt <

∫ b

a

Y2(t)dt

)
=

1

2

τ2 = 2[
1

2
× 1

2
] + 2[(1 − 1

2
)× (1− 1

2
)]− 1 = 0.

�

Property 7

Proof
Let α and β be strictly increasing and continuous functions. For the functional
preorder �m from equation (2), we have:

max
t∈I

α(xi(t)) = α(max
t∈I

(xi(t))) and max
t∈I

α(xj(t)) = α(max
t∈I

(xj(t)))

→ max
t∈I

α(xi(t)) � max
t∈I

α(xj(t)) → α(xi(t)) � α(xj(t))

The same idea can be used for β and Y (t). According to Definition 2 the number
of concordant pairs is the same, therefore

τ [α(X(t)), β(Y (t))] = τ [X(t), Y (t)].

�
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