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1 Introduction

Models in the Autoregressive Conditional Heteroscedasticity (ARCH) class due to
Engle (1982) have been extensively used to model the time-varying volatility of fi-
nancial return (see Francq and Zaköıan (2010) for a recent survey of ARCH models).
In particular, the first-order Generalised ARCH model of Bollerslev (1986), i.e. the
GARCH(1,1), has established itself as an almost unquestionable benchmark. Pan-
tula (1986), Geweke (1986) and Milhøj (1987) independently proposed specifications
within the log-ARCH class of models as an alternative to non-exponential ARCH
models. Their main motivation was to ensure the positivity of fitted volatilities –
this is not guaranteed in non-exponential ARCH models (in particular when ad-
ditional exogenous or predetermined conditioning information is added), to allow
for richer dynamics (e.g. negative ARCH parameters for cyclical or contrarian dy-
namics) and to enable tests for integrated log-variance via Dickey and Fuller (1979)
tests for unit roots. Engle and Bollerslev (1986), however, argued against log-ARCH
models because of the possibility of applying the log-operator on zero-values.3 This
occurs whenever the return or de-meaned return equals zero. Subsequently Nel-
son (1991) proposed an alternative exponential ARCH specification, the EGARCH
model, where the problem is sidestepped by replacing the problematic term with an
expression that does not involve the log operator. This solution, however, comes
at a considerable cost: Restrictive assumptions are needed to ensure that QML
estimation provides consistent and asymptotically normal estimates (Wintenberger
(2012)), and unconditional moments (e.g. the unconditional variance of returns)
will generally not exist for t-distributed densities (see condition (A1.6) and the sub-
sequent discussion in Nelson (1991, p. 365)).

Zero returns occur in two different types of situations. In the first the zero-
probability of actual return is zero, but zeros are nevertheless observed due to, say,
missing values, discreteness approximation error and other data issues. For example,
in financial markets prices are usually quoted with a few digits only (typically two).
Financial returns are thus often measured as zero even though the true returns are
non-zero. One may thus argue that zeros should be treated as missing values instead
of zeros. Similarly, missing quotes or transaction prices are typically replaced by the
previous observation, which in many cases results in an observed zero return even
though the actual one is non-zero. Finally, impulse dummies are sometimes used
to de-mean returns in the conditional mean. This leads to de-meaned returns equal
to zero. When the impulse dummies are intended to neutralise the effect of large

3Another critique that has been directed towards the log-GARCH (e.g. Teräsvirta (2009))
is that the first unconditional autocorrelations of the squared returns, a measure of volatility
persistence, can be unreasonably high. But this only occurs in very specific cases: The log-
GARCH class allows for a much larger range of autocorrelation patterns than ordinary GARCH
models, since the autocorrelation pattern depends on the shape of the conditional density (the
more fat-tailed, the lower correlations) in addition to the persistence parameters, see Sucarrat
et al. (2013).
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outliers or “jumps” – this is often the motivation in macroeconomics and finance,
then one may argue that the zeros should be treated as missing observations of actual
(de-meaned) returns. The second type of situation in which zero returns occur is
when the zero-probability of actual return is truly non-zero. This type of situation
is addressed in Sucarrat (2013). Here, the focus is on the first type of situation.

Two Quasi Maximum Likelihood Esimators (QMLEs) have been proposed for
the log-GARCH model. Sucarrat et al. (2013) prove that QMLE via the ARMA
representation provides consistent and asymptotically normal estimates by appropri-
ately adjusting for the intercept bias in the log-volatility specification induced by the
ARMA representation. Francq et al. (2013) prove consistency and asymptotic nor-
mality of the QMLE when estimation is undertaken via the density of conditional
(de-meaned) return. Both estimation schemes are valid under mild assumptions,
both rely on the assumption that the probability of a zero (de-meaned) return is
zero and both estimators produce asymptotically biased estimates in the presence
of zeros.

This paper makes two contributions. First, we quantify the bias produced by
zeros in a Monte Carlo study. The results show that the downwards bias of volatility
increases with the number of zeros, that the reaction to shocks is underestimated and
that the empirical standard errors are larger in the presence of zeros. The extent of
these features depend on the parameter values, on whether the conditional density is
fat-tailed or not and on the type of estimator. Second, we propose an asymptotically
unbiased QMLE procedure. The procedure treats zeros as missing observations,
and combines the Sucarrat et al. (2013) QMLE with the Expectation-Maximisation
(EM) algorithm to handle the missing observations. A similar procedure cannot
be devised for the Francq et al. (2013) QMLE (see Section 2.3), since it does not
make use of the ARMA representation. A Monte Carlo study confirms that the EM-
based estimator corrects for the bias, and several empirical applications illustrate
how much the parameter estimates and the fitted conditional standard deviations
can differ in practice.

The rest of the paper is organised as follows. The next section, Section 2, pro-
vides an overview of the log-GARCH model, studies the effect of zeros by means of
a Monte Carlo study, and presents the unbiased QMLE procedure that we propose
together with a Monte Carlo study of its properties. Section 3 contains the empirical
illustrations of how much the parameter estimates and the fitted conditional stan-
dard deviations can differ if zeros are not correctly accounted for. The illustrations
are from a variety of very different markets. Finally, Section 4 concludes. Tables
and Figures are located at the end.
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2 Model, problem and solution

2.1 The log-GARCH model

If εt denotes financial return (possibly de-meaned), then the log-GARCH(P,Q)
model is given by

εt = σtzt, zt ∼ IID(0, 1), P rob(zt = 0) = 0, σt > 0, (1)

lnσ2
t = α0 +

P∑
p=1

αp ln ε2t−p +

Q∑
q=1

βq lnσ2
t−q, t ∈ Z, (2)

where P is the ARCH order and Q is the GARCH order. Denoting P ∗ = max{P,Q},
if the roots of the lag polynomial 1−(α1+β1)L−· · ·−(αP ∗ +βP ∗)LP ∗

are all greater
than 1 in modulus and if |E(ln z2t )| < ∞, then ln σ2

t is stable. In the context of
log-GARCH models, the socalled inlier issue (see Breidt and Carriquiry (1996) for
a discussion in a Stochastic Volatility (SV) context) amounts to whether E(ln z2t )
exists. For the Student’s t density and for the Generalised Error Distribution (GED),
the two most common distributions in finance, E(ln z2t ) generally exists. Francq et al.
(2013) provide conditions for the existence of log-moments more generally.

If |E(ln z2t )| < ∞, then the ARMA(P,Q) representation of the log-volatility
specification (2) exists almost surely and is given by

ln ε2t = φ0 +
P∑

p=1

φp ln ε2t−p +

Q∑
q=1

θqut−q + ut, ut ∼ IID(0, σ2
u), t ∈ Z, (3)

where

φ0 = α0 + (1−
Q∑

q=1

βq) · E(ln z2t ), (4)

φp = αp + βp, 1 ≤ p ≤ P, (5)

θq = −βq, 0 ≤ q ≤ Q, (6)

ut = ln z2t − E(ln z2t ). (7)

In other words, consistent and asymptotically normal estimates of all the ARMA
parameters – and hence all the log-GARCH parameters except the log-volatility in-
tercept α0 – are thus readily obtained via usual ARMA estimation methods (e.g.
Gaussian QMLE) subject to appropriate assumptions, see e.g. Brockwell and Davis
(2006). For a consistent estimate of α0, however, a consistent estimate of E(ln z2t ) is
needed. Sucarrat et al. (2013) prove that a simple estimator made up of the ARMA
residuals ût provides a consistent and asymptotically normal estimate of E(ln z2t )
under mild assumptions. As a consequence, they prove consistency and asymp-
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totic normality of the log-GARCH(P,Q) model via the ARMA representation for a
range of ARMA estimators, including the Gaussian QMLE. Additional terms, e.g.
asymmetry/leverage terms, or exogenous or predetermined conditioning informa-
tion (i.e. “X”), can also be added without affecting the relationship between the
log-GARCH and ARMA parameters, nor the structure of the bias-correction proce-
dure. So estimation via the ARMA representation and subsequent bias-correcting
can be generalised to both univariate and multivariate log-GARCH-X models. In
the (empirical) presence of zeros, however, the QMLE via the ARMA representation
will be asymptotically biased if the zeros are replaced with non-zero values.

Francq et al. (2013) propose a slightly different version of the (symmetric) log-
volatility specification. In their setup (2) is replaced by

lnσ2
t = α0 +

P∑
p=1

αpI{zt−p 6=0} ln ε2t−p +

Q∑
q=1

βq lnσ2
t−q, ∀t ∈ Z, (8)

where I{zt−p 6=0} is an indicator function equal to 0 if zt−p = 0, and 1 otherwise.
Of course, theoretically (2) and (8) are equal almost surely. In empirical practice,
however, the latter avoids the problem of possibly applying the natural logarithm
operator on zero values. Nevertheless, since the Francq et al. (2013) QMLE (which
is in εt rather than via the ARMA representation) also relies on the assumption
Prob(zt = 0) = 0, the empirical presence of zeros also leads to asymptotically
biased estimates.

2.2 The effect of zeros – a Monte Carlo study

To study the effect of zeros a model of why they arise is needed. To this end we
distinguish between the actual return εt, which is governed by (1)-(2), and observed
return ε̃t which is given by

ε̃t = εtIt, It ∈ {0, 1}, (9)

where It is an independent – but not necessarily indentical – series with zero-
probabilities π0t ≥ 0, t ∈ Z. In other words, our model of observed return allows
for a time-varying zero probability, π0t, of zero occurrences that are independent.
It is important that the zeros are determined independently of the process that
determines volatility. Otherwise the zero process would itelf be part of the DGP.
However, the independence assumption can be relaxed to contemporaneous inde-
pendence between zt and It conditional on the past, by appropriately adapting the
framework in Sucarrat (2013). In other words, volatilities and zero-probabilities can
be a function of past zero-probabilities and volatilities in a mutually dependent man-
ner. Zero returns that are the result of missing values, discreteness approximation
error, impulse dummies in the mean specification and so on, are therefore viewed as
occurring independently of each other, but possibly with a time-varying probability.
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To shed light on the effect of observed zeros we undertake a Monte Carlo study
for both the Sucarrat et al. (2013) QMLE and the Francq et al. (2013) QMLE. In
the simulations the Data Generating Process (DGP) of return εt is given by the
log-GARCH(1,1) specification

εt = σtzt, zt ∼ IID(0, 1), P rob(zt = 0) = 0, (10)

lnσ2
t = α0 + α1 ln ε2t−1 + β1 lnσ2

t−1 (11)

for empirically relevant combinations of the parameters α0, α1 and β1 (these combi-
nations are referred to as Experiments A, B and C), and with the zero probability
being constant over time and equal to either 0, 0.05, 0.10 or 0.20. For the Francq
et al. (2013) QMLE the zeros of observed return ε̃t are simply not included in the
recursion because of the indicator function in the log-volatility specification (8). For
the Sucarrat et al. (2013) QMLE, however, estimation is undertaken by means of
the zero-adjusted return

˜̃εt =

{
εt if It = 1,
k if It = 0,

(12)

where k is a non-zero real number. In other words, the log-volatility specification
that is used for the recursions in the estimations is lnσ2

t = α0+α1 ln ˜̃ε2t−1+β1 lnσ2
t−1.

Clearly the choice of k will influence the results. In particular, the closer to zero,
the larger the bias will be. In our simulations we set k equal to the minimum of the
absolute non-zero values of observed return ε̃t.

Table 1 contains the results for the Francq et al. (2013) QMLE, whereas Table
2 contains the results for the Sucarrat et al. (2013) QMLE. For the first estimator
the effect of zeros is straightforward: The higher zero probability, the greater bias,
and the bias is higher when the conditional density is fat-tailed (i.e. t(5)). This
is particularly clear from Figure 1, which represents the bias graphically. The log-
volatility intercept α0 is biased downwards, which means volatility will generally
be biased downwards in the presence of zeros. The ARCH parameter α1, which
controls the impact of shocks on volatility, is also biased downards. The presence
of zeros thus means volatility will be under-responsive to shocks. This effect is
exacerbated by the upward bias of β1, since this parameter controls the effect of the
long-term component of volatility. Finally, the empirical standard errors are higher
in the presence of zeros, and increasing the zero probability generally increases the
standard errors.

For the second estimator the biases are generally bigger compared with the
Francq et al. (2013) QMLE, but not always as straightforward. This is most read-
ily seen in Figure 2. Just as for the first estimator higher zero probability means
larger negative bias for both α0 and α1, although the bias is not always higher for
t(5). For β1, however, the effect of zeros is more complex since the bias can change
sign. Finally, a non-zero probability means the empirical standard errors are always
higher than when the zero probability is zero, although the increase is not always
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monotone.

2.3 A solution based on the EM-algorithm

The actual return εt is correctly observed whenever It = 1 in (9). Whenever It = 0,
however, then the actual return εt is incorrectly observed or “missing”. A common
solution to missing observations is the Expectation-Maximisation (EM) algorithm,
see Casella and Berger (2002). There is a voluminous literature on how missing ob-
servations can be handled in ARMA models in combination with the EM-algorithm,
see e.g. Jones (1980), Kohn and Ansley (1986), Gomez and Maravall (1994), and
Brockwell and Davis (2006). So missing observations are straightforwardly handled
in the Sucarrat et al. (2013) QMLE, since estimation is via the ARMA represen-
tation. Specifically, in the ARMA recursion of (3) the missing values of ln ε2t are
replaced by the conditional expectation E(ln ε2t |It−1), i.e. the fitted value of the
ARMA representation, where It−1 is the conditioning information. Next, after es-
timation of the ARMA representation, the ARMA residuals ût where returns are
non-zero are used for the estimation of E(ln z2t ). Consistent and asymptotically
normal estimates of the log-GARCH parameters are then obtained via the formu-
las in (4)-(6). In the Francq et al. (2013) QMLE, by contrast, the EM-algorithm
cannot be used, or at least not in a way that we are aware of. The reason for this
is that an estimate of ln ε2t is needed as a replacement for the missing observations
in the recursion of the log-volatility specification (8), and this is not provided by
the estimator when it is interpreted as a QMLE. In the specific case where the
Francq et al. (2013) estimator is interpreted an exact MLE, however, then the EM-
algorithm is available. In that case zt is standard normal, so E(ln z2t ) = −1.27 and
hence E(ln ε2t |It−1) = ln σ2

t − 1.27.
To study the properties of the Sucarrat et al. (2013) QMLE in combination with

the EM-algorithm we undertake a Monte Carlo experiment similar to the one in the
previous subsection. Table 3 contains the results and Figure 3 represents the finite
sample bias graphically. Compared with Figure 2 it is clear that the EM-algorithm
corrects the Sucarrat et al. (2013) bias for all three parameters. Compared with the
case where there are no zeros the finite sample biases increase slightly (and more
so for zt ∼ t(5)) as the zero probability increases. But this is to be expected since
observations are lost by treating zeros as missing values. The empirical standard
errors are virtually unaffected as the the zero probability increases, which is in stark
contrast to the QMLEs without the EM-algorithm. Finally, compared with the
Francq et al. (2013) QMLE the finite sample bias is substantially smaller for the
location-parameter α0, i.e. the most important parameter in determining the level
of volatility.
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3 Empirical illustrations

In this section we illustrate the difference in parameter estimates and fitted con-
ditional standard deviations for five daily financial returns: The Apple stock, the
EUR/USD exchange rate, the Standard and Poor’s 500 stock market index (SP500),
the WTI oil price and the London gold price. This small selection of returns ac-
counts for a variety of market characteristics. For example, whereas the EUR/USD is
traded in a global market almost continuously 24-hours a day and seven days a week
– possibly with thousands of trades per second, the London Gold price is only fixed
twice a day, and presumably not on Bank holidays and in weekends. The sources of
the data are Yahoo Finance (http://finance.yahoo.com) for the Apple and SP500
series, the European Central Bank (http://www.ecb.int/) for the EUR/USD se-
ries, the US Energy Information Agency (http://www.eia.gov/) for the WTI crude
oil price (in USD) per barrel series, and Kitco (http://www.kitco.com/) for the
London afternoon (i.e. PM) gold price series.

The sample dates and the descriptive statistics of the returns are contained in
Table 4, whereas Figure 4 contains graphs of the returns. They confirm that the
returns exhibit the usual properties of excess kurtosis compared with the normal,
and ARCH as measured by first order serial correlation in the squared return. The
number of zeros varies from only 2 observations (about 0.1% of the sample) for
SP500 to 294 observations (about 4% of the sample) for Apple. The reasons for
each zero are likely to differ substantially both within and across markets. We do
not try to identify these reasons, since our main objective is to illustrate how the
estimates and fitted conditional standard deviations differ according to estimation
method.

Table 5 contains the estimates of the log-GARCH(1,1) specification

rt = εt, εt = σtzt, zt ∼ IID(0, 1), (13)

lnσ2
t = α0 + α1 ln ε2t−1 + β1 lnσ2

t−1, (14)

where rt is the log-return in percent (i.e., the log-difference of the financial price
multiplied by 100). In all cases one or more estimates differ already at the second
decimal. This is the case even for SP500, where there are only two zeros. The
smallest numerical differences are produced by oil, whereas the biggest are produced
by the EUR/USD exchange rate. This is noteworthy because the proportion (about
1%) of oil zeros is slightly higher than for EUR/USD (about 0.9%), and much
higher (about ten times) than for SP500. In other words, the number of zeros
is not always the main source of the estimation bias. This is in accordance with
the Monte Carlo studies, which revealed that parameter estimates and conditional
density are sometimes more important. With respect to the estimate of the ARCH
parameter α1, which controls the short-term impact of shocks or large (in absolute
value) returns, the EM-estimates are substantially higher except for oil where they
are only slightly higher. For the GARCH parameter β1 by contrast, all the EM-
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estimates are lower – sometimes substantially (e.g. EUR/USD).
Descriptive statistics and graphs of the fitted conditional standard deviations,

their differences and their ratios, are contained in Table 6 and Figures 5-7. They
clearly suggest that estimation method can matter a lot, both nominally and in
relative terms. For example, for Apple the EM-estimates yield fitted conditional
standard deviations that are at most 2.14 times higher, and the maximum nominal
difference is 2.44. Such differences can make a huge difference in risk analysis and
asset pricing. The Apple graphs also reveals what seems to be an inverse tendency.
In the beginning of the sample the EM-estimates produce higher fitted conditional
standard deviations. However, this is reversed in the second part of the sample.
A possible reason is that there are fewer zeros in the second part of the sample.
For most returns the average fitted conditional standard deviation is higher for the
EM-estimates. This is most clearly seen in the graph of EUR/USD, where the fitted
conditional standard deviations produced by the EM-estimates are clearly above
almost everywhere. The only case where the average difference is not positive is oil.
There, the average is approximately equal to zero. But the ratio graph clearly shows
that, in relative terms, the EM-estimates occasionally produce values that are up to
66% higher. So all in all the comparison of fitted conditional standard deviations
show that the EM-estimates generally produce higher values, and sometimes much
higher.

4 Conclusions

We propose an asymptotically unbiased QML procedure for log-GARCH models in
the presence of zero returns. The procedure combines the Sucarrat et al. (2013)
QMLE with the Expectation-Maximisation (EM) algorithm, a procedure that is
not available for the Francq et al. (2013) QMLE. The reason for this is that the
former estimator is via the ARMA representation, whereas the latter is not. The
QML procedure relies on the assumption that the actual return is zero with zero
probability, but accommodates that observed return can be non-zero due to, say,
missing values, discreteness approximation error, impulse dummies in the mean
specification or other data issues. The zeros are assumed independent but not
necessarily identically distributed, as the zero probability can be time-varying and
conditionally dependent on the past. (The counterpart problem where actual return
can be zero with non-zero probability is solved in a companion paper (Sucarrat
(2013)).) Our Monte Carlo simulations and our empirical illustrations show that
volatility is generally underestimated when zeros are present, and that the impact
of shocks on volatility is underestimated in the presence of zeros. In practice this
means that the fitted conditional standard deviations are generally underestimated
– sometimes substantially.

The results in this paper can be extended in at least three ways. First, it is
straightforward to devise unbiased QML procedures for univariate and multivari-
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ate log-GARCH-X models by combining the EM-algorithm with the methods pro-
posed in Sucarrat et al. (2013), since the relationship between the log-GARCH and
(V)ARMA parameters are not affected by the addition of exogenous or predeter-
mined conditioning information (leverage, volatility proxies, volume or other infor-
mation arrival indicators, seasonality terms, etc.). Second, as a direct consequence
of the first, unbiased QMLEs for univariate and multivariate log-MEM-X models
can be devised, where MEM is short for Multiplicative Error Models, see Brownlees
et al. (2012). MEM-models are particularly suited for non-negative financial data
like volume, durations and trades, and because of its structure a QMLE for log-
GARCH-X models is also a QMLE for log-MEM-X models. There are often zeros
and/or missing values in volume, duration and trade data. When these zeros can
be viewed as measurement error or as a result of missing values, then the methods
in this paper can be used to adjust for the bias created by the zeros. Third, if zeros
are the result of measurement error, then they also lead to biased ML-estimates
for other ARCH models, e.g. the GARCH of Bollerslev (1986), the EGARCH of
Nelson (1991) and the Beta-t-EGARCH model of Harvey (2013). Although QML
estimation is not available for the latter due to its nature, exact ML estimation in
combination with the EM-algorithm can be used in all three classes.
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Francq, C. and J.-M. Zaköıan (2010). GARCH Models. New York: Marcel Dekker.

Geweke, J. (1986). Modelling the Persistence of Conditional Variance: A Comment.
Econometric Reviews 5, 57–61.

Gomez, V. and A. Maravall (1994). Estimation, Prediction, and Interpolation for
Nonstationary Series with the Kalman Filter. Journal of the American Statistical
Association 89, 611–624.

Harvey, A. C. (2013). Dynamic Models for Volatility and Heavy Tails. New York:
Cambridge University Press.

Jones, R. (1980). Maximum likelihood fitting of ARMA models to time series with
missing observations.

Kohn, R. and C. Ansley (1986). Estimation, Prediction, and Interpolation for
ARIMA Models With Missing Data. Journal of the American Statistical As-
sociation 81, 751–761.

Ljung, G. and G. Box (1979). On a Measure of Lack of Fit in Time Series Models.
Biometrika 66, 265–270.

Milhøj, A. (1987). A Multiplicative Parametrization of ARCH Models. Research
Report 101, University of Copenhagen: Institute of Statistics.

Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New
Approach. Econometrica 59, 347–370.

Pantula, S. (1986). Modelling the Persistence of Conditional Variance: A Comment.
Econometric Reviews 5, 71–73.

R Core Team (2013). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

Sucarrat, G. (2013). Models of Zero-Augmented Financial Return with Time-
Varying Zero-Probabilities. Work in progress.
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Table 1: Francq et al. (2013) QMLE of the log-GARCH(1,1)

zt π0 DGP
(ID: α0,α1,β1)

m(α̂0) se(α̂0) m(α̂1) se(α̂1) m(β̂1) se(β̂1) m(π̂0)

N(0, 1) 0.00 A: 0, 0.10, 0.80 -0.001 0.009 0.100 0.004 0.800 0.010 0.000
B: 0, 0.05, 0.90 -0.001 0.006 0.050 0.003 0.900 0.008 0.000
C: 0, 0.03, 0.95 -0.001 0.005 0.030 0.002 0.950 0.004 0.000

0.05 A: 0, 0.10, 0.80 -0.021 0.010 0.096 0.004 0.807 0.011 0.050
B: 0, 0.05, 0.90 -0.011 0.007 0.048 0.003 0.904 0.009 0.050
C: 0, 0.03, 0.95 -0.007 0.005 0.028 0.002 0.953 0.005 0.050

0.10 A: 0, 0.10, 0.80 -0.040 0.011 0.093 0.005 0.814 0.011 0.099
B: 0, 0.05, 0.90 -0.020 0.008 0.046 0.003 0.908 0.008 0.099
C: 0, 0.03, 0.95 -0.013 0.006 0.027 0.002 0.955 0.005 0.099

0.20 A: 0, 0.10, 0.80 -0.075 0.014 0.088 0.005 0.827 0.013 0.199
B: 0, 0.05, 0.90 -0.037 0.010 0.043 0.004 0.915 0.010 0.199
C: 0, 0.03, 0.95 -0.022 0.008 0.025 0.003 0.960 0.005 0.199

t(5) 0.00 A: 0, 0.10, 0.80 0.000 0.019 0.100 0.007 0.801 0.016 0.000
B: 0, 0.05, 0.90 -0.001 0.013 0.050 0.006 0.899 0.013 0.000
C: 0, 0.03, 0.95 -0.002 0.012 0.030 0.004 0.949 0.009 0.000

0.05 A: 0, 0.10, 0.80 -0.025 0.020 0.095 0.008 0.808 0.018 0.050
B: 0, 0.05, 0.90 -0.014 0.015 0.048 0.006 0.903 0.014 0.050
C: 0, 0.03, 0.95 -0.010 0.013 0.028 0.004 0.952 0.009 0.050

0.10 A: 0, 0.10, 0.80 -0.049 0.023 0.091 0.008 0.816 0.021 0.100
B: 0, 0.05, 0.90 -0.027 0.017 0.046 0.006 0.907 0.016 0.100
C: 0, 0.03, 0.95 -0.019 0.015 0.026 0.004 0.955 0.009 0.100

0.20 A: 0, 0.10, 0.80 -0.093 0.030 0.084 0.009 0.827 0.025 0.201
B: 0, 0.05, 0.90 -0.051 0.024 0.042 0.006 0.912 0.018 0.201
C: 0, 0.03, 0.95 -0.033 0.021 0.023 0.004 0.959 0.011 0.201

DGP, lnσ2
t = α0 + α1 ln ε2t−1 + β1 lnσ2

t−1 with zt ∼ IID(0, 1) and T = 10000. ID, experiment

identifier (i.e. A, B or C). m(·), sample average of the Monte Carlo estimates. se(·), sample

standard deviation of the Monte Carlo estimates (division by S, not by S − 1, where S = 100 is

the number of Monte Carlo simulations). π̂, proportion of zeros. Simulations in R version 3.0.0,

see R Core Team (2013).
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Table 2: Sucarrat et al. (2013) QMLE of the log-GARCH(1,1), with zeros replaced
by the minimum of the absolute non-zero values

zt π0 DGP
(ID: α0,α1,β1)

m(α̂0) se(α̂0) m(α̂1) se(α̂1) m(β̂1) se(β̂1) m(π̂0)

N(0, 1) 0.00 A: 0, 0.10, 0.80 -0.003 0.016 0.100 0.007 0.797 0.020 0.000
B: 0, 0.05, 0.90 -0.003 0.011 0.050 0.005 0.899 0.013 0.000
C: 0, 0.03, 0.95 -0.003 0.008 0.030 0.004 0.949 0.007 0.000

0.05 A: 0, 0.10, 0.80 -0.071 0.048 0.030 0.008 0.860 0.047 0.050
B: 0, 0.05, 0.90 -0.057 0.125 0.016 0.005 0.914 0.101 0.050
C: 0, 0.03, 0.95 -0.031 0.031 0.010 0.004 0.963 0.020 0.050

0.10 A: 0, 0.10, 0.80 -0.091 0.066 0.017 0.008 0.871 0.069 0.099
B: 0, 0.05, 0.90 -0.069 0.123 0.009 0.005 0.918 0.100 0.099
C: 0, 0.03, 0.95 -0.074 0.212 0.007 0.004 0.945 0.112 0.099

0.20 A: 0, 0.10, 0.80 -0.157 0.227 0.010 0.008 0.843 0.188 0.199
B: 0, 0.05, 0.90 -0.123 0.261 0.005 0.006 0.892 0.201 0.199
C: 0, 0.03, 0.95 -0.107 0.186 0.004 0.005 0.937 0.095 0.199

t(5) 0.00 A: 0, 0.10, 0.80 -0.002 0.017 0.101 0.008 0.798 0.018 0.000
B: 0, 0.05, 0.90 -0.003 0.012 0.051 0.006 0.897 0.014 0.000
C: 0, 0.03, 0.95 -0.004 0.011 0.030 0.004 0.948 0.008 0.000

0.05 A: 0, 0.10, 0.80 -0.090 0.055 0.031 0.008 0.860 0.043 0.050
B: 0, 0.05, 0.90 -0.055 0.046 0.016 0.006 0.925 0.038 0.050
C: 0, 0.03, 0.95 -0.034 0.031 0.010 0.003 0.966 0.017 0.050

0.10 A: 0, 0.10, 0.80 -0.129 0.102 0.019 0.008 0.859 0.080 0.100
B: 0, 0.05, 0.90 -0.086 0.143 0.010 0.006 0.918 0.101 0.100
C: 0, 0.03, 0.95 -0.062 0.160 0.007 0.005 0.959 0.076 0.100

0.20 A: 0, 0.10, 0.80 -0.210 0.372 0.009 0.009 0.838 0.239 0.201
B: 0, 0.05, 0.90 -0.137 0.298 0.005 0.007 0.903 0.181 0.201
C: 0, 0.03, 0.95 -0.317 0.680 0.004 0.007 0.863 0.275 0.201

DGP, lnσ2
t = α0 + α1 ln ε2t−1 + β1 lnσ2

t−1 with zt ∼ IID(0, 1) and T = 10000. ID, experiment

identifier (i.e. A, B or C). m(·), sample average of the Monte Carlo estimates. se(·), sample

standard deviation of the Monte Carlo estimates (division by S, not by S − 1, where S = 100 is

the number of Monte Carlo simulations). π̂, proportion of zeros. Simulations in R version 3.0.0,

see R Core Team (2013).
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Table 3: Sucarrat et al. (2013) QMLE of the log-GARCH(1,1) in combination with
the EM-algorithm

zt π0 DGP
(ID: α0,α1,β1)

m(α̂0) se(α̂0) m(α̂1) se(α̂1) m(β̂1) se(β̂1) m(π̂0)

N(0, 1) 0.05 A: 0, 0.10, 0.80 -0.002 0.017 0.101 0.008 0.795 0.021 0.050
B: 0, 0.05, 0.90 -0.003 0.012 0.051 0.006 0.895 0.015 0.050
C: 0, 0.03, 0.95 -0.005 0.010 0.031 0.004 0.945 0.009 0.050

0.10 A: 0, 0.10, 0.80 0.000 0.017 0.103 0.008 0.793 0.020 0.099
B: 0, 0.05, 0.90 -0.002 0.011 0.052 0.006 0.895 0.015 0.099
C: 0, 0.03, 0.95 -0.004 0.009 0.032 0.005 0.945 0.009 0.099

0.20 A: 0, 0.10, 0.80 0.005 0.017 0.105 0.008 0.790 0.021 0.199
B: 0, 0.05, 0.90 0.000 0.011 0.053 0.007 0.893 0.015 0.199
C: 0, 0.03, 0.95 -0.002 0.009 0.033 0.005 0.944 0.010 0.199

t(5) 0.05 A: 0, 0.10, 0.80 0.000 0.018 0.103 0.008 0.794 0.019 0.050
B: 0, 0.05, 0.90 -0.003 0.013 0.052 0.006 0.893 0.015 0.050
C: 0, 0.03, 0.95 -0.006 0.013 0.032 0.005 0.943 0.011 0.050

0.10 A: 0, 0.10, 0.80 0.002 0.018 0.104 0.009 0.793 0.020 0.100
B: 0, 0.05, 0.90 -0.002 0.013 0.053 0.007 0.893 0.016 0.100
C: 0, 0.03, 0.95 -0.005 0.014 0.033 0.005 0.943 0.012 0.100

0.20 A: 0, 0.10, 0.80 0.007 0.019 0.106 0.009 0.790 0.020 0.201
B: 0, 0.05, 0.90 0.000 0.013 0.054 0.007 0.891 0.016 0.201
C: 0, 0.03, 0.95 -0.004 0.014 0.034 0.005 0.942 0.012 0.201

DGP, lnσ2
t = α0 + α1 ln ε2t−1 + β1 lnσ2

t−1 with zt ∼ IID(0, 1) and T = 10000. ID, experiment

identifier (i.e. A, B or C). m(·), sample average of the Monte Carlo estimates. se(·), sample

standard deviation of the Monte Carlo estimates (division by S, not by S − 1, where S = 100 is

the number of Monte Carlo simulations). π̂, proportion of zeros. Simulations in R version 3.0.0,

see R Core Team (2013).

Table 4: Descriptive statistics of financial returns
s2 s4 ARCH1

[p−val]
T 0s π̂

Apple (10 Sep. 1984 – 23 Aug. 2013) 9.25 55.03 7.12
[0.01]

7303 294 0.040

EUR/USD (5 Jan. 1999 – 23 Aug. 2013) 0.43 5.44 150.63
[0.00]

3751 32 0.009

SP500 (4 Jan. 1999 – 23 Aug. 2013) 1.73 10.30 143.10
[0.00]

3684 2 0.001

Oil (5 Apr. 1983 – 19 Aug. 2013) 5.72 18.80 160.60
[0.00]

7621 73 0.010

Gold (4 Jan. 2006 – 23 Aug. 2013) 1.85 7.29 10.94
[0.00]

1929 20 0.010

s2, sample variance. s4, sample kurtosis. ARCH1, Ljung and Box (1979) test statistic of first-order

serial correlation in the squared return. T , number of returns. 0s, number of zero returns in the

sample. π̂, proportion of zero returns in the sample.
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Table 5: Empirical estimates of log-GARCH(1,1) specification for five
daily financial returns

Method α̂0 α̂1 se(α̂1) β̂1 se(β̂1)
Apple: 0-adj 0.034 0.014 0.003 0.983 0.005

EM 0.071 0.040 0.005 0.953 0.006

EUR/USD: 0-adj 0.022 0.019 0.004 0.976 0.005
EM 0.066 0.048 0.007 0.901 0.016

SP500: 0-adj 0.070 0.045 0.006 0.946 0.008
EM 0.092 0.056 0.006 0.931 0.009

Oil: 0-adj 0.074 0.043 0.004 0.951 0.005
EM 0.074 0.045 0.004 0.948 0.005

Gold: 0-adj 0.055 0.029 0.006 0.959 0.009
EM 0.090 0.047 0.007 0.932 0.011

Sucarrat et al. (2013) QML estimation of the log-GARCH(1,1) specification

lnσ2
t = α0 + α1 ln ε2t−1 + β lnσ2

t−1. 0-adj, zero returns replaced by the minimum

of the absolute non-zero value before estimation. EM, estimation with the

EM-algorithm (i.e. zeros not replaced before estimation). se(·), standard error of

estimate. All computations in R version 3.0.0, see R Core Team (2013).
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Table 6: Descriptive statistics of fitted conditional standard
deviations

Mean s2 Max Min
Apple: 0-adj 2.970 0.753 6.346 1.511

EM 3.001 0.808 6.442 1.040
Diff 0.030 0.388 2.420 -1.428
Ratio 1.029 0.059 2.141 0.579

EUR/USD: 0-adj 0.643 0.018 1.171 0.360
EM 0.813 0.019 1.399 0.471
Diff 0.171 0.006 0.459 -0.104
Ratio 1.283 0.021 1.742 0.860

SP500: 0-adj 1.191 0.327 4.730 0.437
EM 1.225 0.352 5.013 0.417
Diff 0.034 0.004 0.391 -0.237
Ratio 1.027 0.002 1.378 0.907

Oil: 0-adj 2.197 0.968 7.530 0.410
EM 2.189 0.902 7.415 0.432
Diff -0.008 0.018 1.040 -0.212
Ratio 1.006 0.006 1.660 0.938

Gold: 0-adj 1.317 0.096 2.580 0.723
EM 1.375 0.126 3.017 0.663
Diff 0.058 0.012 0.676 -0.149
Ratio 1.041 0.006 1.330 0.855

Mean, sample average. s2, sample variance. Max, maximum value.

Min, minimum value. Diff, the difference between fitted conditional

standard deviations: σ̂t,EM − σ̂t,0-adj. Ratio, the ratio between fitted

conditional standard deviations: σ̂t,EM/σ̂t,0-adj. All computations in

R version 3.0.0, see R Core Team (2013).
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Figure 4: Daily financial log-returns in percent
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Figure 5: Fitted conditional standard deviations (σ̂t,EM solid blue line, σ̂t,0-adj dashed
red line)
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Figure 6: Difference of fitted conditional standard deviations (i.e. σ̂t,EM − σ̂t,0-adj)
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Figure 7: Ratios of fitted conditional standard deviations (i.e. σ̂t,EM/σ̂t,0-adj)
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