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Abstract—In this paper, a novel High Power Amplifier (HPA)
pre-distorter based on Adaptive Networks - Fuzzy Inference Sys-
tems (ANFIS) for Orthogonal Frequency Division Multiplexing
(OFDM) signals is proposed and analyzed. Models of Traveling
Wave Tube Amplifiers (TWTA) and Solid State Power Amplifiers
(SSPA), both memoryless and with memory, have been used for
evaluation of the proposed technique. After training, the ANFIS
linearizes the HPA response and thus, the obtained signal is
extremely similar to the original. An average Error Vector Magni-
tude (EVM) of �� � can be easily obtained with our proposal. As
a consequence, the Bit Error Rate (BER) degradation is negligible
showing a better performance than what can be achieved with
other methods available in the literature. Moreover, the complexity
of the proposed scheme is reduced.

Index Terms—High power amplifiers, inferences techniques, lin-
earization techniques, memory, memoryless.

I. INTRODUCTION

O RTHOGONAL Frequency Division Multiplexing
(OFDM) is one of the main modulations used for broad-

band broadcasting systems such as Digital Video Broadcasting
- Terrestrial (DVB-T) [1], Digital Audio Broadcasting (DAB)
[2] or Digital Radio Mondiale (DRM) [3], as well as other
broadband wireless systems such as IEEE 802.16 [4], [5], and
it is a promising technique for future systems. The main reason
for the choice of OFDM is its robustness against the multipath
effects of wireless channels. However, OFDM suffers from
high power envelope fluctuations Since information in OFDM
is carried both in amplitude and phase, it requires employing a
very linear High Power Amplifie (HPA) in order not to distort
the signal, and therefore, the information being transmitted. In
broadcasting systems, very efficien amplifier are used, usually
of two types, namely, TravelingWave Tube Amplifier (TWTA)
or Solid State Power Amplifier (SSPA). Unfortunately, these
amplifier are highly non-linear and thus, large back-offs are
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needed in order not to distort the signal. As a consequence, the
efficien y is considerably reduced.
In order to avoid the use of large back-offs, there exists an

extensive amount of literature about techniques for reduction of
the power envelope fluctuations Usually, these fluctuation are
measured by the Peak to Average Power Ratio (PAPR)—also
known as PAR or PAP—or recently, by the Cubic Metric (CM).
Examples of these techniques are PTS (Partial Transmit Se-
quences) [6], [7], SLM (Selective Mapping) [8], [9], TR (Tone
Reservation) [10], coding such as using Golay Sequences [11],
[12] or Reed-Solomon codes [13], and interleaving [14], [15].
The reduction obtained with these techniques relies on the idea
that different OFDM symbols exhibit different envelope fluc
tuations. On the other hand, if some distortion is allowed, the
envelope fluctuation can be reduced significantly In this group
of distortion-based techniques can be found techniques such as
AC (Amplitude Clipping) [16], ACF (Amplitude Clipping and
Filtering) [17], TI (Tone Injection) [10], ACE (Active Constel-
lation Expansion) [18] or similar approaches to ACE [19]. Be-
sides, there are also companding methods such as in [20] for
peak power reduction.
However, evenwith a signal with low power envelope fluctua

tions, the non-linearity of HPAwill introduce a signal distortion,
and thus, the system performance will be compromised [21].
In order to overcome this issue, it is possible to pre-distort the
signal before the HPA in such a way that, after passing through
the HPA, the output signal will be similar to the originally trans-
mitted one, i.e., to pre-compensate the distortion caused by the
HPA, or to linearize the HPA. Several authors have proposed
different architectures for such predistorters for OFDM signals
[21]–[35]. All of them try to estimate and linearize the AM/AM
(amplitude modulation / amplitude modulation) and AM/PM
(amplitude modulation / phase modulation) characteristics of
the HPA, usually done by large Look Up Tables (LUT). If the
HPA has memory, other techniques can be applied such as [30]
or [31], where a 2D LUT is proposed for the linearization. In
order to avoid these LUTs, several schemes have been proposed.
The main contributions are based on polynomial approaches,

which, basically, try to reduce the number of coefficient for
the full Volterra nonlinearity [22]. In [36], a joint LUT-based
and polynomial-based method is described with significan
reduction in memory requirements. In [23]–[25], the inverse
polynomial with reduced members is proposed for memoryless
systems. Then, in [26], a Hammerstein identificatio system
is used for improving polynomial performance in scenarios
with memory. In [27], a learning structure is proposed based
on a polynomial approximation to linearize the HPA. In [28], a
triangular polynomial is used to simplify the Volterra’s series.
In [29], authors propose a structure of a HPA predistorter based
on a piece-wise linear approximation of the SSPA inverse
characteristics, neglecting the AM/PM conversion. Next, an
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adaptation algorithm is derived that requires a considerable
number of iterations. In [35], the characteristic of the predis-
torter is derived based on the extension of Saleh’s model for
HPA and a simple linear-log model. Numerical results show
that it is robust for Global Broadcasting Service (GBS) applica-
tions. Another way to tackle the problem is to jointly reduce the
power envelope fluctuation and predistort the signal as in [21],
[34], and [37]. In [34] the TR technique is used for reducing
the PAPR before predistortion and thus, the constraints on the
predistorter can be relaxed, whereas in [37], the SLM or PTS
techniques are used to decrease the nonlinear distortion [30] or
[31].
Since the nonlinearity of HPA can be learned, in [32], [33],

[38]–[40] and [41], instead of a linearization, a learning process
based on Neural Networks (NN) is proposed for the predis-
torter. The idea is to make the NN learn on how to distort the
input signal. However, due to limitations of NN that we ex-
plain in Section III, the system is complex even after training,
and there is a residual performance degradation. In order to
overcome these problems, we propose to use the Adaptive Net-
works based on Fuzzy Inference Systems (ANFIS) technique
[42]. ANFIS was also proposed for pre-distorting Wideband
Code Division Multiple Access (WCDMA) signals [43], [44],
although memory had not been taken into account and the pro-
posal was only valid for low density modulation such as QPSK.
In this paper, after learning the nonlinearities of the HPA (either
memoryless or with memory), we design a predistorter based on
ANFIS that linearizes the AM/AM and the AM/PM conversion
of the HPA, recovering the originally transmitted signal with an
Error Vector Magnitude (EVM) around 0.001% rms, and valid
for high density modulations such as 64-QAM. Thus, the Bit
Error Rate (BER) performance degradation is negligible. The
ANFIS pre-distorter scheme here proposed is valid for any kind
of amplifie , independently of its model that we solely use in
order to test and validate the results. Besides, we provide the
analytical calculation of the EVM based on the trained param-
eters, and we show that the obtained EVM is much better than
what other previous methods in the literature provide with very
low complexity once the ANFIS has been trained. In summary,
our proposal obtains almost negligible performance loss with a
low increase in system complexity for memoryless and memory
HPA scenarios.

Notation: In this paper, the following notation will be used.
Boldface symbols will be used for vectors while normal-face for
scalars. Time-domain signals will be denoted with small-case
letters, whereas frequency-domain signals will use capitalized
letters. and account for the real and imaginary part
of , respectively. And, denotes the absolute value of ,
whereas is the phase of .
The paper is organized as follows. First, the system model is

presented and the effects of nonlinearity in terms of constella-
tion wrapping, Symbol Error degradation and out of band radia-
tion are discussed in Section II. Next, in Section III, the ANFIS
system is proposed and analyzed, including the complexity anal-
ysis. After that, in Section IV, the EVM is introduced and the-
oretically evaluated in our scheme. Finally, in Sections V and
VI, the results are presented and the conclusions are drawn,
respectively.

II. SYSTEM MODEL

In this section the OFDM signal and the amplifie models and
effects are described.

OFDM Signal Model: In a multi-carrier system such as
OFDM, the time-domain complex base-band transmitted signal

for the -th symbol can be written as

(1)

where is the number of sub-carriers and is the frequency-
domain complex base-band symbol modulated on the -th sub-
carrier (belonging for example to an M-QAM constellation) at
OFDM symbol . The -th symbol can be also expressed as

(2)

Amplifier Model: There are mainly two types of nonlinear
amplifie models, namely, the memoryless HPA and the HPA
with memory. Examples of models for the memoryless HPA are
Saleh [45], [46] and Rapp model [47] for the TWTA and SSPA,
respectively. Whereas for the HPA with memory, the common
models are Saleh [45],Wiener [48], the parallel Wiener [49] and
the polynomial models [50].
If the HPA frequency response exhibits a similar behavior in

the whole working range, the HPA can be considered memory-
less. In this case, for the TWTA or SSPA, the output of the
nonlinear amplifie is given by

(3)

where is the AM/AM conversion function and is the
AM/PM conversion introduced by the amplifier It should be
noted that both of them depend on the absolute value of the input
signal . According to Saleh’s model [45], the AM/AM
conversion and the AM/PM conversion can be expressed as

(4)

(5)

where is the small signal gain, is the input
saturation voltage of TWTA and

stands for the maximum output amplitude. Similar
meaning have the parameters for the phase. Two different
TWTA have been used with typical values for these parameters.
The TWTA1 with , , and ; and
TWTA2 with , , and [38].
For the SSPA, the modifie Rapp model [51] is usually uti-

lized. In this model, the AM/AM and AM/PM conversion can
be expressed as

(6)
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Fig. 1. HPA non-linear response for the modulo. ��� � � ��. ���	
 �

� � �, � � 
, ���	� � � � �, and � � �. Memoryless HPA.

(7)

where is the small gain signal, is a smoothness factor param-
eter, is the saturation level with a similar meaning as in the
TWTA, and parameters , , and are adjusted depending
on the amplifie to match its characteristics. The AM/PM con-
version of SSPA is frequently neglected, although in this paper
we will take it into account for a more accurate representation.
Indeed, the SSPA used in this paper is the NEC GaAs Power
Amplifie utilized for standardization [52], [53] with parame-
ters , , , , ,

and , referred to through the paper as SSPA.
In order to describe the different possible input power levels,

we use the Input Back-Off (IBO) of the HPA define as

(8)

where the represents the saturation input power and
denotes the average input power of the signal at the HPA input.

Memoryless HPA Nonlinear Effects: In Figs. 1 –5, the
AM/AM, the AM/PM conversion and the effect of the amplifie
in the frequency-domain, respectively, are shown. It can be seen
in Figs. 1 and 2 that the TWTA2 exhibits a more non-linear
behavior than TWTA1 in both the AM/AM and the AM/PM
characteristics. Besides, the SSPA is much more non-linear
in the AM/AM conversion whereas its behavior in AM/PM is
negligible compared to the TWTAs. Both figure have been
obtained for an IBO of 2 dB, and it can be observed that the
closer to the saturation point (0 dB), the larger the distortions
are. These effects will cause a constellation wrapping and
rotation, as it will be seen in the results section.
Next, in Fig. 5, the effects of the amplifie in the frequency-

domain are shown. This figur has been obtained for
sub-carriers, and a 64-QAM modulation. It can be seen that the
signal experiences a spectral regrowth due to the nonlinearity.
Again, a more accentuated nonlinear character of the amplifie

Fig. 2. HPA non-linear response for the phase. ��� � � ��. ���	
 �

� � �, � � 
, ���	� � � � �, and � � �. Memoryless HPA.

Fig. 3. HPA non-linear response for the modulo. ��� � � ��. ���	
 �

� � �, � � 
, ���	� � � � �, and � � �. HPA with memory.

causes more out-band regrowth. This is especially important in
broadcasting systems where the spectral masks are very strict.

HPA With Memory Nonlinear Effects: When increasing the
bandwidth and themaximum transmitted power of the amplifie ,
memory effects can not be neglected anymore. These effects are
related to frequency dependence and thermal phenomena [54].
This model can be considered as a Hammerstein system which
can be modeled by a memoryless HPA followed by a linear
low-pass filte [54]. In this paper, the 3-pole (0.7692, 0.1538,
0.0769) low-pass filte will be considered to account for the
memory of the HPA [26]. In Figs. 3 and 4, the AM/AM and
AM/PM conversion for the HPA with memory are shown, re-
spectively. It can be observed that now, instead of a bi-univocal
correspondence between input and output, due to the memory,
an input signal is mapped onto different points, and the function
becomes a cloud.

Pre-Distortion Concept: The main idea behind the concept
of pre-distortion is the aim of introducing inverse nonlinearities
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Fig. 4. HPA non-linear response for the phase. ��� � � ��. ���	
 �

� � �, � � �, ���	� � � � �, and � � 
. HPA with memory.

Fig. 5. HPA power spectral density. ��� � � ��. ���	
 � � � �,
� � �, ���	� � � � �, and � � 
. Memoryless and with memory.

that can compensate the AM/AM and AM/PM distortion of the
HPA (Figs. 1 –4).
If we consider that the predistortion can be formulated in

terms of an AM/AM predistortion function and an AM/PM pre-
distortion function, the amplifie input can be re-written as

(9)

where and are respectively the AM/AM
and the AM/PM functions of the pre-distorter. By introducing
the signal , the pre-distorter output will be

(10)

We would like to highlight that the examples of amplifier
used in this paper are only meant to obtain results and vali-
date the performance of the proposed pre-distorter scheme. The
scheme is general and valid for any kind of amplifier Once

trained with the specifi amplifie response, the ANFIS is able to
pre-distort the input signal adequately and with low complexity.

III. NEURO-FUZZY SYSTEM

Nonlinear system identificatio has been extensively studied
during the last decades and several methods and applications
have been developed [55]. Multilayer feed-forward neural net-
work is the most usual method for the identificatio of nonlinear
dynamical systems [56]. Fuzzy and neuro-fuzzy models for
nonlinear dynamic system identificatio have been also studied,
both for forward and recurrent topologies. Several fuzzy and
neuro-fuzzy models have been developed in many applications,
such as process modeling, identificatio [57] and control or
fault diagnosis [58]. Neural Network and fuzzy systems both
are stand-alone systems. With the increase in the complexity
of the process being modeled, the difficult in developing
dependable fuzzy rules and membership functions increases.
For these reasons, another approach has been developed, which
is mostly known as neuro-fuzzy approach. It has the benefit of
both, neural networks and fuzzy logic. The neuro-fuzzy system
combines the advantages of fuzzy logic system, which deal
with explicit knowledge that can be explained and understood,
and neural networks, which deal with implicit knowledge.
One of the advantages of fuzzy systems is that they describe
fuzzy rules, which fi the description of real-world processes
to greater extent. Another advantage of fuzzy systems is their
interpretability. In turn, some of the main disadvantages of
fuzzy systems are that expert’s knowledge or instructions are
needed in order to defin fuzzy rules, and the process of tuning
of the parameters (parameters of the membership function)
becomes hard. These disadvantages are related to the fact
that it is not possible to train fuzzy systems. The opposite
situation can be observed in the fiel of neural networks. It
is possible to train the neural networks, but it is extremely
difficul to use prior knowledge about the considered system
and it is almost impossible to explain the behavior of the neural
network system in a particular situation. In order to leverage on
advantages of both systems and compensate the disadvantages,
several researchers tried to combine fuzzy system with neural
networks. A hybrid system called ANFIS has been proposed by
[59]. Fuzzy inference in this system is realized using a training
algorithm. ANFIS was firstl proposed for data predistortion in
[60], although this work was focused on single-carrier QAM
modulation. Next, in [43], [44], this technique is applied to
single-carrier CDMA signals. Our proposal differs with the
former ones in several important aspects. First, our proposal is
much simpler than previous because it does not need to con-
tinue training during the running phase. The training process
has been designed in such as way that the whole system is able
to tackle any changes, including the memory effects, as it will
be explained later in the paper, whereas in [43], [44], [60],
the system is always learning for tracking changes. Second,
our proposal is applied for more complex multi-carrier signals
instead of single-carrier. Third, our proposal is also valid for
higher order modulation. In fact, as it will be numerically
shown later in the paper, the larger order modulation, the lower
EVM and thus, the better performance. Fourth, our proposal is
valid for memory and memoryless HPA, while the former ones
are only effective for the memoryless case.
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Fig. 6. Corresponding ANFIS architecture. Inputs are � and �, whereas output
is � .

A. ANFIS Adaptive Neuro-Fuzzy Inference

A detailed description of ANFIS can be found in [61]. The
Sugeno fuzzy model was proposed by Sugeno et al. in [62]. A
typical fuzzy rule in a Sugeno fuzzy model has the format

where and are fuzzy sets in the antecedent and
is a crisp function in the consequent. We consider the first-orde
Sugeno fuzzy inference system which contains two rules

The firin strengths and are usually obtained as the
product of the membership grades in the premise part, and the
output is the weighted average of each rule’s output

(11)

In order to facilitate the learning of the Sugeno fuzzy model,
it is convenient to put the fuzzy model into framework of adap-
tive networks that can compute gradient vectors systematically.
The resultant network architecture, called ANFIS is shown in
Fig. 6, where nodes within the same layer perform functions of
the same type, as detailed below ( denotes the output of the
th node in th layer) [61].

Layer 1: Each node in this layer generates membership
grades of linguistic label. For instance, the node function
of the th node may be a generalized Gaussian membership
function

(12)

where is the input to node , is the linguistic
label (small, large, etc.) associated with this node, and

is the parameter set that changes the shapes
of the membership function. Parameters in this layer are
referred to as the premise parameters.
Layer 2: Each node in this layer calculates the firin
strength of a rule via multiplication

(13)

Layer 3: Node in this layer calculates the ratio of the th
rule’s firin strength to the sum of all firin strengths

(14)

Layer 4: Node in this layer computes the contribution of
th rule toward the overall output, with the following node
function

(15)

Where is the output of layer 3, and , , is the
parameter set. Parameters in this layer will be referred to
as the consequent parameters.
Layer 5: The single node in this layer computes the overall
output as the summation of contributions from each rule

(16)

B. ANFIS Learning Algorithm

From the ANFIS architecture in Fig. 6, it is observed that
given the values of premise parameters , the overall
output can be expressed as linear combinations of the conse-
quent parameters , ,

(17)

The ANFIS learning algorithm consists of adjusting the above
set of parameters. To that end a mixture of backpropagation
and Least Squares Estimation (LSE) is used. Backpropagation
is used to learn the premise parameters and LSE is
used to determine the parameters in the rule’s consequents ,
, . Every step in the learning procedure has two passes. In

the forward pass, the network inputs propagate forward until
layer 4, and the consequent parameters are estimated by LSE
method, while the premise parameters remain fi ed. In the
backward pass, the error signals are backward propagated, and
the premise parameters are updated by gradient descent, while
consequent parameters remain fi ed. This hybrid algorithm
is used for training the Fuzzy Inference Systems (FIS) mem-
bership function parameters, in order to model a given set of
input/output data.

C. Evaluation of Training Parameters

One of the goals of the predistorter design was the low com-
plexity in the running phase, and thus, the adaptive training
during this phase should be avoided. For this reason, our ANFIS
has been designed in such as way it is able to generalize for
tracking changes in the HPA and also the memory effects. In
order to do that, cross validation and the evaluation of the main
parameters (i.e., the number of epochs and number of rules) in
the design is shown in the following. First, the impact of the
number of training epochs on the training error, is evaluated. It
can be seen in Fig. 7(a), where the training error is plotted as a
function of the number of epochs, that this parameter is not es-
pecially critical since, once the number of epochs is enough for

5



Fig. 7. Training error for different parameters. (a) Number of epochs. (b) Number of rules.

training the ANFIS, the performance remains similar when in-
creasing its number. The training error shown here is obtained
using unseen samples and for both effects, the Amplitude-to-
Amplitude and the Amplitude-to-Phase distortion. It can be ob-
served however that, once the number of epochs reaches a good-
enough value, as the number of epochs increases so slightly
the error, indicating that the systems begins to be over-trained.
More influenc exhibits the number of rules. In Fig. 7(b), the
training error is shown depending on the number of rules used
in the design of ANFIS. It can be seen that between fi e and ten,
the best performance is obtained. After that, the system is too
much over-fitte and it does not properly generalize. Besides, it
can be observed that the AM/PM distortion is more sensitive to
the number of rules. It should be also noted that the rules have
been limited to the simplest ones, again for obtaining a powerful
generalization.
For these reasons, our design uses fi e and six simple and

rules for AM/AM and AM/PM functions, respectively, and we
have trained them by using 20 epochs.

D. Predistorter Architecture

During the off-line training process, the neuro-fuzzy pre-dis-
torter model samples the amplifie data and recovers the
amplitude and phase of the input signals. Next, the firs
neuro-fuzzy used to approximate the pre-distorter
AM/AM function , is generated
by applying the HPA output amplitude as the training
input of the neuro-fuzzy scheme, while the input ampli-
tude of HPA is provided as the output training data.
When the neuro-fuzzy training converges, its response will
be very close to the inverse of the AM/AM HPA function.
The second neuro-fuzzy uses the input ampli-
tude signal of the HPA as training input data, while the
output training data are the phase differences between the
input and output signals of the HPA. When this neuro-fuzzy
system converges, it approximates the AM/PM HPA function

. Once the
and models have been obtained, in the

Fig. 8. Implemented ANFISs architecture.

real-time running operation, the modulo and the phase of the
modulated signal is computed. The modulo is introduced
into the and its output is fed to the and to
the output modulo of the signal. Next, the output of
is subtracted from the original phase and this signal feeds the
output phase block. This modulo-phase block will generate
the fina predistorted signal to be amplifie by the HPA.
The architecture of the neuro-fuzzy predistorter in the running
phase is shown in Fig. 8.

E. Complexity Analysis

In this section, the complexity analysis will be described
and compared to other already existing methods based on
the number of real operations needed for the algorithms. Our
proposal needs , and
real products, additions and divisions, respectively. All these
numbers are operations per sample (i.e., for an OFDM symbol
with N sub-carriers, these numbers need to be multiplied by
N). Since our ANFIS uses 5 rules (i.e., ), the total
number of operations are 20, 18 and 10, respectively. On the
other hand, the number of operations of other schemes such as
the polynomial-based depends on different parameters. In [23],
where the polynomial is reduced to a couple of dimensions
( and are, respectively, the number of terms in the poly-
nomial for the amplitude and the phase, and is the number
of terms for the exponential values), the number of operations
are shown in Table I. The complexity for the proposal in [24]
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TABLE I
COMPLEXITY SUMMARY ANALYSIS PER SAMPLE. � � ����

is , where is the number of samples
for training and its high complexity is due to the FFT. Another
two polynomial-based schemes are proposed in [25], namely,
Simplicial Canonical Piecewise Linear (SCPWL) and Secant
(based on secant curve). Those methods exhibit low number
of operations in the running phase, although their performance
is compromised. As a reference, the complexity of the Third
Order Distortion (TOD) and Fifth Order Distortion (FOD)
polynomial-based are also included.
Two NN-based algorithms have been analyzed. The one pro-

posed in [40], whose complexity depends on the number of
hidden neurons and the number of inputs (usually the number
of sub-carriers), and the one in [41], with larger complexity but
better performance. Finally, also a joint LUT-based and poly-
nomial-based method is analyzed, with reduced complexity and
reasonable results.
In Table I, the complexity comparison is summarized for dif-

ferent Pre-distorters (PD) in the literature. The number of opera-
tions is calculated for the specifi configuratio and per sample.
The number of sub-carriers is . It can be observed that
the complexity of our proposal is comparable (although slightly
higher) to the polynomial-based schemes but with much better
performance, as it will be seen in next sections. Besides, our pro-
posal achieves better performance than NN-based methods with
much lower complexity, and even in scenarios with memory.

IV. ERROR VECTOR MAGNITUDE (EVM)
The EVM is a common figur of merit for assessing the

quality of digitally modulated signals. It accounts for the
difference between the expected complex voltage value of a
demodulated symbol and the value of the current received
symbol. It is very useful for microwave engineers because it
contains information about amplitude and phase errors in the
signal [63]. The average EVM is define as

(18)

where is the th point out of for the ideal con-
stellation in a -QAM modulation, and is the mea-
sured th constellation point after the HPA. is a vector
containing all the ideally transmitted complex symbols.
The distributions of the real and imaginary parts of are

both a discrete uniform (if is a power of two), with
values from to in steps of 2. Since our

models are based on Gaussian membership functions (see eq.
(12)), the obtained constellation (i.e., ) will
exhibit a distribution similar to with a Gaussian distribu-
tion around each discrete value. Thus, the difference between
both will be Gaussian, i.e.,

(19)

and

(20)

Therefore, the absolute value
will exhibit a Rayleigh distribution of parameter . Thus,
the distribution of will be the Gamma distribution
with shape and scale parameters equal to 1 and , respec-
tively. Applying the Central Limit Theorem to (18) we obtain
that the average EVM can be estimated as follows

(21)

since is the mean energy of the constella-
tion and can be calculated as and

according to the
Central Limit Theorem, and the expectation of a Gamma distri-
bution with shape equal to 1 and scale is . In Table II,
the obtained EVM by simulations and by using our analytical
calculation are summarized for the different HPAs evaluated in
the paper. Two conclusions can be extracted from these data.
First, the analytical expression is accurate enough and second,
the EVM of our proposed scheme is very low.

V. RESULTS
The three different amplifier presented in the paper have

been simulated (two TWTA and one SSPA), all of them both
with and without memory. The number of sub-carriers has been
fi ed to (typical value for DVB-T or DAB standards).
The modulation was 16-QAM and 64-QAM, i.e., and

, respectively. The results have been obtained with a
fourfold oversampling factor. In Figs. 9 and 10, the transmitted
constellation after the TWTA1 and the SSPA are shown, respec-
tively for 64-QAM modulation. It can be seen that, without the
predistortion, the constellation is rotated and wrapped. It can
also be observed in Fig. 10 that the SSPA distorts more the
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TABLE II
ANALYTICAL AND SIMULATION RESULTS FOR THE EVM. 64-QAM

Fig. 9. Constellation after memory and memoryless TWTA 1 HPA, with and
without predistortion. 64-QAM.

Fig. 10. Constellation after memory and memoryless SSPA 1 HPA, with and
without predistortion. 64-QAM.

constellation than the TWTAs. In all cases, the memory of the
HPA also introduces an interdependence between constellation
points. However, by using our proposal, the constellation points
are practically restored to their original locations. Thus, as it
can be seen in Fig. 11, where the BER has been plotted for
64-QAMmodulation, the BER degradation is negligible. In this
figur the performance results using our proposal for TWTA1,
TWTA2 and SSPA have been plotted. For comparison purposes,
also the performance obtained by two LUT-based methods such
as [30] and [35], a NN-based technique in [38] and a polyno-
mial solution in [23] have been drawn. The BER obtained with
our ANFIS proposal after TWTA1, TWTA2 and SSPA with and

Fig. 11. Bit Error Rate. 64-QAM. TWTA1, TWTA2, and SSPA. Memoryless
and memory HPA.

Fig. 12. Bit Error Rate. 16-QAM. TWTA1, TWTA2, and SSPA. Memoryless
and memory HPA.

without memory is very close to the BER obtained with the
original signal without distortion (less than 0.1 dB of perfor-
mance degradation). On the other hand, references [30], [35],
[38] and [23] are not able to completely compensate the dis-
tortion and there is a non-negligible performance degradation,
more noticeable for the case of SSPA with memory. Indeed, for
the scenario with memory, degradation by using the LUT-based
in [30] is more than 2 dB whereas for the memoryless sce-
narios, approaches in [35] (LUT-based), [38] (NN-based) and
[23] (polynomial-based) the degradation is around 1 dB for large
SNR. Next, in Fig. 12, the performance for 16-QAM modula-
tion of our proposal, two other NN-based techniques in [39],
[41] and two other polynomial-based schemes in [22], [26] is
plotted. Several conclusions can be extracted from this figure
The firs one is that our proposal outperforms the others. Indeed,
even when applied to scenarios with memory, our proposal ob-
tains better performance than NN-based approaches applied to
memoryless amplifiers basically because our proposal exploits
the powerful fuzzy rules. Second, the polynomial proposals for
scenarios with memory are not able to completely linearize the
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Fig. 13. Power spectral density after memory and memoryless HPA with the
ANFIS predistorters.

HPA and exhibit a larger (compared to our method) perfor-
mance degradation. In fact, these methods, compared to our pro-
posal are more than 1 dB worse and this gap increases with the
signal to noise ratio because these schemes suffer from an error
floo for large SNR. Third, it can be seen that our proposal ex-
hibits better performance for 64-QAM than for 16-QAM, as ex-
pected according to (21). In Fig. 13, the power spectral density
of the signals after the HPA and previously predistorted with
our proposal are shown. Since TWTA1 is less nonlinear than
TWTA2 and SSPA, the spectral regrowth (measured with re-
spect to the original spectrum) after our scheme is almost neg-
ligible, whereas for the TWTA2 or SSPA it is about 8 dB, small
value compared to 40 dB without pre-distortion and valid for
fulfillin the strict spectral mask in broadcasting systems such
as [1] or [2].

VI. CONCLUSION
In this paper an efficien and effective HPA predistorter

based on ANFIS with application to broadcasting of high order
modulated OFDM signals has been presented and analyzed.
It has been shown that the proposal, once it has been trained
and without any further requirement, is able to predistort the
signal in such as way that the output of the HPA is extremely
similar to the original signal, and thus, the BER performance
loss is negligible. Besides, results allow us to conclude that
our proposal is valid for memory and memoryless HPA, ob-
taining similar results in both scenarios. Moreover, it offers a
better BER performance than what can be achieved with other
methods in the literature. Once trained, the complexity of the
proposal is reduced and thus, it can be implemented at low cost
with reduced-size electronics. For these reasons, we believe it
is a very good candidate to be used for broadcasting systems.
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