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Abstract. The asymptotic distribution of the cumulated periodogram 

goodness-of -fit test statistic for ARMA models is obtained, and is shown to 

be different from the limiting distribution of the standard 

Kolmogorov-Smirnov test statistic for probability distributions. The 

implications of this anomaly for inference purposes are analyzed. A modified 

cumulated periodogram goodness-of -fit test statistic is suggested, and its 

properties are studied and compared with other goodness-of -fit criteria 

proposed in the literature. 

Keywords. Autocorrelation function; Ljung-Box statistic; normalized 

spectral distribution function; residuals. 

1. INTRODUCTION 

Consider an ARMA(p,q) model 

</>(B)X = 8(B)c , 
t t 

(1.1) 

where {£ : t = 0, ±l, ±2, ... , } is a zero mean white noise sequence with 
t 

variance 
2 

B is the backward shift BX X and the (1', operator = 
t t-l' 

polynomials </>(z) = 1 - </>z - ... - </> zP and 8(z) = 1 + 8 z + . .. + 8 zq have 
1 p 1 q 

all their roots outside the unit circle. After a model of the form (1.1) has 

been fitted to a finite observed series X, 
1 

... , X, 
n 

it is useful to 

investigate the adequacy of the fit by examining the auto correlations 

1\ 
r = 

k 

n-k n 
1\ 1\ 1\2 

= [ L £ £ Inll[ L £ In], 
t t+k t 

O::sk::sn-l, 
t=l t=l 

1 

(1.2) 



of the residuals 

~t = @(Bfl~(B)\, t = 1, ... , n, 

where the polynomials ~(z) = 1 - ~ z - ... - ~ zP and @(z) = 1 
1 P 

@ zq are constructed on efficient estimates ~ = (~, 
q 1 

... , ~ )' 
P 

... , @)' of the parameters if> = (if>, ... , if»' and 8 = (8, 
q 1 P 1 

0.3) 

+@z+ ... + 
1 

and @ - (@ 
- l' 

8 )'. By 
q 

convention, X =0 for t:SO. A standard goodness-of -fit method is the Ljung and 
t 

Box (1978) statistic, 
m 

A -IA2 
V = n(n+2) L (n-k) r , 

n k 
k=1 

(1.4 ) 

where m = m is a suitable function of the sample size n. The approximate 
n 

null distribution of e is chi squared with m-(p+q) degrees of freedom. 
n 

An alternative to 0.4) is to test for goodness-of -fit in the frequency 

domain. Define, for O:Si\:srr, the periodogram ordinates 

n-l 
6. A A 
1 (i\) = [g + 2 L g cos(ki\)]l2rr, 

n 0 k 
(1.5) 

k=1 

t 
j 

6 put h = [n/21, and consider the quantities = L 1 (2rrk/n), and = 
n 

k=1 

tit, j = 1, h. A plot of 6 against j/h is called the cumulative 
j h 

periodogram of the residuals. The statistic 

t) = h
1/2 

max 0.6) 
n 

can be used to test the adequacy of model (1.1). In practice, t) is 
n 

calibrated superimposing on the cumulated periodogram two parallel lines to 

-1/2 
the left and to the right of the line y = x at a distance h k, where k 

ex ex 

is the appropriate O-ex)xlOO% upper quantile of the Kolmogorov-Smirnov 

distribution (Diggle, 1990, p. 55). Box and lenkins (1976, p. 297) comment 

that this distributiop. gives only approximate significance levels for t). In 
n 

fact, Durbin (1975) proofs that the asymptotic distribution of (1.6) is 

different from the Kolmogorov-Smirnov distribution. 

The paper reviews briefly, in section 2, the work of Durbin (975) on 

the cumulated periodogram goodness-of -fit test. An alternative 

2 



characterization of the asymptotic distribution of {) 
n 

is obtained that 

leads, in section 3, to a modification of the test statistic (1.6) that can 

be shown to be asymptotically Kolmogorov-Smirnov distributed. Section 4 is 

devoted to simulations and comparisons and section 5 to some final comments. 

A 
2. THE ASYMPTOTIC DISTRIBUTION OF On 

{) is obtained replacing the integrals by Riemann sums evaluated at the 
n 

Fourier frequencies 1\ = 2rrj/n, j = 1, 
j 

h, in 

where ~ (1\) = 
n 

t = (n/2)1/2 sup I ~ (1\) - F (1\) I ' 
n o~l\~rr n 0 

1\ 
2J 1 (t)dtl~, F (1\) = 2JI\f (t)dt = I\/rr, 

n 0 0 0 o 0 

and f (1\) 
o 

(2.1) 

the normalized spectral density of a white noise process. It is clear that 

the asymptotic distributions of {) and t are the same. Consider the 
n n 

errorwise version of (2.1), namely, 

1/2 T = (n/2) sup (2.2) 
n 

where F (1\) 
n 

= 
1\ 

2J I (t)dtlg , 
n 0 o 

and I (1\) are the 
n 

periodogram ordinates 

computed from the autocovariance function {g} of the errors £, £ . 
kin 

Under the null that {£} is a white noise, the statistic T is 
t n 

asymptotically Kolmogorov-Smirnov distributed. See Bartlett (1955) or, more 

recently, Durlauf (1991) or Anderson (1993). If model (1.1) is correct, it 

is natural to expect white noise characteristics of the residuals and, 

therefore, that the asymptotic distribution of t is to be close to the 
n 

limit distribution of T . 
,n 

2.1 The work of Durbin (1975) on the asymptotics of tJ 
n 

Introducing the change of variable 1\ = rrt, t is the sup over [0,1] of the 
n 

stochastic process {tV (1): O~t~l}, where 
n 

3 



~ (t) = (v'2/71) 
n 

n-1 

n1l2 L ~ 
k 

k=l 

sin( k71t) 
k 

(2.3) 

Durbin (1975, p.136) proofs that {~(t): O~t~l} converges weakly to a zero 
n 

mean gaussian process with covariance function 

2 -1 -1 
G(t,s) = [min(t,s) - ts] - (271) h(71t)'[Jl(</>,8)] h(71s), (2.4) 

where, for 0~1\.~71, h(l\.) J
I\. (Blogf(t}/B",ddt is a (p+q)xl vector, f(1\.) = 

o 

and is the (p+q)x(p+q) information 

matrix for p. = (</>,8). The first term in (2.4) is the covariance function of 

the brownian bridge {B(t): O~t~l} while the second summand can be explained 

by the distorting effect of parameter estimation on the covariance of the 

limiting process. As a consequence of (2.4), Durbin (1975, p.138) comments 

on: i} The dependence on unknown parameters of the asymptotic distribution 

of fJ; and U) The apparent unfeasibility of constructing an asymptotically 
n 

correct test based on the maximum deviation of the cumulated periodogram 

without further modification of the problem. 

2.2 An alternative asymptotic theory for {) 
n 

The results of Durbin (1975) are based on a theorem on the asymptotic 

validity of inferences built replacing parameters by estimates (Durbin, 

1970). An alternative theory can be constructed based on techniques of weak 

convergence of processes. Methods of this section are, in some way, more 

illuminating than previous developments since they lead, in section 3, to a 

modification of the cumulated periodogram goodness-of -fit test that makes it 

asymptotically valid. 

Let m = m be' a function of the sample size n that goes to infinity at 
n 

lib 
the rate n for some b > 2, and decompose 

= (v'2/71) 
112 

n 

~ (t) = 6 (t) + (; (t) 
n n n 

m n- 1 
L ~ sin(k71t) + (v'2/71) n1l2 L ~ 

k k k 
k=l k>m 

4 

sin(k71t) 
k 

(2.5) 



Each of the terms in (2.5) is treated separately. Consider the coefficients 

{a } of the expansion 
k k~O 

o:(z) = [(3(z)r1 

where (3(z) </>(z)8(z) = 1 - (3z -= ... 
1 p+q p+q 

00 
k = L akz , 

k=1 

- (3 
p+q 

z , 
p+q 

put a 

(2.6) 

° for k < 0, and = 
k 

define h = L L a a Frs for j,k~l, where Frs is the (r,s) element jk 
r=l s=1 

j-r k-s p+q p+q 
00 

of the inverse of the (p+q)x(p+q) matrix f = ( L a a . l:Sr, s:sp+q). 
p+q k k+ 1 r-s I· k=O 

Under (1.1), using results in Velilla (1994), {6 (t): O:St:Sl} converges 
n 

weakly to a zero mean continuous gaussian process {U(t): O:St:sl} with 

covariance function 

a(t,s) = [min(t,s) - ts] - g(t,s), 

where g(t,s) = (21T?) ~ ~ h.
k 

sin(~rrt) 
j=lk=l J J 

sin(krrs) 
k 

(2.7) 

If model (1.1) 

has been correctly identified and fitted, the correlations ~ of the 
k 

residuals behave, for large values of the lag k and the sample size n, 

similarly as the correlations r = g Ig of the true white noise errors (Box 
k k 0 

and Pierce, 1970, p. 1517). It seems then reasonable to approximate ~ (t) by 
n 

n - 1 

v (t) = (VZ/rr) n1
/2 

sin(krrt) 
k 

From an argument in Grenander and 
n 

Rosenblatt (1957, p. 189), sup 1 V (t) 1 goes to zero in probability. 
n O:St:Sl 

The asymptotic distribution of f) is then given by the distribution of 
n 

the sup of the zero mean continuous gaussian process {U(t): O:St:sl} with 

covariance function a(t,s). Using the explicit expression for !!(</>, 8) given 

in Bruce and Martin (1989, p. 399), is not difficult to see that expressions 

(2.4) and (2.7) coincide. 

Example 2.1. The AR(l) model 

For the AR(l) model X = A.X + £, where 
t 'f' t-l t 1 </> 1 < 1, 

k 
a = A. and then h = k 'f' jk 

</>j+k-20 - </>2), j,k ~ 1. The function g(t,s) is 

5 



2 -2 2 
g(t,S) = (2/rr)</> (l - </> )c(t,</»C(S,</», 

00 

\' A,.j sin(jrrt) U· . f l' G d h' d L.. 'f' . smg a summatlOn ormu a m ra stem an 
j 

where c(t,</» = 
j =1 

Ryzhik (1994, p.48), c(t,</» = arctg[</>sin(rrt)/(l-</>cos(rrt))]. 

• 

2.3 Asymptotic rejection probabilities for f> 
n 

From either (2.4) or (2.7), is easily seen that the covariance function 

-.r(t,s) is smaller that the covariance of {B(t): O:st:sl} in the Loewner sense, 
1 1 1 1 

that is J J -.r(t,s)l(t)l(s)dtds :s J J [min(t,s)-tsll(t)l(s)dtds, for any 1(,) 
o 0 0 0 

such that the integrals are defined. From Anderson (955), the inequality 

below holds for any d > 0, 

P[ sup I B(t) I ~ dl ~ P[ sup I U(t) I ~ d]. (2.8) 

As a conclusion, the Kolmogorov-Smirnov distribution underestimates the 

statistical significance of an observed value of {). The standard parallel 
n 

lines superimposed to the cumulated periodogram are at a larger distance 

from the line y = x than they should be and this decreases the ability of 

the goodness-of -fit statistic 0.6) to detect lack of fit when it exists. 

This phenomenon is similar to the one that appears when treating, for 

diagnostic checking purposes, the residual correlations ~ for small lags as 
k 

the error correlations r. The correct confidence bounds for ~ are smaller 
k k 

than those for r . See, for example, Box and Pierce 0970, p. 1520). 
k 

Example 2.2. Empirical quantiles of the asymptotic distribution of {) 
n 

Consider the AR(l) model X = </>X + £ and put p and p (</» for, 
t t-1 t d d 

respectively, the left and right hand sides of inequality (2.8). Exact 

computation of the function p d(</» is intractable and resorting to the 

empirical distribution of {) 
n 

to get estimates ~ (</» seems appropriate. For 
d 

sample sizes n = 100, 200, and for each value of </> = .1, .5 and .9, N = 5000 

6 



independent series of length n are generated from X = </>X + £;, where 
t t-l t 

{£;} are LLd N(O,l). The values of tJ are computed and used to find 
t n 

empirical estimates ~ (</» 
d 

= (# of values of tJ 2: d)lN of p (</>). Figure 1.1 (n 
n d 

= 100) and 1.2 (n = 200) compare the dashed and dotted curves ~ (</» with the 
d 

continuous curve p d obtained from table 1 in Shorack and Wellner (1987, p. 

1\ 1\ 1\ 
143). Observe the dominance p 2: P (.9) 2: p (.5) 2: p U)' 

d d d d 

Figure 1.1 Figure 1.2 

Figure 1.3 Figure 1.4 

As a complement to figures 1.1 and 1. 2, tables 1.1 and 1. 2 give· the values 

of the .90, .95 and .99 upper quantiles of the Kolmogorov-Smirnov 

distribution, first row, and the .90, .95 and .99 empirical upper quantiles 

of the distribution of tJ under the different values of the parameter </>. The 
n 

difference is quite remarkable, casting some doubts about the statistical 

behaviour of the goodness-of-fit methodology based on (1.6). 

Finally, figures 1.3 and 1.4 display the empirical tail probabilities 

for tJ obtained from N = 5000 independent series of lengths, respectively, n 
n 

= 100 and 200, generated from the AR(2) model (1-.5B)(1-aB)X = £; with 
t t 

LLd. N(0,1) errors, for values of a = .1, .4 and .7. The dashed and dotted 

lines are, again, far from the continuous line given by the tail probability 

function of the Kolmogorov-Smirnov distribution. 

Table 1.1 Table 1.2 

Example 2.3. Cumulated periodogram 

Figure 2 below shows the cumulated periodogram for a simulated series of 

length n = 200 from the AR(2) model (1-.5B)(l-aB)X = £; with a = .2. An 
t t 

AR(1) model X = </>X
t

_
1 

+ £; is postulated and fitted. The value of tJ = 
t t n 

1.104 is declared in accordance with an AR(1) explanation using the 

7 



continuous standard bands with an approximate observed significance level 

around .175. However, when the dashed correct asymptotic bands from table 

1.2, corresponding to </> = .5 (a = .0), are used, the value of f) is declared 
n 

significant with an approximate p-value of .03. 

Figure 2 

3. A MODIFIED CUMULATED PERIODOGRAM GOODNESS-OF-FIT TEST STATISTIC 

The obvious remedial action for the anomalies detected in the behaviour of 

f) in section 2 would be to superimpose the correct asymptotic bands to the 
n 

cumulated periodogram. This is both mathematically intractable and 

statistically unrealistic because it requires knowledge of the parameters 

(</>,s). In this section, a modification of the goodness-of-fit test statistic 

f) is constructed so that the asymptotic distribution is the sup of the 
n 

brownian bridge. 

Take the errorwise version of the process (2.3), namely 
n-l 

W (t) = (Y2/rr) n1/2 L r Sin(~rrt) , 

where {r } 
k 

representa tion 

is 

n k 
k=l 

the correlogram of 

00 

B(t) = (Y2/rr) L u sin(krrt) 
k k 

k=l 

c , 
n 

and 

(3.0 

consider the 

(3.2) 

of the brownian bridge, where {u} is a sequence of independent N(O,ll 
k l:Sk 

variables. Put R = (r, 
m 1 

r )', ~ = (~ ... , ~ )' and assume that n is 
~o., m m l' m 

large. Since for every fixed m, n1/2R is approximately N (0,1 ) (Anderson, 
m m m 

1942), it is natural to expect closeness of W (t) to B(t). In contrast, Box 
, n 

and Pierce (1970) establish, under certain conditions on m, that 

~ - (I - H )R , (3.3) 
m m m m 

where H = X (X' X fix is the mxm orthogonal projection matrix on the 
m m m m m 

manifold spanned by the columns of a certain mx(p+q) matrix X of rank p+q. 
m 

8 



The expression for X is given in equation (A.I) of the appendix. From (3.3) 
m 

the asymptotic behaviour of the correlations of the residuals at low lags k 

differs markedly from the asymptotic behaviour of their error counterparts 

This explains the convergence of the process {tV (t): O!St!Sl} to a gaussian 
n 

process with covariance function (2.7) and, as a consequence, the distinct 

limit behaviour of the statistics T and e . 
n n 

To overcome this situation, Velilla (1994) proposes to write I - H = 
m m 

C C', where C = C (</>,S) is an mx[m-(p+q)] matrix such that C' C 
m m m m m m 

= I 
m-(p+q) 

and C' X = o. If the autocorrelation sequence ~ 
m 

= 
1\ 

(r , 
1 

~ )' is 
m m m 

transformed linearly 

(3.4) 
m 

m 
it is reasonable to approximate n1l2~ where 

m 

N [0,1 ]. 
1\ 

(s , ~ )' and 
1\ 
S 

k+p+q 
~ for 

m-(p+q) m-(p+q m l+p+q m 

m-(p+q) < k !S n-(p+q+I), it can be then conjectured that the process 

n-(p+q+l) 

~ (t) = (v'Z/rr) n
1l2 L ~ 

n k+p+q 
k=1 

sin(krrt) 
k 

k+p+q 

(3.5) 

is close to (3.2). By choosing {C (</>,S)} as in the appendix and assuming 
m 

that m = m = O(n
llb

), b)2, theorem 3.4 in Velilla (1994) can be used to 
n 

establish weak convergence of {~ (t): O:5t:5l} to {B(t): O:5t:5l}. 
n 

Consider now the modified residual periodogram ordinates for O!Si\!Srr, 

n-( p+q+ 1) 

1 (i\) = [1 + 2 L 1\ cos(ki\)]/2rr, (3.6) 
n sk+P+q 

k=1 

i\ 
and put en (i\) = 2 J \ (t)dt. The asymptotic distribution of the statistic 

o 
1/2 

= (n/2) sup 
n o!Si\!Srr 

1 e (i\) - F (i\) 1 = 
n 0 

sup 
O!St!S1 

1 ~ (t) I, 
n 

(3.7) 

is the distribution of sup 
O!St!Sl 

1 B(t) I. Replacing the integrals in (3.7) by 

Riemann sums evaluated at the Fourier frequencies i\ = 2rrjln, the modified 
j 

cumulated periodogram goodness-of -fit test statistic 

e = h1l2 max 
M,n 

I~. - jlhl, 
J 

(3.8) 

9 



j 

where ~ = (4rr/n) L 1 (2rrk/n), j = 1, ... , h, can be properly compared, for 
j k=l n 

n large, with the critical values of the Kolmogorov-Smirnov distribution. 

The explicit construction of the matrix C (</>,8) of (3.4) is given in the 
m 

appendix. The choice of the lag m is studied in section 4.4. 

4. EXAMPLES, SIMULATIONS AND COMPARISONS 

This section studies applied aspects of the goodness-of-fit methodology 

tJ . The asymptotic distribution is shown to be accurately reflected by the 
M,n 

Kolmogorov-Smirnov distribution in some simple cases. tJ arises from 
M,n 

taking the sup of the process {~ (t): O:St:Sl} . Other functionals could be 
n 

considered, for example, the Cramer-von Mises functional 

1 n-(p+q+ll 
1\ J A 2 2 1\2 2 M = [L (t)] dt = (n/rr) L s /k , 

n n k+p+q 
o k=1 

(4.1) 

whose asymptotic distribution is given, by the continuous mapping theorem, 
1 

by the integral J [B(t)]2dt of the brownian bridge. This distribution is 
o 

tabulated in Shorack and Wellner (1987, p. 147). The structure of (4.0 

resembles to the structure of the Ljung-Box statistic e 
n 

of (1.4). The 

significance levels, power and dependence on the lag m of the three 

goodness-of -fit statistics tJ , ~ 
M,n n 

and e 
n 

are studied and compared. For 

completeness, the significance levels and power of tJ using both the 
n 

Kolmogorov-Smirnov and the correct asymptotic bands are also analyzed. 

4.1 Asymptotic distribution of b 
M,n 

Put qd(</» - P[tJ ~ 
M,n 

d] for the tail probability function of the 

distribution of tJ under the null that X </>\-1 + c. For values of n = 
M,n t t 

100 (m = 10) and 200 (m = 15), N = 5000 independent samples are generated 

from an AR(l) model with values </> = .1, .5 and .9 and LLd. N(O,O errors. 

10 



Empirical estimates ~ (</» of q (</» are computed in the usual way. The matrix 
d d 

C is determined using expression (A.3) in the appendix. Figure 3.1 and 3.2 
m 

display the curves ~ (</» and the Kolmogorov-Smirnov curve p. Notice the 
d d 

accurate approximation ~ (</» E:: P for large values of d. Figures 3.3 and 3.4 
d d 

are obtained simulating N = 5000 independent series of sizes n = 100 (m 

10) and n = 200 (m = 15) respectively, from AR(2) models (I-.5B)(I-aB)X 
t 

for values of a = .1, .4 and .7. The statistic tJ is obtained using 
M,n 

the expression (A.4) for the matrix C . Again, notice the closeness of the 
m 

empirical tail probability curves to p . 
d 

Figure 3.1 

Figure 3.3 

4.2 Figure 2 (continued) 

Figure 3.2 

Figure 3.4 

For the sample of figure 2, figure 4 below shows the plot of the magnitudes 

~ against jlh superimposed to· the plot of the ordinary cumulated 

periodogram of the residuals. tJ correctly identifies the problem of lack 
M,n 

of fit. Observe the slight non monotonic pattern of the plot in the lower 

left corner. This is because the definition (3.6) does not guarantee the 

condition 1 (2rrjln) ::! 0 for all j. 
n 

Figure 4 

4.3 Empirical significance levels and power of the goodness-of-fit criteria 

Tables 2.1, 2.2 and 2.3 display the empirical significance levels and power 

of the criteria tJ , 
n,KS 

tJ , 
n,C 

tJ , 
M,n 

~ and e for a nominal significance 
n n 

level .05 for, respectively, sample sizes n = ISO, 200, and 400. In all 

tables, a model of the form X - </>X = £ is fitted, while the true model 
t t-1 t 

is of the form (I-.5B)(I-aB)X = £ for values of a = .1, .2, .4., .7 and 
t t 

.9. The simulation size is N = 5000 and the errors are LLd. N(O,I). tJ 
n,KS 

11 



stands for the rejection rule using the .95 quantile of the 

Kolmogorov-Smirnov distribution and e 
n,C 

for the rule using the asymptotic 

.95 quantile obtained from an empirical tabulation of the asymptotic 

distribution of e under the model X - .5X 
n t t-l 

Table 2.1 

Table 2.2 

Table 2.3 

C. 
t 

Notice the low size and power of e . In general, the most powerful 
n,KS 

criterion is, not unexpectingly, e , 
n,C 

followed, in this order, by 

criterions e 
M,n 

and ~ that, in turn, are better than e . The size and power 
n n 

of criteria (3.8) and (4.1) are stable against the choice of the lag m. In 

contrast, the power of the Ljung-Box statistic declines when m increases. 

For more complete empirical studies on the size and power of e , see Davies, 
n 

Triggs and Newbold (1977), Ljung and Box (1978), and Davies and Newbold 

(1979). 

4.4 Numerical stability of criterions fi and M and choice of the lag m 
M,n n 

As seen in section 4.3, the size and power of both e and ~ is not much 
M,n n 

affected by the choice of the lag m. This empirical finding can be 

analytically justified exploiting a property of the matrix sequence {C = 
m 

C (</>,8)}. By the causality and invertibility assumptions on the polynomials 
m 

</>(z) and 8(z), the coefficients {a } are bounded in the form I a I :::: A Qk 
k k~O k 

for some constants A > 0 and 0 < Q < 1. Therefore, from expression (A.2) 

in the appendix, the general term of the sequence {C } is of the form 
m 

m [ C I ° 1 M Mxr 
= 

°rxs I m _M ' 

C 

12 



where r = m - M and s = M - (p+q), for m larger than a certain integer value 

M. The modified correlation sequence (3.4) has the structure 

~ 
M 

[ :~J 0 

l~m 
--

1\ 

~ ~,~ s xr r 
= • M+l 

m m m 
I 

m-M A 
r 

m 

for m > M and, as a consequence, the numerical value of the statistics f) 
M,n 

and 1I is the same for any choice of the lag beyond the threshold M. This 
n 

is illustrated in figures 5.1 and figures 5.Z below that display, for values 

of m from Z up to 30, the values of, respectively, criterions (3.8) and 

(4.1) for a sample of size n = ZOO generated from an AR(Z) model X = .9X 
t t-l 

- . ZX + £ when the model fitted is X = </>X + £. The continuous lines 
t-2 t t t-l t 

represent the critical .05 levels of the asymptotic distribution. Notice the 

stability of the values of both f) and 1I. As a comparison, figure 5.3 
M,n n 

represents the behaviour of e for the same sample. The continuous line is 
n 

given by the critical .95 X
2 

quantiles. For low values of m, e rejects 
m-I n 

the AR(1) null but, as more correlations are added, e fails to detect model 
n 

misspecification. 

Figure 5.1 Figure 5.2 Figure 5.3 

The guidelines above suggest that choosing the final lag m when using 

either f) or 1I can be accomplished using a graphical display like figures 
M,n n 

5.1 or 5. Z. m can be taken as the lag M such that the value of (3.8) or 

(4.1) is constant for every m > M. For example, in the figures above, M = 11 

for f) and M = 7 for 1I . 
M,n n 

5. FINAL COMMENTS 

Testing the adequacy of an ARMA model in the frequency domain has a long 

tradition In the time series literature. Priestley (1981, sec. 6.Z.6) 

13 



presents an excellent survey of previously proposed spectral based 

goodness-of -fit tests. Existing methods are generally based on full 

specification of the spectral distribution function or. in other words. on 

2 
knowledge of the parameters (</>.9.0" ). 

The latter framework is very restrictive in applications because to 

check the appropriateness of a model for the given X. ...• X. it should be 
1 n 

only assumed that the data have been generated by an ARMA(p.q) model with 

unknown parameters 
2 

(</>.9.0" ). Criterions (3.8) and (4.1) overcome this 

deficiency. since their construction depends on the residuals of the fit of 

a parametric model. Both are computationally more expensive than the 

standard Ljung-Box statistic since they require the linear transformation 

(3.4) that. nevertheless. can be determined using standard software and has 

an explicit expression for simple models as illustrated in the appendix. In 

the test statistics {) and ~. m is merely a lag that should be large 
M,n n 

enough so that the finite sample size distribution is close to its limit 

that is known to be of the Kolmogorov-Smirnov type. In contrast. the 

approximating distribution of the Ljung-Box statistic depends on m. As a 

result. criterions (3.8) and (4.1) are less sensitive to the choice of m and 

have better power properties. 
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APPENDIX: CONSTRUCTION OF THE MATRIX Cm 

Write columnwise C = (a • ...• a ). Following Velilla (1994). for every 
m l+p+q m 

14 



integer m~p+q+l, the mx[m-(p+q)] matrix C must satisfy C' X o and C' C 
m m m m m 

I , where X = X (cf>,S) is the mx(p+q) matrix 
m-(p+q) m m 

1 o 

X 
a 1 

I 

a a 

o 

o 

o (A.U 
m 

2 I 

1 

a a a 
m-I m-2 m-(p+q) 

and the coefficients {a} are as in (2.6). These conditions merely state 
k k~O 

that the columns of C form an orthonormal basis for the orthogonal 
m 

complement in IR
m 

of the linear manifold spanned by the columns of X • To get 
m 

weak convergence of ~ (t) to the brownian bridge, a particular basis must be 
n 

chosen. Specifically, for l:::::k:::::m-(p+q), 

where U 
k+p+q 

is of 

o = Ilu 11-1 
[ uk +P+q ], 

k+p+q k+p+q 0 
m- (k+p+q) 

(k+p+q)xl, o 
m-(k+p+q) 

is the null vector of 

[m-(k+p+q)]xl, and 11·11 is the euclidean length. The {u 
k+p+q 

l:::::k:::::m-(p+q)} 

are defined as follows: 

1. u = (-(3 , -(3 , ... , U'; 
l+p+q p+q p+q-l 

2. 

2::Sk:::::m-(p+q), where 

IR (k-I)+p+q 
and ~ 

k+p+q 

0: 

= 

U 
k+p+q 

(k-1)+p+q 

(a , 
(k-I)+p+q 

(A.2) 

= -X (X' X fl~ E 
(k-I)+p+q (k-1)+p+q (k-l)+p+q k+p+q 

... , a)'. The explicit expression of 
k 

C for the particular cases of models AR(l) and AR(2) is given below. 
m 

AR(I). 

For the AR(ll model X - cf>X = £: 
t t-l t 

k-I 

cf>k. Put, for 2:::::k:::::m-l, D = L cf>2j 
k+l 

... , u 
m 

are u 
2 

j=O 

= (-cf>,U' and 

15 

the sequence {a } is given by a = 
k k~O k 

k 
and A = - cf> ID • The vectors, u

2
' 

k+l k+l 



(A.3) 

for 2~k~m-1. The norms of the uk are IIu211 = (1 + </>2)1/2 and Ilu
k
+

1
11 = (1 -

a A )1/2 for 2~k~m-1. 
k k+l • 

AR(2). 

For the AR(2) model X - A. X - A. X = £:, the coefficients {a } are 
t '1'1 t-l 'I' 2 t-2 t k 

for k2:2, the kx2 matrices 

Z 
k 

o -1 

-a 
1 

a -a 
1 2 

a -a 
k-2 k-l 

and the quadratic forms 0 = (a ,a )Z'Z (a ,a )' 
k k k-l k k k k-l 

k-l 
2 

= a + L [a a -
k-l j-l k 

j =1 

2 
a al. By using an argument of induction on k2:2, is easy to see: 

j k-l 

where 0 
1 

k-l 
L) 1 X~ X

k 
1 = L 0.; 

j=1 J 

= 1, and X 
k 

k -1 

is as in 

U) (X'X fl = Z'Z 11 X'X 1 
kk kk kk' 

(A.ll above. Put, for 2~k~m-2, D 
k+2 

k -1 k-l 

k 

LO. 
j= 1 J 

and A 
k+2 

= 
2 [-a (L a ) 

k+l j 
+ a ( L a a )lID 

k j j+l k+2 
B 

k+2 
[a (L a a ) 

k+l j j+l 
k 

j =0 j=O 

a ( L a 2
)lID . The vectors u , ... , U 

k j k+2 3 m 
j=O 

for 2~k~m-2. The norms are IIu
3

11 

a A - a B )1/2 for 2~k~m-2. 
k+l k+2 k k+2 • 
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are u = 
3 

(_A. _A. 
'1'2' '1'1' 

j=O 

1)' and 

(A.4) 
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CAPTIONS FOR FIGURES AND TABLES 

Figure 1. Tail probability functions of the distribution of () in models 
n 

AR(1) and AR(2). 

Table 1. Empirical upper quantiles of the distribution of () under an AR(1) 
n 

formulation. 

Figure 2. Cumulated periodogram of a simulated sample of size n = 200 with 

standard and correct superimposed bands. 

Figure 3. Tail probability functions of the distribution of () 
M,n 

in models 

AR(l) and AR(2). 

Figure 4. Modified cumulated periodogram of the sample of figure 2. 

Table 2. Empirical significance levels and power of criteria () , 
n"KS 

D , 
n,C 

() • ~ and e . 
M,n n n 

Figure 5. Dependence on the lag m of the goodness-of -fit statistics () ,(I 
M,n n 

and e in a simulated sample of size n = 200. 
n 
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n = 100 n = 200 

.90 .95 .99 .90 .95 .99 

KS 1.224 1.358 1.628 KS 1.224 1.358 1.628 

4> = .9 1.097 1.228 1.465 4> = .9 1. 114 1.243 1.487 

4> = .5 .920 1.037 1.253 4> = .5 .925 1.028 1.250 

4> = . 1 .805 .892 1.075 4> = . 1 .797 .885 1.056 

Table 1.1 Table 1.2 
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Figure 4 
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, 
n = 150 

a e e e A e 
n,KS n,C K,n n n 

m = 8 

.0 .0044 .0490 .0590 .0500 .0462 

.1 .0156 · 1244 . 1242 .0720 .0732 

.2 .0706 .2834 .2132 . 1466 .1178 

.4 .4276 .7583 .5032 .4402 .3824 

.7 .9629 .9956 .8433 .8271 .8995 

.9 .9934 .9992 .8216 .8244 .9762 

m = 10 

.0 .0028 .0442 .0554 .0380 .0462 

.1 .0170 .1156 .1130 .0646 .0684 

.2 .0672 .2920 .2184 .1564 .1124 

.4 .4252 .7557 .4940 .4374 .3494 

.7 .9587 .9936 .8319 .8291 .8643 

.9 .9918 .9978 .8150 .8260 .9628 

m = 12 

.0 .0034 .0510 .0554 .0436 .0528 

. 1 .0152 · 1252 .1172 .0704 .0666 

.2 .0668 .2904 .2116 .1516 .1098 

.4 .4392 .7637 .5086 .4558 .3376 

.7 .9575 .9958 .8235 .8227 .8371 

.9 .9914 .9992 .8178 .8274 .9508 

m = 18 

.0 .0024 .0472 .0496 .0374 .0620 

. 1 .0118 · 1206 .1124 .0666 .0640 

.2 .0666 .2858 .2118 . 1464 .1050 

.4 .4278 .7531 .5028 .4466 .2914 

.7 .9623 .9952 .8339 .8321 .7991 

.9 .9924 .9990 .8090 .8260 .9244 

m = 25 

.0 .0028 .0446 .0544 .0398 .0662 

.1 .0166 · 1258 .1208 .0706 .0774 

.2 .0682 .2970 .2260 .1590 . 1084 

.4 .4224 .7615 .5040 .4482 .2706 

.7 .9585 .9950 .8245 .8191 .7367 

.9 .9914 .9992 .8058 .8352 .8931 

Table 2.1 



n = 200 

a e e e A e 
n,KS n,C M,n n n 

m = 10 

.0 .0052 .0540 .0606 .0448 .0496 

.1 .0174 . 1424 . 1310 .0844 .0646 

.2 .0946 .3674 .2742 .2114 · 1390 

.4 .5710 .8583 .6407 .5838 .4750 

.7 .9915 .9994 .9407 .9367 .9485 

.9 .9992 1.0000 .9538 .9550 .9930 

m = 12 

.0 .0050 .0498 .0538 .0422 .0550 
· 1 .0122 .1430 .1258 .0774 .0616 
.2 .0948 .3586 .2682 .2042 · 1302 
.4 .5834 .8649 .6369 .5922 .4462 
.7 .9925 .9998 .9493 .9429 .9461 
.9 .9984 .9998 .9480 .9546 .9906 

m = 15 

.0 .0046 .0518 .0616 .0460 .0518 
· 1 .0226 . 1426 . 1308 .0830 .0780 
.2 .0956 .3560 .2670 .2022 · 1200 
.4 .5800 .8697 .6377 .5898 .4074 
.7 .9889 .9990 .9445 .9427 .9243 
.9 .9986 1.0000 .9480 .9586 .9840 

m = 25 

.0 .0042 .0504 .0542 .0388 .0552 
· 1 .0192 .1336 .1398 .0828 .0800 
.2 .0964 .3654 .2814 .2018 .1170 
.4 .5778 .8627 .6417 .5916 .3522 
.7 .9889 .9992 .9421 .9373 .8729 
.9 .9986 1.0000 .9482 .9576 .9654 

m = 30 

.0 .0034 .0524 .0646 .0414 .0632 

.1 .0188 .1470 .1388 .0876 .0756 

.2 .0972 .3652 .2664 .2068 .1246 

.4 .5736 .8587 .6393 .5924 .3194 

.7 .9927 .9994 .9435 .9457 .8495 

.9 .9988 .9998 .9402 .9520 .9548 

Table 2.2 
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;;; 

n = 400 

• -

a e e e A e I n,KS n,C M,n n n 

m = 10 

.0 .0008 .0447 .0590 .0510 .0550 

.1 .0122 .0960 .1926 . 1352 .0916 

.2 . 1262 .3922 .4542 .3956 .2294 

.4 .8296 .9665 .9211 .9087 .8212 

.7 1.0000 1.0000 1.0000 1.0000 1.0000 

.9 1.0000 1.0000 1.0000 1.0000 1.0000 

m = 15 

.0 .0006 .0531 .0546 .0444 .0470 

.1 .0120 .0978 .1918 .1352 .0804 

.2 .1256 .3996 .4566 .3858 .2008 

.4 .8248 .9627 .9145 .9045 .7428 

.7 1.0000 1.0000 1.0000 .9996 .9995 

.9 1.0000 1.0000 1.0000 1.0000 1.0000 

m = 20 

.0 .0012 .0479 .0568 .0460 .0514 

. 1 .0124 .1038 .2012 . 1392 .0786 

.2 .1234 .3930 .4406 .3886 .1722 

.4 .8460 .9681 .9301 .9103 .6892 

.7 1.0000 1.0000 1.0000 1.0000 .9991 

.9 1.0000 1.0000 1.0000 1.0000 1.0000 

m = 30 

.0 .0006 .0501 .0574 .0440 .0556 

. 1 .0104 .1018 .1960 .1328 .0824 

.2 .1194 .4022 .4608 .3906 . 1634 

.4 .8272 .9619 .9237 .9103 .6052 

.7 1.0000 1.0000 1.0000 1.0000 .9969 

.9 1.0000 1.0000 1.0000 1.0000 1.0000 

m = 40 

.0 .0012 .0493 .0562 .0434 .0588 

.1 .0124 .1052 .1938 .1348 .0804 

.2 .1298 .4070 .4626 .4008 .1554 

.4 .8228 .9617 .9121 .9093 .5462 

.7 1.0000 1.0000 1.0000 1.0000 .9917 

.9 1.0000 1.0000 1.0000 1.0000 1.0000 

Table 2.3 


