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Abstract—In this paper, a new methodology to build compact
local maps in real time for outdoor robot navigation is presented.
The environment information is obtained from a 3-D scanner laser.
The navigation model, which is called traversable region model,
is based on a Voronoi diagram technique, but adapted to large
outdoor environments. The model obtained with this methodology
allows a definition of safe trajectories that depend on the robot’s
capabilities and the terrain properties, and it will represent, in a
topogeometric way, the environment as local and global maps. The
application presented is validated in real outdoor environments
with the robot called GOLIAT.

Index Terms—Navigation map, outdoor, robot mapping,
traversability, 3-D scanner laser.

I. INTRODUCTION

THE NEW mobile robotic applications, such as human
service or planetary exploration, make the robots work

in changing outdoor environments. Outdoor environments are
less structured, less controlled, and less predictable than indoor
environments. This new challenge has prompted a change
in robotics navigation philosophy, where path planning and
modeling were always obtained a priori. The evolution over
unknown and changing environments leads the study toward
computing time reduction and the robot’s safety [1]. To give
the robot autonomy skill, knowledge about the environment,
where the robot is going to move, to manipulate objects and
to navigate without collision or plan trajectories is needed.

The great outdoor environment navigation problem is the
variety of terrains that exist (rough terrains, high obstacles
density, partially structured terrains, or completely unknown
environments). That is, for all outdoor environments and robots,
a single model does not exist. For this reason, a new philosophy
about the robot capabilities, such as perception, localization,
and modeling, must be developed.

In this paper, we present a method to model wide outdoor
areas in terms of the mobile robot’s ability to move through
them. The methodology allows different types of models to be
built, depending on the robot task. An application for navigation
tasks is also developed in this paper. The model obtained for
navigation is called traversable region model (TRM), and it
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represents the crossable areas of the environment perceived
by a 3-D scanner laser. The model is robot-oriented, because
some terrains can be crossable or not depending on the robot’s
capability. In that sense, the map will use a 2-D Voronoi-
based model to represent the XY environment information
and a qualitative description of the terrain traversability to
represent the Z environment information. This description is
highly compact and very easy to manage with the planning
or navigation system. The system will use a differential global
positioning system (GPS) to integrate local information into a
global map.

In Section II, a state of art related to outdoor modeling and
the traversability concept is presented. In Section III, we present
the general structure of the modeling methodology. Then, in
Section IV, the terrain analysis used to obtain the robot’s tra-
versability skill is developed, highlighting the equations needed
to obtain the basic parameters. In Section V, the TRM based
on Voronoi diagrams (VDs) and the 3-D data preprocessing is
calculated and presented. In Section VI, the global model is
developed, which is based on the local VDs integration and a
GPS. Section VII shows the results of experimental tests carried
out in real outdoor environments and with a large size outdoor
robot called GOLIAT. Finally, conclusions will be presented in
the last section.

II. PREVIOUS WORKS

The majority of work in navigation maps has dealt with
robots operating on flat terrains such as planetary environments
[2], highways [3], airports, etc. In these cases, the terrain has a
low degree of roughness, and the obstacles have a known shape
(usually spherical or cubic), and they are placed on a flat area;
therefore, they are easy to model with geometrical primitives.
In general, in mobile robot navigation, the occupancy-based
approach is one of the most commonly used methods [4].
This representation is easy to manipulate, and discretization
facilitates a sorted and specific information for the robot tasks.
For the discretization construction, the sensor information is
transformed using techniques such as occupancy grids [5],
digital elevation maps (DEMs) [6] or special representations
such as octrees, quadtrees [7], etc.

On the other hand, other approaches refer to the level of
environment representation that we divide into geometrical,
topological, and topogeometric levels. Geometrical level ap-
proach has been shown to be not of interest for navigation
modeling. The 3-D reconstruction approach for indoor and
outdoor environments can be found in literature [8], [9]. In
these works, the large quantity of information required to
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model the environment is stated. Their main disadvantage is
the huge computational cost, when it is used in wide and poorly
structured outdoor environments. The advantage of geometrical
models derives from the ability to generate accurate maps, close
to the real environment. Nevertheless, these representations
are of limited use in outdoor modeling due to its high time
computing, the lack of geometrical structure in some kinds of
environments, and the bulky models that are generated. Another
problem is the computational cost required to interpret these
maps for navigation.

In topological models, the numerical information is replaced
by symbolic data, and the map is represented as a graph.
Topological models have been proven to be useful in navi-
gation along corridors and in topological localization. Topo-
logical model applications in outdoor environments have not
been found, despite their effectiveness in large environments
[10], [11]. They allow path planing in a fast way and reduce the
amount of data and the computing time. However, the graph
representation needs repetitive elements (such as doors, walls,
corners, etc.) that do not exist in outdoor environments. This
technique is of interest for modeling large indoor environments
where a great deal of common objects exists. The objects allow
the robot to localize and to move. However, for outdoor envi-
ronments, a priori unknown, these models are not successful.

Hybrid representations are a good alternative to the methods
described above. This method combines different modeling
techniques to take advantage of each method and to overcome
the disadvantages. Currently, it is a good choice for naviga-
tion map modeling. Some authors work with topogeometrical
models [12] where they carry out a terrain discretization using
a sensor-based model. Thrun [13] builds a topological graph
based on an occupancy grid. Betgé-Brezetz et al. [14] describe,
in a topological way, the locations starting with the geometrical
information. The authors build planes to represent the flat
and superquadrics for the obstacles representation. With digital
image techniques and border extraction, the objects are sep-
arated from the environment to obtain the topological model.
This description is limited to easy environments with circular-
form obstacles on the terrain. Other authors build topological
models from the geometrical information provided by the sen-
sor system. Simon and Dudeck [15] propose a global hybrid
topological model, which is built from local maps called islands
of reliability. Each local map has a quantitative information
about the environment, which is based on the metric informa-
tion from the sonar. The same sensor is used in easy indoor
environments by Choset et al. [16], which describe the sensor-
based exploration with VDs. The system builds incrementally a
connected graph with points that belong to the Voronoi edges.
This technique is used by Blanco et al. [17], with a 2-D scanner
laser, and it will be used in this paper to model traversable
regions as we will justify in Section V-A. The model will
be represented as a VD [18] based on the sensor information
provided by a 3-D scanner laser. Some modifications will
be necessary in order to adapt this approach to start from the
3-D data.

Previous to the navigation model, objects from the 3-D robot
workspace must be determined. Several authors have studied
different classification methods in order to separate objets from

the scene. Vandapel et al. [19] develop a method to segment 3-D
points, provided by a ladar, into three classes such as surfaces,
linear structures, and scatter in order to classify a vegetated
terrain. The method is based on statistical classification and
learning techniques [20]. As authors comment, the approach is
too expensive for on-board processing due to the number of
3-D points. For our purposes of building a compact navigation
model, so much detail is not necessary.

A. Traversability

The traversability attribute represents the terrain’s suitability
to be navigated. Several authors have studied this attribute. The
traversability concept was introduced by Langer et al. [3], and
it highlights the region’s capacity to be crossable or not by a
robot.

Most of the works related to outdoor navigation try to divide
the perceived terrain into regions with different characteristics
(in a segmentation process). Langer et al. [21] perform a terrain
segmentation and generate a list of crossable regions for the
robot, with depth images provided by a stereovision system and
the sorted information with a DEM. The classification allows
the robot in [3] to navigate over roads and highways, that is to
say, partially structured easy environments. For planetary envi-
ronments, Seraji [22] introduces the concept of a traversability
index. The index expresses the suitability of a terrain to be
crossed based on the physical properties such as slope and
roughness.

A number of authors work with two base parameters: the
terrain slope and the roughness degree. To obtain the slope,
algorithms have already been developed, for example, the gen-
eral slope calculation using the horizontal line obtained in 3-D
coordinates, with a stereovision system and interpolating only
one plane, as presented by Howard and Seraji [23], or the use of
neural networks with complex training, which is based on the
presentation of different terrain patterns to obtain a numerical
slope [24].

The last two works presented above have been developed
specifically for planetary type environments, that is to say,
flat terrain with defined form obstacles (basically rocks over
a flat surface). Other authors compute the slope in each point.
The number of operations is higher, but it is not necessary to
perform interpolations or to preprocess the sensor information.
Among these methods, we highlight the interpolation of four
connected points performed by Nashashibi et al. [25] and the
use of vision masks in a neighborhood of a point [26]. The last
method has been chosen to evaluate the slope in each point in
this paper. Other authors, namely Goldberg et al. [27], model
the workspace as a regularly spaced cell grid. In each cell, data
from different traversability tests are stored. The traversability
tests are integrated in a software for planetary exploration. The
time computing spent, in order to perform all the traversability
tests, makes the model not be of interest for our purposes.

On the other hand, roughness is treated as a measurement of
the surface variation. Most of the authors evaluate roughness
as the height variation. For example, Nashashibi et al. [25] and
Langer et al. [21] evaluate the discontinuities with the gradient
calculation and the sorted data provided by a range finder.
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Fig. 1. Modeling system scheme.

Other authors calculate the dispersion points with respect to an
interpolated plane [28]. For Seraji [29], the roughness depends
on the number of rocks in the environment, and the parameter
is computed using artificial vision techniques and fuzzy rules.

In this paper, the traversability numerical model (TNM) will
be built in a low level. The terrain will be divided into crossable
and noncrossable areas for the robot. We must take into consid-
eration that the traversability characteristic not only depends on
the terrain properties but also on the robot’s physical restrictions
and the robot task.

III. MODELING SYSTEM: GENERAL STRUCTURE

Fig. 1 presents the robot-oriented philosophy to obtain a map
in order to navigate in different environment types. The philos-
ophy divides the problem into several modeling levels, which
allows to obtain intermediate models which can be useful for
other robot tasks. The aim is to build a model to represent wide
areas with the minimum information needed for navigating.
The model proposed is compact and represents the areas that
the robot can cross. The layers are described as follows.

1) In the first layer, which is called information extraction
layer, the 3-D information is captured, in this case, by
a 3-D scanner laser and is computed with the aid of
a compass in a snapshot representation. In this layer,
algorithms used to select the coordinate reference systems
are developed. This information is useful for 3-D objects
modeling needed for manipulation tasks.

2) In the local modeling layer, the snapshot model is en-
hanced with the terrain cell analysis. The 3-D data are
classified depending on the traversability characteristic.
The model obtained will be called TNM, which will be
defined in Section IV. The TNM divides the 3-D environ-
ment into regions that can be crossable or noncrossable
by the robot. To determine the traversability property,
both the terrain’s and robot’s characteristics are taken

into account. Inside this layer, the 3-D measurements are
projected on an XY plane, and they are discretized in
a DEM to obtain a qualitative description of each cell.
In addition, the borders of the nontraversable regions
are extracted to build the traversability 2-D model called
TRM. The TRM is representative by definition because
it is a representation of the environment’s maximum
security path. Obstacles are represented as nontraversable
areas (NTAs), and they are not considered for the map
representation.

3) At last, in the global modeling layer and owing to the
global information provided by a differential GPS, an in-
tegration with the previous local TRM, which is obtained
in the successive perceptions during an exploration task,
can be done. This model is compact and can be computed
in real time while the robot is moving.

IV. TRAVERSABILITY ANALYSIS

In outdoor navigation, it is interesting to estimate some
parameters that define the difficulty of the terrain to be crossed.
Path planning in large and outdoor environments is a complex
task because there are a lot of parameters that define the
traversability, for example, as follows.

1) The task the robot is going to perform in the environment.
Manipulation, planetary exploration, etc., need different
models and information. In this application, the robot’s
task is to build a sensor-based model to move in a
large outdoor environment, a priori unknown. The chosen
model (TRM) is of the topogeometric type.

2) The experimental platform characteristics, its locomotion
system, and physical restrictions affect future decision
taking. In this case, the locomotion system, which shows
the maximum height that the robot can go through in its
movement, and the robot size, which allows determina-
tion of the minimum elevation that the robot can go under
(the 3-D free space), have been chosen as important robot
characteristics.

3) The terrain characteristics, which determine the difficulty
of the terrain to be crossed. Most authors focused their
research on two basic parameters to specify the terrain
characteristics: the terrain slope and the roughness de-
gree. The two parameters are used not only in robotics
but also in the topography field and, specifically, in
geographical information systems, but in another level
and with different sensor systems. Both parameters (slope
and roughness) will be used in this paper to define the
traversable zone for the robot and for an outdoor environ-
ment that can be nonstructured.

A. Terrain Slope Analysis

The surface inclination or slope can be defined as the existing
angle between the surface normal vector

−→
N and the vector

−→
Wπ ,

perpendicular to the horizontal surface, as shown in Fig. 2

ξ = arccos
−→
N · −→Wπ

|−→N | · |−→Wπ|
. (1)
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Fig. 2. Terrain slope definition.

Fig. 3. Normal in the point P estimation.

The algorithm used to calculate the slope in each point was
developed by Betgé-Brezetz in [26]. It consists of applying,
over a sorted data image, a Sobel filter in the horizontal and
vertical directions to obtain the tangents in each point along the
two scanning directions, which are defined in Fig. 3 as θ and φ
scans.

Each 3-D point (P ) is represented in a Cartesian reference
system

P =


x(ρ, θ, φ)

y(ρ, θ, φ)
z(ρ, θ, φ)


 . (2)

The slope in each point is calculated based on the previous
normal vector calculation, which is shown in Fig. 3 as

−→
NP .

The lines φ and θ scans are defined as the horizontal and
vertical scans, respectively. In addition, the 3-D point image is
defined as I(θ, φ), such that the depth ρ is the value in each
pixel (I). In Fig. 3, the normal vector is observed to be the
normalized cross product of the tangent vectors to the lines φ
and θ (called Pφ and Pθ). That is to say

−→
NP (θ, φ) =

−→
Pθ ∧

−→
Pφ

‖−→Pθ ∧
−→
Pφ‖

(3)

with

−→
Pθ =




∂x
∂θ
∂y
∂θ
∂z
∂θ


 −→

Pφ =




∂x
∂φ
∂y
∂φ
∂z
∂φ


 . (4)

The surface orientation depends on the cross product sign;
the orientation is chosen such that

−→
NP goes always in the sensor

direction.
Mathematically, the tangent vector is obtained when the

curve in the point is derived. If a discretization is done, and

Fig. 4. Spherical variance analysis.

we apply digital image-processing techniques, the continuous
derivatives that appear in Pθ and Pφ are calculated by multiply-
ing a mask and by adding the elements.

This method gives us the possibility of calculating the normal
vector in each 3-D point in a fast and easy way. It is suitable in
unknown outdoor and nonstructured environments, because the
operations are performed in a local neighborhood. Furthermore,
despite the fact that the slope values are not exact, because of
the filter used, its accuracy is sufficient in solving the naviga-
tion problem, as demonstrated by the experimental results in
Section VII.

Due to the robot’s physical restrictions, basically the robot
mass and its locomotion system, maximum and minimum
slopes that the robot can go up and down exist. With the
robot information, the traversable slope analysis is performed
as follows.
Definition 1: Given a 3-D point image I = {pi(xi, yi, zi)},

the traversable area (TA) is defined as the subset of 3-D points,
pi ∈ I , such that the slope in each point ξi fulfills the following
property:

TAslope = {pi(xi, yi, zi) / ξmin < ξi < ξmax} . (5)

That is to say, the slope analysis considers as NTAs those re-
gions where the slope in each 3-D point exceeds two thresholds.

This analysis is useful in flat terrains with different slopes,
but the method presents some problems with surfaces such as
steps (nontraversable by the experimental platform, but consid-
ered as traversable by this method) or little rocks (easy to cross
for the robot locomotion system, but considered as obstacles by
the method). In that case, it will be necessary to study another
parameter to complete the traversability study.

B. Roughness Analysis

Most of the definitions found in the literature about rough-
ness make a reference to irregularity measurements in the
terrain surface, and they usually refer to elevation irregularities.

The method used in this paper to calculate the roughness
degree is not a classical method in the robotics field, rather, it
is based on the normal vector deviation in each point, with the
calculus of a statistic called spherical variance [30].

In this case, we take advantage of the previous normal vector
calculation to evaluate the variation inside a local region.

The spherical variance is obtained from the orientation vari-
ation of the normal vector in each point. The study uses the
following reasoning.

1) In a uniform terrain (low roughness), the normal vectors
in a surface will be approximately parallel, and for this
reason, they will present a low dispersion (see Fig. 4 left).
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2) On the other hand, in an uneven terrain, the different
changes in the orientation of normal vectors will present
great dispersion (see Fig. 4 right).

Definition 2—Spherical Variance: Given a set of vectors
{−→Ni} corresponding to the normal vectors in a neighborhood
inside the perceived space, the spherical variance ω is defined
as complementary to the normalized mean vectors module

ω = 1 − R

n
. (6)

Where ω is a measure of the vectors’ dispersion. The vectors
are defined by their module and direction in the 3-D space. The
method used to obtain the parameter is detailed below.

1) Given a set of n normal vectors to a surface, defined by
their three components

−→
Ni = (xi, yi, zi), the module of

the sum vector R is calculated as

R =

√√√√( n∑
i=1

xi

)2

+

(
n∑

i=1

yi

)2

+

(
n∑

i=1

zi

)2

. (7)

2) The mean value is normalized by dividing between the
number of data n. In this way, the resulting value is
between the range [0, 1]

R

n
∈ [0, 1]. (8)

3) Finally, the complementary of the result is calculated to
give sense to the statistic in (6).

Therefore, the values are standardized, and they are distrib-
uted in a theoretical range between 0 and 1. When ω = 1, there
exists a maximum dispersion that can be considered as the
maximum roughness degree, and when ω = 0, a full alignment
exists, and the terrain will be completely flat.

The spherical variance has not been used before in the
robotics field. It is of great interest to consider the normal
vector variation as a roughness measurement, instead of the
elevation gradient, as different authors have done [3], [25]. A
comparative study between the spherical variance and gradient
elevation techniques can be seen in [31]. The advantage of
our method over traditional ones can be found, above all, in
the 3-D points sensed by the scanner laser, where the density
information decreases with distance. An example of this can be
clearly found in those environments with a negative slope [32],
where the scanner does not sense too much information.

Therefore, the 3-D traversability model is defined as follows:

TAroughness+slope =
{
Pi(x, y, z) ε TAslope/ω < ωth

}
. (9)

The terrain will be considered as nontraversable, due to its
roughness, when the spherical variance in a point exceeds a
threshold (ωth) depending on the robot’s locomotion system.
Therefore, “little rocks,” which are considered in the slope
analysis as nontraversable, will now be considered as crossable
by the robot due to their low dispersion, and in the “steps” case,
the high dispersion, when the slope changes from 0◦ to 90◦, let
them to be considered obstacles.

Fig. 5. TNM. Top view.

Fig. 6. TNM. Side view.

V. TRAVERSABLE REGION MODEL (TRM)

When the 3-D model is defined (as the one in Figs. 5 and 6,
where the terrain considered TA is represented in blue and the
NTA is represented in red), the free space can be extracted to
build a TRM for the robot navigation and path planning. For the
regions’ representation, a VD technique has been chosen.

The TNM provides a geometrical information that can be
useful for object modeling or virtual model construction. More-
over, the bulky information provided by the sensor system
makes the model difficult to manipulate because of the time-
computing cost. Previous to obtaining the TRM, a 3-D infor-
mation must be reduced and simplified. The information needed
for the model constructor is the 2-D coordinates of the borders
that separate the TA from the NTA. To achieve this goal, digital
image-processing techniques have been chosen.

In this paper, we define the image as a 2-D matrix where
each pixel is defined by its traversability characteristic. The
3-D image is, in this way, transformed into a binary image of
traversable and nontraversable regions. The image defines the
robot’s free space.

To achieve the model, it is necessary to follow these steps.

1) DEM calculation: DEM allows the 3-D information of
the TNM to be arranged in cells, in the XY plane, storing
in each cell only the information necessary to represent a
navigation model (see Fig. 7). The parameters necessary
for the environment model construction are the number
(position) of cell, traversability information, the number
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Fig. 7. DEM.

of obstacles in a cell, and the elevation measure. The
traversability information and the elevation measure will
depend on the number of obstacles in the cell and on their
position. The sensor will provide an information about
the land, the objects that exist over the land, and the
overhanging objects. To obtain the number of objects, the
chain map algorithm is applied [33]. In a cell, we said that
only one object exists when all the points of the cell are
continuously distributed. In the case where more than one
object exist, the continuity will be broken. Therefore, the
information from each cell is calculated as follows.
a) The chain map algorithm is applied, determining the

number of objects presented in the cell, which, in this
case, will be one or two.

b) The elevation value is assigned. If only one object
has been detected, the elevation corresponds to the
maximum height, meaning the z coordinate of the last
point in the chain. If two objects have been detected,
the robot can navigate between both, and therefore, the
highest object is rejected, and the maximum elevation
value of the first object (the closer object to the soil) is
assigned to the cell.

c) Finally, the value of traversability, which corresponds
to the considered object in each case, is added to
the cell.

2) Visibility map (VM) calculation: With the DEM, only
those cells that the sensor system perceives can be
labeled. Then, there are some cells in the discretized
environment without information, because the sensor
maximum range has been overloaded or because another
cell is occluding it. For this reason, the VM is built (see
Fig. 8). To obtain the information in all the cells, an
elevation and the traversability estimation are assigned
to the occluded cell. The estimation is performed with
the extrapolation of the 3-D segment that joins the sensor
with the center of the visible cell. In the occluded cells,
the traversability value is assigned by means of the eleva-
tion and the evaluation of its neighbor cell’s information.

3) Binary map obtention: With the workspace divided into
cells with the traversability characteristic, the image is

Fig. 8. Visibility map.

Fig. 9. Binary image.

transformed into a binary matrix (see Fig. 9) that rep-
resents the traversable (0) or nontraversable regions (1).
The image is filtered with the classical morphological
operations (closing operation) to smooth the shapes with-
out losing the geometrical information (see Fig. 10). The
closing operation consists of performing a dilatation and
a later erosion. Upon having performed first the dilatation
operation, we ensure that small obstacles are not lost,
and upon performing the erosion operation, we achieve
a smoothing of the shapes, but without losing the real
dimensions. This preprocessing technique enhances the
subsequent edge detection.The boundaries that separate
the TAs from the nontraversable ones are needed to build
the TRM. In this case, different filters have been tested,
giving good results the Prewitt, Robert, and Isotropic
filters. These filters are developed as a matrix with a
dimension of 3×3, and a convolution is performed with
the binary image (the result is shown in Fig. 11).

In previous steps, the information needed to represent the
TRM is obtained.

A. Traversable Region Modeling Algorithm

For region representation, a VD technique has been chosen.
This approach is used for the following reasons.

1) The model is built based on the sensor information,
its construction is fast, and the model can be used in
real time.
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Fig. 10. Morphological operation. Closing.

Fig. 11. Edge detection.

2) The VD, by definition, gives safe trajectories that max-
imize the distance between the robot and the obstacles.
The model obtained is very useful for navigation.

3) The environment model is either a simplification of the
robot’s free space or it represents a free-space scheme. It
does not imply memory-storing problems.

The VD divides the free space into a set of different regions
called Voronoi regions, each of them formed by the set of points
that is placed closer to an object than the rest [34]. This roadmap
algorithm is generally used for the topological map construc-
tion because it uses a segmentation region. The use of this
technique in the robotics field began in the early 1980s in the
2-D path planning [35], first with a priori established models,
and then, in the 1990s, directly from sensor information, and
this technique has been used in robot navigation and planning
tasks [34].

In this paper, we take advantage of the digital image obtained
in the previous steps to work with the algorithm proposed
above, where the input is an image with the borders between
the traversable and nontraversable zones. The visibility model
(VM) information determines which cells belong to the free
space and which ones do not.

The workspace W is represented as a 2-D binary image
B(i, j), where each position (i, j) is assigned a field value
(0 or 1) that indicates if a pixel belongs to a traversable region
(field 1) o not (field 0). For each cell belonging to the free
space, (i, j) ∈ FS are, at least, one point closer to the occupied
space (FS).

The LVD is obtained from the distances to the generated
points which belong to the objects’ borders. To obtain the local
model, the steps are presented in the following sections.

Fig. 12. Data grouping to obtain generators.

Fig. 13. Real image.

1) Clustering: The cluster determination, in the 3-D infor-
mation case, is not trivial. The sorted 2-D information from a
scanner laser is easily separated in clusters, using the distances
between scanned points [17], [36]. In this paper, the 3-D
information cannot be dealt with as in the case of other authors,
and a labeling technique is used to obtain the clusters. The
kernel applied is a circumference. The radius is the robot’s
size. If there is a distance greater than the robot’s size between
two points which belong to the nontraversable region border,
then the robot can cross between them, and the points will be
considered as belonging to different clusters.

In Fig. 12, the data grouping of the real environment pre-
sented in Fig. 13 is shown. The result of this step is three
clusters called A, B, and C.
2) Distance to the Cluster Computing: For each free-space

cell (i, j) ∈ FS, that is to say, the cells where the robot can
move, the distance between the cell and each point, which
belongs to each cluster, is calculated. The minimum Euclidean
distance between the cell and the points to one cluster will be
considered for the VD construction.
3) LVD Obtention: The label cell is evaluated based on the

minimum distance as follows (see Fig. 15).

1) If the distance to the A cluster is less than the rest, the cell
is evaluated as belonging to the Voronoi region associated
to cluster A.

2) If there are two equidistant clusters in a cell (for example,
A and B), then the cell is labeled as Voronoi edge.

3) For greater equidistances, it will be labeled as
Voronoi node.
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Fig. 14. Maximum distance between two cells.

4) Error Caused by Discretizing: The labeling of each cell
belonging to the FS is carried out by computing the distance
between the center of the cells. Nevertheless, the real measure-
ment can be located in any position inside the cell. This must
be taken into account when the distance to the generators is
calculated. The maximum discretized error is calculated based
on Fig. 14

dmax =
√

(x′
2 − x′

1)
2 + (y′

2 − y′
1)

2. (10)

In the same Fig. 14, we can see that

x′
1 =x1 −

Rc

2
x′

2 = x2 +
Rc

2

y′
1 = y1 −

Rc

2
y′
2 = y2 +

Rc

2
(11)

and by replacing (11) in (10), we obtain

dmax =
√

(x2 − x1 + Rc)2 + (y2 − y1 + Rc)2. (12)

Therefore, dmax is the maximum distance that we must
consider when the labeling step is performed. That is to say,
the maximum error E when two cells are evaluated is

E = dmax − d. (13)

In addition, the LVD obtention step is modified, for each cell
(i, j) belonging to the free space, as follows.

1) The distance to all the points belonging to each generator
is computed.

2) The minimum distance to each generator is obtained. We
consider, for example, in Fig. 12, the distance differ-
ence between two generators A and B as Ec(A,B) =
dE(gA, p) − dE(gB , p), where p is the center of the cell
(i, j) with coordinates (x, y).
a) If Ec(A,B) > 2 × E for all A �= B, the cell is con-

sidered as belonging to the Voronoi region associated
to the object A.

b) If Ec(A,B) < 2 × E y Ec(H,B) > 2 × E for all
H �= A �= B, the cell is considered as Voronoi edge
between two objects A and B.

c) For greater equidistances, the cell will be considered
as Voronoi node.

Fig. 15. LVD representation.

In Fig. 15, the result of the LVD computing from Fig. 12
is presented. In the figure, the Voronoi edges and nodes are
highlighted.

VI. INCREMENTAL GLOBAL MAP

To explore, with autonomy skill, wide unknown outdoor
areas, the robot needs to build a global model to know where
it is at each instant and where it can go. The model can be
introduced a priori in the robot, or it can be built while the
robot is traveling, fussing local models. Davison and Kita [37]
distinguish two different methodologies in order to build a
global map: Bach and sequential methodologies. In the first
case, the model is built based on the complete information
obtained by the sensors of the robot during an exploration task.
The method builds the model offline, and it is not possible to
update the model with new data. On the other hand, sequential
method offers an update representation of the environmental
state, where the size does not change in time. The model is
updated when new data are provided, but sensors’ uncertainty
must be carefully taken into account when the model is built.

In this paper, the methodology developed is near to sequen-
tial one; nevertheless, in our case, the environment size is
changing during the robot exploration. Therefore, the model is
obtained by incremental fusion. The incremental global model
will be built by assembling a set of local data obtained in
different acquisitions in a unique model.

To obtain an incremental model, which is based on the robot
successive perceptions, the following steps must be carried
out [38].

Step 1) Environment information sensing: The robot,
stopped, uses its external sensors (in this case,
a 3-D scanner laser and a compass) to acquire
all the needed information and to build a local
model (LVD).

Step 2) The local model (LVD), which is useful for naviga-
tion, is transformed in a global coordinate system,
with a differential GPS, and the local model is
integrated with the global current model.

Step 3) The robot moves to the next position by path plan-
ning or guiding, and goes back to Step 1).

The exact global model construction, which is based on the
successive perceptions, is, in general, difficult to obtain due to
the sensor uncertainty. Moreover, in the majority of the cases,
it is not interesting not only for the imprecision but also for the
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Fig. 16. LVD.

CPU time computing, and the high memory storing makes the
model not interesting for real-time objectives.

For the integration, a transformation in the global Cartesian
system is needed. A GPS is used to perform the transformation
for each LVD point (xi, yi). The algorithm is detailed as
follows:

1) For the first local map (transformed into global reference
system, as shown in Fig. 16):
a) To obtain a seed point P0(x0, y0) ∈ LVD and to set it

as the first center of mass (CM0 = P0).
b) Calculate the Euclidean distance between all the

points Pi(xi, yi) ∈ LVD and the CM0 as (15).
i) If the distance ri is less than an error value called

rmax, the point Pi is included in the list belonging
to the CM0, and a new CM′

0 is recalculated with a
set of points.

ii) If the distance is greater than rmax, then a new list
is formed, and it is set as another center of mass
CM1 = Pi. This operation is shown in Fig. 17.

c) To finish, in order to generate the global model
information, the center-of-mass coordinates and the
distance to the clusters of the TRM are stored (see
Fig. 18).

2) For the rest of the LVD maps (transformed into global
reference system):
a) For each point Pi ∈ LVD, we try to find the CM in

the global map to which Pi belongs (the Euclidean
distance between Pi and CM is less than rmax).

b) If we do not find it, a new list is formed with CM = Pi.

Equation (14) calculates the CM for a set of N points. The
Euclidean distance is calculated in (15) to know if a point
belongs to the CM

CM =

(∑N
1 xi

N
,

∑N
1 yi

N

)
(14)

ri =
√

(xi − xCM)2 + (yi − yCM)2. (15)

The rmax value must be chosen considering the map cell
resolution, and it always depends on the robot’s velocity
movement.

In Figs. 16–18, the steps performed to build the global map
are presented.

Fig. 17. Data map clustering.

Fig. 18. Incremental Voronoi map.

VII. EXPERIMENTAL RESULTS

In this section, we present the experimental results carried
out in three different real outdoor scenes. The first scene (shown
in Fig. 20) is a partially structured environment (on the right-
hand side) with a rough terrain (on the left) with an aerial
obstacle. The second scene represents a terrain with different
slopes (see Fig. 24). Finally, the third scene represents a rough
terrain with NTA for GOLIAT (Fig. 29).

As experimental results for each scene, we present the
following.

1) The TNM obtained, where those points that belong to the
NTA are represented in bold (or in red).

2) The VM obtained, which is based on the TNM. VM will
be presented to better understand the image.

3) The LVD as the TRM representation.

The models built are adapted not only to the terrain type
and the navigation task but also to a long-size intelligent
autonomous robot called GOLIAT (see Fig. 19). GOLIAT is a
1.5-t diesel crawler robot with caterpillars. The devices, which
give the robot the autonomous intelligent characteristic (such
as sensors and computers dedicated to perception, planning,
and movement control), are placed onboard. The robot senses
the environment, owing to a 3-D scanner laser assembled in
the Carlos III Robotics Lab [39], which provides a 3-D infor-
mation in horizontal and vertical scans. These 3-D points are
filtered and transformed into a traversability information for the
roadmap constructor.
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Fig. 19. Outdoor robot GOLIAT.

TABLE I
PHYSICAL PARAMETERS OF GOLIAT

Fig. 20. Environment with aerial obstacles. Real image.

The parameters associated with the outdoor platform that is
needed to represent the traversability of GOLIAT are shown
in Table I.

These parameters were obtained from the physical robot
characteristics. Roughness threshold is an experimental value
obtained from the experience of the robot fieldwork.

A. First Test Scene: Aerial Obstacles Environment

In Fig. 20, a partially structured environment with aerial
obstacles is shown. The environment presents a roughness
degree which is low and accessible for GOLIAT. In Fig. 21,
the TNM is presented. The TA is represented in red, and the
NTA is represented in blue. The aerial obstacle is evaluated as
belonging to the NTA. Nevertheless, the aerial beam is placed

Fig. 21. Environment with aerial obstacles. TNM.

Fig. 22. Environment with aerial obstacles. Visibility map.

higher than the robot height. With the DEM construction, this
obstacle is eliminated and considered as free space.

Starting from TNM, the 3-D points are sorted in a DEM and
then completed with the VM calculation. The objective of this
process is to obtain and separate the accessible regions and the
nonaccessible ones. Fig. 22 shows the VM obtained when the
numerical model, as shown in Fig. 21, is discretized. In this test,
the cell resolution is 20 cm.

To finish, after the digital image treatment (closing and edge
detection), a clustering and an LVD calculation are performed.
In the LVD, the safest path for the robot is represented. The
LVD stores the coordinates (x, y) of each point belonging to
it, which is labeled as node (represented in Fig. 23 in green)
or edge (represented in the same figure in blue), and gives an
additional information to the path planner.

In Table II, the time computed in milliseconds is detached
for each process. The experiments were carried out in a per-
sonal computer AMD-K6 3D processor, with 64-MB RAM and
450 MHz. The table notation is shown in Table III.

The experiment shown in Table II was carried out with a cell
resolution of 20 cm. The images have a 100 × 200 size. To
reduce the time computed in the LVD algorithm, we select, for
each generator, a representative data set. With this, the distance
calculation between each cell (belonging to the free space)
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Fig. 23. First scene. LVD.

TABLE II
FIRST SCENE. PROCESSING TIME (IN MILLISECONDS)

TABLE III
RESULTS NOTATION

and each point from the generator is reduced to the distance
computed between each free-space cell and a set of points.

The time computed in process CLUST and LVD depends
on the number of points belonging to each generator more than
the number of generators. In particular, in the LVD process, it
depends on the number of points belonging to the generators
and the number of free-space cells.

B. Second Text Scene: Different Slopes

In Fig. 24, a semistructured environment is presented. The
most relevant characteristic in the scene is the big difference in
the slopes drawn in Fig. 24.

Figs. 25 and 26 represent the TNM top and side view. The
scanner laser is able to sense enough information to obtain a
dense environment representation with a range of 30 m. This
can be seen in the trees and the building walls detection.

In the VM shown in Fig. 27, the regions perceived by the
sensor system and the occluded cells are presented. The LVD
obtained in the scene is shown in Fig. 28, and in Table IV,
where the time computed in milliseconds is detached for each
process. Notice that the time computed in the last two processes
has decreased despite the fact that the number of generators is
greater.

Fig. 24. Environment with different slopes. Real image.

Fig. 25. Environment with different slopes. TNM. Top view.

Fig. 26. Environment with different slopes. TNM. Side view.

C. Third Test Scene: Rough Terrain

In Fig. 29, a partially structured environment with a rough
terrain is presented. The environment perceived by the scan-
ner laser is transformed in the TNM using the topographical
analysis explained above, and the result is shown in Figs. 30
and 31, where the TA is represented in red, and the NTA is
represented in blue.

In these figures, the method classifies as nontraversable those
regions with a high degree of roughness, and vertical walls. In
this model, the iron beams have been detected as obstacles.
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Fig. 27. Environment with different slopes. Visibility map.

Fig. 28. Environment with different slopes. LVD.

TABLE IV
SECOND SCENE. PROCESSING TIME (IN MILLISECONDS)

Fig. 29. Environment with rough terrain. Real image.

Fig. 32 shows the VM obtained when the numerical model is
discretized. In this test, the cell resolution is 20 cm.

To finish, after the digital image treatment (closing and edge
detection), a clustering and the LVD calculation are performed.
In the LVD, the safest path for the robot is represented. The
LVD stores the coordinates (x, y) of each point belonging to
it, which is labeled as node (represented in Fig. 33 in green)

Fig. 30. TNM third scene. Side view.

Fig. 31. TNM third scene. Top view.

Fig. 32. Third scene. Visibility map.
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Fig. 33. Third scene. LVD.

TABLE V
THIRD SCENE. PROCESSING TIME (IN MILLISECONDS)

or edge (represented in the same figure in blue), and gives
additional information to the path planner.

The experiments have been carried out in a personal
computer AMD-K6 3-D processor, with 64-MB RAM and
450 MHz.

In Table V, the time computed in milliseconds is detached
for each process. The table notation is the following.

The experiment shown in Table V was carried out with a cell
resolution of 20 cm. The images have a 100 × 200 size. To
reduce the time computed in the LVD algorithm, we select, for
each generator, a representative data set. With this, the distance
calculation between each cell (belonging to the free space)
and each point from the generator is reduced to the distance
computed between each free-space cell and a set of points.

The time computed in process CLUST and LVD depends
more on the number of points belonging to each generator than
the number of generators. In particular, in the LVD process, it
depends on the number of points belonging to the generators
and the number of free-space cells.

D. Cell Size Influence

A priori cell size influences time computing and model
accuracy. To test the influence, two cell sizes (suitable for the
environment and the robot size and for the robot speed that, for
GOLIAT, is 11 km/h) have been chosen. The cell sizes are 20
and 50 cm. The experimental results have been carried out in an
environment presented in Fig. 34, and the TNM is presented in
Figs. 35 and 36.

The LVD obtained is presented in Fig. 37, where a 20-cm
cell resolution has been implemented, and in Fig. 38, where a
50-cm cell resolution has also been implemented. Figs. 39 and
40 present the VM in order to compare the cell size.

As can be seen in the previous figures, the graphical result
does not change; in other words, the LVD shape has not been

Fig. 34. Environment with high obstacle density.

Fig. 35. TNM. Top view.

Fig. 36. TNM. Side view.

Fig. 37. LVD for 20-cm cell size.

lost, only the number of points has decreased. In the 50-cm
cell size, the number of nodes decreases, and above all, the
difference between the two resolutions, which S increases with
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Fig. 38. LVD for 50-cm cell size.

Fig. 39. Visibility map. Cell size of 20 cm.

Fig. 40. Visibility map. Cell size of 50 cm.

the distance to the sensor system, can be appreciated. Of course,
the processing time in steps with digital image-processing
algorithms is reduced because of the increase in cell size. The
image changes size from 100 × 200 to 40 × 80 (see Table VI).

TABLE VI
DIFFERENT CELL SIZE TIME-COMPUTED

Fig. 41. Real environment.

Fig. 42. Robot exploration sequence. Position 1.

In Table VI, the time computed for the 50-cm cell size is
reduced to 20% of the time for the 20-cm cell size.

E. Incremental Maps

In the next figures (first, see Fig. 41), an exploration task for
an outdoor robot is presented. The robot senses the environment
and builds the LVD (Fig. 42); then, it moves 3 m ahead and
repeats the process 11 times, building the incremental model
(in Figs. 43–46, the most representative steps are presented).

VIII. CONCLUSION

Three-dimensional information has been used to apply a
new methodology in modeling outdoor environments, which is
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Fig. 43. Robot exploration sequence. Position 3.

Fig. 44. Robot exploration sequence. Position 7.

Fig. 45. Robot exploration sequence. Position 9.

Fig. 46. Robot exploration sequence. Position 11.

based on a topographical analysis. The model can be built in
real time while the robot is moving, and it is possible to carry
out a local model integration in order to build an environment’s
knowledge database in a global map, using a GPS system
onboard GOLIAT.

As conclusions based on the experimental results presented
in this paper, we can highlight the following.

1) The algorithm developed is highly time-efficient. The
time required to extract a 50-cm cell size local model
(40 × 20 m) in a cluttered outdoor area is of 0.89 s in
an AMD-K6 450-MHz processor. The time to integrate
the local map in the global environment is less than
50 ms. This low computing time allows this solution to
be used online.

2) The model is very easy to use in navigation because it
detects noncrossable cells, and the local Voronoi maps
provide safe local paths to avoid obstacles. The map can
be directly used to obtain global paths by using the global
Voronoi map.

3) The LVD process time increases when the number of
free-space cells increases and when the number of points
belonging to the generators increases.

4) The spherical variance has been proven to be a new and
suitable alternative to obtain a roughness degree in large
outdoor environments.

5) The 3-D scanner laser has proved to be a good choice
to obtain information to model poorly structured out-
door environments. It senses the terrain surface with
enough accuracy to obtain a 3-D dense map, which
is then processed to obtain a qualitative description of
each individual environment cell that is integrated in the
local map.

6) Nevertheless, the sensor system presents problems in
negative sloped terrains, where the information density
is less when the distance between the measurements
and the sensor increases. This is because of the scan-
ner laser’s nonlinearity when a vertical scan with a
constant increment is done. Different solutions can be
set out to solve this problem, such as the local model
size reduction or the sensor placing (in a more ele-
vated position) and the use of a nonconstant increment
in the vertical scans to obtain more information in the
slope area.

7) The cell size used in the model discretization has an influ-
ence on time computing. For a same size environment, the
increase in the resolution cell will decrease the number
of cells present on the map, and then, all the digital
image algorithms will reduce the process time. Based
on the experimental results, we have concluded that, for
the robot size and the environment type, we are going to
work with a good size cell that will be between 20 and
50 cm.

8) The incremental global Voronoi map of the outdoor envi-
ronment is extremely compact, which allows to be used
to model very wide outdoor areas. For the robot speed
(GOLIAT speed is 11 km/h), the robot can compute the
global map while it is moving.
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