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Abstract

In this paper we consider the first passage process of a spectrally negative

Markov additive process (MAP). The law of this process is uniquely character-

ized by a certain matrix function, which plays a crucial role in fluctuation

theory. We show how to identify this matrix using the theory of Jordan

chains associated with analytic matrix functions. This result provides us with

a technique, which can be used to derive various further identities.
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1. Introduction

Continuous-time Markov additive processes (MAPs) with one-sided jumps have

proven to be an important modelling tool in various application areas, such as com-

munications networking [21, Ch. 6-7] and finance [3, 14]. Over the past decades a vast

body of literature has been developed; see for instance [1, Ch. XI] for a collection of
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results. A MAP can be thought of as a Lévy process whose Laplace exponent depends

on the state of a (finite-state) Markovian background process (with additional jumps

at transition epochs of this background process). It is a non-trivial generalization of

the standard Lévy process, with many analogous properties and characteristics, as well

as new mathematical objects associated to it, posing new challenges. Any Lévy process

is characterized by a Laplace exponent ψ(α); its counterpart for MAPs is the matrix

exponent F (α), which is essentially a multi-dimensional analogue of ψ(α).

In this paper we consider the first passage process τx defined as the first time the

process exceeds level x. We concentrate on the case of a spectrally negative MAP (that

is, all jumps are negative), so that the first passage process is a MAP itself. Knowledge

of the matrix exponent of this process, which we in the sequel denote by the matrix

function Λ(q), is of crucial interest when addressing related fluctuation theory issues.

Indeed it can be considered as the multi-dimensional generalization of −Φ(q), where

Φ(q) is the (one-dimensional) right-inverse of ψ(α), as given in [16, Eqn. (3.15)]. Our

main result concerns the identification of the matrix function Λ(q) in terms of the

matrix exponent F (α) of the original MAP. We provide the Jordan normal form of

Λ(q) relying on the theory of Jordan chains associated with analytic matrix functions.

The problem of identification of Λ(q) received a lot of attention in the literature.

It is known that Λ(q) is a unique (admissible) solution of a certain matrix integral

equation. This result in different degrees of generality appears in [2, 8, 18, 19, 20, 22].

Alternatively, one can use an iterative method to compute Λ(q), see for example [6].

Some spectral considerations (under the assumption that Λ(q) has distinct eigenvalues)

can be found in [2, 19]. It is plausible that an iterative method is preferable if one aims

to compute Λ(q) numerically. Our result, however, provides a better understanding of

how Λ(q) is related to F (α), and can be used to prove various further identities. As

an example we provide a simple proof of the fact that Λ(q) is the unique solution of

the above mentioned integral equation.

It has been realized before that the zeros of det(F (α)) with positive real parts

and the corresponding null spaces of F (α) play an important role in many problems

concerning fluctuations of MAPs, see for example [4, 5, 12]. The problem is that one

has to assume that det(F (α)) has a sufficient number of distinct zeros. The number of

zeros was determined in [12], and in [13] it was shown that if a MAP is time-reversible



First Passage of a MAP 3

then the zeros are semi-simple, that is, they can be treated as distinct. In general

though, this is not the case. This paper provides a final answer to the above problem

through the use of generalized Jordan chains associated to F (α). A number of examples

is given in the extended version of this paper [7].

This paper is organized as follows. Section 2 reviews some main results from analytic

matrix function theory, while in Section 3 we identify the matrix exponent Λ(q) by

relating the Jordan pairs of the matrix functions F (α)−qI and αI+Λ(q) for a fixed q ≥

0. This result, which is Thm. 1 and which can be considered as the main contribution

of our work, is explicit in the sense that it is given in terms of computable quantities

associated with F (α). Finally, in Section 4 we discuss applicability of our results.

The remainder of this section is devoted to the definitions of the quantities of

interest, with a focus on spectrally negative MAPs and their first passage process.

Throughout this work we use bold symbols to denote column vectors unless otherwise

specified. In particular, 1 and 0 are the vectors of 1’s and 0’s respectively, and ei is a

vector with ith element being 1 and all others being 0.

1.1. Spectrally negative MAP

A MAP is a bivariate Markov process (X(t), J(t)) defined as follows. Let J(·) be

an irreducible continuous-time Markov chain with finite state space E = {1, . . . , N},

transition rate matrix Q = (qij) and a (unique) stationary distribution π. For each

state i of J(·) let Xi(·) be a Lévy process with Laplace exponent ψi(α) = log(EeαXi(1)).

Letting Tn and Tn+1 be two successive transition epochs of J(·), and given that J(·)

jumps from state i to state j at Tn, we define the additive process X(·) in the time

interval [Tn, Tn+1) through

X(t) = X(Tn−) + Unij + [Xj(t)−Xj(Tn)], (1)

where (Unij) is a sequence of independent and identically distributed random variables

with moment generating function

G̃ij(α) = EeαU
1
ij , where U1

ii ≡ 0, (2)

describing the jumps at transition epochs. To make the MAP spectrally negative, it

is required that U1
ij ≤ 0 (for all i, j ∈ {1, . . . , N}) and that Xi(·) is allowed to have
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only negative jumps (for all i ∈ {1, . . . , N}). As a consequence, the moment generation

functions G̃ij(α) are well defined for α ≥ 0.

A Lévy process is called a downward subordinator if it has non-increasing paths

a.s. We denote the subset of indices of E corresponding to such processes by E↓.

Let also E+ = E\E↓, N↓ = |E↓| and N+ = |E+|. It is convenient to assume that

E+ = {1, . . . , N+}, which we do throughout this work. We use v+ and v↓ to denote

the restrictions of a vector v to the indices from E+ and E↓ respectively. Finally, in

order to exclude trivialities it is assumed that N+ > 0.

Define the matrix F (α) through

F (α) = Q ◦ G̃(α) + diag[ψ1(α), . . . , ψN (α)], (3)

where G̃(α) = (G̃ij(α)); for matrices A and B of the same dimensions we define

A ◦ B = (aijbij). One can see that in the absence of positive jumps F (α) is analytic

on CRe>0 = {α ∈ C : Re(α) > 0}. Moreover, it is known that

Ei[eαX(t); J(t) = j] := Ei[eαX(t)1{J(t)=j}] = (eF (α)t)ij , (4)

cf. [1, Prop. XI.2.2], where Ei(·) denotes expectation given that J(0) = i. We also write

E[eαX(t); J(t)] to denote the matrix with ij-th element given in (4). Hence F (α) can

be seen as the multi-dimensional analog of a Laplace exponent, defining the law of the

MAP. In the following we call F (α) the matrix exponent of the MAP (X(t), J(t)).

An important quantity associated to a MAP is the asymptotic drift :

κ = lim
t→∞

1

t
X(t) =

∑
i

πi

ψ′i(0) +
∑
j 6=i

qijG̃
′
ij(0)

 , (5)

which does not depend on the initial state i of J(t) [1, Cor. XI.2.7]. Finally for q ≥ 0

we define F q(α) = F (α) − qI, with I being the identity matrix, which can be seen as

the matrix exponent of the MAP ‘killed’ at random time eq:

E[eαX(t); t < eq, J(t)] = e(F (α)−qI)t, (6)

where eq is an exponential random variable of rate q independent of everything else

and e0 ≡ ∞ by convention.
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1.2. First passage process

Define the first passage time over level x > 0 for the (possibly killed) process X(t)

as

τx = inf{t ≥ 0 : X(t) > x}. (7)

It is known that on {J(τx) = i} the process (X(t + τx) − X(τx), J(t + τx)), t ≥ 0 is

independent from (X(t), J(t)), t ∈ [0, τx] and has the same law as the original process

under Pi. Therefore, in the absence of positive jumps the time-changed process J(τx)

is a time-homogeneous Markov process and hence is a Markov chain. Letting {∂}

be an absorbing state corresponding to J(∞), we note that J(τx) lives on E+ ∪ {∂},

because X(t) can not hit new maximum when J(t) is in a state corresponding to a

downward subordinator; see also [17]. Let Λ(q) be the N+×N+ dimensional transition

rate matrix of J(τx) restricted to E+, that is

P(J(τx) = j, τx < eq | J(τ0) = i) = (eΛ(q)x)ij , where i, j ∈ E+. (8)

This, in fact, shows that the first passage process (τx, J(τx)), x ≥ 0 is a MAP itself,

and Λ(−q) is its matrix exponent: EJ(τ0)[e
−qτx ; J(τx)] = eΛ(q)x.

Another matrix of interest is N ×N+ matrix Π(q) defined by

Π(q)ij = Pi(J(τ0) = j, τ0 < eq), where i ∈ E and j ∈ E+. (9)

This matrix specifies initial distributions of the time-changed Markov chain J(τx), so

that E[e−qτx ; J(τx)] = Π(q)eΛ(q)x. Note also that Π(q) restricted to the rows in E+ is

the identity matrix, because τ0 = 0 a.s. when J(0) ∈ E+ [16, Thm. 6.5]. We note that

the case of q = 0 is a special case corresponding to no killing. In order to simplify

notation we often write Λ and Π instead of Λ(0) and Π(0).

It is noted that if q > 0 or q = 0, κ < 0 then Λ(q) is a transient transition rate

matrix: Λ(q)1+ ≤ 0+, with at least one strict inequality. If, however, κ ≥ 0, then Λ is

a recurrent transition rate matrix: Λ1+ = 0+; also Π1+ = 1. These statements follow

trivially from [1, Prop. XI.2.10]. Finally, note that Λ is an irreducible matrix, because

so is Q. Hence if Λ is recurrent then by Perron-Frobenius theory [1, Thm. I.6.5] the

eigenvalue 0 is simple, because it is the eigenvalue with maximal real part.

It is instructive to consider the ‘degenerate’ MAP, i.e., the one with dimension

N = 1. Such a MAP is just a Lévy process, and Λ(q) = −Φ(q), where Φ(q) is the
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right-inverse of ψ(α), α ≥ 0. Note also that Λ being recurrent (and hence singular)

corresponds to Φ(0) = 0.

2. Preliminaries

In this section we review some basic facts from analytic matrix function theory.

Let A(z) be an analytic matrix function (n× n dimensional), defined on some domain

D ⊂ C, where it is assumed that det(A(z)) is not identically zero on this domain. For

any λ ∈ D we can write

A(z) =

∞∑
i=0

1

i!
A(i)(λ)(z − λ)i, (10)

where A(i)(λ) denotes the i-th derivative of A(z) at λ. We say that λ is an eigenvalue

of A(z) if det(A(λ)) = 0.

Definition 1. We say that vectors v0, . . . ,vr−1 ∈ Cn with v0 6= 0 form a Jordan

chain of A(z) corresponding to the eigenvalue λ if

j∑
i=0

1

i!
A(i)(λ)vj−i = 0, j = 0, . . . , r − 1. (11)

Note that this definition is a generalization of the well-known notion of a Jordan chain

for a square matrix A. In this classical case A(z) = zI−A, and (11) reduces to

Av0 = λv0, Av1 = λv1 + v0, . . . , Avr−1 = λvr−1 + vr−2. (12)

The following result is well known [11] and is an immediate consequence of (12).

Proposition 1. Let v0, . . . ,vr−1 be a Jordan chain of A(z) corresponding to the

eigenvalue λ, and let C(z) be m × n dimensional matrix. If B(z) = C(z)A(z) is

r − 1 times differentiable at λ, then

j∑
i=0

1

i!
B(i)(λ)vj−i = 0, j = 0, . . . , r − 1. (13)

Note that if B(z) is a square matrix then v0, . . . ,vr−1 is a Jordan chain of B(z)

corresponding to the eigenvalue λ. It is, however, not required that C(z) and B(z) be

square matrices.
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Let m be the multiplicity of λ as a zero of det(A(z)) and p be the dimension of the

null space of A(λ) = A0. It is known, see e.g. [11], that there exists a canonical system

of Jordan chains corresponding to λ

v
(k)
0 ,v

(k)
1 , . . . ,v

(k)
rk−1, k = 1, . . . , p, (14)

such that the vectors v
(1)
0 , . . . ,v

(p)
0 form the basis of the null space of A0 and

∑p
i=1 ri =

m. We write such a canonical system of Jordan chains in matrix form:

V = [v
(1)
0 ,v

(1)
1 , . . . ,v

(1)
r1−1, . . . ,v

(p)
0 ,v

(p)
1 , . . . ,v

(p)
rp−1], Γ = diag[Γ(1), . . . ,Γ(p)], (15)

where Γ(i) is the Jordan block of size ri × ri with eigenvalue λ, i.e. a square matrix

having zeros everywhere except along the diagonal, whose elements are equal to λ, and

the superdiagonal, whose elements are equal to 1.

Definition 2. A pair of matrices (V,Γ) given by (15) is called a Jordan pair of A(z)

corresponding to the eigenvalue λ.

We note that, unlike in the classical case, the vectors forming a Jordan chain are not

necessarily linearly independent; furthermore a Jordan chain may contain a null vector.

We conclude this section with a result on entire functions of matrices defined through

f(M) =

∞∑
i=0

1

i!
f (i)(0)M i, (16)

for an entire function f : C → C and a square matrix M . The next lemma will be

important for applications.

Lemma 1. Let f : C→ C be an entire function and let Γ be a Jordan block of size k

with λ on the diagonal, then for an arbitrary set of vectors v0, . . . ,vk−1 the (j + 1)-st

column of the matrix [v0, . . . ,vk−1]f(Γ) equals

j∑
i=0

1

i!
f (i)(λ)vj−i, (17)

where j = 0, . . . , k − 1.

Proof. Immediate from [9, Thm. 6.6].
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3. Jordan normal form of Λ(q)

In this section we consider a spectrally negative MAP (X(t), J(t)) with matrix

exponent F (α) and asymptotic drift κ. Let λ1, . . . , λk be the eigenvalues of F q(α), to

be understood as the zeros of det(F q(α)), for a given q ≥ 0, in its region of analyticity

CRe>0. Let (Vi,Γi) be a Jordan pair corresponding to the eigenvalue λi. Define the

matrices V and Γ in the following way:

V = [V1, . . . , Vk]

Γ = diag[Γ1, . . . ,Γk] if q > 0 or q = 0, κ < 0;

V = [1, V1, . . . , Vk]

Γ = diag[0,Γ1, . . . ,Γk] if q = 0, κ ≥ 0.

(18)

and let the matrices V+ and V↓ be the restrictions of the matrix V to the rows

corresponding to E+ and E↓ respectively.

Theorem 1. It holds that Γ and V+ are N+×N+-dimensional matrices, V+ is invert-

ible, and

Λ(q) = −V+ΓV −1
+ , Π(q) = V V −1

+ . (19)

We start by establishing a lemma, which can be considered as a weak analog of

Thm. 1.

Lemma 2. If v0, . . . ,vr−1 is a Jordan chain of F q(α) corresponding to the eigenvalue

λ ∈ CRe>0 then v0
+, . . . ,v

r−1
+ is a Jordan chain of αI + Λ(q) corresponding to the

eigenvalue α = λ and Π(q)vi+ = vi for i = 0, . . . , r − 1.

Proof. It is known from [4, Thm. 2.1] that for α ∈ CRe>0

Mα(t) =

[∫ t

0

eαX(s)e′J(s)ds

]
· F (α) + e′k − eαX(t)e′J(t),

is a row vector valued zero mean martingale under the probability measure Pk, where

‘ ′ ’ denotes the transposition operation. Apply the optional sampling theorem to Mα(·)

with the finite stopping time t ∧ τx ∧ eq and note that

Ek
[
eαX(eq)1{t∧τx>eq}e

′
J(eq)

]
= qEk

[∫ t∧τx∧eq

0

eαX(s)e′J(s)ds

]
,

to obtain

C(α)F q(α) = B(α), (20)
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where

C(α) = Ek
[∫ t∧τx∧eq

0

eαX(s)e′J(s)ds

]
, B(α) = Ek

[
eαX(t∧τx)1{t∧τx<eq}e

′
J(t∧τx)

]
− e′k.

Noting that X(·) ≤ x on [0, τx] and using usual dominated convergence argument

we conclude that B(α) is infinitely differentiable in α ∈ CRe>0. Apply Prop. 1 to (20)

to see that for all j = 0, . . . , r − 1 the following holds true:

j∑
i=0

1

i!
Ek
[
Xi(t ∧ τx)eλX(t∧τx)1{t∧τx<eq}e

′
J(t∧τx)

]
vj−i − e′kvj = 0.

Letting t→∞ we obtain

j∑
i=0

1

i!
xieλxPk(J(τx), τx < eq)v

j−i − e′kvj = 0, (21)

where Pk(J(τx), τx < eq) denotes a row vector with `-th element given by Pk(J(τx) =

`, τx < eq). Note that the case when q = 0 and Pk(τx = ∞) > 0 should be treated

with care. In this case κ < 0 and thus limt→∞X(t) = −∞ a.s. [1, Prop. XI.2.10], so

the above limit is still valid.

Considering (21) for all k ∈ E and choosing x = 0 we indeed obtain Π(q)vj+ = vj .

If, however, we pick k ∈ E+, then

j∑
i=0

1

i!
xie(λI+Λ(q))xvj−i+ − vj+ = 0+. (22)

Take the right derivative in x at 0 of both sides to see that

(λI + Λ(q))vj+ + vj−1
+ = 0+, (23)

which shows that v0
+, . . . ,v

r−1
+ is a Jordan chain of αI + Λ(q) corresponding to the

eigenvalue λ.

We are now ready to give a proof of our main result, Thm. 1.

Proof of Thm. 1. Lemma 2 states that v0
+, . . . ,v

r−1
+ is a classical Jordan chain of

the matrix −Λ(q). Recall that if q = 0, κ ≥ 0 then Λ(q)1+ = 0+ and Π(q)1+ = 1.

Therefore the columns of V+ are linearly independent [10, Prop. 1.3.4] and

−Λ(q)V+ = V+Γ, Π(q)V+ = V. (24)
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Consider the case when q > 0. Now [12, Thm. 1] states that det(F q(α)) has N+

zeros (counting multiplicities) in CRe>0; see also [12, Rem. 1.2], so the matrices V+ and

Γ are of size N+ ×N+ by construction (18). Note there is one-to-one correspondence

between the zeros of det(F q(α)) in CRe>0 and the eigenvalues of −Λ(q) when q > 0.

Assume now that q = 0. We only need to show that det(F (α)) has N+ − 1{κ≥0}

zeros (counting multiplicities) in CRe>0. Pick a sequence of qn converging to 0 and

consider a sequence of matrix exponents F qn(α) = F (α) − qnI and transition rate

matrices Λ(qn). From (8) it follows that eΛ(qn) → eΛ, hence the eigenvalues of Λ(qn)

converge to the eigenvalues of Λ (preserving multiplicities) as n → ∞. Moreover, all

the eigenvalues of Λ have negative real part except a simple one at 0 if κ ≥ 0. The

above mentioned one-to-one correspondence and the convergence statement of [12,

Thm. 9] conclude the proof.

The above proof strengthens [12, Thm. 2]; we remove the assumption that κ is

non-zero and finite.

Corollary 1. It holds that det(F (α)) has N+ − 1{κ≥0} zeros (counting multiplicities)

in CRe>0.

4. Applications

A number of applications of our result is discussed in detail in the extended version

of this paper [7]. These applications include finding the stationary distributions of a

one-sided MAP reflected at 0, and a Markov-modulated Brownian motion (MMBM)

reflected to stay in the strip [0, B]. Moreover, we solve two-sided exit problem for

a MMBM. It is noted that MMBM is a MAP with continuous paths and hence our

result can be applied to both X(t) and −X(t), which hints why the two-sided problems

become tractable.

The approach to the above problems consists of the following steps:

• use a martingale argument to arrive at an initial equation involving the unknown

quantities and F (α),

• use the properties of Jordan chains such as Prop. 1 and Lemma 1 to rewrite the

initial equation in terms of (V,Γ),
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• use the special structure of (V,Γ), such as invertibility of V , to simplify the

equation,

• eliminate the Jordan pair by introducing Λ and Π using Thm. 1 to recover the

probabilistic interpretation of the involved matrices and claim uniqueness of the

solution.

It is noted that this approach can be seen as an extension of the ideas known as

‘martingale calculations for MAPs’ [1, Ch. XI, 4a] to its final and general form. It

is important that no assumptions about the number and simplicity of the eigenvalues

are needed. For some problems certain eigenvalues are inherently non-simple. For

example, the special but important case of a MMBM with zero drift immediately leads

to a non-simple eigenvalue 0. In this case an additional equation associated to the null

Jordan chain is required to obtain the solution, see also [22]. In our framework, this

equation comes out in a natural way.

4.1. Matrix integral equation

In this section we demonstrate how our result can be used to show in a simple way

that a pair (Π(q),Λ(q)) is a unique solution of a certain matrix integral equation. This

equation under different assumptions appears in [2, 8, 18, 19, 20, 22].

Define two sets of matrices: let M be a set of all N+ × N+ irreducible transition

rate matrices, and P be a set of N ×N+ matrices P satisfying P+ = I. Furthermore,

partition M into two disjoint sets M0 and M1 of transient and recurrent matrices

respectively. Clearly, Λ(q) ∈ Mi, i = 1{q=0,κ≥0} and Π(q) ∈ P. We use the following

notation for arbitrary matrices P ∈ P and −M ∈M

F q(P,M) = ∆a P M +
1

2
∆2
σ P M

2 +

∫ 0

−∞
∆ν(dx)P

(
eMx − I−Mx1{x>−1}

)
+

∫ 0

−∞
Q ◦G(dx)P eMx − qP, (25)

where (ai, σi, νi(dx)) are the Lévy triplets corresponding to the Lévy processes Xi(·),

that is ψi(α) = aiα + σ2
i /2α

2 +
∫ 0

−∞(eαx − 1 − αx1{x>−1})νi(dx), Gij(dx) is the

distribution of Uij . It will be clear from the following that the integrals converge for

the above choice of P and M .
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Theorem 2. (Π(q),Λ(q)) is the unique pair (P,M) ∈ P ×Mi with i = 1{q=0,κ≥0}

which satisfies F q(P,−M) = O+.

Proof. In the proof we drop the superscript q to simplify notation. Let −M =

V+ΓV −1
+ be a Jordan decomposition of the matrix −M . One can extend V+ to a

N × N+ matrix V through V = PV+, because P+ = I. Let also v0
+, . . . ,v

r−1
+ be the

columns of V corresponding to some Jordan block of size r and eigenvalue λ. Observe

that λ ∈ CRe>0 or λ = 0 in which case it must be simple, because M ∈M. Note that

g(−M) = V+g(Γ)V −1
+ for an entire function g : C→ C, and use Lemma 1 to see that

the column of F (P,−M)V+ corresponding to vj+, j = 0, . . . , r − 1, equals

j∑
i=0

1

i!
F (i)(λ)P vj−i+ =

j∑
i=0

1

i!
F (i)(λ)vj−i. (26)

We also used the fact that differentiation of F (α) at λ, Re(λ) > 0, can be done under

the integral signs and no differentiation is needed for a simple eigenvalue λ = 0 if such

exists.

If M = Λ and P = Π, then according to Thm. 1 the matrices V and Γ can be chosen

as in (18). Hence (26) becomes 0+, because v0, . . . ,vr−1 is a Jordan chain of F (α),

see (11). But V+ is an invertible matrix and so F (Π,−Λ) = O+.

Suppose now that F (P,−M) = O+ with M ∈ Mi and P ∈ P. Then the vectors

v0, . . . ,vr−1 form a Jordan chain of F (α) corresponding to an eigenvalue λ ∈ CRe>0

or λ = 0. If q = 0, κ ≥ 0 and λ = 0, which is a simple eigenvalue of M , then F (0)v0 =

Qv0 = 0 implies v0 = c1, where c 6= 0 is a constant. Combining this observation and

Lemma 2 we obtain ΛV+ = −V+Γ and ΠV+ = V , and hence M = Λ, P = Π.

From the above theorem we immediately get the following corollaries.

Corollary 2. If N = N+, then M = Λ(q) is the unique solution of F q(I,−M) = O,

where M ∈Mi, i = 1{q=0,κ≥0}.

For the case of a MMBM, i.e. a continuous MAP, we obtain a generalization of the

result in [22] and [2].

Corollary 3. If (X(t), J(t)) is a MMBM then (Π(q),Λ(q)) is the unique pair (P,M) ∈

P ×Mi with i = 1{q=0,κ≥0} which satisfies

1

2
∆2
σ P M

2 −∆a P M + (Q− qI)P = O+. (27)
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tions, Springer-Verlag Berlin Heidelberg, 2006.

[17] A. E. Kyprianou and Z. Palmowski, Fluctuations of spectrally negative Markov additive
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