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1 Introduction

An important number of real-life admission and hiring procedures are de-
centralized. Many of them are non-revelation mechanisms: agents are not
required to submit their preferences. Also, in many admission (resp. hir-
ing) mechanisms, students (resp. workers) apply to colleges (resp. firms).
It is common that participants are allowed to send multiple applications.
However, these features have been rarely analyzed together in a many-to-one
matching market. The purpose of this paper is the analysis of decentralized
non-revelation mechanisms with multiple applications or offers. Our objec-
tive is the implementation of efficient allocations in a many-to-one matching
market through sequential mechanisms admitting multiple applications.
The first mechanism we present, the “students-apply-college-sequentially-
choose” mechanism (C'SM from now on) consists of two main stages. First,
a group of students simultaneously send applications to colleges. Then, col-
leges choose sequentially among their applicants, with the restriction that no
college can enroll an applicant who has been previously accepted by another
college. The mechanism extends to the many-to-one matching framework the
sequential procedure introduced by Sotomayor (2003) for one-to-one match-
ing markets. We prove that it implements the stable set in Subgame Perfect
Nash Equilibrium (SPE from now on). There are two features that explain
this result. First, students are committed to their strategy: a student has to
join the first college (among the ones she applied to) which accepts her. This
means that choices are not reversible. Second, colleges decide sequentially.
These features imply that every college has a dominant strategy: to enroll its
favorite group of applicants among the ones that have not been accepted by a
different college in a previous stage. So the mechanism is an extension of the
serial dictatorship. In order to weight the importance of the non-reversibility
assumption we consider an alternative mechanism, which is similar to the
CSM, but where students are not committed by their first stage applica-

tions. Here, no college has a dominant strategy at its turn. More important,



unstable allocations can arise at equilibrium (see also Haeringer and Wooders
2010 and Triossi 2009).

Finally, we consider a second sequential mechanism, the “colleges-propose-
students-sequentially-choose” mechanism (SSM from now on). Here, colleges
have to make simultaneous proposals to students. Then, each student sequen-
tially decides which college to join among the ones that accepted her. This
procedure resembles some real-world college admission mechanisms where,
before entering the process students are ranked according to the result of a
standardized test which determines the order in which they can select the
proposals from colleges. For instance, the admission to traditional Univer-
sities in Chile works in a similar fashion. We show that this mechanism
implements the stable set in SPE as well.

Other scholars have addressed the design of mechanisms able to imple-
ment the set of stable matchings. In particular, Kara and Sénmez (1997)
show that the stable correspondence is implementable in Nash Equilibrium.
Alcalde (1996) approaches the design of “natural mechanisms” able to im-
plement the stable set of one-to-one matching markets. To the best of our
knowledge, the procedure introduced in Sotomayor (2003) is the first non-
revelation mechanism presented in the literature allowing for multiple appli-
cations in matching markets. Like ours, the mechanism is an extension of the
serial-dictatorship, but it does not consider many-to-one matching markets
as we do. The C'SM can also be seen as a generalization of the “students-
propose-and-colleges-choose mechanism” introduced in Alcalde and Romero-
Medina (2000) for a many-to-one market. There students are allowed to
send at most one application. A “natural” admission mechanism with mul-
tiple applications in a many-to-one matching market is analyzed in Triossi
(2009). However, that mechanism might implement unstable allocations if
applications are costless as in our paper. Finally, different non-revelation

mechanisms are presented in Diamantoudi et al (2007) and Haeringer and



Wooders (2010).! Both papers consider one-to-one matching markets.
The rest of the paper is organized as follows. Section 2 introduces the

model. Section 3 contains the main results and Section 4 concludes.

2 The model

A college admission problem (see Gale and Shapley 1962) is a triple (C, S, >)
where C' = {cy, ..., ¢} is the set of colleges, S = {s1, ..., s;} is the set of stu-
dents and >= (>¢, >g) is the vector of agents’ preferences. More precisely,
>c=(>¢, .oy >¢,) 18 the list of colleges’ preferences over subsets of students
and >g= (>;,,... > ) is the list of students’ preferences over colleges. For
every ¢ € C, >, is a strict order defined on 2°, the set of all subsets of S.
Let S C S be a set of students. The favorite group of students for college
¢ among the ones belonging to S’ is called the choice set from S’. It is
denoted by Ch.(S’,>.) or by Ch.(S’), when no ambiguity is possible. For-
mally, Ch.(S', > .) = argmax-, {S” : S” C S’}. We will say that student s is
acceptable to college ¢ if {s} >. 0. Otherwise, we will say that student s is
unacceptable to c. We will denote as A (c) the set of acceptable students for
college c. For every agent z € C'US, >, denotes x’s weak preference relation.
The maximum numbers of students college ¢ is willing to enroll is ¢’s quota
and it is denoted by ¢., formally ¢. = max{n € N : || > n = gP;5'}.2
The preferences of the colleges on individual students (which is on subsets
of students of cardinality one) will be represented by ordered lists of ac-
. where where {s;;} >. {s;} for j <1 <r
and s;, € A(c). For every s € S >, is a strict order on C' U {s}. We will

ceptable students: >.: s;...5;

say that college c is acceptable to student s if ¢ >, s. Otherwise, we will
say that college ¢ is unacceptable to s. We will denote as A (s) the set of

acceptable colleges for student s. The preferences of the students will be rep-

!See also Alcalde and Romero Medina (2005).
2For every finite set X, | X| denotes the number of elements of X.



resented by ordered lists of acceptable colleges: >: ¢;,...c;
for j <l <r<tandg¢, € A(s).

A matching is an assignment of students to colleges. Formally, a match-
ing on (C,S) is a function p : C U S — 2% U C such that, for every
(c,s) € C'xS: (i) u(c) € 29, (ii) u(s) € CU{s} and (iii) u(s) = c < c € u(s)
3 We denote by M the set of matchings on (C,S). A matching y is indi-
vidually rational if (i) Ch.(u(c)) = u(c) for all ¢ € C and (ii) u(s) >5 s
for all s € S. A matching p is blocked by the pair (¢,s) € C x S if (i)
¢ > u(s) and (ii) s € Che (pu(c) U {s}). A matching p is stable in (C, S, >)
if it is individually rational and no pair blocks it. Otherwise, u is unstable.
['(C,S,>) denotes the stable set, the set of matchings that are stable in
market (C,S,>). The stable set may be empty. To overcome this problem

where ¢;; >, ¢,

T

the literature has focused on preference restrictions where students are not
seen as complements. A college ¢ has substitutable preferences if it wants
to hire a student even when other students become unavailable. Formally,
>. are substitutable if, for every S’ € 2% and for all 5,8 € W, s # s
s € Che(S") = s € Ch.(S"\ {s'}). Under this restriction, the deferred accep-
tance algorithm (Gale and Shapley, 1962) produces either the college-optimal
or the student-optimal stable matching depending on whether the colleges or
the students make the offers (see Roth and Sotomayor, 1990). Throughout
the paper we assume that the preferences of the colleges are substitutable.
A stronger assumption is responsiveness. A college ¢ has responsive prefer-
ences if, for any two assignments that differ in one student only, it prefers
the assignment containing the most preferred student. Formally, P, are re-
sponsive if, for all S” C S such that |S"| < ¢.—1 and for all 5, &' € S: (i)
S'U{s} >.SU{s} & {s}>.{s} and (ii) S'U {s} >. 5" & {s} >. 0.

An extensive form matching mechanism is an array G = (C' U S, H, M, g).
C U S is the set of players, H is the set of histories and M is the strategy

3Property (iii) implies that a matching p is uniquely defined by by K¢ Or g, where
px denotes the restriction to the set X of the function .



space, M = ], quc Ma, where M, = [, .y M for every x € C U S. Set
M" = Tl,cpow ML Histories and strategies are linked by the following
property M" = {mh ] (h, mh) € H}. There is an initial history h° € H and
every history h € H is represented by a finite sequence (h°,m!, ....,m"1) =
h". If "' = (h",m") then history h"™' proceeds history h". The set
Zp = {z € H | there is no h € H proceeding z} is the set of terminal his-
tories. Given the initial history, every strategy profile m € M defines a
unique terminal history z,,. The outcome function g : Z — M specifies
an outcome matching for each terminal history, and hence for each strategy
profile m. With abuse of notation, we use g (m) to denote g (z,,), where
Zm 18 the terminal history corresponding to m. Given a preference profile
>, (G,>) constitutes an extensive form game. Every h € H \ Z identi-
fies a subgame G (h) = (CUS, H (h), M (h),gn, P), where h is the initial
history, H (h) = {h' € H | I proceeds h} and M (h) = [Tyepp M". Let
m € M (h). With abuse of language, we will identify the game G (h) with
the corresponding node. Given the initial history h, a profile of strategy
m specifies a unique terminal history, z,,. The outcome function is defined
by gn(m) = g(zm). Given m € M and h € H, let m (h) € M (h) be the
strategy prescribed by m once h is reached. Formally, if m = (mh)heH, then
m (h) = (mh)heH(h)'

A Subgame Perfect Equilibrium is a strategy profile that induces a Nash
Equilibrium in every subgame. Formally, m* is a SPFE if for all h € H and
for all z € C'US: gy (m* (h)) Rogn (M, m*, (k) for every ml, € M, (h).
The matching g (m*) is called SPE outcome of (G,>) and the set of SPE
outcomes of (G,>) is denoted by SPE (G, P). Let S be a set of match-
ing markets and let & : S — M be a correspondence. An extensive form
matching mechanism G implements ® in SPFE if | for every (C,S,>) € S,
SPE (G,>) = ®(C,S,>), which is if every SPFE outcome of (I', >) belongs
to ®(F, W, P) and for every matching u € ®(C, S, >) there exists a SPE of
(G, >) yielding p as outcome. Throughout the paper, only equilibria in pure



strategies are considered.

3 The admission mechanisms

In this section we analyze two sequential mechanisms. Both are extensions
to many-to-one environments of the serial dictator mechanism. If we restrict
the attention to one-to-one matching markets they both coincide with the
mechanism studied in Sotomayor (2003). For every natural number n > 1
let > be the set of permutations of n objects, which is one-to-one functions
o:{l,..,n} = {1,...,n}.

3.1 The students-apply-colleges-sequentially-choose mech-

anism

We present our first mechanism. Let o € ). The C'SM is described by the

following procedure:

0. Application. Each student s applies to a set of colleges. Let C'(s) C 2¢
be the set of colleges student s applies to. For every college c¢ let

S(c) = UCQC(S) {s} be the set of students applying to college c. Set
Ho (o)) = 0.

For1 <r <k:

r. Enrollment. College c,() decides the students to accept among the
ones in S7 = S (ca(r)) N {s R (c(,(r/)) for all v’ < 7“}. Denote by
tty (Co(ry) €S2 the decision of college ¢, ).

The outcome matching is defined by u (ca(r)) = U, (CU(T)) forallr,1 <r <k.
If s ¢ U, p, (cory)then g (s) = s. This matching is well defined because, by
definition, p, (CU(T)) sy (c(,(r/)) =0ifr#£r.

At stage 0, every student applies to one or more colleges. At stage r,

college ¢,y has to select a subset of students among those who applied to
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() and have not been previously enrolled by a college ¢,y with ' < r.
Thus, permutation o represents the order in which colleges move.

The strategy space of each student is 2¢. For every r, 1 <r < k, let Z°
be the set of subgames at the enrollment stage when college c,(,) has to move.
Every z, € Z7 is characterized by the applications of the students and by the
decisions made by colleges along the path leading to z,. Formally, z; € ZY

can be identified with {C', (s)} where C, (s) is the set of colleges student

1<r'<r

s applied to. For r > 2, z, can be identified with {C’Zl (s),p,, (Ca(r/))} ,
" ses

where 2z, = 2,/ (2,) is the unique stage r’ node preceding z, and p, , (CU(T/))

sES,’

is college c,(,y decision at node z. for every ', 1 < 7" <r. Let S, (CU(T)) =
UC€CZ1(S) {s}, be the set of students that applied to c,( along the history
leading to z, where z; = 2y (2,). The strategy space of college c,(, in the
subgame 2, is S., = 5., (co) N {s DS, (co@ny) forall v’ < r} U {0}.
It consists of the set of available applicants of c,(,) and the empty set, should
Co(r) decide not to enroll any student.

The C'SM generalizes the mechanism introduced by Sotomayor (2003) to
many-to-one matching markets. Furthermore, it modifies the students-apply-
colleges-choose mechanism studied in Alcalde and Romero-Medina (2000) by
allowing for multiple applications and making colleges choose sequentially.

Consider the CSM. Let u,, = Che,, (5.

from S . College c,() can enroll any student in S, so p,. is the best

.) be college c,(,y choice set
response of college ¢, () in subgame 2, independently on the strategy of any
college Co(r'): for every r' > r . Strategy p,, is strictly dominant in subgame
z, whenever S, # (. The unique strategy available to ¢, if S., = 0 is the
strategy p, = 0. We thus have the following result.

Lemma 1 In every SPE of the game induced by the CSM, college c () uses

strategy p,., at subgame z,.

This result simplifies the analysis of the game. It implies that the equilib-

rium behavior of each college ¢ depends only on the set of available applicants
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when ¢ has to make its enrollment decision.

Before stating our main result we prove an ancillary Lemma.

Lemma 2 Let >. be a profile of substitutable preferences for ¢ € C, let
se€ S andlet AcC S. SetT = Ch.(A). If s € Ch.(T'U{s}) then s €
Che (AU {s}).

Proof. By contradiction, assume that s ¢ Ch. (AU {s}). Preferences >,
are substitutable so Ch. (AU {s})\{s} C Ch.(A) =T. Thus, Ch. (AU {s}) =
T. From s € Ch,, (T'U{s}). It follows that Ch,., (T U {s}) >, Ch.. (AU {s}),
which yields a contradiction because TU {s} C AU {s}. m

Assume that, at its turn, college c can select among the students belonging
to A C S and it enrolls the students in T C S. Furthermore, assume that, if
student s was available jointly with the students in 7', college ¢ would enroll
s as well. Lemma 2 states that student s would be enrolled even if it was
available jointly with the students in A. The substitutability assumption
implies that student s would be enrolled even if it was available jointly with
the students in any subset A’ C A. In the proof of next result, this fact will
be used to determine the response of college ¢ to unilateral deviations from

equilibrium strategy of student s.

Proposition 1 The CSM implements the stable set in SPE for every per-

mutation o.

Proof. Without loss of generality assume that o is the identity map
on {1,...,k}.* We first show that any stable matching is a SPE outcome.
Let p € T'(C,S,>). Consider the following strategy profile. Every student
s applies to u(s). Every college ¢, plays according to Lemma 1. In order
to prove that this profile of strategy is a SPFE it suffices to prove that no
student has a profitable deviation, but this follows directly from the stability
of .

4If o is not the identity map it suffices to relabel colleges and set ¢, = Co(r)-
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Next, we show show that every SPFE outcome is stable. The proof is by

contradiction. Let u be a SPFE outcome, by contradiction assume that there
1<r'<k

are r and s € S such that (¢,, s) blocks u. Let {C’ (s), (“zr/ (Cr’)> }
ZT/EZT/

seS
be a SPFE yielding i as outcome. Let (zr)lgrgk be the nodes on the equilib-

rium path. There are two possibilities.

(i) p(s) = s, or p(s) = ¢ for some 7 > r. Let C(s) be student s
equilibrium strategy. Consider the following deviation for s: apply to C’ (s) =
C(s) U{c}. Let (2.),.,<, the set of nodes on the path induced by this
deviation. From Lemm_a _1, we have SZ;, =S, forall v < r and S., =
S,.U{s}. From Lemma 2 it follows that s € Ch,, (S, U {s}) so the deviation
is profitable to s, yielding a contradiction.

(ii) p(s) = ¢ for some 7 < r. Consider the following deviation for s:
C'"(s) = {c}. Let (2]),.,«, the set of nodes on the path induced by this
deviation. Let v be be the outcome matching product of this deviation.
From substitutability and Lemma 1 we have 5., = 5., \ {s} for all v < 7.
For the same reasons, v (¢.) = p(c) for v < 7 and p(cr) \ {s} C v(cr).
Next, we prove that the following two properties hold: a) S., € 5., and b)
p(cr) NSy, Cvey) for all v, 7 <" < r. Notice that if a) holds then b)
holds as well because preferences are substitutable. Thus, it suffices to show
that a) holds. We prove the the claim by contradiction. We have already
shown that properties a) and b) hold for " = 7. By contradiction assume
that there exits 7/ > 7 such that a) does not hold. Let 7 > 7 be the minimum
of such 7. Let s" € 5., \ S.,. It follows that s' € p(c) NS, for some 77,
7 <r’ < 7. However, this is impossible because s" € p(c,/) NSy, C v (ev)
by the minimality of 7. As every r’ < 7 satisfies properties a) and b), we
have that S., \ {s} € 5., and s € S.,. From Lemma 2 it follows that
s € Che, (5., U{s}). Preferences are substitutable so s € Ch,, (S.,). Thus,

the deviation is profitable to s, which yields a contradiction. m
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The proof of the sufficient part of Proposition 1 shows that, given a stable
matching u, the strategy profile where every student s applies to u (s) and
each college uses its dominant strategy is a SPFE yielding p as outcome.
The proof of the necessary part is in two steps. The first one shows that
no pair blocking a SPFE outcome matching p can involve a college ¢ and a
student s such that student s joins a colleges which decides after college c.
The results follows directly from Lemma 1: if the claim was false student s
could profitably deviate by including college ¢ in her application. Indeed, in
the subgames induced by this deviation the set of the available applicants
for the colleges preceding ¢ would not vary with respect to the ones on the
equilibrium path. So college ¢, at its turn, would admit student s. The second
step shows that no pair blocking a SPE outcome matching y can involve a
college ¢ and a student s such that student s joins a college which decides
before college c. In the proof we show that if the claim was false student s
could profitably deviate by applying to college ¢ only. The result follows from
the fact that, in the subgame induced by this deviation, every college moving
before ¢ must admit the same students that admitted on the equilibrium path
and are still available. This implies that the set of available students shrinks
(with respect to the equilibrium path) for every college which has to move
before c. So college ¢ would have at most the same available applicants as on
the equilibrium path plus s. From Lemma 2 it follows that college ¢ would
admit student s, then the deviation would be profitable for s, which leads to
a contradiction

There are two features of the mechanism that determine Proposition 1:
colleges decision are sequential and no student is allowed to move twice dur-
ing the procedure which means that decisions are irreversible. It follows that
each college, at its turn, has a straightforward dominant strategy: to enroll
its favorite available applicants. In this sense, the mechanism is an exten-
sion of a serial dictatorship. The fact that students are committed to the

outcome of their first stage application key ingredient of the result. To un-
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derstand this last point, consider a similar mechanism where colleges decide
sequentially and students decisions are reversible. More precisely, consider a
mechanism where, at the first stage students simultaneously apply to some
colleges. Each college can select any among its applicants. Finally, every
student decides which college to join among the one who admitted her. The
“alternative sequential mechanism” (ASM from now on) is defined by the

following procedure.

0. Application. Each student s applies to a set of colleges. Let C'(s) C 2¢
be the set of colleges student s applies to. For every college ¢ let

S(c) = U.ec(s) {5} be the set of students applying to college c.
For 1 <r <k:

r. Selection. College ¢,y decides the students to accept among the ones
in S (ca(r)). Denote by S; (ca(r)) c S (ca(r)) the decision of college
Co(r)- Let C1 (s) = U,es, (o) {c} be the set of colleges that have accepted

student s.

k + 1. Enrollment. Each student s decide which college to join, among the

ones belonging to C; (s). Formally, student s has to choose a mate

p(s) € Ci(s) U{s}.
The outcome of the game is the matching p defined at stage k& + 1.

In this mechanism, students have to move twice: first when they apply to
colleges at stage 0, then when they decide which offer to accept, at stage k+1.
Colleges no longer have a dominant strategy: the selection of a student is not
a definitive acceptance because it must be ratified by the student at the last
stage of the game. This feature implies that a student who applies to more
than one college generates a problem of coordination. The following example
compares the performance of the two mechanisms in subgames where colleges

move.
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Example 1 There are two colleges and four students: C = {c1,ca} and S =
{s1, S92, 83, 54}. The preferences of the colleges are responsive and >.,: S35251,
>0 S15483. Assume that quotas are q., = 1 and q., = 2. The preferences of
the students are as follows: > : c1ca, >s,: C1Co, >s4: Co, €1 and >,: co. There
is a unique stable matching p, where pu (c1) = {ss} and p(co) = {s1,s4}. As-
sume that college ¢y is the first to mowve.

Let us start by analyzing the ASM. Consider the subgame where student s;
and student s3 have applied to both colleges, student s, has not applied to any
college and student sy has applied only to college co. Consider the following
strategy profile for colleges. College ¢ accepts students sy only. College co
accepts {s1, s4} in the nodes where she college ¢; has not accepted student sy,
she accepts {s3, s4} in the nodes where she college ¢1 has accepted student s;.
The outcome matching is defined by v (c1) = {s1} and v (cy) = {s3,54}. The
matching v is blocked by (c1, $2) and is a SPE of the subgame. First, notice
that college co has no profitable deviations. In the nodes where ¢1 has accepted
s1 she cannot improve because ¢, has already accepted s, and si prefers c; to
co. In the nodes where c; has not accepted s, college co enrolls its favorite
subset of students. Students play their dominant strategies at this point: to
accept the best offer they hold. Student s, and s3 benefit from the implemen-
tation of matching v, because they end up joining their favorite college.
Notice that the strategies of the colleges are not strongly nor weakly domi-
nated. However, the strategy of college ¢y is strongly dominated in the corre-
sponding subgame when the C'SM is used. Indeed, accepting student s3 alone
15 a strictly dominant strategy for college c1, independently on the moves of
college co. It is easy to check that the unique SPE outcome of the subgame

considered is the stable matching p.

Lemma 1 does not apply to the alternative sequential mechanism, so
one can’t use the same argument when dealing with this mechanism. More
important, if the ASM is employed, unstable matchings can emerge as SPE

outcomes.
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Example 2 Consider the ASM and the matching market of Example 1. Let
2z ={C (s)},cq be an application profile for the students. Define the profile of
preferences >% for the students as follows: for every s € S ¢ >Z s if and only
ifce C(s)NA(s), c>2c if and only of ¢ >4 ¢ for all e, € C(s) N A(s).
The preference profile >% coincides with >4 on the set of acceptable colleges
student s applied to and ranks as not acceptable all other colleges. For every
possible profile of applications let p, be the students-optimal stable matching
of the market where agents’ preferences are >*= (>¢,>%). Consider the
following application strategy for students: s; and s3 apply to both colleges,
student sy does not apply to any college and student s, applies to college co
only. At the last stage of the game, each student accept the best offer she
holds. Every college ¢ accepts the students in p, (c¢). The profile of strategy
yields the unstable matching v of Example 1 as outcome.

We now prove that this profile of strategy is a SPE. We first show that
the profile of strategy is a SPE in the subgame where students have applied
according to z, for every z. By contradiction, assume that college ¢ has a
profitable deviation. Then, there exists s such that s applied to ¢ and such that
¢ >, (s) and {s} >. {s'} for some s' € p, (c) thus (c, s) blocks u, according
to preferences >*, which yields a contradiction. In order to complete the proof
of the claim it suffices to prove that sy has no profitable deviations where she
applies to ¢y, because each of the other students joins her favorite college. If
student sy applies to {c1} or to {c1,ca} the outcome matching of the subgame
induced by this deviation is p and p (s3) = v (S2) = S2, so she has no profitable
deviation.

Notice that the matching v is no longer a SPE outcome if the CSM s
employed. The reader can easily check that in every strategy profile leading

to matching v, student sy has a profitable deviation: to apply to college c;.

Triossi (2009) introduces application costs in a mechanism with multiple
applications, where colleges decide simultaneously and students select the

best offer they receive. Applications costs pin down the number of equilib-
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rium applications of each student to one, mimicking the result of Alcalde
and Romero-Medina (2000), where each student cannot send more than one
application by design. The C'SM works without the introduction applica-
tion costs and the number of SPFE applications is not necessarily one. For
instance, applying to all colleges is part of a SPFE if the preferences are the
ones used for Example 1.

From Proposition 1 it follows that the set of SPFE outcomes does not de-
pend on the order in which colleges decide. However equilibrium application

strategies differ depending on o.

Example 3 Let C' = {c1,co} and let S = {s1,52,53}. Assume that the
preference of the colleges are responsive. Let >.,: S35152 and >, s25351. Let
Gey, = 1 and q., = 2. Let >4,: cocy, let >4,t c15,¢o and let >g,: cacy. There
are two stable matchings p and v, where, p(c2) = {s2,83}, v(c1) = {s2},
v(ca) = {s1,s3}. Assume that c; moves first. Consider the following profile
of strategy: C(s2) = C(s3) = {c1,c} and C(s1) = {c1}. Colleges play
their equilibrium strategies (see Lemma 1) at each node of the enrollment
stages. It is easy to check that this profile of strategies is a SPE yielding v as
outcome. Next, consider the case where ¢y is the first to choose. In this case,
the application strategy C (s2) = C (s3) = {c1,c2} and C (s1) = {c1} is not
part of any SPE. Indeed, if these strategies were part of a SPE the outcome
matching would be the matching \ defined by (c1) = {s3}, A(c2) = {51, $2},
which is blocked by (cq, s3). But this contradicts Proposition 1.

3.2 The colleges-propose-students-sequentially-choose mech-

anism
Let 0 € X; . The SSM is described by the following procedure:

0. Proposals. Each college ¢ propose to a set of students. Let S(c), be
the set of students receiving an offer from c. For every student s let
C(s) = U,es(e) {5} be the set of colleges that make an offer to s.
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For 1<r <t

r. Enrollment. Student s,y decides whether to join a college in C,(s4(,)) =

C (SU(T)) or staying out of the system. Let p, (s(,(r)) be student s,(,

~

choice.

The outcome matching is defined by u (sa(r)) = U, (sa(r)) for every r, 1 <
r <t.

At the first stage of the game, the strategy set of each college is 2°.
Let Z7, 1 < r < [ be the set of subgames at the enrollment stage when
student s,y has to move. Every z. € Z is completely characterized by
the family of sets of students each college proposed to and by the deci-
sion made by the students who had to choose before student s,(,, if any.
where S, (¢) is the set

of students college ¢ proposed to. For r > 2, z. is completely character-
1<r’'<r
ized by {Sz1 (c),p,, (sa(r/))} , where z,, = 2 (2,) € Z; is the unique
T ceC

stage ' node preceding z, and I, (30(7")) is the choice of student s,

Formally, z; € Z7 is characterized by {S., (¢)}.cc

at 2., for 1 < 7" < r. The strategy space of student s,,) € S at z, is
C., (s) = Usg(r)esq(c) {c} U {s}, the set of college who has offered a position
to student s,(), where z; = 21 (2,).

Notice that the strategy space of of student s is depends only on the
proposals she receives. At her turn, every student has a strictly dominant
strategy, to accept the best offer she receives. For every z; € Z7 set 7, (s) =

arg maxp, C, (s). We have:

Lemma 3 At any SPE of the SSM, student sy, plays strategy 7., (SU(T)),

where zg = zy ().

With this result in mind we can show that Theorems 1 and 2 in Sotomayor

(2003) extend to the many-to-one case if colleges propose to students.

Proposition 2 The SSM implement the stable set in SPE for every per-

mutation o.
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Proof. Without loss of generality assume that o is the identity map. First,
we prove that any stable matching is a SPE outcome. Let p be stable in
(C,S,>). Consider the following strategy profile. Every college ¢ proposes
only the students in p(c). At her turn, every student plays according to
Lemma 3. The strategies are optimal at every subgame z,.. The stability of
1 implies that no college can profitably deviate.

Next, we show that any SPE yields a stable matching. Let u be a SPE
outcome. We prove that if p is not stable in T'(C,S,>), some agent has
a profitable deviation. First, u is individually rational for colleges and for
students. If © was not individually rational for student s, (), she could prof-
itably deviate by dropping all proposals she holds. If © was not individually
rational for college ¢, proposing only to the students in C'h.(u(c)) would be a
profitable deviation for c¢. Indeed, in the subgame induced by this deviation,
¢ would be the best offer received by the students in C'h.(u(c)). Let (¢, s) be
a college-student pair. If (¢, s) blocks pu, consider the following deviation for
c: propose only to the students in C'h.(u(c) U{s}). From Lemma 3 it follows
that the deviation would be profitable to c. m

4 Conclusions

This paper studies two sequential admission mechanisms in a many-to-one
matching framework. Both mechanisms exhibit characteristics common to
some real-world procedures and implement the stable set in SPE. When
restricted to the one-to-one case they coincide with the admission mecha-
nism presented by Sotomayor (2003). The procedures generalize a serial
dictatorship and extend the model by Alcalde and Romero-Medina (2000).
Also, the Students-Propose-Colleges-Sequentially-Choose mechanism solves
the coordination problem which was observed in Triossi (2009).

There are straightforward extensions that would help to explain some

features of real market procedures. In particular, they would shed some light
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on the anomalies related with the timing of the market (see, for instance,
Niederle and Roth 2003). A first extension could consider a model where
the order in which colleges or students act is endogenous. Indeed in many
decentralized admission mechanism colleges endogenously determine admis-
sion dates. Another extension would consider a model where colleges act
sequentially and make exploding proposals to students (see also Haeringer
and Wooders 2010).
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