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1. INTRODUCTION

General risk measures are becoming more and more important in insurance and fi-
nance. The paper by Artzner et al. (1999) on coherent measures of risk launched
this topic, and, since then, many authors have further extended the discussion. So,
among others, Goovaerts et al. (2004) have introduced the consistent risk measures,
also studied in Burgert and Riischendorf (2006), Frittelli and Scandolo (2005) have
analyzed risk measures for stochastic processes, and Rockafellar et al. (2006) have
defined the deviations and the expectation bounded risk measures.

Many classical actuarial and financial problems have been revisited using risk mea-
sures beyond the variance. For example, Laeven and Goovaerts (2004) and Dhaene
et al. (2008) analyze the capital allocation problem, Nakano (2004) and Balbds et
al. (2010) draw on risk measures when pricing in incomplete markets, Mansini et
al. (2007) and Schied (2007) deal with portfolio choice and optimal investment, and
Annaert et al. (2009) check the efficiency of the classical portfolio insurance problem
if the risk level is given by the Value at Risk (VaR) or the Conditional Value at Risk
(CVaR).

The optimal reinsurance problem is a classical issue in Actuarial Science. Usually,
authors consider the primary (or ceding) company viewpoint. A common approach
attempts to minimize some measure of the first insurer risk after reinsurance. Seminal
papers by Borch (1960) and Arrow (1963) used the variance as a risk measure and
proved that the stop-loss reinsurance minimizes the retained risk if premiums are
calculated following the Expected Value Premium Principle..

The subsequent research followed the ideas outlined in the articles above, trying
to take into account more general risk measures and premium principles, which may
give optimal contracts other than stop-loss. In recent years some interesting articles
devoted to this subject have appeared. For example, Gajec and Zagrodny (2004)
consider more general symmetric and even asymmetric risk functions such as the
absolute deviation and the truncated variance of the retained loss, under the standard
deviation premium principle. Young (1999) maximizes the expected utility of the final
wealth under the distortion premium principle. Kaluszka (2005) studies reinsurance
contracts with many convex premium principles (exponential, semi-deviation and
semi-variance, Dutch, distortion, etc.). Other well known financial risk measures
such as the VaR or the tail value at risk (T'VaR) are also being considered. For
example, Kaluszka (2005) uses the TV aR as a premium principle and Cai and Tan
(2007) calculate the optimal retention for a stop-loss reinsurance by considering the
VaR and the conditional tail expectation risk measures (CTE), under the expected
value premium principle.

The most recent papers have finally incorporated coherent and/or expectation
bounded risk measures in the objective function to be minimized by the ceding com-



pany. Along with the paper of Cai and Tan (2007) above, other interesting examples
are Cai et al. (2008), Balbds et al. (2009) or Bernard and Tian (2009). The dif-
ferences among their approaches are caused by the insurer behavior. Very complete
information may be found in the survey of Centeno and Simoes (2009).

Despite the interest of the problem, as far as we know there are no analyses
focusing on the stability of the optimal reinsurance. This should be an important
topic since the optimality of many reinsurance plans will critically depend on the risk
measure and the pricing principle. There is no consensus about the risk measure that
the insurer must use, since every risk measure presents advantages and shortcomings
when compared with others.

This paper considers that the reinsurer’s premium principle is given by a convex
function and deals with the optimal reinsurance problem if risk is measured by co-
herent and expectation bounded risk measures.! The focus is on the stability of the
optimal retention plan with respect to the chosen risk measure.

The paper’s outline is as follows. Section 2 will present the basic conditions and
properties of the risk measure p to be used. Section 3 provides our general optimal
reinsurance problem. We will present the problem in a discrete probability space.
Actually, this simplifies the mathematical exposition, and every probability space
admits a discrete approximation which achieves as much accuracy as needed. Many
actuarial and financial analyses are done by means of discrete probability spaces (see
Benati, 2003, Konno et al., 2005, Mansini et al., 2007, or Miller and Ruszczynski,
2008, among many others), since this is not a restriction in practice. The proposed
optimal reinsurance problem seems to be quite flexible and general, since it allows us
to incorporate many particular situations such as budget constraints, the maximiza-
tion of the insurer expected wealth, etc. The most important results in Section 3 are
Theorem 1 and Corollary 3, since they characterize the optimal retention by means
of Karush-Kuhn-Tucker (K KT') like conditions and permit us to introduce the “sta-
ble optimal retention”, which will solve the problem for all of the risk measures the
K KT multipliers of which satisfy adequate properties. Therefore, the stable optimal
retention may be understood as a robust optimal reinsurance plan.

Section 4 is devoted computing in practice the stable optimal retention. Here we
will assume that the reinsurer uses a linear value principle, containing the expected
value premium principle as a particular case. Of course it is not necessary, since
practical optimality conditions have been given in a much more general framework,
but the specific solution of the optimization problem depends on the premium prin-
ciple we take, and considering more than one would significantly enlarge the paper.
As already indicated, previous literature measuring the insurer risk by a general risk

Insurance premiums are usually given by convex functions. See, for instance, Deprez and Gerber
(1985).



measure is still limited, so it seems to be natural and of interest to analyze concrete
problems by taking the most used premium principle.

The most important result of this section is Theorem 7, because it gives explicit
expressions for the stable optimal retention and the K K'T'—multipliers of the problem.
According to Theorem 7, the stable optimal retention is a stop-loss reinsurance.

Theorem 7 is used in Section 5 so as to introduce an algorithm that gives the
stable optimal retention in numerical applications. An illustrative numerical example
is also provided, which clarifies how to use the algorithm in practice and shows the
robustness of the given reinsurance, in the sense that most of the usual risk measures
lead to this solution.

The last section of the paper points out the most important conclusions.

2. PRELIMINARIES AND NOTATIONS
As usual, consider the probability space (€2, F,IP) composed of the set of “states of
the world” ), the o—algebra F and the probability measure IP. As said above, we
will be dealing with a discrete framework, so €2 will be composed of a finite number
of elements,
Q={wi,ws,...;wn}.

We will consider the probability of every single event
pi = P (wz) >0

1=1,2,...,n.
Denote by [E (y) the mathematical expectation of every random variable y, and
denote by L? the Hilbert space of IR—valued random variables y on € endowed with

the norm 1/2
lyll, = (E (ly[*))

for every y € L?.2
Let [0,7] be a time interval. From an intuitive point of view, one can interpret
that every y € L? may represent the wealth at T of an arbitrary insurer. Let

p: L — R

be the general risk function that a insurer uses in order to control the risk level of his
final wealth at T'. Denote by

Ay={zeL*~E(yz) <ply), Yy e L*}. (1)

2 Actually, Q being discrete the dimension of L? is finite and equals n € IN. Thus, L? = LP for
every p € [1,00] and the norm ||.|[, above is equivalent to the norm ||.||,. Though we have chosen
p =2, every p € [1,00] may play the same role.



We will assume that A, is convex and compact, and
p(y) = Maz {—E(yz):z € A,} (2)

holds for every y € L?. Furthermore, we will also suppose that the constant random
variable z = 1 is in A, and

A,C{ze*E(z)=1}. (3)

Summarizing, we have:
Assumption 1. The set A, given by (1) is convex and compact, (2) holds for
every y € L?, z =11isin A,, and (3) holds. O

The assumption above is closely related to the Representation Theorem of Risk
Measures stated in Rockafellar et al. (2006). Following their ideas, it is easy to prove
that the fulfillment of Assumption 1 holds if and only if p satisfies:

a)

ply+k)=ply)—k (4)
for every y € L? and k € R.
b)
p(ay) =ap(y) (5)
for every y € L? and o > 0.
c)
p(yr+y2) < pyr) +p(y2) (6)
for every y;, 9, € L?.
d)
p(y) > —E(y) (7)

for every y € L?.3

It is easy to see that if p satisfies Properties a), b), ¢) and d) then it is also coherent
in the sense of Artzner et al. (1999) if and only if

A, C L ={z€L*P(z>0)=1}. (8)

Particular interesting examples are the Conditional Value at Risk (CVaR) of
Rockafellar et al. (2006), the Weighted Conditional Value at Risk (WCVaR) of
Cherny (2006), the Dual Power Transform (DPT') of Wang (2000) and the Wang
Measure (Wang, 2000), among many others. Furthermore, following the original idea

3 Actually, the properties above are almost similar to those used by Rockafellar et al. (2006) in
order to introduce their Expectation Bounded Risk Measures.



of Rockafellar et al. (2006) to identify their Expectation Bounded Risk Measures and
their Deviation Measures, it is easy to see that

p(y)=0o(y) —E(y) (9)

satisfies a), b), ¢) and d) if o : L? — IR is a deviation, that is, if ¢ is satisfies b), c),
e)
o(y+k)=0(y
for every y € L? and k € R, and

f)
o(y) >0

for every y € L2.
Among many others, a particular example is the classical p—deviation for every
p € [1,00), given by
1
oy (y) = [E(JE (y) — y[")]"",

or the downside p—semi-deviation, given by

o, (y) = [E (|[Maz {E(y) —y,0}")"".

The classical Separation Theorems allow us to prove that there is a one to one
identification p «+— A, between the risk measures satisfying Assumption 1 that are
coherent and the set of convex and compact subsets of L? such that z = 1isin A, and
(3) and (8) hold. Furthermore, (2) shows that this identification is increasing, i.e.,
p1 (y) < p, (y) holds for every y € L? if and only if A, C A, holds. Accordingly, the
maximum coherent risk measure satisfying Assumption 1 is that I" associated with
the set

Ar={z€L?:E () =1}. (10)

It is easy to see that the risk measure I' is
I'(y)=—Min {y(w;): i=1,2,...,n} (11)

for every y € L% Similarly, y — —IE (y) is the minimum risk measure satisfying the
conditions above, since Ag = {1}. Thus

I'(y) >p(y) > —E(y) (12)

holds for every y € L? and every coherent p satisfying Assumption 1.



Finally, once again the Separation Theorems allow us to prove that every convex
combination
m
i=1

of risk measures satisfying (4), (5), (6), (7) and (8) also satisfies (4), (5), (6), (7) and
(8), and

A=Y wi,, (13)
i=1
holds.

3. OPTIMAL REINSURANCE: GENERAL PROBLEM AND OPTIMALITY CONDITIONS
Consider that the insurance company receives the fixed amount Sy (premium) and
will have to pay the random variable yo € L3 within a given period [0,77] (claims).
Without loss of generality we will assume that IP (yo > 0) = 1, since the absence of
claims is an unrealistic situation in practice.

Suppose that a reinsurance contract is signed in such a way that the company
will only pay y € L?, whereas the reinsurer will pay yo — y. If the reinsurer premium
principle is given by the convex (and therefore continuous) and increasing function,

7: L — R

such that 7 (0) = 0, and S; > 0 is the highest amount that the insurer would like to
pay for the contract, then the insurance company will choose y (optimal retention)
so as to solve the bi-criteria optimization problem

Min py (So —y —m (%0 — y))
Max E(So—y—7 (Yo — v))
(Yo —y) <5

0<y<wo

(14)

po being a coherent risk measure that satisfies Assumption 1. Conditions 7 (0) = 0
and S; > 0 imply that y = yo satisfies the constraint, so (14) is never unfeasible.
Notice that, if desired, constraint 7 (yo — y) < S; may be removed without modifying
(14), since 7 is increasing and therefore it is sufficient to choose S; > 7 (yo).

The multiobjective optimization problem (14) is convex, so it may be solved by
scalarization methods. Thus, take wy and w; non negative and such that wo+w; = 1,
let p = wop, — w1 lE, and solve

Min p(So —y —m(yo —y))
T(yo—y) < S : (15)
0<y<wo



Bearing in mind the ideas of the previous section, p satisfies Assumption 1 and is
coherent, since it is a convex combination of p, and —IE.

It is worth remarking that the first (second) objective of (14) may be removed
and the problem still fits in (15), because one can take wy = 0 and w; = 1 (wg = 1
and w; = 0).

Next we will give necessary and sufficient Karush-Kuhn-Tucker optimality condi-
tions. We will not prove this result since it is parallel to one of Balbés et al. (2009).

Theorem 1. Problem (15) is bounded and solvable. Moreover, the existence of
(1*,2*) € R x L? satisfying the following Karush-Kuhn-Tucker conditions is necessary
and sufficient to guarantee the optimality of y* € L.

E (y*2) < E(y*z*), Vze A,
T (m(yo—y*) — S1) =0
(Yo —y*) =51 <0
E(yz") + (1+7)7m(yo —y") <E(yz") + (L+7)7(yo —y), YO<y <y
TmeR, >0, 0<y* <yy 2 €A,
(16)

(1%, 2*) will be called K K'T—multiplier of (15). O

A first important consequence is that one can give conditions ensuring that the
solution of (15) remains the same if p is replaced by a lower one.* Hence we can give
the first result guaranteeing the stability of the optimal insurance (retention) with
respect to the risk measure.

Corollary 2. Suppose that y* € L? solves (15) and (7*,2*) is a K KT—multiplier.
Take the coherent risk measure p satisfying Assumption 1 and such that p < p.
If z* € A, and p replaces p then y* € L? still solves (15) and (7*,2*) is still a
K K'T—multiplier.

Proof.  On the one hand, y* and (7%, 2*) satisfy (16). On the other hand,
according to that properties given in the previous section, Az C A, because p < p.
Thus, z* € A; implies that (16) still holds if A; replaces A,,. O

Corollary 3. Suppose that yi € L? solves (15) and (7}, 2%) is a K KT—multiplier
for the risk measure I' of (11). Then y; still solves (15) and (7}, 2f) is still a
K KT—multiplier for every p such that z € A,.

4With the notations of (14) , notice that p decreases if so does py, i.e.,

Po = Po = Wopy — w1lE > wopy — wr E.



Proof. It trivially follows from the previous corollary and (12). g

Remark 1. With the notations of Corollary 3, if 2 ¢ A, one still can look for a risk
measure p > p quite similar to p and such that 2 € A;, and therefore yi. still solves
(15) and (7%, 21) is still a K K'T—multiplier if one considers p. Indeed, it is sufficient
to take the convex and compact set

Ay =Co(A,U{z}),”

obviously associated with the risk measure

p(y) = Maz {p(y),—E (yzr)} (17)
for every y € L?. For this reason hereafter the solution yi € L* of (15) for the risk
measure I" of (11) will be called “stable optimal retention”. O

Remark 2. If the ceding company is also interested in maximizing the expected
wealth and deals with problem (14), then I' may be replaced by wel' — w1lE (with
w; > 0,7=0,1, and wy + wy = 1). Indeed, in such a case, (10) and (13) show that

Apor—we={z€ L% E(z)=1and z > w; }. (18)

Obviously, Corollary 2 proves that if y, € L? solves (14) and (7%, r, z5,r) is a
K KT—multiplier for the risk measure wol' — w,[E above, then y;, - still solves (14)
and (T}, r, 2.r) is still a K KT—multiplier for every p such that 2}, 1 € Aygp—uw,E-
Furthermore, a new comment similar to Remark 1 applies. U

4. CHARACTERIZING AND COMPUTING THE STABLE OPTIMAL RETENTION

Let us give properties making it easier to verify the fulfillment of the inequalities of
(16). To this purpose, and taking into account Corollary 3, Remark 2 and the first
condition in (16), let us give an instrumental lemma.

Lemma 4. Suppose that 0 < y* < yy and z* € Ayyr—uw,e (see (18)). E(y*z) <
IE (y*2*) holds for every z € Ayyr—w, e if and only if

Yy (wj) = Maz {y" (w;): 1=1,2,..,n}

holds for every j = 1,2, ...,n such that z* (w;) > w;.

®As usual, Co (A) denotes the convex hull of every set A C L?.



Proof. The inequality above holds if and only if 2* solves the linear optimiza-
tion problem
Maz 377, y* (wi) 2 (wi) pi
Y1z (wi)pi=1
w < z(wg),1=1,2,...,n

According to the classical Karush-Kuhn-Tucker conditions, this is equivalent to the
existence of p, ftq, ..., 4, € IR such that

—y* (wi)pi + popi —p; =0, i=1,2,....m

> i 2 (wi)pi =1

(z* (w;) —wr) p; =0, i=1,2,..

p; >0, i=1,2,...,n

2" (w;) > wi, 1=1,2
Hence, the result trivially follows if one takes

po = Mazx {y* (w;): i=1,2,..,n}

My = (No — " (wi)) pi,
1=1,2,...,n. ]

Despite the level of generality of the previous analyses, the solutions of (16) will
depend on the specific assumptions one imposes. Henceforth we will assume that the
reinsurer uses a linear premium principle. Actually, as indicated in the introduction,
previous literature considering a general risk measure is scant, so it seems to be
natural and of interest to analyze concrete problems by taking the most used premium
principle, which is the expected value premium principle, i.e., there exists k£ > 1 such
that

T (y) = kE (y) (19)

for every y € L?. We will impose something strictly weaker, such as the existence of
2. € L? such that

P(z; >0)=1, (20)
E(z;) > 1 (21)

and
T (y) = E(yzr) (22)

for every y € L2.5

Notice that (19) is a particular case of (22) that arises if z, remains constant and equals k.
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Assumption 2. Henceforth we will assume the existence of z, € L? such that
(20), (21) and (22) hold. O

Nevertheless, it is worth pointing out that the previous developments are more
general, and therefore they also apply to alternative premium principles.

From Assumption 2 the necessary and sufficient optimality conditions (16) become

E (y*2) < E(y*z*), Vze A,
T*(E((yo —y*) 2:) — S1) =0
E((yo —y*) 2x) — 51 <0 (23)

E(y" (2" —(1+7")2)) S E(y(z" — (1+7") 2)), VO<y <o
T*€|R7 7-*207 OS?J*S?JO, Z*eAp

Next let us present two simple lemmas. The first one simplifies the fourth condition
of (23).

Lemma 5. Let z* € L?, y* € L? with 0 < y* < 19, and 7" € R. Then,
E(y" (2" = (1+7)2)) SE ("= (1+77)2))
holds for every y € L? with 0 < y < 1 if and only if there exists a measurable

partition
Q=0,UQ,UQ;

such that
2 (w) > (14792, y*(w)=0, if we
2 (w) =1 +7") 2z, if weQy (24)
(W) < (1+7) 2z, ¥y (W) =y (w), if wes

Proof. It is obvious if we realize that the solution of

{ Min E (y (z5 — (14 7%) z,))
0<y<wo

must be as large as possible (i.e., must equal yy) whenever z* — (1 + 7*) z, < 0 and as
small as possible (i.e., zero) if z* — (1 + 7%) z, > 0, whereas its value is not relevant
at all if 2* — (1 4+ 7%) z, = 0. O

Lemma 6. y* = 0 does not solve (15).
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Proof. If y* = 0 solved (15) then (24) would lead to z* > (14 7%) 2z,
Bearing in mind (3) and (21), and taking expectations, one has the contradiction
1> (14+7%)E(2)> 1. O

As already said the stop—loss reinsurance is often obtained as the optimal retention
(Balbés et al., 2009). Recall that y € L? and lying between 0 and v, is said to be a
stop-loss reinsurance if there exists a > 0 such that

_ Yo, yOSOC
y—{% wee (25)

Hereafter the random variable of (25) will be denoted by .

Corollary 3 and Remark 2 show the importance of solving (15) when p = wol" —
w1 |E, since the solution will provide a very stable optimal reinsurance contract.

Theorem 7. Consider Problem (15) with the risk measure wol'—w;|E. Suppose that
P (2, >w) =17

a) There exists a* > 0 such that y§" solves (15).

b) Suppose that y§" solves (15), P (yo = o) = 0 and (7}, p, 25 ) is a KKT-
multiplier of (15). Then

* o wi, Zf Yo < aof
Funl = { (1 + Ton‘) 27y Zf Yo > o (26)

c) Suppose that y3" solves (15), there is a unique w;, € Q with yo (w;,) = o* and
(Thor> Zaor) is a K KT-multiplier of (15). Then

woel™

w1, Yo < a*

ZZ}OF (w) e Pig S , W =Wy (27)
N (1 + Ton‘) = (W), Yo > a*
and
11— > (1 + Twor) Zr (Wig) —w1 D (1 + TwOF)
Yo (w)>a* Yo (w)<ar*

Dig (1 + Twol") 2 (wio) (28)

7(20) implies the fulfillment of this property whenever wy = 1. Since wg < 1, the property holds
if the reinsurer draws on the Expected Value Premium Principle, since then z, = k > 1.
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hold.
d) Suppose that y§" solves (15) and (75, zh,r) is a KKT-multiplier of (15).
Suppose that p is coherent and satisfies Assumption 1. If 2z} _, g € A, then y§’

solves (15) for wol' — w, E.

Proof. a) Take the solution y* of (15) whose existence is guaranteed by Theo-

rem 1, and define
a = Maz {y* (w;): i=1,2,..,n}.

Lemma 6 implies that o > 0. Let us see that y* = y5 . Indeed, y* being (15)-feasible
we have that y* < yo, so a* < yo (w) whenever y* (w) = o*. Besides, if y* (w) < o*
and (75, 25 r) is a KKT-multiplier (its existence follows from Theorem 1), then
the first condition in (23) and Lemma 4 lead to 2z}, (w) = wi. Hence, the fourth
condition in (23), Expression (24) and z, > w; lead to y* (w) = yo (w), and therefore
v =y

b) As in the proof of a), 2, 1 (w) = w; whenever y§ < o*. Suppose that y§" (w) =
a*. Then, consider the partition of Lemma 5 and obviously w € €2 or w € {23, since
Y (w) # 0. But w € Q3 would imply yo (w) = *, which cannot hold.

¢) As in the proof of b), z - (w) = wy whenever y§~ < a*. Suppose that y§~ (w) =
a*. Then, consider the partition of Lemma 5 and obviously w € €y or w € €3,
since ¢ (w) # 0. But w € Q3 implies that y (w) = o, and therefore w = w,.
Thus, taking into account (3), we have (27). Finally, (28) comes from (24), because
P (y" = 0) = 0 implies that 2}, < (14 75, 1) 2

d) It trivially follows from Corollary 3 and Remark 2. U
Remark 3. According to the previous theorem the “stable optimal retention” of
Remark 1 is a stop-loss reinsurance y§ . Theorem 7 also provides the multiplier
2y r—wE (S€e (26) or (27)), so the condition 2}, € A, is very easy to verify in
practical examples. Actually, we will see in the next section that the assumptions of
Statements 7b and 7c are always fulfilled in practice. O

Remark 4. Rockafellar et al. (2006) introduced the risk measure CVaR,, , jg €
(0,1) being the level of confidence. CVaR,, is becoming very important and popular
among practitioners and researchers for its interesting properties. Indeed, it is co-
herent and expectation bounded (Rockafellar et al., 2006), and compatible with the
second order stochastic dominance and the classical utility functions (Ogryczak and
Ruszczynski, 2002).8 Rockafellar et al. (2006) proved that

, E(2) = 1} : (29)

ACVGRMOZ{Z€L2; nggl [
— Mo

8Recall that the standard deviation is not compatible with the second order stochastic domi-
nance if asymmetries are involved (Ogryczak and Ruszczynski, 1999), and the stop-loss reinsurance
obviously generates asymmetric results.
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Consider wy = 1 (the expected wealth is not optimized by the ceding company).
Thus, if p = CVaR,,, in Problem (15), then y§~ will solve the problem (i.e., (29) will
contain the random variable z{) as long as

1

L= po

> 27, (30)

which clearly holds for p, close enough to 100%. Analogously, if the insurance com-
pany deals with problem (14) and p, = CVaR,,, then the solution y§ of (14) for
wol" — w1 lE will be still the solution for the woCVaR, — wilE as long as

Wo i S
1 —pg Y= S

which is also obvious for wy > 0 and pu, large enough. An illustrative numerical
example will be given in Section 5. U

5. ALGORITHM AND NUMERICAL EXPERIMENT

Next let us point out that the conditions of Theorem 7 always hold in practice, and
the stable optimal retention y$ and the K KT—multiplier (75, 2%) may be easily
calculated by drawing on an appropriate algorithm. First of all we will introduce the
algorithm and then we will present a numerical example. In order to simplify the
exposition, in this section we will assume that w; = 0 (the expected wealth is not
maximized, and only the risk level is minimized), though the extension for w; > 0 is
straightforward.

Notice that, according to Theorem 7, y& and (75,2:) will be known once we
compute o and 77, i.e., we only have to estimate two real numbers.
Without loss of generality we can suppose that

Q ={wi,ws,...,w,} CR,

0 <w; <wy < ... < wp,
and
IP (yo = wi) = DPi,
1=1,2,...,n.
Define
OMaxr = Wn-

Obviously, yg™** = yp is (15)-feasible because S; > 0 and 7 (0) = 0. Due to (20), the
premium principle of (22) generates a strictly increasing function 7. Consequently,

Yi.e., m(y1) < 7 (y2) whenever y1 < y» and y1 # ya.
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7 (Yo — y§) strictly decreases as a grows. Consider a first case (Case_1) such that
7 (yo) < Si, which implies that y§ is (15)-feasible for every a > 0 and therefore we
will consider

ANfin = 0.10

If 7 (yo) > Sy then the continuity of & — 7 (yo — y§) implies the existence of a unique
anin € (0, apraq) such that

O Min

7T(?Jo_yo ):Sl-

Let us distinguish two situations. Case_2 arises if ap;, ¢ €2, in which case we will
chose iy as the smallest subscript such that

T (yO - wio) < Sl-

Case_3 holds if ap, = wi,—1 € ) for some 7g.
Obviously, for the three cases yg is (15)-feasible if and only if

(037 ¢7) S « S O Maz-

Algorithm 1. Suppose that Case-1 holds. Lemma 6 implies that yg™™ does
not solve (15), so the stable optimal retention y satisfies 7 (yo — yg“*) < 51 and the
second condition in (16) leads to 7} = 0. Hence, we only have to estimate a*.

Step — 1. Define

w1 w1 + Wa Wn—1 + Wn

a1:7’a2=w1,043: 2 ,0642002,----042%1:Ta%nzwn-

Step — 2. For j = 1 to n check whether y;> " and

o N { O, Zf w < Qg1

2j-1 2 Zf w > Q251
satisfy (23) and (24). If these conditions are satisfied for some y5>' then we will
have the stable optimal retention and the K KT-multiplier.. Notice that two different
values of j cannot satisfy (23) and (24), since (20) implies that IE (z3;_,) strictly
decreases with j and therefore (3) cannot hold two times. Furthermore, if these
conditions hold for some j then every o* € (agj_2, ;) will generate a stop-loss
stable optimal retention y§~, since the same K KT-multipliers z3; ; and 75, ; = 0
will still apply.

10 Actually, Constraint 7 (yo — y) < S; is redundant in this case, and may be removed in (15).
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Step — 3. For j = 1 to n check whether 35> and

( 0, w < (gj
1= 3 zn(w)
z;j (w) - w>+jj, W = 0g; (31)
[ 2r (W), W > Qg

satisfy (23) and (24). Every time these conditions are satisfied we will have a solution
of (15) for p =I'. Notice that (24) will imply

L= > 2zr ()

w>a2j
pj
(see(28)). O

< zr () (32)

Algorithm 2. Suppose that Case_2 holds. Then proceed as in Algorithm 1 with
a minor modification in Step — 1. Now we must define

Qpfin + Wiy Wiy + Wig+1 Wp—1 + Wy
Q2ig—1 = — 5 Q2ip = Wiy, W2jp41 = — 55 Qop1 = — 5, Qap = Wnp.
2 2 2
Obviously, Step — 2 and Step — 3 will start with j = i rather than j = 1.

Step — 4 Let us finally check the optimality of yg™™. In this case 73 > 0 may hold

and we are in the conditions of Theorem 7b. We must verify whether yy™™, 7§ and

= 0, if Yo < Qmin
r (1 + Tf‘) 2 Zf Yo > Qpin

satisfy (23) and (24) for some 7} > 0. Actually the only condition one must check is
(3), i.e.,
L+77) D z(wi) =1,
Wi>QMin

A DMin

so the optimality of v holds if and only if

1
= —1>0. (33)
g Z:wi>041\4m r (w’)

Thus, Step — 4 reduces to the verification of (33). O
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Algorithm 3. Suppose that Case_3 holds. Then proceed as in Algorithm 2 with
a minor modification in Step — 1. Now we must modify aw;,—1 according to

_ Wip—1 T Wi . Wiy T Wig+1 _ Wp—1 T Wy
Q2q—1 = —2 y X245 = Wiy, A24941 = —2 y eeeQlop—1 = —2

y Qap = Wn.
Once again, Step — 2 and Step — 3 will start with j = 4.

Step — 4. We still have to check the optimality of yy™™ = ygj 0~' This retention
level is optimal if and only if we can find 7% > 0 such that y,° ", 7% and

r
O, w < Wip—1

1— 14
7 (W) = iy )
Pig—1

y W= Wig-1

\ (1 + Tlt) Zr <w> ) w > wiofl

satisfy (23) and (24). The existence of 7} is easy to verify, because, bearing in mind
the findings of Sections 3 and 4, one only needs to check the conditions

0<1— > (14712 (), (34)
w>wi0,1
1= > (T+77) 2 (Wig—1)
W>Win —
= < (1+78) 20 (@ig-1) (35)
Dig—1

and

1= ) (4 za@+0+7) > z(wWPw) =1 (36)

w>wio,1 w>wi0,1

Equality (36) yields 71, and then the inequalities (34) and (35) are equivalent to

1
1 37
Tr = Z 2 (w) ( )

w>wi071

and ]
> 1 (38)

Zr (Wig—1) (Pig—1 + 1)

respectively. Thus, Step — 4 reduces to the computation of 7} by means of (36) and
then the verification of the inequalities (37) and (38). O
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Remark 5. Notice that the existence of solution of (15) and the findings of Sections
3 and 4 show that at least one of the three algorithms must generate a stable optimal
retention. U

Next let us present a simple numerical example. Our only objective is to illustrate
the algorithm above.

Example 1. Suppose that y, can reach the values 100, 200, 300, 400 and 500
with a similar probability 0.2. Suppose that the reinsurer uses the Expected Value
Premium Principle with a price 80% higher than the expected claims, i.e.,

7 (y) = 1.8 (y).

Suppose finally that the ceding company does not impose any budget constraint, 7.e.,
we are in Case_1 above. With the notations of Algorithm 1, define

a1 = 50, = 100, a3 = 150, oy = 200, ..., ovg = 450, g9 = 500.

In Step — 2 we have to check the optimality of five stop-loss contracts. The first
one is y5°. Consider
z*_{ 0, if w<50
L7 1.8, if w>50 "

Obviously, 2} remains constant and equals 1.8, so it is not in the set Ar of (10).
Then, 33" is not a stable optimal retention. If one repeats the analysis with the four
remaining “candidates” then similar results apply, so Step — 2 does not generate any
stable optimal retention.

In Step — 3 we have to check the optimality of the remaining five stop-loss con-

tracts. The first one is y3°°, and (31) gives

0, if w<100
Z={ =22 if w=100
18, if w>100

which do not belong to Ar. Repeat the exercise with the remaining values of «, and
for a = 200 we get
0, if w <200
zy =< —04, if w=200
1.8, if w>200
200

which implies that y5° is not a stable optimal retention either. Analogously, for
a = 300 we get
0, ¢f w<300
zg =14 14, if w=300
1.8, +f w> 300
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and y3% is the “stable optimal retention” we are looking for. It is easy to check that

ys?? and y5? are not stable optimal retentions. In fact, for y3° one obtains

0, f w<400
zg =< 3.2, if w=400
1.8, if w > 400

and this multiplier is not feasible because (32) does not hold. An analogous caveat
arises for 5%.
Reinsurance y5% will be the optimal retention for many risk measures. For in-

stance, if one considers p = C'VaR,,, according to (30) y3% solves the problem if

! > 1.8
L= po
which holds for p, > 0.45 (or p, > 45%), and, in particular, for the usual values of
this parameter in the industry, which are higher than 90%. Finally, it is worthwhile to
point out that the role of the CVaR, may be also played by many other important
risk measures in Actuarial Sciences, such as, WCVaR, DPT, Wang, etc. O

6. CONCLUSIONS

The optimal reinsurance problem is a classic topic in Actuarial Theory and has been
studied under different assumptions and by using different criteria to compute the
insurer risk. Since coherent and expectation bounded risk measures are becoming
very important in Finance and Insurance, recent approaches deal with them and the
optimal reinsurance problem. However, there is no consensus about the risk measure
that one must use, since every risk measure presents advantages and shortcomings
when compared with others.

This article analyzes the stability of the optimal reinsurance with respect to the
risk measure that the insurer uses. It has been pointed out that there is a “stable
optimal retention” that will show no sensitivity, insofar as it will solve the optimal
reinsurance problem for many risk measures, providing a very robust reinsurance plan.
For the expected value premium principle this stable optimal retention is a stop-loss
contract, and it is easy to compute in practice. An algorithm has been given and a
numerical example presented. The approach is general enough. Actually, if desired,
the analysis permits us to incorporate both budget constraints and the simultaneous
maximization of the ceding company expected wealth.
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