
TESTING I(1) AGAINST I(d) ALTERNATIVES WITH

WALD TESTS IN THE PRESENCE OF DETERMINISTIC

COMPONENTS

By Juan J. Doladoa, Jesus Gonzaloa, and Laura Mayoralb �

aDept. of Economics, Universidad Carlos III de Madrid.
bDept. of Economics, Universidad Pompeu Fabra.

December 21, 2006

Abstract

This paper analyses how to test I(1) against I(d); d < 1; in the presence of de-

terministic components in the DGP, by extending a Wald-type test, i.e., the (E¢ cient)

Fractional Dickey-Fuller (EFDF) test, to this case. Tests of these hypotheses are impor-

tant in many economic applications where it is crucial to distinguish between permanent

and transitory shocks because I(d) processes with d < 1 are mean-reverting. On top of

it, the inclusion of deterministic components becomes a necessary addition in order to

analyze most macroeconomic variables. We show how simple is the implementation of

the EFDF in these situations and argue that, in general, has better properties than LM

tests. Finally, an empirical application is provided where the EFDF approach allowing
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for deterministic components is used to test for long-memory in the GDP p.c. of several

OECD countries, an issue that has important consequences to discriminate between

growth theories, and on which there has been some controversy.

JEL Clasi�cation: C12 C22 O40

Keywords: Deterministic components, Dickey-Fuller test, Fractionally Dickey-Fuller

test, Fractional processes, Long memory, Trends, Unit roots.

1. INTRODUCTION

It is well known that lack of power of unit root tests may lead to the wrong conclusion that

a time series (yt) is I(1) when it happens to be a fractionally integrated I(d) process with

0 � d < 1: This mistake can have very serious consequences, particularly in the medium

and long run. To mention only two: (i) shocks can be identi�ed as permanent when in

fact are mean reverting, and (ii) two series can be considered to be spuriously cointegrated

(i.e., a concept introduced and analyzed in Gonzalo and Lee, 1998) when in fact they are

independent at all leads and lags. These mistakes are more likely to occur in the presence

of deterministic components as, for example, in the case of trending economic variables.

In view of this problem, the goal of this paper is twofold. We �rst extend an existing

Wald-type testing procedure for detecting a unit root against mean-reverting fractional

alternatives in time series free of deterministic components to the more realistic case where

they may exhibit a wide variety of trending behaviors. Secondly, we show that this test,

apart from its simplicity, has better properties than other available tests in the literature

with the same goal.

Speci�cally, we focus on a modi�cation recently suggested by Lobato and Velasco (2005;

LV hereafter) of the Fractional Dickey-Fuller (FDF) test proposed by Dolado, Gonzalo and

Mayoral (2002, 2003; DGM hereafter) that achieves a slight improvement in e¢ ciency over

the latter. This test, henceforth denoted as the EFDF (e¢ cient FDF) test, generalizes the

traditional DF test of I(1) against I(0) processes without deterministic components to the

broader framework of testing I(1) against I(d) with d 2 [0; 0:5) [ (0:5; 1).1 Both the FDF
1Although the case where d = 0:5 was treated in DGM, it constitutes a discontinuity point in the analysis
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and EFDF tests belong to the family of Wald tests and rely upon the DF approach. The

underlying idea is to test for the statistical signi�cance of the coe¢ cient of the regressor

in a possibly unbalanced regression where the dependent variable is the time series �ltered

under the null (�yt) and the regressor is some transformation of the series �ltered un-

der the alternative (�dyt): Whereas DGM suggested choosing �dyt�1 as the regressor; LV

have shown that a more e¢ cient test could be achieved by using the alternative regressor

zt�1(d) = (1 � d)�1(�d � �)yt:2 As in the FDF procedure, the EFDF test is based upon

the t-ratio, t'(d); of the relevant coe¢ cient on zt�1(d), '. Thus, non-rejection of H0: ' = 0

against HA: ' < 0, implies that the process is I(1), namely, �yt = "t where "t are assumed

to be i.i.d. Conversely, rejection of the null implies that the process is I(d), with d < 1.

In order to compute the �ltered regressors, an input value for d is needed. Both DGM

and LV recommend to select this value using a T �-consistent estimate (with � > 0) of the

true integration order, d, and show that the limiting distribution of the resulting statistic

is a N(0; 1):

The advantages of these Wald-type tests, in parallel with the DF approach, rely on their

simplicity (e.g., they can be easily implemented in standard econometric software) and

good �nite sample performance. Further LV (2005, Theorem 1) have shown that, under a

sequence of local alternatives approaching H0 : d = 1 from below at a rate of T�1=2 with

Gaussian errors, the EFDF test is asymptotically equivalent to the uniformly most powerful

invariant (UMPI) test and hence asymptotically equivalent under local alternatives to the

LM test introduced by Robinson (1994). But interestingly, as discussed in section 3, an

additional important advantage of both the FDF and EFDF tests is that their non-centrality

of fractionally integrated processes, splitting the class of I(d) processes into stationary (for d < 0:5) and

nonstationarity (for d � 0:5). Moreover the behaviour of fytg di¤ers between d = 0:5 and d > 0:5; cf. Liu

(1998). For this reason, as is often the case in most of the literature, we ignore this possibility. To simplify

the notation in the sequel, however, we will refer to the permissable range of d under the alternative as

0 � d < 1:
2Both regressors can be constructed by applying the truncated binomial expansion of the �lter �d =

(1�L)d to yt, so that �dyt =
Pt�1

i= 0 �i(d) yt�i where �i(d) is the i-th coe¢ cient in that expansion, de�ned

at the end of this Introduction.
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parameters under HA are smaller under non-local alternatives than that corresponding to

the LM test, and hence they are more powerful under alternatives that are not local to the

null. These asymptotic results are corroborated by Monte Carlo simulations that show the

superiority in terms of power of the Wald-type tests versus the LM one. Finally, the Wald

tests present the advantage of not requiring the correct speci�cation of a parametric model,

a useful property stemming from the possible choice of semiparametric estimators for the

input value of d when performing the test.3

Following the development of the unit root tests in the past, where the canonical zero-

mean AR(1) model was subsequently augmented with deterministic components (including

drifts, and linear, nonlinear and broken trends), our contribution in this paper is to investi-

gate how to implement this Wald test when some deterministic components are considered

in the DGP, a case which is neither considered by DGM nor by LV. Although we will con-

sider other types of trends, we will focus mainly on the role of a linear trend since many

(macro) economic time series exhibit this type of trending behavior in their levels. Our

main result is that, in contrast with what happens with most tests for I(1) against I(0),

the EFDF test remains being e¢ cient in the presence of deterministic components and it

maintains the same asymptotic distribution, insofar as they are correctly �ltered. In this

respect, this result mimics the one found for LM tests when deterministic components are

present; cf. Robinson (1994), Tanaka (1999) and Gil-Alaña and Robinson (1997).

Lastly, we wish to stress that, despite focusing on the case where the error term in the

DGP is i:i:d; the asymptotic results obtained here remain valid when the disturbance is

allowed to be autocorrelated, as it happens in the (augmented) DF case (ADF henceforth).

In this respect, DGM (2002, Theorems 6 and 7) have proved that, in order to remove

the correlation, it is su¢ cient to augment the set of regressors in the auxiliary regression

described above with k lags of the dependent variable such that k " 1 as T " 1; and
3Although DGM proposed a

p
T�consistent estimator for the input value of d in the FDF test, LV (2006)

have shown that a Gaussian semiparametric estimator, such as the one proposed by Velasco (1999) su¢ ces

to achieve consistency and asymptotic normality, a result which also holds for the EFDF test (see sections

2 and 3 below).
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k3=T " 0, as in Said and Dickey (1984), leading to the augmented FDF (AFDF) test. As

regards the EFDF test, we conjecture that a similar result holds, although we will con�ne

our discussion below to the case of �nite-lag autoregressive processes. The procedure based

on the EFDF test turns out to be much simpler than accounting for serial correlation in

the LM test. An empirical application dealing with testing the possibility that long GNP

per capita series for several OECD countries may follow mean-reverting I(d) processes

(supporting the hypothesis of beta-convergence) instead of I(1) (no convergence), serves to

illustrate our proposed methodology.

The rest of the paper is structured as follows. Sections 2 analyzes the derivation of invari-

ant EFDF tests when the null hypothesis is a random walk with or without deterministic

components. Section 3 focuses on the comparison of both FDF and EFDF tests with the

LM tests discussed above. Section 4 discusses an empirical application of the previous tests.

Finally, Section 5 draws some concluding remarks.

Proofs of the theorems are collected in the Appendix.

In the sequel, the de�nition of a I (d) process that we will adopt is that of an (asymptot-

ically) stationary process when d < 0:5; and of a non-stationary (truncated) process when

d > 0:5: Those de�nitions are similar to those used in, e.g., Robinson (1994) and Tanaka

(1999) and are summarized in Appendix A of DGM. Moreover, the following conventional

notation is adopted throughout the paper: �(:) denotes the gamma function, f�i (d)g rep-

resents the sequence of coe¢ cients associated to the expansion of �d in powers of L and

are de�ned as

�i (d) =
� (i� d)

� (�d) � (i+ 1) :

The indicator function is denoted by 1(:): Finally,
w! and

p! denote weak convergence

and convergence in probability, respectively.
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2. DEFINITION OF THE INVARIANT EFDF TEST

2.1 The i.i.d. case

Like in Robinson (1994), we assume that the process yt is generated by an additive model,

namely as the sum of a deterministic component, �(t); and an I(d) component, ut; so that

yt = �(t) + ut; (1)

where ut = ��d�t1t>0 is a purely stochastic I (d) process and �t is an i.i.d random variable.

For the case where � (t) � 0;4 DGM introduced a Wald-type (FDF) test for testing the

null hypothesis of H0 : d = 1 versus a simple alternative HA : d = dA < 1 or a composite

alternative d < 1; based on the t-statistic associated to the hypothesis � = 0 in the regression

�yt = ��
d1yt�1 + "t: (2)

They show that if the value d1 was chosen using a
p
T� consistent estimator of d; the

asymptotic distribution of the resulting t-statistic, t�(d1) is N (0; 1). Furthermore, they also

show that, in spite of not being locally optimal (as Robinson�s LM test is); its �nite sample

performance is more satisfactory except when considering local alternatives with gaussian

errors.

Recently, LV (2005) have proposed the EFDF test based on a modi�cation of regression

(2) that permits to achieve higher e¢ ciency while keeping the good �nite-sample properties

of Wald tests, again assuming that � (t) � 0 (or known). More speci�cally, they propose to

compute the t-statistic, t'(d1); associated to the null hypothesis ' = 0 in the regression

�yt = 'zt�1 (d1) + �t; (3)

where zt�1 (d1), with d1 being an input value for d, is de�ned as

zt�1 (d1) =

�
�d1�1 � 1

�
(1� d1)

�yt:

4Alternatively, �(t) could be considered to be known. In this case, the same arguments go through after

substracting it from yt to obtain a purely stochastic process.
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A similar model was �rst proposed by Granger (1986) in the context of testing for cointe-

gration with multivariate series, a modi�cation of which has been recently considered by

Johansen (2005). Notice that it serves to test the null H0 : d = 1 against the alternative

HA: 0 � d < 1:When ' = 0; the model becomes a random walk, i.e., �yt = �t; while under

the alternative, if the input value d1 is chosen such that d1 = d; then ' = � (1� d) and the

process becomes �dyt = �t:

In the rest of this section, we extend the previous testing approach to the more realistic

case where � (t) 6= 0 is considered to be unknown and examine how this deterministic term

should be taken into account to carrying out the test. We will concentrate on the general

case where a composite alternative hypothesis is considered (i.e., HA : d < 1) in a regression

model that includes the regressor zt�1 (d1) to perform the test.

We consider two di¤erent types of � (t) :

Slowly Evolving Deterministic component

Condition A. (Slowly evolving trend). The deterministic component � (t) veri�es

� (t) = O(t�); � < 0:5:

Condition A is immediately satis�ed if � (t) is a constant but also holds for a variety of

time functions, such as slowly increasing trends, (e.g., t�; � < 0:5 or log t):

In this case, it is easy to show that the stochastic component in yt dominates the deter-

ministic term when T is large. Hence, the term �(t) has no e¤ect on either the asymptotic

distribution of the t-ratio statistic or on the e¢ ciency properties of the test in the absence

of � (t). Therefore, one can proceed to run regression (3) ignoring the presence of these

slowly evolving trends.

The following theorem presents the properties of the EFDF test when the DGP is given

by (1) and � (t) veri�es Condition A.

Theorem 1 (Slowly evolving trends) Under the assumption that the DGP is given by yt =

� (t) + ��d�t1(t>0), where d � 1, �t is i:i:d. with �nite fourth moment, and � (t) veri�es

Condition A, the asymptotic properties of the t-statistic for testing ' = 0 in (3) (denoted
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by EFDF� test), where the input of zt�1(bd1) is a T��consistent estimator of d1; for some
d1 > 0:5 with � > 0; are given by,

a) Under the null hypothesis (d = 1),

t'(bd1) w! N (0; 1) :

b) Under local alternatives, (d = 1� 
=
p
T );

t'(bd1) w! N (�
h (d1) ; 1) ;

where h(%) = �1j=1j
�1�j(%� 1)=

q
�1j=1�j(%� 1)2; 0:5 < % < 1:

c) Under �xed alternatives, the test based on t'(bd1) is consistent.
LV (2005) show that the function h (:) achieves a global maximum at d1 = 1 where

h(1) =
p
�2=6, and that h (1) equals the noncentrality parameter of the locally optimal

Robinson�s LM test. Hence, if a T �-consistent estimator of d is used as input of zt�1(d), the

EFDF test is locally asymptotically equivalent to the LM test even in the case where the

DGP contains a deterministic term, � (t) ; verifying Condition A. A power-rate consistent

estimate of d can be easily obtained by applying any parametric
p
T -consistent estimator

of this quantity (such as Beran, 1995, Velasco and Robinson, 2000 or Mayoral, 2006) but

also, less restrictively, some semiparametric estimators of d as LV (2005, 2006) have shown.

Among the latter class, the estimators proposed by Shimotsu (2006) and Velasco (1999)

represent good choices since both allow for the existence of deterministic components.

Evolving Deterministic Components

Condition B. (Evolving trend). � (t) is a polynomial in t of known order.

Under Condition B, the DGP is allowed to contain trending regressors in the form of

polynomials (of known order) of t: Hence, when the coe¢ cients of � (t) are unknown, the

tests described above are unfeasible. Nevertheless, it is still possible to obtain a feasible

test with the same asymptotic properties as those described in Theorem 1 if a consistent

estimate of � (t) is substracted from the original processes. All the coe¢ cients of � (t) but

the constant term, can be consistently estimated by OLS in a regression, under the null, of
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�yt on �� (t) : For instance, consider the case where the DGP contains a linear time trend,

that is,

yt = �+ �t+�
�d�t; (4)

which, under H0 : d = 1; corresponds to the popular random walk with drift case. Taking

�rst di¤erences, it follows that �yt = � + �1�d"t: The OLS estimate of �; �̂; (i.e., the

sample mean of �yt) is consistent under both H0 and HA: Under H0; �̂ is a T 1=2 -consistent

estimator of � whereas under HA; �̂ is T 3=2�d-consistent (see Hosking 1996; Theorem 8).

Notice that, under HA : d < 1; it holds that 3=2 � d > 0:5: Hence, the following theory

holds.

Theorem 2 (Evolving trends) Under the assumption that the DGP is given by yt = � (t)+

��d�t1(t>0), where d � 1, �t is i:i:d. with �nite fourth moment, and � (t) satis�es Condition

B, the asymptotic properties of the t- statistic, t'(bd1); for testing ' = 0 in the regression
g�yt = 'gzt�1 �d̂1�+ et (5)

(denoted by EFDF� test), where the input d̂1 of gzt�1 �d̂1� is a T �� consistent estimator

of d1 > 0:5 with � > 0; g�yt = �yt � ��̂ (t), gzt�1 �d̂1� = �
�d̂1�1�1

�
(1�d̂1)

(�yt � ��̂ (t)); and

the coe¢ cients of ��̂ (t) are estimated by an OLS regression of �yt on �� (t) ; then the

asymptotic properties of the t-statistic for testing ' = 0 in (5) are the same as those described

in Theorem 1.

As mentioned above, Shimotsu�s (2006) semiparametric estimator provides power rate

consistent estimators of d � 1 for the case where the DGP contains a linear or a quadratic

trend whereas Velasco�s (1999) estimator is invariant to a linear (and possibly higher order)

time trend.

2.2 Serial correlation case: The invariant AEFDF test

Next, we generalize the DGP considered in (1) by assuming that ut follows an stationary

linear AR(p) process, namely, �p(L)ut = �t1t>0 where �p(L) = 1 � �1L � :::�pLp with
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�p(z) 6= 0 for jzj � 1: For the case where � (t) � 0 (or known), LV recommended to apply a

two-step procedure that allows one to obtain e¢ cient tests also in the autocorrelated case.

In the �rst step, the coe¢ cients of �p(L) are estimated (under HA) by OLS in the equation

�
bd1yt =

pX
t=1

�j�
bd1yt�j + at; (6)

where bd1 is a T�-consistent estimator of d1 such that satis�es the conditions stated in
Theorem 1. The estimator of �p(L) is consistent with a convergence rate which depends

on the rate �: Second, estimate by OLS the equation

�yt = '[b�p(L)zt�1(d̂1)] + pX
j=1

�j�yt�j + vt; (7)

where b�p(L) is the estimator from the �rst step, and bd1 denotes the same estimated input
used in that step as well. As LV (Theorem 2) have shown, the t'(bd1) statistic associated to
' in this augmented regression is still both normally distributed and locally optimal. The

test will be denoted by AEFDF (augmented EFDF) test in the following.

For the case where the coe¢ cients of � (t) are considered to be unknown, a similar pro-

cedure as that described in section 2.1 can be implemented and e¢ cient tests will still be

obtained.

If � (t) is a slowly moving trend satisfying Condition A, the test based on regression (7)

can be implemented and the asymptotic properties stated in LV (2005, Theorem 2) still

hold through. For the case where � (t) satis�es Condition B; in order to maintain the good

properties of the test, it is necessary to substract these terms from the original variables

prior to computing regressions (6) and (7). The coe¢ cients of � (t) can be estimated by OLS

under the null in a similar way as that described in the previous section. Next, regressions

(6) and (7) can be computed after conveniently substracting the estimated deterministic

regressors. For instance, if the DGP is de�ned as in (4) ; a consistent estimator of � can

be obtained (after taking �rst di¤erences) by computing the OLS estimator of a regression

of �yt on a constant term. Clearly, this estimator has the same properties in this case as
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those described in Section 2.1. Then, regression (6) simply becomes

�
bd1(yt � �̂t) = [1� �p(L)]�bd1(yt � �̂t) + at;

whereas regression (7) would be

g�yt = '[b�p(L)gzt�1 �d̂1�] + pX
t=1

�j�̂yt�j + vt; (8)

and g�yt = �yt � �̂ and gzt�1 �d̂1� = �
�d̂1�1�1

�
(1�d̂1)

(�yt � �̂): In the case where the DGP

contains a quadratic term, �yt should be regressed on a constant and a time trend and a

procedure similar to the one described above should be implemented.

The following theorem states the properties of the AEFDF test in the more general case

where short term autocorrelation is present.

Theorem 3 Under the assumption that the DGP is an ARFIMA(p; d; 0) process de�ned as

�p (L)�
d(yt�� (t)) = �t1t>0; where d � 1, �t is i:i:d. with �nite fourth moment and �p (L)

has all its roots outside the unit circle, the asymptotic properties of the t-ratio for testing

' = 0 in (7) or (8) for � (t) satisfying condition A or B, respectively, using a T��consistent

estimator of d1; for some d1 > 0:5 with � > 0, are given by

a) Under the null (d = 1)

t'(bd1) w! N (0; 1) :

b) Under local alternatives (d = 1� 
=
p
T ; 
 > 0)

t'(bd1) w! N (�
!; 1) :

c) Under �xed alternatives (d < 1) ; the test based on is t'(bd1) is consistent.
If d̂1 is a consistent estimator of d; then LV (2005) have shown that,

!2 =
�2

6
� {0	�1{

{ = ({1; :::;{p)0 with {k =
P1
j=k j

�1cj�k; k = 1; :::; p , where cj are the coe¢ cients of Lj

in the expansion of 1=� (L) ; and where 	 = [	k;j ]; 	k;j =
P1
t=0 ctct+jk�jj; k; j = 1; :::; p;
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denotes the Fisher information matrix for � (L) under Gaussianity. Notice that the use of

semiparametric estimators for d1 is very convenient here, since one does not need to care

about a parametric speci�cation of the autocorrelation in the error terms.

3. WALD VS. LM TESTS

As discussed in the Introduction, the closest competitor to the Wald (FDF and EFDF)

tests is the LM test proposed by Robinson (1994) in the frequency domain, subsequently

extended by Tanaka (1999) to the time domain. In this section we will discuss the power

of the three competing tests.

We start with the LM test, denoted as LMT ; which considers the null hypothesis of � = 0

against the alternative � 6= 0 for the DGP �d0+�[yt � �(t)] = "t. Thus, in line with the

hypotheses considered in this paper, we will focus on the particular case where d0 = 1 and

�1 � � < 0: Assuming that "t � N(0; �2), the log-likelihood function can be written as

L (�; �) = �T
2
ln(�2)� 1

2�2

TX
t=1

[(1� L)1+�yt]2: (9)

Then, taking the derivative of the log-likelihood function w.r.t. �, evaluated at � = 0;

and making use of the result
P 1

j=1 j
�2 = �2=6; yields the following score-LM test (see

Robinson, 1994 and Tanaka, 1999)

LMT =

r
6

�2
T 1=2

T�1X
j=1

j�1b�j w! N (0; 1) ; (10)

where b�j =P T
t=j+1

g�yt�̂yt�j =P T
t=1(

g�yt)2; andg�yt are the OLS residuals from regressing
�yt on ��(t). Therefore, if just a constant term is considered, then g�yt = �yt; likewise,
with a linear trend, g�yt = �yt ��y where �y denotes the sample mean of �yt:
As Breitung and Hassler (2002) have shown, an alternative simpler way to compute the

score test is as the t-ratio (t�) of b�ols in the regression
g�yt = �x�t�1 + et; (11)
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where x�t�1 =
P t�1

j=1 j
�1�̂yt�j : Intuitively, since t� =

P
(�eytx�t�1)=b�e(P(x�t�1)2)1=2 and,

under H0 : � = 0; b�e tends to � and plim T�1
P
(x�t�1)

2 = �2=6; then t� has the same

limiting distribution as LMT :

Tanaka (1999) has proved that, under a sequence of local alternatives of the type � =

T�1=2
 with 
 > 0, LMT (or t�) is the UMPI test. However, as LV have pointed out, whenbd1 tends to 1 in the EFDF test, the indetermination 0=0 in the �lter ��d1�1 � 1� =(1 �
d1)cd1=1 is easily solved by L�Hôpital rule yielding the same linear �lter as in the LM test,

namely �ln(1 � L) = �1j=1j
�1Lj ; so that the test becomes asymptotically equivalent to

the LMT and t� tests. In the case where �(t) � 0 (or known) and 0:5 < d < 1; under the

sequence of local alternatives described above in Theorem 1, LV (2005) have shown that

the limiting distribution of the LM test is N(�
h(d); 1) where h(:) is �2=6 when d = 1.

On the other hand, DGM (2002, Theorem 3) obtained that the corresponding distribution

of the FDF under local alternatives test is N(�
; 1): Since �2=6 > 1 (' 1:25); close to the

null, the asymptotic e¢ ciency of the FDF test relative to the LM and EFDF tests is 0:80

(' 1=1:25).

Since the results above on local alternatives are well known, we focus in the rest of this

section on the case of �xed alternatives, where results are new. In particular, we derive

the non-centrality parameters of the three above-mentioned tests under an I(d) alternative

where the DGP is assumed to be �dyt = "t with d 2 (0; 1) and where, for simplicity, we

assume that there are not deterministic regressors and that the true value of d is used to

compute the FDF and EFDF tests. Hence, �yt = ��b"t where b = d � 1 < 0. Then, the

following result holds.

Theorem 4 If �dyt = "t with d 2 (0; 1); the t-statistics associated to the EFDF and FDF

tests, denoted as t'(d) and t�(d), respectively, verify,

T�1=2t'(d)
p

! �
�
�(3� 2d)
�2(2� d) � 1

�1=2
= cEFDF (d);

T�1=2t�(d)
p

! � (1� d)�(2� d)
[�(3� 2d)� (d� 1)2�2(2� d)]1=2

= cFDF (d);
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while, under the same DGP; the LM test de�ned in (10) satis�es that,

T�1=2LMT
p!
r
6

�2
�(2� d)
�(d� 1)

1X
j=1

� (j + d� 1)
j� (j + 2� d) = cLM (d);

where cEFDF (d); cFDF (d) and cLM (d)) denote the non-centrality parameter under the �xed

alternative d 2 (0; 1) of the EFDF, FDF and LM tests, respectively:

Figure 1 displays the three above-mentioned non-centrality parameters for d 2 (0; 1):5 It

is seen that the EFDF and the LM tests behave similarly for values of d very close to the

null hypothesis whereas the FDF test is slightly less powerful for these local alternatives.

Nevertheless, although the LM test was devised to be the UIMP test for local alternatives,

it performs much worse than both Wald-type tests when the alternative is not local. The

EFDF tests performs slightly better than the FDF test in line with LV�s (2005) arguments.

Finally, the results in Theorem 4 are asymptotic and, as will be shown below, for realistic

sample sizes, the rejection rates of the Wald tests under the alternative are also larger than

those of the LM test, except in cases where d is very close to unity and the error term

is normally distributed, where the EFDF and LM tests behave similarly. Thus, for �xed

alternatives, with approximately d < 0:90, the EFDF (and the FDF) test is bound to exhibit

much higher power than the LM test.

5Notice that Theorem 4 excludes the point d = 0: For d = 0; it is easy to show that cEFDF (0) =

cFDF (0) = �1: As for CLM ; notice that �yt = �"t and therefore the only non-zero correlation is �1 = �0:5:

Thus cLM (0) = �0:5
p
6=�2 ' �0:39:
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Fig 1. Non-centrality parameters of LM and Wald tests

Monte-Carlo evidence in favor of the EFDF and FDF tests has been provided by LV

and DGM, respectively, when deterministic components are absent. In what follows we

provide some additional simulations when �(t) = � + �t: Table 1 presents the rejection

frequencies for local alternatives at the 5% level of the EFDF and the LM test: The DGP,

yt = � + �t + ��d"t; is simulated 10; 000 times, with "t � i:i:d N(0; 1); d = 1 � 
=T 1=2

for 
 = f0; 0:5; 1:0; 2:0 and 5:0g; T = f25; 50; 100; 400g, and the input value for d; (d1);

has been estimated using Shimotsu�s (2006) exact local Whittle estimator. The �gures

corresponding to EFDF� and LM� are obtained by setting (� = 1, � = 0) whereas those

for EFDF� and LM� are computed by setting (� = 1; � = 1) : To compute the EFDF�

and EFDF� tests, regression models (3) and (5) have been used, respectively. As can

be observed, for the smaller sample sizes (when 
 = 0) the LM test are slightly under-

sized whereas the EFDF test is slightly over-sized, especially when we allow for a trend.

However, the most relevant �nding is that, in general (using e¤ective sizes), the EFDF has

larger power than the LM tests, in accord with the result derived in Theorem 4 above.

[Table 1 about here]
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Table 2, in turn, reports the size and the (size-adjusted) power when the errors are

autocorrelated, so that the DGP is �dyt = "t=(1 � 0:6L); for several values of d = 1 �


=T 1=2; for the same values of 
 and T = f100; 400g. In this case, the AEFDF test clearly

outperforms the LM tests. Lastly, we brie�y report some results on the consequences of

having departures from Gaussianity in the distribution of "t in the above-mentioned DGP.

For example, when the errors follow an i:i:d. zero-mean standardized �2(1) distribution,

the power of the EFDF test, for d = 0:8; 0:9 and T = 100, is 62:9 % and 30:5 % whereas the

corresponding rejection frequencies of Tanaka�s LMT are 52:8 % and 17:2 %, respectively.

Thus, the EFDF test also fares better than the LM test in the presence on non-Gaussian

errors.

[Table 2 about here]

4. EMPIRICAL ILLUSTRATION

An interesting application of the theoretical results applied above is to examine whether

the time-series of GDP per capita of several OECD countries behave as I(d) processes with

d < 1. These are series which are clearly trending upwards and therefore provide nice

examples of the role of deterministic terms in the use of the EFDF test. As pointed out

in an interesting paper by Michelacci and Za¤aroni (2000; henceforth, MZ), such a long-

memory behavior could well explain the seemingly contradictory results obtained in the

literature on growth and convergence. The puzzling result is that a unit root cannot be

rejected in (the log of) those series and yet a 2% rate convergence rate to a steady-state

level (approximated by a linear trend) is typically found in most empirical exercises testing

the so-called unconditional beta- convergence hypothesis (see Barro and Sala i Martín, 1995

and Jones, 1995). The explanation o¤ered by MZ to this puzzle relies upon two well-known

results in the literature on long-memory processes, namely that standard unit root tests

have low power against values of d in the nonstationary range (0:5 < d < 1), and that for

all values of d 2 [0; 1) there is �mean reversion�, in the sense that the e¤ects of shocks die
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out. Notice that the I(d) nature of the GDP p.c. series may be very reasonable since GDP

is obtained as the aggregation of value-added in a wide range of productive sectors which

are likely to have di¤erent persistence properties (see Lo and Haubrich, 2001). Thus, the

aggregation argument popularized by Granger and Joyeux (1980) applies strongly to this

case.

Using Maddison�s (1995) data set of annual GDP per capita series for 16 OECD countries

during the period 1870 - 1994 and a log-periodogram estimator of d due to Robinson (1995),

they �nd that in most countries the order of fractional integration is in the interval (0:5; 1),

theoretically compatible with the 2% rate of convergence found in the literature of beta-

convergence and, therefore, validating in this way their explanation of the puzzle. Since that

estimation procedure is restricted to the range of I(d) processes with �nite variance, namely,

jdj < 1=2 , MZs proceed by �rst detrending the data and then applying the truncated �lter

(1� L)1=2 to the residuals, discarding the �rst 10 observations to initialize the series.

The previous results have been recently criticized by Silverberg and Verspagen (2001) on

the following grounds. First, they are critical with the procedure used by MZ of �ltering out

a deterministic linear-in-logs trend and then using the di¤erence (1�L)1=2 on the residuals.

Second, they criticize the use of the Geweke and Porter-Hudak (GPH) semi-parametric

estimation procedure as modi�ed by Robinson, which su¤ers from serious small-sample bias.

Instead, they propose to use the �rst-di¤erence �lter, (1 � L); to remove the trend, and

then employ the nonparametric FGN estimator due to Beran (1994) and the Sowell�s (1992)

parametric ML estimator of ARFIMA models to tackle short-memory contamination in the

estimation of d. Using the non-parametric FGN estimator they �nd, in stark contrast to

MZ �s results, that d tends to be either not signi�cantly di¤erent from unity or signi�cantly

above unity for most countries in an extended sample of 25 countries.

To shed light on this controversy, we apply the AEFDF test developed in Section 2.2 to

the logged GDP p.c. of a subset of thirteen of the main OECD countries, listed in Table 3,

where the estimated intercept and its standard deviation in the regression �yt = �+ ut is

reported.6 As can be inspected, the mean (average GDP p.c. growth rate) is always highly

6Maddison�s (2004) dataset has been employed in this case, which adds 9 observations to the data
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signi�cant making it convenient to use a model which allows for a linear trend, as in (4),

as the maintained hypothesis. Indeed, when the ADF and the Phillips-Perron (P-P) unit

root tests (not reported) were computed using a constant and a time trend in the regression

model, the I(1) null hypothesis could not be rejected in most cases. Further, the KPPS test,

which takes I(0) as the null, also yielded rejection in about half of the cases, con�rming the

high persistence of the series. Thus it seems clear that the levels of the series have a linear

trend and that deviations from such a trend are likely to be nonstationary. In addition,

since there were clear signs of autocorrelation in ut; an AEFDF test was applied to the

series. The number of lags of the dependent variable was chosen according to the AIC with

a maximum lag of length k = 5:

[Table 3 about here]

Pre-estimation of d using Shimotsu�s (2006) nonparametric approach allows one to esti-

mate a value of d for each country. Taking into account that the standard error (s.e.) of

this estimator is
p
1=4m with m = T 0:65; with a sample size of T = 134, happens to be

s:e: = 0:102 in all cases. The estimated values of d are always in the non-stationary range.

Notice that for 12 out of the 13 countries the value d = 1 is included in an appropriate

con�dence interval, yielding similar results to those in Silverberg and Verspagen (2001).

Nevertheless, using the AEFDF test with the above-mentioned estimated input value, bd1;
the �rst column of Table 3 shows strong rejections of H0: d = 1 in 6 out of the 13 coun-

tries.7 The intuition for this higher rejection rate is the higher power of the EFDF test

relatively to pure semiparametric tests which yield wider con�dence intervals. Thus, our

results for these countries seem to favor nonstationary, albeit mean-reverting, values of d;

more in line with MZ. As Jones (1995) �rst suggested, this evidence is inconsistent with

endogenous growth theories for which permanent changes in certain policy variables have

permanent e¤ects on the rate of economic growth. We are aware that a de�nitely conclu-

sion on this issue requires a deeper data analysis in at least two directions: (i) Testing long

considered by MZ.
7When the estimated value of d1 was bigger than one, a value of d̂1 = 1 was employed to run the test.
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memory versus structural breaks, and (ii) A panel version of the proposed EFDF test. Both

directions are being under current investigation by the authors (for the former see Dolado,

Gonzalo and Mayoral (2005)).

[Table 4 about here]

5. CONCLUSIONS

This paper has developed simple regression statistics for detecting the presence of a

unit root in time-series data against the alternative of mean-reverting fractional processes

allowing for a wide variety of deterministic terms, �(t); in the DGP by using a Wald test

based on the EFDF testing approach. Three main �ndings have been obtained. First, if

�(t) is slowly evolving trend (including just a constant term), then the EFDF test ignoring

�(t) can be implemented without losing any of its optimal asymptotic properties. Secondly,

if �(t) is a polynomial in t of known order but unknown coe¢ cients, then these properties

remain if one runs the EFDF test on the residuals of the regression of �yt on �(t) under

the null of d = 1. Thirdly, we provide new theoretical results regarding the gains in power,

under �xed alternatives, of applying the EFDF ( and FDF) test instead of conventional LM

tests. An empirical application regarding the issue of whether deviations from a trend of

GDP p.c. in a variety of countries follow an I(1) or a nonstationary, yet mean-reverting, I(d)

process serves to illustrate the usefulness and simplicity of the testing approach proposed

here.

Useful extensions of the present paper�s setup that are under current investigation by

the authors include testing fractional integration versus I(0) allowing for structural breaks

(see Dolado, Gonzalo and Mayoral, 2005), testing for cointegration between two I(d) series

which have a non-zero drift and where a constant term or a linear trend is included in the

regression model and �nally, an extension of this framework to panel data.
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APPENDIX

Proof of Theorem 1

In order to prove part (a); we consider �rst the case where d1 2 (0:5; 1) is a �xed number

and then, the proof is extended to the stochastic case. In the general case where � (t) is

di¤erent from zero, the t-statistic on the coe¢ cient ' from the simple regression of �yt on

zt�1 is given by,

t' (d1; � (t)) =

PT
t=2�ytzt�1(d1)

ŜT (d1)
qPT

t=2 (zt�1 (d1))
; (A1)

where Ŝ2T (d1) = T
�1PT

t=2 (�yt � b'zt�1 (d1))2. We now show that the asymptotic distrib-
ution of (A1) for the case where � (t) satis�es Condition A is the same as in the case where

� (t) � 0: Following the same strategy as LV (2005), we now prove that, for d1 6= 1;

t'ols (d1; � (t))� t'ols (d1; � (t) � 0) = op (1) ;

which implies that the test computed ignoring the fact that the DGP contains slowly evolv-

ing trends has the same asymptotic properties as in the case where � (t) � 0:

As in LV, we just analyze the most critical component of t' (d1; � (t)), which is the

numerator, since the analysis of the denominator is similar but simpler. Under H0; the

numerator of (A1), multiplied by T�1=2 (1� d1)�1 ; is given by,

T�1=2 (1� d1)�1
TX
t=2

�ytzt�1(d1) = T
�1=2

TX
t=2

(�� (t) + "t)
��
�d1 ��

�
� (t) +

�
�d1�1 � 1

�
"t

�

= T�1=2

 
TX
t=2

"t

�
�d1�1 � 1

�
"t +

TX
t=2

�
�� (t) (�d1 ��)� (t)

�
+ (A2)

TX
t=2

�� (t)
�
�d�1 � 1

�
"t +

TX
t=2

"t(�
d1 ��)� (t)

!
: (A3)

We now show that if � (t) = t�; � 2 [0; 0:5) all the terms in (A2) and (A3) but the �rst,�
T�1=2

PT
t=2 "t

�
�d1�1 � 1

�
"t

�
; converge to zero. Any other speci�cation of � (t) satisfying

Condition A can be dealt with analogously.
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To prove this, notice that the terms t� and ���1(t>0) are of the same order of magnitude.

This is because ���1(t>0) =
Pt�1
i=0 �i (��) � c

Pt�1
i=0 i

��1 = O(t�) (see Davidson, 1994,

Theorem 2-27), where c is a constant and the coe¢ cients �i (��) are de�ned at the end of

the Introduction.

The second term in (A2) veri�es that,

T�1=2

 
TX
t=2

�� (t)�d1� (t)�
TX
t=2

(�� (t))2
!

� T�1=2

 
TX
t=2

t2��d1�1 �
TX
t=2

t2(��1)

!
= T�1=2

�
O
�
T 2��d1

�
�O (1)

�
! 0;(A4)

if d1 > 0:5 and � < 0:5:

With respect to the �rst term in (A3),

T�1=2E

 
TX
t=2

�t�
�
�d1�1 � 1

�
"t

!
= 0; (A5)

and

T�1V ar

 
TX
t=2

�t�
�
�d1�1 � 1

�
"t

!
� T�1

�
�2" + �

2
�d�1"

� TX
t=2

t2(��1) ! 0; (A6)

where �2
�d1�1"

denotes the variance of the stationary fractionally integrated process�d1�1"t:

Expressions (A5) and (A6) imply that
PT
t=2�t

�
�
�d1�1 � 1

�
"t

p! 0: The same type of ar-

gument can be used to show that the second term in (A3) also converges to zero. Therefore,

for d1 6= 1; it follows that

(1� d1)�1 T�1=2
TX
t=2

�ytzt�1(d1) = (1� d1)�1 T�1=2
TX
t=2

"t

�
�d1�1 � 1

�
"t + op (1) ; (A7)

which in turn implies that the distribution for the case where the DGP contains slowly

evolving trends is the same as that obtained with � (t) = 0 for the case where d1 is a �xed

number 2 (0:5; 1) : Considering an stochastic input for d1 amounts to show that

t' (d1; � (t))� t'ols
�
d̂1; � (t)

�
= op (1) ;

where d̂1 satis�es the conditions stated in Theorem 1. It is easy to show, following the same

strategy as above, that the last three terms computed with estimated d1 converge to zero.
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Hence, the numerator of t'ols (d1; � (t))� t'ols
�
d̂1; � (t)

�
can be written as

(d1 � 1)�1 T�1=2
 

TX
t=2

"t

�
�d1�1 � 1

�
"t �

TX
t=2

"t

�
�
bd1�1 � 1� "t!+ op (1) ;

and LV (2005, Appendix 1) have shown that the �rst term of this expression also tends to

zero.

The case where d = 1� 
=
p
T can be solved in an analogous fashion, taking into account

the derivations reported in Appendix 1 of LV (2005). Finally, using the results in DGM

and LV, it is straightforward to prove the consistency of the test under �xed alternatives.

Proof of Theorem 2

We start by analyzing the case where the input of zt�1; d1; is �xed. We now show that

under H0 : d = 1; t' (d1; � (t) = 0) � t' (d1; �̂ (t))
p! 0; where in this case t' (d1; �̂ (t)) is

given by,

t' (d1; �̂ (t)) =

PT
t=2

f�ytgzt�1 (d1)
ŜT (d1)

qPT
t=2 (gzt�1 (d1)) ;

where f�yt = (�yt � ��̂ (t)); gzt�1 (d1) = (1� d1)�1
�
�d1�1 � 1

�
(�yt � ��̂ (t)) and

Ŝ2T (d1) = T
�1PT

t=2

�f�yt � '̂gzt�1 (d1)�2 and � (t) satis�es condition B.
For simplicity, we consider the DGP

yt = �+ �t+�
�d"t; d � 1; (A8)

since any other polynomial of t can be handled accordingly. Let �̂ be the OLS estimate of

�; computed after taking �rst di¤erences in (A8). Then, �̂ = �yt; where �yt is the sample

mean of �yt: Notice that under (A8) ; �̂ is a T 3=2�d-consistent estimator of � (see Hosking,

1996). As in Theorem 1, we analyze the numerator of the t-statistic for testing ' = 0 in

(5) since the analysis of the denominator is similar but simpler.

The numerator of t' (d1; �̂ (t)) multiplied by (1� d1) is given by,

T�1=2 (1� d1)
TX
t=2

g�ytgzt�1 = T�1=2 TX
t=2

"t

�
�d1�1 � 1)"t

�
+ T�1=2At;

where

T�1=2At = T
�1=2

�
� � �̂

� X�
�d1�1 � 1)"t

�
+
�
� � �̂

� TX
t=2

� t (d1) +

 
TX
t=2

(� t (d1)� 1)"t

!!
;
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with � t (%) =
Pt�1
i=0 �i (%) and the coe¢ cients �i (%) are de�ned at the end of in the

Introduction. It is easy to check that, under H0,

T�1=2At (d1) = Op
�
T�1

� �
op (T ) +Op

�
T�1=2

�
O
�
T 1�d1

�
+Op

�
T 1=2

��
p! 0:

The same strategy can be used to show that the denominator of t' (d1; �̂ (t)) equals

the denominator of t' (d1; � (t) = 0) plus some terms that go to zero in probability. This

implies that t' (d1; �̂ (t))
w! N (0; 1) : When d1 is replaced by a T��consistent estimator,

with � > 0, if t'ols (d1; �̂ (t)) � t'ols
�
d̂1; �̂ (t)

�
= op (1) ; then the asymptotic distribution

corresponding to t'
�
d̂1; � (t)

�
would be the same as that of t' (d1; � (t)) : Following the

same steps as above, it is straight forward to show that T�1=2At
�
d̂1

�
tends to zero. Then,

the numerator of (1� d1)
�
t' (d1; � (t))� t'

�
d̂1; � (t)

��
can be written as,

(d1 � 1)�1 T�1=2
 

TX
t=2

"t

�
�d1�1 � 1

�
"t �

TX
t=2

"t

�
�
bd1�1 � 1� "t!+ op (1) ;

and LV (2005) have shown that this expression tends to zero. Similar results can be easily

obtained for the denominator. Hence, t'
�
d̂1; �̂ (t)

�
w! N (0; 1) :

Again, the case where d = 1�
=
p
T can be solved in a similar manner, taking into account

the derivations reported in Appendix 1 of LV(2005). Likewise, using the results in DGM

and LV,the proof of the consistency of the test under �xed alternatives is straightforward.�

Proof of Theorem 3

The proof of this theorem can be easily constructed along the lines of Appendix 2 in LV

(2005) and Theorems 1 and 2 above and, therefore, is omitted.�

Proof of Theorem 4

Under the alternative hypothesis of �dyt = "t with "t � i:i:d:(0; �2), the t'(d) statistic

associated to the coe¢ cient of zt�1(d); in the regression of �yt on zt�1(d) can be written

as,

T�1=2t'(d) =

P
�ytzt�1(d)=T��P

(�yt � b'zt�1(d))2 =T� �P z2t�1(d)=T
��1=2 :
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Using the results collected in Baillie (1996) stating that, if �byt = "t with b > �1;

then the variance (
0) and the autocorrelation of order j (�j) of yt satisfy 
0 = �2�(1 �

2b)=�2(1�b) and �j = [� (j + b) �(1�b)= (� (j � b+ 1)�(b))]; which for large values of j can

be approximated by [�(1�b)=�(b)]j2b�1: In the previous case, where �yt � I (d� 1) (hence

b = d� 1); it is easy to check that the numerator of T�1=2 t'(d) converges in probability to

P
�ytzt�1(d)

T
=

P
(�1�d"t)("t ��1�d"t)

(1� d)T
p! �2

1� d [1�
�(3� 2d)
�2(2� d) ];

whereas the two terms in the denominator converge to

P
z2t�1(d)

T
=

P
("t ��1�d"t)2
(1� d)2T

p! �2

(1� d)2 [
�(3� 2d)
�2(2� d) � 1];

and

P
(�yt � b'zt�1(d))2

T

p! �2:

Replacing the previous limits in the expression for T�1=2t'(d) yields

T�1=2t'(d)
p! �

�
�(3� 2d)
�2(2� d) � 1

�1=2
= cEFDF (d).

Likewise, the FDF test is based on the t-ratio

T�1=2t�(d) =

P
�yt�

dyt�1=T��P�
�yt � b��dyt�1�2 =T� (P(�dyt�1)2=T�1=2 :

By the LLN, the numerator tends to (d� 1)�2: With respect to the denominator, we

have that T�1
P
(�yt)

2 p! �2�(3 � 2d)= (�(2� d))2 and �̂ p! (d� 1) : Combining these

results, yields

T�1=2t�̂(d)
p! (d� 1)�(2� d)
[�(3� 2d)� (d� 1)2�2(2� d)]1=2

= cEFDF (d).

Finally, by the LLN the LM test de�ned in (10) ; multiplied by T�1=2; satis�es that,

T�1=2LMT
p!
r
6

�2

T�1X
k=1

1

k
�k;
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where �k is the (population) correlation function of a pure I (d� 1) process. Using the

formula of the autocorrelations given above, yields

T�1=2LMT
p!
r
6

�2
�(2� d)
�(d� 1)

1X
j=1

� (j + d� 1)
j� (j � d+ 2) = cLM (d):�
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TABLES

TABLE 1

Size and Power of EFDF and LM tests, 5% Level, Local Alternatives

DGP: yt = �+ �t+��d"t; d = 1� 
=
p
T ; � = 1; "t � N(0; 1)

EFDF� (� = 0) EFDF� (� = 1) LM� (� = 0) LM� (� = 1)


= T 25 50 100 400 25 50 100 400 25 50 100 400 25 50 100 400

0 0.07 0.06 0.06 0.05 0.08 0.08 0.08 0.07 0.03 0.03 0.04 0.06 0.03 0.03 0.04 0.06

0.5 0.14 0.16 0.16 0.16 0.17 0.22 0.33 0.24 0.03 0.07 0.11 0.14 0.04 0.07 0.11 0.14

1 0.27 0.32 0.35 0.36 0.22 0.33 0.49 0.44 0.05 0.163 0.24 0.32 0.05 0.14 0.21 0.29

2 0.62 0.78 0.79 0.81 0.39 0.57 0.84 0.86 0.17 0.426 0.62 0.76 0.15 0.37 0.54 0.67

5 0.80 0.98 0.99 1.00 0.65 0.86 1.00 1.00 0.73 0.98 0.99 1.00 0.73 0.98 0.99 1.00

TABLE 2

Size and Power(�) of AEFDF and LM Tests, 5% Level

DGP: yt = �+ �t+��d�t= (1� �L) ; d = 1� 
=
p
T ; � = 0:6; � = 1; "t � N(0; 1)

EFDF� (� = 0) EFDF� (� = 1) LM� (� = 0) LM� (� = 1)


= T 100 400 100 400 100 400 100 400

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.5 0.07 0.07 0.07 0.06 0.06 0.05 0.05 0.06

1 0.09 0.10 0.09 0.09 0.06 0.06 0.05 0.07

2 0.13 0.20 0.12 0.18 0.08 0.13 0.06 0.13

5 0.44 0.61 0.43 0.50 0.43 0.49 0.26 0.40

(�) Size-adjusted power.
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TABLE 3

Estimates of b� and robust s.e(c�) in �yt = �+ ut
Country Mean Robust s.e.

Australia 0.0148 0.004

Belgium 0.015 0.005

Canada 0.0195 0.005

Denmark 0.0184 0.008

France 0.0185 0.006

Germany 0.0176 0.007

Italy 0.0192 0.006

Netherlands 0.0154 0.006

Norway 0.022 0.06

UK 0.0143 0.003

USA 0.0186 0.005

Spain 0.0199 0.005

Sweden 0.0193 0.005
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TABLE 4

AEFDF Test

H0 : I(1) vs: HA: d < 1

Country t'(bd1) bd1 (s:e: = 0:10)
Australia -1.02 1.10

Belgium -0.74 0.98

Canada -2.58� 0.80

Denmark -0.72 0.99

France -1.82� 1.08

Germany -1.94� 0.83

Italy -0.18 0.98

Netherlands -1.67� 0.92

Norway -1.03 0.98

UK -1.94� 0.87

USA -3.50� 0.63

Spain -0.17 1.18

Sweden -0.07 1.12

Note.- (�) denotes 5%-rejection.
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