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Sabine Schnabel, Kamil Sienkiewicz, Tiziana Torri, Harald Wilkoszewski and Sabine Zinn. I
would like to share my pride with all of them.

Most important, I am extremely grateful to my mother and father. Their unreserved love
and support for these years far from their home is what makes this dissertation valuable. I also
wish to express my deepest appreciation to my brother Francesco, to my sisters, Lucia Chiara,
Pamela, Luana and Giulia, and to il piccolo Antonio. Despite the actual distance, I have always
felt them next to me. Moreover, I cannot forget to thank all my friends and relatives in Italy.

Finally, I would like to gratefully thank Tiziana for her forbearance and unselfish backup,
and for being always close to me whilst I have spent the last years on this dissertation.

i



ii



Resumen

La mortalidad, entendida como el riesgo de muerte, cambia con la edad, y además presenta cambios
sistemticos con el tiempo, al menos durante los últimos 150 años. Comprender la dinámica de la
mortalidad con respecto a la edad y al tiempo es un aspecto esencial de la demograf́ıa, ya que
estos factores son las fuerzas que rigen los cambios en las problaciones. El continuo descenso de la
mortalidad, y por lo tanto, el aumento de la longevidad, tiene importantes consecuencias, tanto
para el individuo, como para la sociedad en su conjunto.

En el primer caṕıtulo de esta tesis, se hace una revisión de los modelos clásicos que han venido
siendo utilizados con el objetivo de capturar los cambios en mortalidad. Estos modelos abarcan
desde las distribuciones paramétricas clásicas de Gomperz y Makeman, que sólo estudian los
cambios en mortalidad de edades adultas, hasta los modelos de edad-periodo-cohorte, que sufren
de problemas de identificabilidad. Como alternativa, el modelo bilineal introducido por Lee y
Carter es considerado como el modelo estándar con el que nuevos modelos han de ser comparados.

El punto de partida de esta tesis son lo métodos de suavizado bidimensionales para datos
de conteo que siguen una distrbución de Poisson, en concreto, los splines con penalizaciones o P -
splines que se presentan en el segundo caṕıtulo. En el caso unidimensional, este enfoque combina
un número apropiado de bases de B-splines con una penalización sobre los coeficientes. Por un
lado, los B-splines proporcionan la suficiente flexibilidad para capturar las tendencias presentes en
los datos; y por otro, la penalización, aplicada sobre los coeficientes vecinos, aseguran la suavidad
y reducen el número de parámetros, además de evitar los problemas de selección de número de
nodos y el uso del método de backfitting. Los P -splines pueden entenderse como una genaralización
de los modelos de regresión, en la que los B-splines actúan como regresores. El método de mı́nimos
cuadrados (en el caso de datos normales), o el IRLS (iteratively reweighted least-squares para el
caso generalizado) han sido modificados e incluyen la penalización controlada por un parámetro,
el parámetro de suavizado. La penalización utilizada, está basada en una matriz de diferencias
de order d (en general, d = 2), y fijado el parámetro de suavizado, los parámetros de regresión se
estiman de modo sencillo, de forma simular al modelo clásico de regresión. En este mismo caṕıtulo
se muestra el cálculo de los errores estándar y los residuos asociados modelos de P -splines y se
hace una revisión de los residuos más utilizados en el caso de datos de Poisson. Se propone el uso
de los mapas de contorno de los residuos con respecto a la edad y año de muerte para localizar
las zonas en las que los modelos utilizados no son capaces de capturar las tendencias, y poder aśı
detectar aspectos demográficos interesantes. Mediante el uso de estas técnicas se ha demostrado
que los P -splines capturan las tendencias de mortalidad de forma más propiada que los modelos
de Lee-Carter, a pesar de que el número de parámetros utilizados en los modelos de P -splines es
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muy inferior al utilizado por estos últimos.
El hecho de que el tamaño de las muestras con las que se trabaja sea grande, afecta de

forma significativa a la inferencia, los intervalos de confianza son muy estrechos, y las medidas
de bondad de ajuste usuales no aportan ninguna información, y por lo tanto, no son capaces de
discriminar entre modelos de distinta complejidad. En el tercer caṕıtulo de la tesis se proponen
medias alternativas de bondad de ajuste. Primero se adaptan las medidas existentes, como el
R2 en el caso Normal, al caso de datos provenientes de familias exponenciales. La reducción
proporcional de la incertidumbre debida a la inclusión de nuevos regresores en el modelo está
basada en la divergencia de Kullback-Leibler. Además, se proponen medidas del tipo R2 en el
contexto de los P -splines, en concreto, se utiliza la relación entre el número de parámetros de
un modelo y su dimensión efectiva para derivar una medida R2 para modelos de suavizado. La
idea básica ha sido considerar un modelo distinto bajo la hipótesis nula, que sea más apropiado
para el caso de datos de mortalidad. Este modelo, es lineal o bilineal para el caso de datos
unidimensionales y bidimensionales respectivamente. Se ha demostrado que el modelo bilineal
está anidado en un modelo de P -splines, aśı como en un modelo de Lee-Carter, esta demostración
está basada en la representación de los P -splines como modelos mixtos, y en el hecho de que la
parte fija del modelo, corresponde con un modelos lineal o bilineal. Además se ha estudiado la
relación entre esta nueva medida de bondad de ajuste y los métodos anteriormente mencionados
(AIC, BIC), probándose que es muy similar al AIC. El comportamiento de esta medida ha sido
evaluado mediante un ejercicio de simulación y con el anásis de datos procedentes del Human
Mortality Database (HMD), en ambos casos, los modelos de P -splines dieron un mejor ajuste de
los datos que los modelos de Lee-Carter.

En el cuarto caṕıtulo se aborda un problema recurrente cuando se trabaja con datos históricos
de mortalidad, o con páıses donde se recogen pocos datos, es la preferencia por d́ıgitos, es decir,
la tendencia a redondear números en torno a ciertos d́ıgitos, en particular, en la distribución de
muertes por edad aparecen picos en números que terminan en 0 (a veces en 5). Para solucionar
este problema se ha propuesto un modelo que combina los conceptos de verosimilitud penalizada
con el de modelos con función enlace compuesta: composite link models. Estos modelos permiten
describir el modo en que la distribución latente de muertes por edad se mezcla con la preferencia
de d́ıgitos, mediante la redistribución de ciertos datos en torno a las edades preferidas, de modo
que la distribución que se obtiene es preciamente la observada. La única restricción impuesta
a la distribución latente es que sea suave, y se impone mediante una penalización similar a la
utilizada en el caso de los P -splines. La estimación del modelo se ha llevade a cabo mediante una
generalización del algoritmo IRLS, que incluye la matriz en la que se representan las probabilidades
de redistribución. Estos modelos se han generalizado al caso en el que la preferencia puede aparecer
entre d́ıgitos que son vecinos, de modo que la tendencia a redondear no tiene por qué ser la
misma para d́ıgitos que terminan en un mismo número, sino que puede variar con la edad, como
ocurre frecuentemente en datos demográficos. Las aplicaciones con datos simulados y datos reales
han demostrado que este nuevo enfoque proporciona resultados excepcionales (Camarda, Eilers y
Gampe (2008b)).

La reducción de la mortalidad a lo largo del tiempo puede considerarse como ganancia en
esperanza de vida. Las muertes que ocurŕıan hace tiempo a edades tempranas, ocurren ahora
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mucho más tarde. Esta manera de describir la mejora en mortalidad se ocupa de la distribución
de la edad de muerte (la densidad) en vez del riesgo. El caṕıtulo quinto de esta tesis está dedicado
al desarrollo de métodos que permitar encontrar una transformación del eje de la edad para
transformar una distribución de muerte por edad en otra. Nuevamente, estos métodos se han
basado en la hipótesis de suavidad de esta transformación. Se ha considerado una transformación
no-lineal mediante un modelo que utiliza la idea de suavizado y deformación del eje de la edad, esto
modelos han sido llamados: Warped Failure Time model (WaFT). La metodoloǵıa propuesta se
basa en la elección de una distribución objetivo que se supone fija, y se busca una transformación
tal que, una vez transformado el eje de la edad, la densidad de la distribuci ón observada se
corresponde con la distribución objetivo. Se ha demostrado que el uso de los P -splines para
representar la transformación permite controlar la suavidad de la misma de forma satisfactoria.
Esta metodoloǵıa ha sido extendida al caso en el que la distribución objetivo es desconocida, siendo
estimada también mediante métodos de regresión no paramétrica. Los estudios de simulación han
probado que los modelos WaFT pueden capturar transformaciones no-lineales, y el análisis de
datos reales ha puesto de manifiesto que este tipo de modelos son necesarios, ya que una simple
transformación lineal no es satisfactoria.

En resumen, esta tesis ha demostrado la utilidad de los métodos de suavizado, en particular
de los P -splines, para el análisis de varios aspectos de relacionados con la mortalidad. Se ha
propuesto una nueva medida de la variabilidad explicada para comparar distintos modelos en el
caso de superficies de mortalidad, y se han desarrollado dos nuevos modelos: uno cuyo objetivo es
salvar los problemas de preferencia de d́ıgitos que pueden aparecer cuando se cuantifica el número
de muertes a una cierta edad; y otro que ofrece un modo alternativo de explorar los cambios en
la mortalidad centrándose en la ganancia (o pérdida) en esperanza de vida, como altrenativa al
estudio del riesgo. Ambos modelos pueden ser utilizados de forma inmediata en otros contextos.
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Preface

Populations change through three processes: mortality, fertility, and migration. Changes in mor-
tality contribute considerably to population dynamics and variation in the levels of mortality lead
to changes in the age distribution of the population. This has repercussions on almost all areas of
a society, including its health-care system, health and life insurance, as well as pension schemes.
The consequences of such transformations are also experienced on the more individual level such
as changing kinship sizes, marriage squeezes, the value of children, genetic disease, family living
arrangements and women’s status.

Demographic research investigates levels and trends of mortality, fertility and migration pro-
cesses and develops numerous techniques to measure and analyze them (Keyfitz and Caswell,
2005). While medical and epidemiological research usually deals with samples of moderate sizes,
including quite detailed information on the individual level, demographic studies often use data
on whole populations, or large subgroups within populations, with only a few, if any, additional
covariates available. Hence demographic mortality studies are often performed on an aggregate
level of analysis.

During the last decades, statistical perspective on demographic and mortality developments
has received increased attention. This interest has lead to statistical techniques for modeling the
data generation process that gave rise to demographic observations. Along this line of research,
this dissertation attempts to further bridge the gap between demography and statistics, proposing
novel statistical methods for investigating mortality processes on an aggregate level. The focus
is on smoothing methods, in particular with regard to appropriate measures of fit for large sam-
ples, models based on transforming age-at-death distributions, and modeling digit preferences via
smooth latent distributions.

The first chapter reviews traditional and well-established models in mortality analysis. First,
source and structure of the mortality data used in this dissertation are introduced. The Lexis
diagram is presented as a standard tool for summarizing demographic data. The fundamental
Poisson assumption for the total number of deaths over a specified age- and year-interval will
be introduced. Over the last two centuries, researchers aimed at reducing the dimensionality
of the data to a smaller number of parameters by directly modeling some of the systematic
patterns demographers have uncovered. Simple models for portraying mortality over age, and
more sophisticated approaches for modeling mortality over both age and times will be reviewed
in detail toward the end of the chapter.

Overparameterization is a typical feature in recent demographic models. The use of such an
amount of parameters may often seem unnecessary. Therefore, smoothing approaches are a natural
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alternative to analyzing mortality over age and time. Chapter 2 introduces smoothing methods in
a demographic context. Among different methods, the so-called P -splines are particularly suitable
for two-dimensional regression contexts. Introduced by Eilers and Marx (1996), this approach is
well-established as a means of smoothing Poisson data such as death counts. The chapter gives a
detailed introduction in both one- and two-dimensional settings. Particular emphasis is given to
residual analysis and measurement of the variability for P -splines in a demographic context.

Mortality data on an aggregate level are characterized by (very) large sample sizes. For
this reason, uninformative outcomes are evident in common goodness-of-fit measures. Following
a review of the common measures of goodness-of-fit, Chapter 3 proposes a new measure that
allows comparison of different mortality models even for large sample sizes. Particularly, we will
propose a new measure which uses a null model specifically designed for mortality data. Several
simulation studies and actual applications will demonstrate the performances of this new measure
with special emphasis on previously introduced demographic models and P -spline approach.

The mentioned Poisson assumption can be relatively strong in demographic data and, in pe-
culiar situations, the presence of overdispersion cannot be neglected. Digit preference, a tendency
to round counts to pleasant digits, is a typical source of overdispersion for mortality data. Chap-
ter 4 presents a new approach for dealing with this issue. In the last part of the chapter, we will
propose a generalization of the original model which allows more general patterns of misreporting.
Simulation studies and actual applications will be used to test both the original and the extended
version of the model.

In Chapter 5, we consider a new approach to analyzing mortality data in a different way. This
model operates directly on the probability density function of the life-times instead of the more
common consideration of the hazard function. It can be considered an extension of the accelerated
failure time model for comparison of density functions. With this model, one can study how the
time-axis would have to be transformed so that one age-at death distribution conforms to another.
Smoothing methodologies are employed for describing and estimating the transformation function.
Simulated and actual examples illustrate the performances of this model, which allows alternative
interpretations of observed mortality development over time.

A brief critical discussion of the various methods and models proposed in the dissertation is
given in the final Chapter 6.
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Chapter 1

Mortality data and models

Data collections for analyzing mortality have a longer history and are more developed than those
for analyzing other demographic questions such as fertility and migration. On the other hand,
relatively simple mathematical methods have traditionally been used to assess mortality trends.
Classical demographic methods are inclined to stay very close to the data, which permit scholars
to gain a detailed understanding of the data’s strengths, weaknesses, and features. Moreover,
demographers often treat data as fixed implicitly rather than as a realization of a stochastic
process and methods have typically been based on the measurements of demographic rates by
age and sex. Summary measures, such as life expectancy, can then be computed and evaluated.
Classic methods from matrix algebra and differential and integral equations are also used to
explain implications of the current mortality conditions into the future (Caswell, 2001; Keyfitz
and Caswell, 2005). This chapter is primarily concerned with the basic data, measures and models
used in demographic analysis of mortality development.

Specifically, Section 1.1 presents source and structure of the mortality data used in this study.
Assumptions required for further modeling are in Section 1.2. Particular emphasis is given on the
Poisson approximation of the death counts. Mortality data are largely informative when they are
properly displayed and Section 1.3 presents the notion of mortality surface as a suitable tool for
portraying mortality data. Demographic models for describing mortality over ages are illustrated
in Section 1.4. Then Section 1.5 is devoted to approaches for modeling mortality over age and
time with emphasis to the standard Lee-Carter model (Lee and Carter, 1992). Concerns about the
over-parameterization of the common demographic models are considered in Section 1.6, leading
to the non-parametric approach, which is more fully discussed in Chapter 2.

1.1 Data: sources and structure

To perform mortality research one needs access to accurate and reliable data that cover a long
enough period so that trends in mortality can be identified and analyzed further. For comparative
studies, this information has to be available for several countries or sub-groups. Human mortality
can be defined also as risk of death and it changes with age. Moreover, mortality differs between
males and females. The minimally required set of information to analyze mortality trends on a
national level would be the number of individuals alive and deceased at all ages over a range of
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2 1. Mortality data and models

years. Data separated for females and males would allow analysis by sex. Such data are nowadays
routinely collected in most developed countries. Censuses, official vital statistics or population
registers are the sources of such population data. However, continuous collection and updating of
data from the official vital statistics for several countries may be very time-consuming and costly.
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Figure 1.1: Schematic Lexis diagrams. Left panel: Lexis diagram containing life-times for birth
cohorts of t − 1 and t. Each individual is presented as a line in a time-age plane and red points
depict the death for a given individual. Right panel: Lexis diagram containing counts of events
pertaining to birth cohorts of t− 1 and t.

To facilitate the investigation of human mortality, an international project, the Human Mor-
tality Database (HMD), was recently initiated by the Department of Demography at the University
of California Berkeley, USA, and the Max Planck Institute for Demographic Research, Rostock,
Germany. This project provides detailed mortality and population data which can be accessed
online and may be used freely for research purposes (Human Mortality Database, 2008).

Currently the HMD provides information on 34 countries1. For each country (or region), the
HMD offers basic quantities in mortality studies, namely: the deceased and survivors by sex, age,
year of death, and birth cohort. Though the age range covered is the same in all countries (from
age 0 to 110+), the range of years covered differs from country to country. The longest series is
provided for Sweden (1751–2006), whereas other countries have data from the nineteenth century
(the other Scandinavian countries, Belgium, England, France, Italy, Netherlands, New Zealand
and Switzerland). For some European countries, Japan, Australia, Canada, Taiwan and the USA,
the series of data first start in the twentieth century (Human Mortality Database, 2008).

A standard tool for summarizing such data is the Lexis diagram (Lexis, 1875). In this diagram
an individual life history is drawn as a line segment with slope 1. This line starts on the horizontal
axis at the time of birth and ends at time of death. The value on the vertical axis is the individual’s
age. Hence a life-line starts at zero (birth) and ends at the age at death. In this way data are
properly represented according to the three demographic coordinates: the time of death (period),

1For some countries, information is only available for some region, e.g. England and Wales.
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the age at death, and the time of birth (cohort) of the deceased. Figure 1.1, left panel, shows a
simplified example of the Lexis diagram. The individual life-lines can be grouped and hence the
Lexis diagram also allows a systematic summary of aggregated death and population data by age,
period and cohort. For instance, in Figure 1.1 (right panel), from the birth cohort of six births
during period t: (1) death in t and five survivors to the beginning of the following period t + 1;
(2) deaths at age 0 in t + 1 and three survivors to age 1; (1) death to the cohort at age 1 during
t + 1 and two survivors to the beginning of the period t + 2.

1.2 Measures of mortality

Studying mortality data can be easily viewed as analysis of time to event data. The variable of
interest is the life-span of an individual. We define X as the nonnegative and continuous random
variable describing time from birth of an individual until death. Three functions characterize and
describe the distribution of X: the probability density function, the survival function, and the
hazard rate. If one of these functions is known, the other two can be uniquely determined.

The basic quantity to describe time-to-death distribution is the survival function, which is
defined as the probability of an individual surviving beyond age x: S(x) = Pr(X > x). The
survival function is the complement of the cumulative distribution function, that is, S(x) =
1−F (x). Moreover, the survival function is the integral of the probability density function, f(x),
from x to infinity:

S(x) = Pr(X > x) =
∫ ∞

x
f(t) dt

Thus, f(x) = −S′(x). Another fundamental quantity is the hazard function, also known as force
of mortality in demography. It describes the instantaneous rate of death at age x, given survival
until x. In formula:

h(x) = lim
∆x→0

Pr(x < X ≤ x + ∆x|X > x)
∆x

=
f(x)
S(x)

= −d lnS(x)
d x

An identity that relates survival function and hazard is given by

S(x) = exp
{
−

∫ x

0
h(u) du

}
= exp {−H(x)} .

The function H(x) =
∫ x
0 h(u) du is called cumulative hazard function.

In practice, we may not observe the individual’s full life-times. This can be the case if the
survival time exceeds a certain value due to termination of the study, i.e. mortality data are
available until a certain year. Such pattern of observations is called right-censoring. On the other
hand, some individuals are actually not included in the study since they die before the beginning of
the study, which is called left truncation. Many other and more complicated forms of incomplete
observations are possible as well. For more details, see Klein and Moeschberger (2003, ch. 3).

When using aggregate data as provided by the HMD, we do not have precise individual
information, but data are grouped into intervals, usually of length one year (cf. Figure 1.1, right
panel), which could be viewed as a data set with censored individual information only.
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1.2.1 Empirical death rates

To analyze mortality data, we have to make assumptions about the distribution of the random
variable X and how it varies across individuals. The simplest assumption is that all individuals in
one birth-cohort live their lives according to the same life-span distribution, hence, ignoring other
sources of heterogeneity.

The choice of the distribution is commonly based on the hazard rate. Demography usually
enjoys a wealth of data, hence, parsimonity is not a virtue in this field.

As human mortality, when considered over the full age-range, has a complicated pattern,
the traditional assumption is that the hazard is constant over each one-year age-interval. It
is, however, different between ages. This “piece-wise constant” assumption is the basis for the
calculation of empirical death rates.

Constant hazards correspond to the assumption that X, conditionally on survival until the
beginning of an age-interval, follows an exponential distribution with parameter h. The life-
spans Xi of n individuals are independent and identically distributed (i.i.d.), i.e., Xi ∼ Exp(h),
i = 1, . . . , n. The maximum likelihood estimate (MLE) of the (constant) parameter h is given by

ĥ =
Y

L + C
, (1.1)

where Y denotes the number of deaths that were observed during the interval, L is the total
amount of time lived by those whose deaths were observed, and C is the total amount of time
lived by those who were censored, i.e. survived beyond the end of the interval considered (Alho
and Spencer, 2005, ch. 4).

The numerator of equation (1.1) corresponds, precisely, to the data collected from the squares
of the Lexis diagram (e.g. ABCD in Figure 1.1). Individuals spend varying times in any given
square based on the time of the year they were born. This leads to fixed right and left censoring.
Therefore, the exponential model provides a full estimation theory square by square, if the hazard
is assumed to be constant in each square.

The denominator in (1.1) usually cannot be recovered exactly from aggregate data. In large
populations, the person years lived during a year are typically approximated by the average of the
population sizes in the beginning and at the end of the year. Of specific interest is the population
in age x during t. In Figure 1.1, let PAD and PBC be the number of life-lines crossing segments
AD and BC, respectively. Let YABCD denote the number of deaths in the square ABCD. Then
equation (1.1) is approximately YABCD/{(PAD + PBC)/2}. In general at age i, during year j we
define as death rate the following ratio

mij =
Yij

Eij
(1.2)

where Eij are the number of person-years aged i years during the year j and Yij are the number of
deaths that occurred during the year j and attained age i. That is, we can define the death rate
as the MLE of the hazard rate if the true hazard is constant within the time interval. Obviously,
this assumption does not hold when intervals over age and/or time are too long.

The assumption of a constant hazard over short time intervals implies that the total number
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of deaths over a specified age- and year-interval, Yij , is a Poisson distribution with mean mij ·Eij

Yij ∼ Poisson(Eij ·mij) (1.3)

and thus the model based on this assumption is, therefore, often called Poisson (regression) models
(Keiding, 1990).
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Figure 1.2: Deaths, exposures and death rates (logarithmic scale). Ages from 0 to 100. Denmark,
females, 2006. Source: HMD.

1.3 Portraying mortality

Although density, survival function, and hazard all describe the same stochastic phenomenon, the
force of mortality is more often used to portray mortality. The main reason is that the hazard
more easily allows for capturing the change of the risk of death over age, due to its conditioning
on the survivors to this particular age. It requires a lot of experience to read this information
from the survival function. Therefore, empirical death rates over age and time are commonly used
to describe mortality development over age and time.

Alternatively, pure death counts are also used, though in one calendar year they do not only
reflect the effect of mortality, but also the size of the corresponding birth cohorts. Figure 1.2
presents death counts Yij and exposures Eij , as well as the empirical death rates on logarithmic
scale for the Danish females population for the year j = 2006 and for ages i = 0, . . . 100. It is
clear how both exposures and pure death counts are affected also by the previous cohort sizes.

When age-at-death distributions and estimates of the survival function in a calendar year
are necessary for specific studies, the so-called period life-table approach is used for adjusting
size of the birth cohorts (Keyfitz and Caswell, 2005). The hypothetical age-at-death distribution
is calculated from the age-specific empirical death rates in one calendar year, which are derived
from different birth cohorts. In this way, information on current mortality is summarized in a
frequency distribution that would arise if a synthetic cohort was submitted to current death rates.
A number of statistics can be derived, including the proportion of the synthetic cohort still alive
and remaining life expectancy for people at different ages.

Furthermore, in what follows, empirical death rates over age and time can be used to portray
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mortality change. In fixing a particular year, we can compute one death rate for each age. For
a given age, there is one death rate for each year. For ease of manipulation and presentation,
data are prepared as rectangular arrays. Given a population, for each calendar year and each age,
we have the number of deaths and the number of exposures, as in equation (1.2). Deaths and
exposures are arranged in m× n matrices Y and E, respectively, whose rows are indexed by age
and whose columns are indexed by year. Therefore, the matrix of empirical death rates is defined
as M = Y /E.

Population and mortality dynamics essentially develop over both period and ages. Arthur
and Vaupel (1984) introduced the name “Lexis surface” to refer to the surface of demographic
rates defined over age and time. In particular, in this thesis we work on death rates, hence we
will refer to M as mortality surface (Vaupel et al., 1986).

Shaded contour maps permit visualization of mortality surfaces and offer a more comprehen-
sive and more informative view than do graphs of death rates at selected ages over time or selected
times over ages only. Figure 1.3 and 1.4 show the dynamics of the death rates, on logarithmic
scale for the Danish female population from 1900 to 2006 and from age 0 to 100. The complete-
ness of a shaded contour map for mortality surface in Figure 1.4 is evident in comparison to the
information given by the unidimensional plots on Figure 1.3.

The basic information in the death rates and the related hazard function is, first of all, its
qualitative behavior. As we see in Figure 1.3 (left panel) and 1.4, there is a general pattern in
the human mortality over ages. During the infant ages, hazard functions are steeply decreased,
dropping rapidly within the first years. A minimum is commonly reached at about ages 10–15.
Afterward, especially for men, hazard rates show a hump at young-adult ages (usually called an
accident-hump due to the main cause of death at those ages). Hazard rates then rise exponentially
after approximately age 30 and a level off at ages above 80 (Preston, 1976; Thatcher et al., 1998;
Vaupel, 1997). This type of hazard is similar to what in reliability engineering is often called
“bath-tub shaped”.

Qualitative considerations can be also given regarding the developments of mortality over
time. For instance, in the last century, Figure 1.3 shows an overall decrease in mortality for the
Danish female population, though of different pace for different ages.

Focusing on methodological aspects of the analysis of mortality developments, the choice of a
certain population does not play a central role in this thesis. As mentioned, the Human Mortality
Database (2008) offers numerous options and throughout this thesis we mainly deal with Danish
females.

Data from the Human Mortality Database (2008) are sometimes estimates derived from ag-
gregate data (e.g. five-year age groups, open age intervals such as 90+) and require various ad-
justments before being inserted into the database. Unlike other countries, Denmark presents
outstanding data regarding quality: death counts and population have been accurately collected
over single age and time intervals since 1916 and 1906, respectively. Prior corrections have thus
not been carried out by the Human Mortality Database (2008) over these ages and years. More-
over, Denmark is a relatively small country2 and therefore may show more variability in mortality

2The total population of Denmark in 2006 is 5,447,084 inhabitants, 2,750,422 females and 2,696,662 males.
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due to smaller sample size.
Furthermore, in the following, we will largely focus on mortality changes over age 10 and

after year 1930. Specifically, infant mortality presents features which would require particular
methodology which exceed the scope of this thesis. In this direction, Krivobokova et al. (2006)
suggested spatially-adaptive smoothing methodology and further investigation in this direction
may shed some light in coping with such a steep decrease in infant mortality. The choice of
1930 aims at avoiding the presence of the abnormally high mortality during the Spanish Flu
epidemic (Taubenberger and Morens, 2006). Moreover, the Danish population, especially women,
was only partially affected by World War II. Again in a smoothing context, Kirkby and Currie
(2007) have already proposed a model which successfully deals with period shocks such as wars,
flu epidemics, hot summers or cold winters. These deviations from the smooth mortality surface
can disproportionately affect the mortality of certain age groups in particular years. No attempt
has been made here to further develop the analysis of such deviations.

Nevertheless, most of the presented methods which will be introduced in the following chapters
can be extended to the Danish population as a whole, and for a longer series, as well as for other
populations in the Human Mortality Database (2008). Interpretation of outcomes would require
further care and considerations, which goes beyond our aims.

1.4 Mortality models over age

Although disaggregation over age and time of the mortality data provides a first impression of the
phenomenon, a large set of numbers is cumbersome. Demographers have, thus, searched for more
parsimonious representation of the variation of mortality over age and time.

A first systematic attempt in modeling hazard rates over age was done by Gompertz (1825).
He observed that after a certain age, a “law of geometric progression pervades, in an approximate
degree, large portions of different tables of mortality” (Gompertz, 1825, p. 514). Studying actuarial
mortality tables, Gompertz discovered that in the age window of about 30–80 years, death rates
increase exponentially with age (see Figure 1.3, left panel). Therefore, he suggested representing
the hazard rates as

h(x) = a · eb·x, (1.4)

with parameters a > 0 and b > 0. The law has been applied in many countries during the last
180 years. It is a recurring pattern. Commonly, a represents the mortality at time zero (usually
age 30) and b is the rate of increase of mortality and is frequently used as a measure of the rate
of aging.

Using formulas in Section 1.2, we can derive the probability density function for the Gompertz
distribution:

f(x) = aebx exp
[a

b
(1− ebx)

]
. (1.5)

Makeham (1860) extended Gompertz’ equation by adding a constant, an age-independent
term, c > 0, to account for risks of death that do not depend on age:

h(x) = c + a · eb·x. (1.6)
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Also, in this case the probability density function can be derived:

f(x) = aebx exp
[
−c x +

a

b
(1− ebx)

]
.

Both Gompertz’ and Makeham’s model only intend to represent mortality at adult ages.
Successive attempts have tried to capture other three peculiarities of the human mortality over

the age range, which can be seen in Figure 1.3 (left panel) and already mentioned in Section 1.3:
a high value of the infant death rates (age 0), dropping rapidly within the first years, a hump at
young-adult ages, and a leveling-off for ages above 80.

Logistic models have been proposed to portray this last feature in human mortality. Perks
(1932) was the first to proposed a logistic modification of the Gompertz-Makeham models. A
logistic function to model the late-life mortality deceleration can be given by

h(x) = c +
a ebx

1 + α ebx
.

We can see that this includes Makeham’s law as the special case when α = 0. A similar logistic
model has been proposed by Thatcher (1999).

Heligman and Pollard (1980) derived a descriptive model, covering the whole age range:

h(x) = A(x+B)C
+ De−E(ln x−ln F )2 +

GHx

1 + GHx

where A,B, . . . , H are the parameters in the model. It is easy to see that such parameterization
can cause difficulties in the estimation procedure. Moreover, it would be hard to disentangle the
physical meaning of each parameter.

A three-component, competing-risk mortality model, developed for animal survival data, has
been proposed by Siler (1983). This model aims at portraying the whole of the age range with
five parameters. On the other hand, Anson (1988) proposed a fifth degree polynomial to represent
the hazard rate for humans. The Weibull (1951) model has been applied in a mortality context,
though it was developed for the failure of technical systems due to wear and tear. A comprehensive
review of the models for human population over ages has been provided by Gavrilov and Gavrilova
(1991). For more information from an actuarial perspective see, Forfar et al. (1988).

1.5 Mortality models over age and over time

The models presented so far only capture the change of the hazard of death over age. To model
how death rates change over time, possibly allowing different trends at different ages, several
approaches have been used. We describe some of them in this section.

1.5.1 Relational models

Relational models use a tabulated “standard” mortality function and a mathematical rule for
relating this standard to mortality in different populations, or within the same population at
a different point in time. The standard mortality captures the complexity of age patterns of
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mortality, while the model parameters describe deviations from the standard.
Using once again a parametric approach, this class of models finds a way to explore mortality

in both age and time directions. Brass (1971), who was among the first to suggest this approach,
used a logit transformation of the probability of surviving. Transformed, these probabilities,
from both standard and actual population, are then related via a simple regression function.
Specifically, let S1(x) and S2(x) be the estimates of survival function of two different populations.
Let Y1(x) and Y2(x) their logit transformations:

Y (x) = ln
[
1− S(x)

S(x)

]

then it is possible to find constants α and β such that:

Y1(x) ≈ α + β Y2(x) (1.7)

Keeping the relation (1.7), Zaba (1979) and Ewbank et al. (1983) extended Brass’ approach,
adding two parameters to properly represent the shape of mortality in childhood and adulthood:

Y (x; κ, λ) =





[
S(x)

1−S(x)

]κ−1

2κ S(x) ≥ 0.5

1−
[

S(x)
1−S(x)

]λ

2λ S(x) < 0.5

An alternative perspective for relational models has been proposed by Himes et al. (1994).
Let Yj(x) be the logit transformation of death rates at age x in population j, it is possible to find
the solution to the equation:

Yj(x) = δ +
∑

x

βxIx +
∑

j

γjJj

where Ix is a dummy variable for age x; Jj is dummy variable for population j. δ, βx and γj are
parameters to be estimated. Also in this case, the model is in a parametric setting. Moreover,
note that for comparing two populations and for 50 ages, the model estimates parameters for 50
dummy variables.

Though simple in practice, relational models present several drawbacks. There is no system-
atic way of choosing the standard mortality pattern and they are needed only for comparison pur-
poses. Besides, simple parametric approaches often do not capture features in mortality changes
when these are not represented in the chosen standard distribution.

1.5.2 APC models

Age-Period-Cohort (APC) models have been developed in order to separate the changes of in-
cidence data with the three demographic coordinates – age, period and cohort (see Figure 1.1).
Mathematically, it can be written as a model for log-rates in which the effects of age, period, and
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cohort are combined additively:

ln(mij) = αi + βj + γc + εij i = 1, . . . , m

j = 1, . . . , n

c = 1, . . . , m + n− 1 (1.8)

where αi, βj and γc are the age (i), period (j) and cohort (c) effects, respectively. However, there
is a difficulty with the interpretation of the fitted parameters since, of the 2m+2n−1 parameters
in (1.8), only 2m + 2n− 4 are identifiable.

This model may be fitted either by weighted least squares or by Poisson maximum likelihood
(Clayton and Schifflers, 1987). The log-likelihood contribution from observation of the quantity
(Yij , Eij) is given by

l(mij |Yij , Eij) = Yij ln(mij)−mij Eij .

The log-likelihood for the entire mortality surface is the sum of such terms, because cells are
assumed to be independent. Hence, model (1.8) can be fitted using software for Poisson regression
for independent observations, allowing for an offset term. A common way of accommodating the
non-linearity of age, period and cohort effects is to use one parameter per distinct value of i, j and
c, by defining the variables as factors. The classical approach (largely employed in epidemiology)
has been to define a tabulation sufficiently coarse to avoid an excess amount of parameters in the
modeling. Since the three variables age, period and cohort are originally continuous variables, it
seems natural to model their effects by parametric smooth functions. Several approaches have
been proposed in this regard (Carstensen and Keiding, 2005; Currie et al., 2007; Heuer, 1997;
Ogata et al., 2000).

The major problem of APC models is the identification problem introduced by the fact that
cohort, age and period are linearly related: c + i = j. Hence, there is no unique solution to
the parameter estimation, as the model is non-identifiable. Some constraints are usually used to
identify a unique solution and the choice of the constraints remains always arbitrary. Clayton and
Schifflers (1987) gave a careful exposition of the modeling problems, warning about the dangers
of over-interpreting the fitted parameters and about the functions of the rates that could be
(meaningfully) estimated. A more recent account can be found in Carstensen (2007), who used
APC models for the Lexis diagram or Schmid and Held (2007), who used a Bayesian approach.
A summary of the advances of APC models can be found in Smith (2008).

1.5.3 Lee-Carter model

Lee and Carter (1992) reduced the complexity of APC models by introducing the following bi-
linear model for the log-death-rates:

ln(mij) = αi + βi · γj + εij i = 1, . . . , m

j = 1, . . . , n (1.9)

where αi, βi and γj are vectors of parameters to be estimated, and εij represents the error term.
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The variance εij in Lee and Carter (1992) is assumed to be constant for all i and j. This assumption
is relaxed in some of its variants which are presented later.

The Lee-Carter (LC for short) model is under-determined and requires additional constraints
on the parameters to be successfully estimated. Usually, the model is centered by choosing the
parameters αi as the average death rates over time for each age group i: αi = 1

n

∑n
j=1 ln(mij).

Consequently, we interpret βi as fixed age effects or deviations from a standard pattern αi for each
age. γj is a time-varying mortality level index. The LC model can also be seen as a relational
model, where the standard pattern of mortality is the αi.

Since its introduction in 1992, the Lee-Carter model has been widely used in diverse demo-
graphic applications and it can be considered the standard in modeling and forecasting death rates.
Although the LC model was first intended to forecast all-cause mortality in the United States,
it is now widely used by researchers for modeling (and forecasting) all-cause and cause-specific
mortality in diverse fields. In particular, the LC model is also used for modeling and describing
changes in mortality dynamics. See, for instance, the study on the seven most developed countries
(G7) by Tuljapurkar et al. (2000).

It is not our purpose to study mortality forecasting here, but an advantage of using the LC
model lies in the fact that its time-index γj can be easily forecasted since it is able to condense
the linear mortality decline in the past century (see next Figure 1.5). In particular, forecasting in
the LC model is performed in two stages. In the first stage, αi, βi and γj are estimated using the
actual mortality surface. In the second stage, fitted values of γj are modeled and extrapolated
by an autoregressive integrated moving average (ARIMA) process, determined by the Box and
Jenkins (1970) approach. Finally the extrapolated γj are combined with the previous estimation
to forecast the future death rates.

It is worth pointing out that for an m×n death rates matrix, the LC model in equation (1.9)
estimates 2m + n− 2 parameters. To solve the problem, researchers have proposed general alter-
native approaches, which are briefly presented here.

Non-likelihood-based methods

In non-likelihood-based methods, we are not required to specify any probability distribution during
model parameter estimation. Examples include Singular Value Decomposition (SVD, Good, 1969)
methods proposed in Lee and Carter (1992) and the method of weighted least squares (WLS),
suggested later in Wilmoth (1993).

Using SVD, we set αi = 1
n

∑n
j=1 ln(mij) and then we compute the SVD to the matrix

of [ln(mij) − αi]. The first left and right singular vectors give initial estimates of βi and κj ,
respectively. To satisfy the constraints for model identification, the estimates of βi and κj are
normalized. In the original paper, Lee and Carter (1992) adopted the constraints

∑
i βi = 1

and
∑

j γj = 0. To further improve the fit, researchers later considered using a rank-p SVD
approximation. For example, Renshaw and Haberman (2003b) considered p = 2 and Booth et al.
(2002) considered p = 5. Under the rank-p SVD approximation, equation (1.9) is generalized to

ln(mij) = αi +
p∑

k=1

βk
i · γk

j + εij
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Higher p will fit the mortality surface better, but this procedure will enormously increase the
amount of parameters to estimate and interpret (and forecast).

As the method of the SVD is purely a mathematical approximation applied to the log-death-
rates, the fitted and actual number of deaths may not be the same. To reconcile the fitted and the
observed number of deaths, we are required to make an adjustment to γj . Lee and Carter (1992)
propose computing a new estimate of γj , for each year j, by searching for the value that makes
the observed number of deaths equal to the predicted number of deaths. Other criteria have been
proposed (see for example, Booth et al. (2002) and Lee and Miller (2001)).

In the weighted least squares (WLS) method the model parameters are derived by minimizing:

m∑

i

n∑

j

wij [ln(mij)− αi − βiγj ]
2 ,

where wij can be taken as the reciprocal of the number of deaths at age i and in time period j.

Likelihood-based methods

To model death counts using likelihood approach, we need to specify the probability distribution
for the death counts. As explained in Section 1.2.1, the total number of deaths over a specified age-
and year-interval, Yij , is Poisson-distributed. Examples of likelihood-based approaches include the
method of maximum likelihood estimation (MLE) considered by Wilmoth (1993) and implemented
later by Brouhns et al. (2002), and the method of generalized linear models (GLMs) employed by
Renshaw and Haberman (2006).

According to equation (1.3), the LC model in (1.9) can be written as follows:

Yij ∼ Poisson (Eij · exp(αi + βi · γj))

Using MLE, we obtain estimates of the model parameters by maximizing the following log-
likelihood

l(α, β,γ|Y , E) =
∑

i

∑

j

[Yij · (αi + βiγj)− Eij · (exp(αi + βi · γj))] + c

where α, β and γ are vectors of the parameters αi, βi and γj . The c is a constant that is
independent from the model parameters. The maximization can be accomplished via standard
NewtonRaphson method. Brouhns et al. (2002) provide the associated derivations. The MLE
does not require any re-estimation of γj .

In the method of GLMs, we use the log-link in modeling the “responses” Yij . The linear
model can be written as

ln(Yij) = ln(Eij) + αi + βi · γj

where ln(Eij) is the offset. An iterative algorithm is necessary in order to estimate the parameters:
a first attempt was given by Renshaw and Haberman (2003a). GLM and MLE yield the same
parameters estimates, if the same constraints for the parameters uniqueness are chosen.

The main advantage of using likelihood methods is that the errors are not assumed to be
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homoscedastic. In contrast, the SVD assumed that the errors are normally distributed with con-
stant variance, which is quite unrealistic: hazard rates have different variability over the whole of
the age range. Furthermore, the Poisson approximation leads to a meaningful variance-covariance
matrix, suitable diagnostic analysis and properties for forecasting death rates.

Alternative procedures have been proposed in order to improve and extend the LC model.
Wang and Lu (2005) embedded the LC model in a binomial framework and computed interval
estimates by a bootstrap approach. Czado et al. (2005) and Pedroza (2006) proposed an LC
model in a Bayesian framework using Markov Chain Monte Carlo methods for parameters estima-
tion. The extension proposed by Haberman and Renshaw (2008) deal with an age-period-cohort
version of the LC model. Both de Jong and Tickle (2006), Delwarde et al. (2007) and Hynd-
man and Ullah (2007) have all used different smoothing approaches for overcoming LC model
over-parameterization.
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Figure 1.5: Lee-Carter estimates: αi, βi and γj . Ages from 10 to 100. Denmark, females, 1930–
2006. Estimation procedure from Brouhns et al. (2002).

An application of the Lee-Carter model

Figure 1.5 shows the parameters αi, βi and γj of the LC model for the Danish mortality surface
from ages 10 to 100 and years 1930-2006. In this example, we followed the methodology given
by Brouhns et al. (2002). It is immediately apparent that parameters estimates follow specific
regular trends. In particular, the left panel of Figure 1.5 presents the aforementioned linear trend
which would be extrapolated in the forecasting applications.

Actual death rates along with fitted values are presented in Figure 1.6. Though the fitted
values gives an overview of the mortality developments, the LC model still captures features in the
trends which can be easily seen as random noise of the data. More accurate diagnostic analysis
and goodness-of-fit measure are presented in Section 2.3.1 and in Chapter 3, respectively.

1.6 From over-parametric to smooth models

Both the LC and the APC model use individual parameters for each age and year (and possibly
cohort). Overparameterization influences the estimation procedures and, from a more conceptual



1. Mortality data and models 15

years (j)

ag
es

 (
i)

20

40

60

80

1940 1960 1980 2000

ACTUAL

1940 1960 1980 2000

FITTED

0.00038

8e−04

0.00184

0.00351

0.0072

0.01598

0.04006

0.10807

0.26151

Figure 1.6: Actual and fitted death rates from Lee-Carter model. Ages from 30 to 100. Denmark,
females, 1930–2006. Estimation procedure from Brouhns et al. (2002)

view, the use of such an amount of parameters may seem unnecessary, given the rather regular
structure of human mortality development.

In developed countries with good data, large populations, and no extraordinary events (e.g.
wars and epidemics), changes over time or over age normally show regular patterns, and erratic
behavior is mainly caused solely by randomness of the rates (Figures 1.3 and 1.4). Therefore,
more parsimonious models, albeit still flexible enough to pick up the age pattern and the time
trend, should be able to capture the essence of the mortality surface. Smoothing approaches are
a natural choice because mortality surfaces are themselves so informative that imposing a strong
model structure seems unnecessary.

Smoothing methods for two-dimensional problems have been proposed by Cleveland and
Devlin (1988), who use a generalization of the “Loess” methodology, and de Boor (2001) and
Dierckx (1993), who employ a two-dimensional regression basis as the Kronecker product of B-
splines. Gu and Wahba (1993) and Wood (2003) fit surfaces with thin plate splines. In addition,
the mortality surface can be embedded in the framework of Generalized Additive Models (GAM)
(Hastie and Tibshirani, 1990; Wood, 2006) if the more restrictive assumption of additive effects
is justified.

An alternative appealing methodology was developed using two-dimensional regression splines,
specifically B-splines with penalties, known as P -splines. Eilers and Marx (1996) deal with uni-
dimensional regression and the extensions for bivariate regression have been presented in Eilers
and Marx (2002b), Currie et al. (2004, 2006) and Eilers et al. (2006). A detailed description
two-dimensional P -splines is presented in Section 2.2.
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For demonstrative purposes, Figure 1.7 shows the Danish mortality surface along with fitted
values by two-dimensional regression P -splines. At first glance, it is easy to check that outcomes in
Figure 1.7 are more suitable than the LC model in describing mortality developments. Moreover,
trends over ages and time look smoother and a P -spline approach employs approximately only
137 parameters, whereas the LC model estimates 257 for describing the same mortality surface3.
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Figure 1.7: Actual and fitted death rates from 2D smoothing with P -splines. Ages from 0 to 100.
Denmark, females, 1900–2006.

3For the concept of effective dimensions in a smoothing setting we refer to Section 2.1.3



Chapter 2

Smooth modeling of mortality

In the previous chapter, we presented several methods and models for analyzing mortality data.
Many of the demographic approaches rely on parametric or over-parameterization assumptions,
leading to rigid modeling structures and an unreasonable number of parameters. Hence, parsimo-
nious approaches are needed in modeling mortality data.

Figure 1.7 in Section 1.6 already has shown outcomes of the smoothing methodology used in
this thesis: two-dimensional P -splines regression. In this chapter we will present this approach
in more detail. In the next section, we first introduce the P -spline methodology in the setting
of unidimensional scatterplot smoothing. Thereafter, in Section 2.2, we will give more details on
the generalization of the methodology in two-dimensional problems such as mortality surfaces.
Finally Section 2.3 will be devoted to an analysis of the statistical tools and issues in measuring
uncertainty in this context.

2.1 P -splines: an introduction

In the simplest case of a univariate response, which is normally distributed, a smooth relationship
between the response y and a single predictor x is given as

y = f(x) + ε , ε ∼ N (0, σ2I) (2.1)

where the function f is assumed to be smooth. The aim is to estimate f given the observed pairs
(xi, yi). Since death counts are Poisson-distributed, generalizations of the error distribution would
be necessary for modeling mortality data.

2.1.1 Normal data

There are several methodologies for fitting f . Good summaries can be found in Hastie and
Tibshirani (1990) and Simonoff (1996). Here we will focus on P -splines. Simplifying the scheme
of O’Sullivan (1988), Eilers and Marx (1996) developed a method which combines (fixed-knot)
B-splines with a roughness penalty. Generalized Linear Models (GLMs, McCullagh and Nelder,
1989) can nonparametrically be estimated with P -splines and we refer to Section 7 of Eilers and
Marx (1996) for a fuller reference. Descriptions of the P -spline method can be found in the seminal

17
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paper of Eilers and Marx (1996) as well as in Marx and Eilers (1998), Eilers and Marx (2002a)
and in Currie and Durban (2002). A comprehensive study on the methodology is given in Currie
et al. (2006). Wand (2003) reviews a mixed effect approach and provides a useful bibliography.
Different applications can be found in Marx and Eilers (1999), Parise et al. (2001), Coull et al.
(2001) and in Currie and Durban (2002).

Specifically, B-splines are bell-shaped curves composed of smoothly joint polynomial pieces.
Polynomials of degree q = 3 will be used in the following 1. The positions on the horizontal axis,
where the pieces come together, are called “knots”. We will use equally spaced knots of a distance
h. For details on B-splines and related algorithms see de Boor (1978) and Dierckx (1993).
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Figure 2.1: B-spline bases with equally-spaced knots, k = 20 and q = 3.

B-splines are a base of local functions that is well-suited for smoothing a scatterplot of pairs
(xi, yi), i = 1, . . . , n. Let bq

ij = Bq
j (xi), j = 1, . . . k(< n) be the value of the jth B-spline at xi of

degree q. B = [bq
ij ] denotes the matrix of covariates and a their respective regression coefficients.

Figure 2.1 shows an example of B, where the domain of x run from 0 to 1, k = 20 and q = 3. All
bases have the same shape, but they are shifted horizontally by a multiple of the knot distance.
Note that this is also true at the boundaries. This feature prevents boundary effects, as many
types of kernel smoothers do not (Gasser and Müller, 1979; Marron and Ruppert, 1994).

If we rewrite equation (2.1) as

y = Ba + ε, ε ∼ N (0, σ2I), (2.2)

then, the smoothed function is found by minimizing

S = ‖y −Ba‖2 (2.3)

with the explicit solution
â = (B′B)−1B′y (2.4)

1The choice of the degree of the polynomials is relatively irrelevant in case of P -spline models (Eilers and Marx,
2002a)
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Given â, for any x, the fitted function will be f̂(x) =
∑

j Bj(x)âj = µ̂, and thus is a linear
regression of y on B. One can easily see that the higher the number of B-splines, the closer the
smoothed curve is to the data. Conversely, a small number of B-splines leads to a smoother fitted
curve.

The problem one faces now is to find an optimally smoothed curve. Following the approach
outlined by Eilers and Marx (1996), we can choose a relatively large number of B-splines which
would normally result in over-fitting. A penalty is put on the regression coefficients, in order to
force the coefficients to vary more smoothly. We add to equation (2.3) a penalty weighted by a
positive regularization parameter λ

S∗ = ‖y −Ba‖2 + λ‖Dda‖. (2.5)

The matrix Dd constructs dth order differences of a

Dda = ∆da .

As examples, D1 and D2 are as follows, when k = 5:

D1 =




1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1




; D2 =




1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1


 . (2.6)

High level programming languages have functions to apply the difference operator to a matrix;
construction of Dd is then trivial, by (repeated) differencing of the identity matrix. Unless other-
wise stated, we will use d = 2 in the following.

The solution of equation (2.5) is given by

â = (B′B + P )−1B′y (2.7)

where P = λD′
dDd.

Figure 2.2 illustrates the capability of P -splines in smoothing scattered (xi, yi), i = 1, . . . , n

simulated data2. The upper panel of Figure 2.2 is the solution of equation (2.7) with k = 20
B-splines of degree q = 3. The order of the penalty term is d = 2 and the smoothing parameter
λ is equal to 10. These outcomes are compared with simple B-splines in which the coefficient
vector a is unpenalized: λ = 0 (lower panel in Figure 2.2). The B-spline bases multiplied by
the penalized and unpenalized coefficients a are also shown in the bottom part of both panels in
Figure 2.2.

By changing λ the smoothness can be tuned (see Figure 2.3). Hence, the parameter λ controls
the trade-off between smoothness and model fidelity. The number of equally spaced knots does
not matter much, provided that enough of them are chosen to ensure greater flexibility than is
needed (Eilers and Marx, 2002a).

2The data were simulated as follow: yi ∼ N (µi, 0.16), µi = exi +0.4 sin(10 xi) and xi ∼ Unif[0, 1] , i = 1, . . . , 100.
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Figure 2.2: Penalized (upper panel) and unpenalized regression (lower panel). Simulated data.
B-spline bases with equally-spaced knots, k = 20 and q = 3. d = 2 and λ = 10 for the penalized
regression.
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Figure 2.3: Smoothing of simulated data using P -splines with different parameters λ = {0.0001,
1, 10, 100, 100000}.

As in classic linear regression setting, from equation (2.7), we can specify the hat matrix, for
a given value of λ:

Hλ = B(B′B + P )−1B′. (2.8)

Hence, if we focus on the fit at the observed points x1, . . . xn, a smoother such as P -splines can
be also expressed as

µ̂ = Hλy. (2.9)

2.1.2 Count data

The P -spline methodology can be easily generalized to non-normally distributed data, such as
Poisson counts. In GLMs, we introduce a linear predictor η = Ba and a (canonical) link function
η = g(µ), where µ is the expectation of y, i.e. E(y) = µ. Alternatively, we can write µ = h(η)
where h(·) = g−1(·), the inverse of the link function, sometimes called the response function.

With Normal data, minimizing least squares objective functions in equations (2.3) and (2.5)
is equivalent to maximizing unpenalized and penalized log-likelihoods, respectively. In general,
the penalized log-likelihood which will be maximized can be written as:

l∗ = l(a; B, y)− 1
2
λ‖Dda‖2 =

= l(a; B, y)− 1
2
a′Pa. (2.10)

The factor 1
2 is chosen for convenience only, such that it disappears after differentiation. l(a;B, y)

is the usual log-likelihood for a GLM and P = λD′
dDd.

Maximizing equation (2.10) gives the penalized likelihood equations

B′(y − µ) = Pa
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which can be solved with a penalized version of the iteratively reweighted least squares (IRWLS)
algorithm3 for the estimation of GLMs (Nelder and Wedderburn, 1972)

(B′W̃B + P )ã = B′W̃Bã + B′(y − µ̃) (2.11)

where B is again the regression matrix, P is the penalty matrix, µ̃ and ã denote current approx-
imations to the solution and W̃ is a diagonal matrix of weights

wii =
1
vi

(
∂ µi

∂ ηi

)2

,

where vi is the variance of yi, given µi. Note that the only difference with the standard procedure
for fitting a GLM with B-splines as regressors is the modification of B′W̃B by P (which itself is
constant for fixed λ) at each iteration.

In the case of Poisson errors, W̃ = diag(µ̃) and the canonical link, ln(·), will be used through-
out this study. The algorithm (2.11) can also be written as

(B′W̃B + P )ã = B′W̃ z̃ (2.12)

where z̃ = (y − µ̃)/µ̃ + Bã, which is defined as a working dependent variable. The formulation
in (2.12) leads directly to the solution at the step t + 1:

ât+1 = (B′ŴtB + P )−1B′Ŵtẑt. (2.13)

Also, for non-Normal data, the hat matrix can be easily computed from the estimated lin-
earized smoothing problem in (2.12):

Hλ = B(B′ŴB + P )−1B′Ŵ , (2.14)

where Ŵ contains the weight of the last iterations after convergence.
When modeling mortality data, it is necessary to take into account the exposures in the

presented regression setting. Specifically, we seek a smooth estimate of the actual death rates and
from equation (1.3), the linear predictor η can be written as

η = ln(µ) = ln(E(y)) = ln(e ·m) = ln(e) + ln(m) = ln(e) + Ba,

where e, y and m are exposures, deaths and death rates, respectively, over a single dimension (age
or time). The term e is called offset and can be easily incorporated in the regression system (2.12).

Figure 2.4 shows the estimated death rates of the Danish population at age 60, from 1930 to
2006., using a basis of 18 cubic B-splines and a smoothing parameter λ = 100.

3See also Section 4.3.1 for a detailed description of the IRWLS.
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Figure 2.4: Actual and fitted death rates from a P -spline approach, logarithmic scale. B-spline
bases with equally-spaced knots, k = 18, q = 3, d = 2 and λ = 100. Denmark, females, age 60,
years from 1930 to 2006.

2.1.3 Effective dimension of a smoother

An important concept in modeling is the effective dimension of the fitted model itself. This concept
is clear and intuitive in the case of linear models: the number of parameters used in the model
quantifies its dimension. However, in a non-parametric setting a different definition is needed.

A smoothing method, such as the P -splines, needs to balance a fundamental trade-off between
the bias and the variance of the estimates. The smoothing parameter, λ, tunes this trade-off. In
linear smoothers such as P -splines, it can be shown, as n →∞ and λ → 0, under certain regularity
conditions, f̂(x) → f(x) (Hastie and Tibshirani, 1990, p. 40).

Let bλ = f −E(Hλy) = f −Hλf denote the bias vector, where, for the P -splines case, Hλ

is given in (2.8) and (2.14) and fi = f(xi). Hastie and Tibshirani (1990, p. 46) show that we can
measure the variance of a linear smoother in the following way

tr(HλH ′
λ) = σ2

n∑

i

var(f̂(xi))

and a measure of squared bias is given by

b′λbλ =
n∑

i

b2
λ(xi) .

Therefore, as the amount of smoothing increases, we expect the bias to increase while the
variance decreases. Consequently, with an increasing amount of smoothing, tr(HλH ′

λ) tends
to decrease, while the elements of bλ tend to increase. As a matter of fact, tr(HλH ′

λ) can be
considered as a quantity that we use to calibrate the amount of smoothing performed by P -splines.

This idea can be easily seen in a more simpler case, such as the classic linear regression
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(Weisberg, 1985, pp. 110-111). In particular, the hat matrix for linear models is idempotent,
i.e. tr(HλHλ) = tr(Hλ) = rank(Hλ), which is equal to the number of parameters in the fitted
model.

Given this feature of the classic linear model, we can define the effective dimension, or degrees
of freedom, to be

ED(a, λ) = tr(Hλ) (2.15)

see Hastie and Tibshirani (1990, p. 52) and (Buja et al., 1989, p. 469). Equivalently, the ED is the
sum of the eigenvalues of Hλ. The relationship of this measure with the variance-bias trade-off in
a smoother, will have a crucial importance in the smoothing parameter selection, as we will see
in Section 2.1.4. Although the effective dimension is a function of both λ and the predictors in
the model, ED is mainly determined by λ. It is noteworthy that ED is not a function of Y , and
this fact will ease the computation cost of selecting λ.

Eilers and Marx (1996, p. 94) also pointed out that in a P -spline setting the effective dimension
will approach d, the order of difference. That is, d defines the degree of the “ultimately smooth”
function for λ → +∞. In other words, in the limit of a very large λ, a linear (d = 2) or quadratic
(d = 3) fit is obtained, as can be seen in Figure 2.3. Figure 2.5 shows the profile of the effective
dimensions over a range of λ from the P -spline model fitted on a Danish female population at
age 60 from 1930 to 2006 (Figure 2.4). Furthermore, it is worth pointing out that the ED profile
shows an asymptotic behavior for both smaller and larger λ. In the former case, ED is practically
equal to the number of B-splines (k = 18) for λ smaller than 0.01. We have effective dimension
nearly equal to 2 for all the λ larger than 10,000,000.
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Figure 2.5: ED(a, λ) over increasing log10(λ), cf. equation (2.15). Denmark, females, age 60, years
from 1930 to 2006.

Alternative definitions of ED are also motivated by its analogy with classic linear normal
models, namely tr(2Hλ − HλH ′

λ) and tr(HλH ′
λ). Nevertheless, Hastie and Tibshirani (1990)

suggest to approximate the overall effective dimension or degrees of freedom with the trace of the
hat matrix of the smoother.
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2.1.4 Smoothing parameter selection

Empirically, we are always faced with the trade-off between parsimony on the one hand and
accuracy on the other. By parsimony, one means models with low effective dimensions or few
parameters. By accuracy, one means the ability to reproduce observed data, commonly measured
by suitable statistics.

In a P -spline approach, this trade-off is clearly driven by the choice of the smoothing param-
eter λ. Whereas the effective dimension of the model has been defined in Section 2.1.3, measures
of discrepancy between actual and fitted values are borrowed by the GLMs framework.

A common measure of discrepancy in GLMs is the deviance. This measure is constructed from
the logarithm of a ratio of likelihoods and it is proportional to twice the difference between the
maximum log-likelihood achievable, commonly called “saturated model”, and the log-likelihood
achieved by the fitted model (McCullagh and Nelder, 1989, p. 33). For normally distributed data,
the deviance is just the residual sum of squares, while for the Poisson, as it is in our cease, takes
the following form

Dev(y; a, λ) = 2
n∑

i=1

{
yi log

(
yi

µ̂i

)
− (yi − µ̂i)

}
. (2.16)

The second term, a sum of differences between observed and fitted, is usually zero, because
maximum likelihood estimators in Poisson models with log-link have the property of reproducing
marginal totals, i.e.

∑
yi =

∑
µ̂i .

Alternatively and regardless of the complexity of the model, a measure of discrepancy between
observed and fitted values in a Normal case is the mean squared error (MSE). This measure is
given by (Hastie and Tibshirani, 1990, eq. 3.8)

MSE(λ) =
1
n

n∑

i=1

{
yi − f̂λ(xi)

}2
=

1
n

n∑

i=1

{yi − µ̂i}2 . (2.17)

It can be shown that (2.17) is equivalent to the sum of variance and squared bias measures
presented in Section 2.1.3 (see Hastie and Tibshirani, 1990, Section 3.4.2).

In a P -spline framework, we need some way to choose an “optimal” value for λ, which can
balanced bias and variance in the model construction. Eilers and Marx (1996, 2002a) suggested
using the Akaike’s information criterion (AIC) (Akaike, 1973). The AIC is a common tool for
model selection and it corrects the log-likelihood of a fitted model for the effective dimension. For
a fuller treatment of the criterion we refer to Sakamoto et al. (1986). The expression for AIC is
given by

AIC(λ) = Dev(y;a, λ) + 2 · ED(a, λ) , (2.18)

where ED(a, λ) and Dev(y;a, λ) are given in equations (2.15) and (2.16), respectively and can be
computed for a fixed λ.

Alternatively, one can use the Bayesian Information Criterion (BIC) (Schwarz, 1978), which
penalizes model complexity more heavily than AIC, particularly when n is large (Chatfield, 2003).
This penalization is practically done by increasing the factor multiplied by the model dimension
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in the criterion and taking into account the value of n:

BIC(λ) = Dev(y; a, λ) + ln(n) · ED(a, λ) . (2.19)

In cases of normally distributed data, as alternative to AIC and BIC, Eilers and Marx (1996)
suggested using cross-validation (CV ) to find the optimal value of λ:

CV (λ) =

√√√√ 1
n

n∑

i=1

{
yi − f̂λ(xi)
1−Hii(λ)

}2

.

Figure 2.6 presents the AIC and BIC profile over log10(λ). Note how the λ picked by BIC is
substantially higher than the λ selected by AIC.
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Figure 2.6: AIC and BIC over a range of log10(λ), cf. equations (2.18) and (2.19). Denmark,
females, age 60, years from 1930 to 2006.

Once λ is selected, the system of equations described in (2.12) has a unique solution. Fig-
ure 2.7 presents the estimated death rates of the Danish population at age 60, from 1930 to 2006,
using both AIC and BIC to select the optimal smoothing parameter λ. As already pointed out
by Currie et al. (2004, p. 285), stiffer fit, which is given by the BIC, is preferred when modeling
mortality data with P -splines.

2.2 P -spline models for mortality surfaces

In order to model data in arrays, such as mortality data, we seek to construct a basis for two-
dimensional regression with local support analogous to the one introduced in Section 2.1. A
detailed description of this generalization can be found in Eilers and Marx (2002b), Currie et al.
(2004), Currie et al. (2006) and Eilers et al. (2006).

Let Y = (yij) be the m × n matrix of deaths at age i, i = 1, . . .m, and year j, j = 1, . . . , n.
For the purpose of regression, we suppose that the data are arranged as a column vector, that
is, y = vec(Y ). Accordingly, we arrange the matrices of exposures E = (Eij) which are used as
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Figure 2.7: Actual and fitted death rates from a P -spline approach, logarithmic scale. B-spline
bases with equally-spaced knots, k = 18, q = 3, d = 2 and λ selected by AIC and BIC. Denmark,
females, age 60, years from 1930 to 2006.

offset in the Poisson setting, so that e = vec(E).

Figure 2.8: Two-dimensional Kronecker product of two cubic B-splines basis.

Let Ba = B(xa), na × ca be a regression matrix of B-splines based on age xa, and similarly,
let By = B(xy), ny × cy, be a regression matrix of the explanatory variable for year xy. The
regression matrix for our two-dimensional model is the Kronecker product

B = By ⊗Ba (2.20)

As in the unidimensional case, the number of columns in Ba and By is related to the number of
knots chosen for the B-splines.

Figure 2.8 presents the Kronecker product of two cubic B-spline over the age-year grid.
Following the same idea of the unidimensional case, we will use a relatively large number of
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equally spaced B-splines over both domains. Figure 2.9 gives an impression of how a Kronecker
product of several B-splines looks. The age-year grid is filled by a set of overlapping hills which
are placed at regular intervals over the region. For clarity, only a subset of hills from a small basis
is shown in Figure 2.9.

Figure 2.9: Two-dimensional Kronecker product of cubic B-splines basis.

In a regression setting, the matrix B has an associated vector of regression coefficients a of
length cacy. Therefore, the model can be written as

µ = E(y) = (By ⊗Ba)a = Ba. (2.21)

We arrange the elements of a in a ca× cy matrix A, where a = vec(A) and the columns and
rows of A are given by

A = (a1, . . . ,acy) A′ = (ar
1, . . . , a

r
ca

) ,

then, instead of computing it as a vector, equation (2.21) can be written as

µ = E(y) = (By ⊗Ba)a = Ba

M = E(Y ) = BaABy (2.22)

It follows from the definition of the Kronecker product that the linear predictor of the columns
of Y can be written as linear combinations of cy smooths in age. The linear predictor corresponding
to the jth column of Y can be expressed as

cy∑

k=1

by
jkBaak

where By = (by
ij). Following the same idea of the unidimensional case, this result suggests that

we should apply a roughness penalty to each of the columns of A. An appropriate penalty will
be given by

cy∑

j=1

a′jD
′
aDaaj = a′(Icy ⊗D′

aDa)a ,
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where Da is the difference matrix acting on the columns of A. In a similar fashion, by considering
the linear predictor corresponding to the ith row of Y , we can show that the corresponding penalty
on the rows of A can be written as

ca∑

i=1

ar′
i D′

yDya
r
i = a′(D′

yDy ⊗ Ica)a ,

where Dy is the difference matrix acting on the rows of A.
The regression coefficients a are estimated by maximizing the penalized log-likelihood (2.10)

where B is given by equation (2.20) and the penalty term P by

P = λa(Icy ⊗D′
aDa) + λy(D′

yDy ⊗ Ica) , (2.23)

where λa and λy are the smoothing parameters used for age and year, respectively.
B-splines provide enough flexibility to capture surface trends. The additional penalty reduces

the number of parameters leading to a rather parsimonious model with a smoothed fitted surface.
The advantage of using two-dimensional P -splines lies also in the fact that different smoothing
parameters can be chosen over ages and years, leading to great flexibility of the model.

In theory, we can use equation (2.13) to estimate a. This will be possible in moderate-sized
problems, but in the Danish example the parameter vector a has length m · n = 7007 and this
would require the usage of 7007×7007 matrices, and the penalized IRWLS algorithm quickly runs
into storage and computational difficulties.

Eilers et al. (2006) and Currie et al. (2006) proposed an algorithm that takes advantage of
the special structure of both the data as an rectangular array and the model matrix as a tensor
product. The idea of this algorithm can be seen in the computation of the mean µ = vec(M) in
two dimensions, as in equation (2.22).

This avoids the construction of the large Kronecker product basis, saving space and time. In
a similar fashion the two-dimensional “inner product” B′WB can be obtained efficiently. The
key observation is that in a 4–dimensional representation, the elements of B′WB can be written

fjkj′k′ =
∑

h

∑

i

whibijbhkbij′bhk′

which can be rearranged as
fjkj′k′ =

∑

h

bhkbhk′
∑

i

whibij′bij′

Switching between four- and two-dimensional representations of matrices and arrays, one can
completely avoid the construction of the large tensor product basis B. These ideas, applied on a
multidimensional grid algorithm, save both time and storage problems. More details can be found
in the abovementioned papers, Eilers et al. (2006) and Currie et al. (2006).

2.2.1 A two-dimensional smoothing parameter selection

The penalty terms in (2.23) contains two different smoothing parameters, λa and λy. Since we
still work in a regression setting, criteria such as AIC and BIC, can still be used for selecting
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smoothing parameters in a two-dimensional approach, and the search mentioned earlier needs to
be expanded into the two dimensions.

In a two dimensional setting, we also used the trace of the hat matrix as an effective dimension
(eq. (2.15)) The hat matrix for Poisson data is defined in equation (2.14) in which the matrix B

is the Kronecker product of By ⊗Ba (cf. eq. (2.20))
The fitted mortality surface presented in Figure 1.7 (page 16), was estimated with a 26× 22

grid of tensor product of cubic B-splines. The smoothing parameters λa and λy were selected by
BIC and are equal to 955 and 10, respectively. Figure 2.10 displays the profile of both AIC and
BIC.
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Figure 2.10: AIC (left panel) and BIC (right panel) over a two-dimensional grid of λa and λy.

Again, AIC selected smaller smoothing parameters than BIC, but the difference in fitted
death rates are less evident when an entire mortality surface is estimated. Figure 2.11 shows
death rates for the Danish females population at age 20 and 60. Fitted values are cross-section
data from the estimated mortality surface, where, λa and λy are selected by both AIC and BIC.

In a two-dimensional setting, we can also compute the effective dimensions of the models
from equation (2.15). Unlike in the fitted values, we note here the large difference in the effective
dimensions of the fitted models selected by BIC and AIC: 137 with BIC, but 278 with AIC.

Furthermore, it is worth pointing out that we obtained quite different smoothing parameters
over the two dimensions. As we could see in Figure 1.7 (page 16), trends over ages (10–100) are
more regular than mortality developments from 1930 to 2006 for the Danish female population.
Different smoothing over the two domains is commonly expected for mortality surfaces. Hence,
though possible in a two-dimensional P -spline approach, isotropic smoothing (λa = λy) is not
suitable when modeling mortality data.

Alternative two-dimensional smoothing methodologies, which rely on isotropic smoothing,
are hence inadequate for fitting mortality data, too. Specifically, the general radial smoothers
proposed by Ruppert et al. (2003, Section 13.4) and the Bayesian P -splines introduced by Lang
and Brezger (2004) use only a single smoothing parameter over the two domains when fitting a
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surface.
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Figure 2.11: Actual and fitted death rates at age 20 (left panel) and age 60 (right panel), logarith-
mic scale. 2D smoothing with P -splines of the mortality surface. Ages from 10 to 100. Denmark,
females, 1930–2006.

2.3 Measuring the uncertainty

One of the most appealing properties of the P -splines is their foundation on linear regression and
GLMs. This fact avoids the need for backfitting and knot selection schemes as in Friedman and
Silverman (1989) and Kooperberg and Stone (1991, 1992), and furthermore allows easy compu-
tation of diagnostics, compact results useful for prediction, computation of standard errors and
fast cross-validation. Taking advantages of these properties, we will focus in the following sections
on the diagnostics tools in the P -spline context with a particular emphasis on mortality surface
modeling.

2.3.1 Residuals

In the process of statistical modeling, residuals provide information regarding assumptions about
error terms and the appropriateness of the model. Any complete data analysis requires an ex-
amination of the residuals. Moreover, plots of residuals versus other quantities are used to find
failures of assumptions. An early work on residuals is given by Anscombe (1961). Cox and Snell
(1968, 1971) provide a systematic analysis of residuals in a linear model context. For standard
normal models residuals are given by

rR = y − µ̂. (2.24)

The subscription R denotes their usual name, response residual. In particular, errors in a linear
model consist of unobservable random variables, assumed to have zero mean and uncorrelated
elements, each with a common variance. We would like to assume residuals to behave as would
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the unobservable errors, i.e. mean equal to zero and normally distributed.
In the GLMs framework, one of the first studies exclusively devoted to residuals was the one

by Pierce and Schafer (1986). Widening the classic linear model for normally distributed data,
Cox and Snell (1968, p. 258) pointed out a different kind of residuals in a more general framework,
suggesting for Poisson data:

r =
y − µ̂√

µ̂
.

This type of residuals are commonly called Pearson residuals, and in general are defined by:

rP =
y − µ̂√
V (µ̂)

(2.25)

Pearson residuals can be seen as response residuals scaled by the estimated standard deviation of
Y . In the Poisson case the distribution of the Pearson residuals is the signed square root of the
component of the Pearson χ2 goodness-of-fit statistic. In formula:

∑
r2
P = χ2

Pearson’s statistic is normally used as a measure of residual variation.
Pearson residuals are often markedly skewed for non-Normal responses and may fail to have

properties similar to those of Normal-theory residuals. In order to normalize the residuals,
Anscombe (1953) defined a residual using a function A(y) in place of y. Given the likelihood
in the GLMs, the function A(·) is given by

A(·) =
∫

dµ

V 1/3(µ)
.

For details see Barndorff-Nielsen (1978).
For a response that follows a Poisson distribution we have

∫
dµ

µ1/3
=

3
2
µ2/3 .

Thus, the residuals become y2/3 −µ2/3. Nevertheless, even if this transformation corrects for the
skewness of the distribution, we still need to stabilize the variance of the residuals. This can be
achieved by scaling the residuals, i.e. dividing by the square root of the variance of A(y), which
is, to the first order, A′(µ)

√
V (µ). Employing also this second transformation, the so-called

Anscombe residuals for Poisson distribution are given by

rA =
3
2(y2/3 − µ̂2/3)

µ̂1/6
. (2.26)

In GLMs, the discrepancy between fitted and actual data can be measured by the deviance
(cf. Section 2.1.4). Thus the individual unit of this quantity di :

∑
di = Dev, can be used as
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residuals. Deviance residuals are given by

rD = sign(y − µ̂)
√

di (2.27)

This quantity increases with yi − µ̂i and
∑

r2
D = Dev. In the Poisson GLM case the deviance

residuals are:
rD = sign(y − µ̂){2(y log(y/µ̂)− y + µ̂)}1/2.

Anscombe and deviance residuals are often similar although their equations look rather dif-
ferent. This similarity becomes evident when using a Taylor series expansion. The association
can also be seen if we let y = c µ. In the Poisson case, the mentioned residuals are

rA =
3
2
µ1/2(c2/3 − 1)

rD = sign(c− 1)µ1/2[2(c log c− c + 1)]1/2

rP = µ1/2(c− 1) (2.28)

Regardless of the value of µ, equations (2.28) are a functions of c. Therefore, the types of residuals
can be compared by computing numerically those functions for a range of values of c (McCullagh
and Nelder, 1989, p. 39).
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Figure 2.12: Pearson, Anscombe and deviance residuals over ages and years for death rates mod-
eled with 2D smoothing with P -splines. Ages from 10 to 100. Denmark, females, 1930–2006.

The most common plot in the residual analysis is the plot of residuals versus fitted values.
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Systematic features in this plot are of interest, e.g. residuals, that seem to increase or decrease in
average magnitude with fitted values, might indicate nonconstant residual variance. In order to
test the normality of the residuals, one can use a normal QQ plot. Alternatively, residuals can be
plotted over the predictors of the model. This is done in Figure 2.12, in which residuals from a
two-dimensional P -splines fit are plotted over age and time. This two-dimensional representation
offers the opportunity to locate where the model cannot capture the actual data. Applied to
mortality surfaces, this type of plot may reveal peculiar period shocks and cohort effects.

Figure 2.12 displays small discrepancies among the three residual functional forms. As ex-
pected, most residuals are around the value of zero without showing any particular systematic
features. The only exceptions are the high values during World War II, during which the model
overestimates the actual death rates (negative residuals depicted by red) and about age 20, where
P -splines systematically underestimate death rates (positive residuals depicted by blue).

Deviance Residuals
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Figure 2.13: Deviance residuals over ages and years for death rates modeled with 2D smoothing
with P -splines and Lee-Carter model. Ages from 10 to 100. Denmark, females, 1930–2006.

Residuals over age and time can also be used in comparing models over the same mortality sur-
face. Figure 2.13 shows deviance residuals of both the Lee-Carter model and the two-dimensional
P -splines smooth. It is easy to check that the P -spline approach can capture mortality develop-
ments more accurately than the LC model. Deviance residuals from the LC model clearly show
systematic patterns. Moreover, we recall that the LC model, with its individual parameters for
each age and year, estimates 257 parameters (see Section 1.5.3), whereas BIC selects a P -spline
model with effective dimension equal to 137. Hence, a more parsimonious model such as the
two-dimensional P -splines, can fit mortality surfaces better than the LC model.
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2.3.2 Confidence Intervals

Two-dimensional smoothing with P -splines allows easy computation of the so-called hat matrix
(see Section 2.1). Therefore, standard errors and confidence intervals can be easily obtained. In
the particular case of Poisson-distributed data the approximating variance of Bâ is given by

Var(Bâ) ≈ B(BŴB + P )−1B′ (2.29)

One justification of equation (2.29) is that the P -spline estimator of Ba can be derived from a
Bayesian perspective (Lin and Zhang, 1999). Standard errors and confidence intervals for the
fitted values are computed simultaneously from equation (2.29) and are included in Figure 2.14
for selected years and ages.
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Figure 2.14: Actual and fitted death rates at selected years over ages (left panel) and selected ages
over years (right panel), logarithmic scale. 2D smoothing with P -splines used for the estimation
(solid lines) and the 99% confidence interval. Denmark, females.

The width of the confidence intervals indicates the level of uncertainty associated with the
smooth surface (Figure 1.7). At first glance, the boundary of the confidence intervals in Figure 2.14
is extremely close to the fitted values. This is mainly due to the large number of death counts
and to the large size of the population exposure. Nevertheless we see relatively larger confidence
bends at old ages over the years. In this area, both exposures and deaths show moderate counts.
Moreover a slightly wider confidence interval is observed at young ages in the last year (2006).
This results from the small number of deaths along with a large exposure population.

An overview of this issue is given in Figure 2.15, in which we display the shaded contour
maps of both exposures and deaths from the Danish population as well as standard errors from
the fitted model over ages and years. The image of the standard errors is essentially the negative
image of the deaths, whereas the number of exposures does not affect the standard error patterns
much.
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Figure 2.15: Actual exposures and deaths over ages and years as well as standard errors from
two-dimensional smoothing with P -splines. Ages from 10 to 100. Denmark, females, 1930–2006.
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2.4 P -splines in perspective

Smoothing methods are often overlooked in demographic analysis. We showed in Chapter 1 that
commonly used demographic models either reduce the dimensionality of the data to quite few
number of parameters or use overparameterized models such as the Lee-Carter model. Parsimo-
nious and yet flexible models are the suitable tools for modeling the regular structure of human
mortality development though.

In this chapter we presented a well-established smoothing methodology for fitting mortality
over age and time: two-dimensional regression P -splines. This approach combines a relatively large
number of B-splines with a roughness penalty. On one hand, B-splines provide enough flexibility to
capture trends in the data. On the other hand, an additional penalty on neighbouring coefficients
is used to ensure smoothness and reduces the number of parameters, leading to parsimonious
models.

Furthermore, P -spline models can be easily embedded in a Poisson framework, therefore
death counts can be straightforwardly fitted. An additional advantage of P -splines lies in the fact
that different smoothing parameters are allowed over ages and time.

The foundation of P -splines on Generalized Linear Models allows easy computation of resid-
uals and standard errors. We presented this facet of the model and plotted deviance residuals
for mortality data in shaded contour maps over age and time. This procedure allows to locate
where the model cannot capture the actual data and to understand additional demographic in-
sights. However, both residuals and confidence intervals cannot properly capture the uncertainty
in mortality data. The next chapter will present new advances to deal with this issue.

Given all the advantages, P -splines will be the standard smoothing methodology in the fol-
lowing chapters. In the next chapter two-dimensional P -spline will be compare with classic de-
mographic models based on a suitable goodness-of-fit measures. Ideas and concepts such as the
penalized likelihood will be employed in Chapter 4. Finally, in Chapter 5, the combination of
B-splines and roughness penalty on the coefficient vector will be used to propose a new model for
analyzing mortality data.
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Chapter 3

Explained variation in models for

mortality data

In the previous chapters we presented typical demographic approaches for modeling mortality
data, and a smoothing method such as P -splines, which improves model fit, uses fewer degrees of
freedom and is particularly flexible for modeling mortality surface. Nevertheless, demography can
build on large samples, and this has implications for the statistical analysis of demographic data,
including mortality studies. As Keyfitz (1966, p. 312) argues, in demographic studies, the “mere
fact that over a period of a year the population is likely to be fifty or a hundredfold the deaths
will result in a higher order of precision”.

We have already noticed the consequences of this peculiarity in the residual analysis, and in
construction of confidence intervals in a P -spline approach for mortality surface (see Section 2.3).
Specific and uninformative outcomes are also evident in common goodness-of-fit (gof) measures.
However, such measures are a necessary statistical tool for comparing mortality developments
and, especially, to assess different models.

In this chapter, we first present the common measure of gof in the framework of GLMs.
Extensions and adjustments of the classic R2 are needed in models for non-Normal-distributed
data. Section 3.2 introduces further extensions of gof measures in non-parametric settings such as
the P -spline approach (see Chapter 2) and effective dimension of the smoother are considered when
adjusting classic measures for GLMs. The presence of large counts in the mortality surface makes
simple corrections essentially uninformative. In Section 3.3, we, thus, propose a new effective
gof measure in models for mortality data: R2

(bi)lin. The basic idea is to consider a null model
which is specifically appropriate for mortality data. Particular emphasis will be given to the
behavior of this measure in the Lee-Carter model and the P -spline approach. Simulation studies
in one- and two-dimensional settings and applications for actual mortality surfaces are presented
in Sections 3.4 and 3.5. A summary in Section 3.6 concludes the chapter.

3.1 Goodness-of-fit measure for Generalized Linear Models

The goodness-of-fit (gof) measures examine how well a statistical model fits a set of observations.
Measures of gof typically summarize the discrepancy between observed values and the values
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expected under the model in question. Such measures can be used in statistical hypothesis testing,
or when investigating whether outcomes follow from a specified distribution.

In classic linear models, the most frequently used measure to express how well the model
summaries features of the data is the well-known R2. It is also called the “coefficient of deter-
mination” or the “percentage of variance explained”. Its range is 0 ≤ R2 ≤ 1, with values closer
to 1 indicating a better fit. It was developed to measure gof for linear regression models with
homoscedastic errors. The concept of explained variation was generalized to heteroscedastic errors
(Buse, 1973) and for logit, probit and tobit models (Veall and Zimmermann, 1996; Windmeijer,
1995).

One of the first studies on measuring explained variation in a GLM setting was undertaken
by Cameron and Windmeijer (1997). They proposed an R2 measure of goodness of fit for the
exponential family. As a starting point, they defined a measure that took into account the pro-
portional reduction in uncertainty due to the inclusion of regressors. Since in GLMs we have
generalized the Normal distribution, the coefficient of determination should be interpreted as the
fraction of uncertainty explained and no longer as a percentage of variance explained.

More specifically, Cameron and Windmeijer (1997) defined the R2 for an exponential family
regression model based on the Kullback-Leibler (KL) divergence (Kullback, 1959). A standard
measure of the information from observations in a density f(Y ) is the expected information
E[log(f(Y ))] with the KL divergence measuring the discrepancy between two densities. Let fµ1(y)
and fµ2(y) be two densities differing in mean µ only. The KL divergence is defined as

K(µ1, µ2) ≡ 2Eµ1 log
[
fµ1(y)
fµ2(y)

]
,

where the factor 2 is multiplied for convenience and Eµ1 denotes that the expectation is taken
with respect to the density fµ1(y). The KL measures how close µ1 is to µ2 and K(µ1, µ2) ≥ 0
with equality iff fµ1(y) ≡ fµ2(y).

If we define fy(y) as the density for which the mean is set to the realized y, the deviation of
y from the mean µ is given by

K(y, µ) ≡ 2Ey log
[

fy(y)
fµ(y)

]
= 2

∫
fy(y) log

[
fy(y)
fµ(y)

]
dy . (3.1)

Hastie (1987) and Vos (1991) proved that if fy(y) is within the exponential family equation (3.1)
is reduced to

K(y, µ) = 2 log
[
fy(y)
fµ(y)

]
.

In an estimated regression model, with n individual estimated means µ̂i = µ(x′iβ̂), the KL
divergence between vectors y and µ is equal to twice the difference between the maximum log-
likelihood achievable, l(y, y), and the log-likelihood achieved by the fitted model l(µ̂, y)

K(y, µ̂) = 2
n∑

i=1

[log fyi(yi)− log fµ̂i(yi)] = 2 [l(y,y)− l(µ̂,y)] (3.2)
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A particular case would be the constant only model where the fitted mean would be an n–vector
µ̂0, and the KL divergence, K(y, µ̂0), can be interpreted as the information in the sample data
on y potentially recoverable by inclusion of expectation with respect to the observed values y.

Using the mentioned attributes of the KL divergence, Cameron and Windmeijer (1997) pro-
posed an R2 for the class of exponential family regression models

R2
KL = 1− K(y, µ̂)

K(y, µ̂0)
(3.3)

given that K(y, µ̂0) is minimized when µ̂0 is the maximum likelihood estimate.
Since the expression for K(y, µ̂) in (3.2) is equivalent to the definition of the deviance (Mc-

Cullagh and Nelder, 1989, p. 33), R2
KL can be interpreted as being based on deviance residuals

(cf. equation (2.27)). Therefore, R2
KL is related to the analysis of deviance in the same way as the

classic R2 is related to the analysis of variance. We can re-write the R2
KL as

R2
KL =

K(µ̂, µ̂0)
K(y, µ̂0)

, (3.4)

which reveals another interesting aspect of this measure: using the canonical link in exponen-
tial family models, R2

KL measures the fraction of uncertainty explained by the fitted model, if
uncertainty is quantified by the deviance.

As we have seen in Section 2.1, standard tools to quantify the discrepancy between observed
and fitted values for Poisson models are deviance and the Pearson statistics. These concepts can
be used to define different R2 measures. One idea is to compare the sum of squared Pearson
residuals for two different models: the fitted model and the most restricted model in which only
an intercept is included, which is estimated by ȳ. Cameron and Windmeijer (1996) proposed

R2
PEA = 1−

∑n
i (yi − µ̂i)2/µ̂i∑n
i (yi − ȳ)2/ȳ

(3.5)

The choice of ȳ as weight in the denominator is a generalization for the Poisson case of the weighted
R2 proposed by Buse (1973).

Instead of using Pearson residuals, we can alternatively construct an R2 measure based on
deviance residuals (see Section 2.3.1). Let ȳ be the predicted mean for a Poisson model with
just an intercept: then, the deviance is Dev(y, ȳ) = 2

∑n
i yi log(yi/ȳ). From this formulation, the

deviance-R2 for the Poisson model is

R2
DEV = 1−

∑n
i {yi log(yi/µ̂i)− (yi − µ̂i)}∑n

i yi log(yi/ȳ)
. (3.6)

For the canonical link, the term
∑

i(yi − µ̂i) reduces to 0. Though equation (3.6) is equivalent to
the R2 based on the KL divergence in (3.3), we opt for a different subscript to emphasize that
deviance residuals are the basic quantities in (3.6).
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3.1.1 Adjustments according to the number of parameters

The R2 measures we presented so far do not consider the number of covariates used in the regres-
sion models. Some studies underline this aspect in situations with small sample sizes relative to
the number of covariates in the model (Mittlböck and Waldhör, 2000; Waldhör et al., 1998). In
these cases, R2 measures may be seriously inflated and may need to be adjusted. As we have seen
in Section 2.1.3, in a non-parametric setting, effective dimensions are an equivalent concept to the
number of covariates. Hence gof measures for non-parametric models should take into account
the effective dimensions of the fitted model.

In a GLM context, Waldhör et al. (1998) proposed to correct both the deviance and Pearson
R2 in the following way:

R2
PEA,adj = 1− (n− p− 1)−1

∑n
i (yi − µ̂i)2/µ̂i

(n− 1)−1
∑n

i (yi − ȳ)2/ȳ

R2
DEV,adj = 1− (n− p− 1)−1

∑n
i {yi log(yi/µ̂i)− (yi − µ̂i)}

(n− 1)−1
∑n

i yi log(yi/ȳ)

where p is the number of estimated covariates additional to the intercept. This type of adjustment
stems from the normal linear model and is appropriate when using the sum-of-squares approach
to quantifying deviation. In Poisson regression models, this adjustment would be just an approx-
imation.

Two adjusted R2 measures for Poisson regression models based on deviance residuals are
presented in Mittlböck and Waldhör (2000):

R2
DEV,adj1 = 1− l(y)− [l(µ̂)− p/2]

l(y)− l(ȳ)

= 1− l(y)− l(µ̂) + p/2
l(y)− l(ȳ)

R2
DEV,adj2 = 1− l(y)− [l(µ̂)− (p + 1)/2]

l(y)− [l(ȳ)− 1/2]

= 1− l(y)− l(µ̂) + (p + 1)/2
l(y)− l(ȳ) + 1/2

(3.7)

It is easy to see how R2
DEV,adj2 is always closer to zero than is R2

DEV,adj1.
Mittlböck and Waldhör (2000) compared these two measures by simulation with different

population values. They showed that R2
DEV,adj1 performs remarkably well where the Poisson

regression is based on a small sample and/or many covariates. Moreover, while the equations
in (3.7) work well in a GLM setting, further extensions are needed in the case of smoothing
models. These are presented in the next section.

3.2 Extending R2 measures for smoothers

In the previous section, we presented R2 measures for GLMs. Although the usage of likelihood
ratio statistics in a smoothing context needs particular care (Ruppert et al., 2003), we follow the
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same arguments and construct R2 measures for Poisson-distributed mortality data fitted with
P -splines.

Deaths counts are Poisson-distributed data and, therefore, we use a measure based on deviance
residuals since Pierce and Schafer (1986) illustrated that deviance residuals are more suitable for
this type of data. We replace in equations (3.7) the number of covariates p by the effective
dimension ED:

R2
DEV,SMO,1 = 1−

∑n
i=1{yi log(yi/µ̂i)− (yi − µ̂i)}+ ED−1

2∑n
i=1{yi log(yi/ȳ)} (3.8)

and

R2
DEV,SMO,2 = 1−

∑n
i=1{yi log(yi/µ̂i)− (yi − µ̂i)}+ ED

2∑n
i=1{yi log(yi/ȳ)}+ 1

2

(3.9)

where ED is estimated as in Section 2.1.3. Equations (3.8) and (3.9) can be naturally computed
in both unidimensional and two-dimensional contexts. Distinct smoothing techniques can be
compared using these measures, as long as they allow for easy computation of the used effective
dimension of the model.

As a first example, the two R2 measures are computed for Danish mortality data to which
a surface is fitted with two-dimensional P -splines (see Figure 1.7 and 2.2). R2

DEV,SMO,1 and
R2

DEV,SMO,2 are equal to 0.995722 and 0.995721, respectively. The difference between these values
is minimal and it seems that the fraction of uncertainty explained by the model is close to 100%.
Table 3.1 presents values of the R2 measure given in (3.9) for different period and age ranges.
For comparison, results of the R2 measure from the Lee-Carter (LC) model are also given. All
the values in Table 3.1 are in the range [0.989038, 0.995721] with marginally smaller values for
the LC model. Of course, the similarity between these outcomes does not reveal the important
differences in explaining variation between the P -spline and the LC model. For a specific Danish
mortality surface, such differences between the two approaches are evident from the fitted values
in Figure 1.6 and 1.7 and from the residual pattern in Figure 2.12.

Danish Data P -splines Lee-Carter
females 1930–2006 10–100 0.995721 0.992671
males 1930–2006 10–100 0.995166 0.992583
females 1930–2006 50–100 0.993654 0.989038
males 1930–2006 50–100 0.993951 0.990885
females 1950–2006 50–100 0.994261 0.991518
males 1950–2006 50–100 0.994089 0.991426

Table 3.1: R2
DEV,SMO,2 values for the Danish population by different period and age ranges, as

well as models.

The presence of a large number of death counts in the mortality surface leads to rather
small deviance residuals, which are the basic elements of these R2 measures. Consequently, equa-
tions (3.8) and (3.9) will always generate figures significantly close to 1, which are essentially
uninformative. An explanation for this drawback of equations (3.8) and (3.9) refers directly to
the null model in the denominators of these measures. The model in the denominators incor-
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porates only the intercept, and is a reasonable null model in a GLM framework. A different
and peculiar null model is needed in models for mortality data. Specifically, it is appropriate to
compare different mortality models to a “limit” model, which is nested in all the selected models,
and which is more complex than a simple constant plane. For instance, the mortality surface for
the Danish population is a 91× 77 matrix. It is pleonastic and uninformative to check whether a
P -spline model explains the variation in the data more than the overall mean of the matrix.

3.3 Alternative R2 measures for mortality models

An alternative strategy for constructing gof measure for mortality data is to choose, as null model,
the linear and bilinear models for unidimensional and two-dimensional models, respectively. That
is, we consider a model in which age and time and possibly their interaction are the only regres-
sors employed. This approach is appealing since both P -splines and the Lee-Carter model (see
Section 1.5.3) can be seen as extensions of this proposed null model. This will allow comparison
of different models relative to the linear or bilinear null model.

In the next sections, we show that a linear model is nested within a P -spline model or a
Lee-Carter model, and therefore it is natural to use it as a null model. In Section 3.3.3 we will
demonstrate that this decomposition can be used for the alternative R2 measure.

3.3.1 P -splines with a transformed basis

In a P -spline setting, one can extract a linear component from the fitted trend, and fit the
remaining variation by a smooth curve with a penalty that penalizes departures from zero. An
early reference about this topic can be found in Green (1985). Verbyla et al. (1999) and Currie
et al. (2006) have discussed this idea, too.

As demonstrated in Section 2.1.1, we can write a P -splines model in the following way:

y = Ba + ε, ε ∼ N (0, σ2I) (3.10)

where B = B(x), n × k is the regression matrix of the B-splines and an additional difference
penalty P on the coefficients a is used to enforce smoothness. Given these components, the
smoothed function is found by minimizing

S∗ = ‖y −Ba‖2 + P .

where P = λD′
dDd and Dd is the difference matrix acting on the coefficients a (see Section 2.1).

A linear or bilinear model can be seen as a nested model in the more general P -spline frame-
work, and in the following, we demonstrate explicitly this association. Specifically, we will present
how a P -spline model can be decomposed in two unique and distinct components, one of which is
the linear model.

In particular, we show how to represent equation (3.10) in the following alternative way:

y = Xβ + Zα + ε, α ∼ N (0, G), ε ∼ N (0, σ2I) (3.11)
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where G is a covariance matrix which depends on λ and in the following, we assume the simple
structure G = σ2

αI, with unknown variance σ2
α. In this way, we separate the fixed part, which does

not depend on the smoothing parameter, and the remaining variation which will be smoothed via
P -splines. We show how the fixed part can be a simple linear (bilinear) model in a unidimensional
(two-dimensional) setting.

It is worth pointing out that this is the common representation of P -splines as mixed models
(Currie and Durban, 2002; Currie et al., 2006; Durban et al., 2006) and that the fixed-effects
model-matrix X is nested in the full model-matrix B.

We assume that a second order penalty is used, i.e. d = 2. The aim is to find the unique
matrix T such that

BT ≡ [X : Z] ⇒ Ba = Xβ + Zα (3.12)

The idea is to use the Singular Value Decomposition (SVD, Good, 1969) of the penalty P to
partition the difference penalty into a null penalty (for the fixed part) and a diagonal penalty (for
the random part).

The SVD of the square matrix D′D can be written as

D′D = V ΛV ′ ,

where V can be decomposed into two matrices: Vn and Vs. The former is the part of the
matrix V corresponding to the zero eigenvalues of D′D (fixed part). Since we are using a second
order penalty we will have only two zero eigenvalues. The matrix Vs corresponds to the nonzero
eigenvalues (random part). Therefore the fixed part would be:

X = B Vn (3.13)

For the random part, we consider the diagonal matrix Λ where we remove the elements corre-
sponding to the fixed part X:

Λ =

[
Σ̃

02×2

]

The new diagonal matrix Σ̃ contains the non-zero eigenvalue: therefore, the random-effects part
can be written as:

Z = B Vs Σ̃− 1
2 (3.14)

The mentioned matrix T will then be:

T =
[
Vn : Vs Σ̃− 1

2

]

and consequently TB = [X : Z] giving the parameterization in equation (3.12) where

β = V ′
na and α = [VsΣ̃

1
2 ]a.

and the penalty term is given by
a′D′Da → α′α
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In this way quadratic and cubic fixed-effects can be chosen with d = 3 and d = 4, respectively
(Verbyla et al., 1999, p. 308). This representation can be generalized in a Poisson case in a
straightforward manner with the additional weight matrix and link function as in Section 2.1. In
a unidimensional setting, the fixed part for mortality data which can be used as null model for
constructing gof measure will be a simple linear term such that

η = Xβ =




1 x1

1 x2

1 x3

...
...

1 xn



·
(

β1

β2

)
(3.15)

where the second column of X will be either the age or year values.
In a two-dimensional setting, the previous considerations can be easily generalized as in the

P -spline approach (see Section 2.2). We now have B = By ⊗Ba with penalty P given by

P = λaIcy ⊗D′
aDa + λyD

′
yDy ⊗ Ica . (3.16)

Taking the SVD of D′
aDa we obtain VaΣaV

′
a and partitioning the matrix

Va = [Vas : Van]

where Vas corresponds to the non-zero eigenvalues and Van to the zero eigenvalues.
Assuming a second order penalty in both dimensions, Σa has two zero eigenvalues and Van

has two columns. Let Σas contain the positive eigenvalues of Σa. In the same way we decompose
D′

yDy obtaining Vy = [Vys : Vyn] and Σys.
Then we have the fixed part:

X = B(Vyn ⊗ Van)

= ByVyn ⊗BaVan

= Xy ⊗Xa. (3.17)

And the random part is given by

Z = B(Vys ⊗ Vas)Σ̃−1/2

= (ByVys ⊗BaVas)Σ̃−1/2 (3.18)

where the diagonal matrix Σ̃ is a block-diagonal containing the non-zero eigenvalues in both
dimensions.

The new basis T is given by the combination of equations (3.17) and (3.18):

T = [Vyn ⊗ Van : Vys ⊗ Van : Vyn ⊗ Vas : Vys ⊗ Vas]
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We can prove that T is orthogonal, so for the two-dimensional case in (3.12) we have

β = (Vyn ⊗ Van)′a

α = (Vys ⊗ Van : Vyn ⊗ Vas : Vys ⊗ Vas)′a.

The penalty is then given by
a′Pa = ω′T ′PTω

where ω′ = [β′ : α′].
The fixed part for our null model in a two-dimensional case for mortality surfaces is then

given by

η = Xβ =




1 a1 y1 a1 · y1

1 a2 y1 a2 · y1

...
...

...
...

1 am y1 am · y1

1 a1 y2 a1 · y2

1 a2 y2 a2 · y2

...
...

...
...

1 am y2 am · y2

1 a1 y3 a1 · y3

1 a2 y3 a2 · y3

...
...

...
...

1 am y3 am · y3

...
...

...
...

1 a1 yn a1 · yn

1 a2 yn a2 · yn

...
...

...
...

1 am yn am · yn




·




β1

β2

β3

β4




, (3.19)

where ai, i = 1, . . . ,m and yj , j = 1, . . . , n are age and year values, respectively. In this way we
have as fixed part, and, consequently as null model, a bilinear surface in which age and time
interact. The dimension of the model is equal to four, i.e. the number of columns of X. The
linear model can be easily fitted using a two-dimensional P -spline framework by choosing large
smoothing parameters for both age and year. In the example we considered λa = λy = 108 worked
well and lead to an effective dimension of about four.

3.3.2 The Lee-Carter as a simple bilinear model

In a two-dimensional setting, the Lee-Carter (LC) model is widely used in modeling mortality
surface and it is a commonly used model for mortality development (see Section 1.5.3, page 11).
Therefore, it is useful to also apply alternative gof measures for mortality data to this model. In
this section, we show how the basic bilinear structure is nested in the LC model, too.
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The LC model (page 13) is given by:

Yij ∼ Poisson (Eij · exp(αi + βi · γj))

where αi, βi and γj are vectors of parameters that have to be estimated. Using the canonical link
function for Poisson-distributed data, the linear predictor of the LC model is given by

ηij = αi + βi · γj . (3.20)

It can be proved that equation (3.20) is a general case of the fixed part of the model in (3.12)
in the two-dimensional case, where the linear predictor is given in equation (3.19). We let the
Lee-Carter vectors of parameters, αi, βi and γj , vary linearly over ages and years, that is

αi = θ1 + θ2 · ai

βi = θ3 + θ4 · ai

γj = θ5 + θ6 · yj . (3.21)

The linear predictor in (3.20) then becomes:

ηij = θ1 + θ2ai + (θ3 + θ4ai)(θ5 + θ6yj)

= (θ1 + θ3θ5) + (θ2 + θ4θ5)ai + θ3θ6yj + θ4θ6aiyj ,

which is equivalent to linear part of the mixed model representation of P -splines models in equa-
tion (3.19) if

β1 = θ1 + θ3θ5

β2 = θ2 + θ4θ5

β3 = θ3θ6

β3 = θ4θ6.

3.3.3 R2
(bi)lin: a goodness-of-fit measure for mortality data

In Sections 3.3.1 and 3.3.2, we showed that both the two-dimensional P -spline model and the
Lee-Carter model can be seen as extensions of a bilinear surface, where ages and years interact.
Such a parsimonious surface can be used as a null model to compare the explained variability
from more sophisticated models in an appropriate way. That is, we replace the constant surface
as a null model in the denominator in (3.9), by either an estimated linear or bilinear model as
given in (3.15) and (3.19).

We define by µ̂1
i and µ̂0

i the estimated values by the fitted model and the null model, re-
spectively. In a similar fashion, ED1 and ED0 denote the effective dimension of the two models.
Recalling explicitly equation (3.9), we propose as appropriated gof measure for mortality models
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the following equation:

R2
(bi)lin = 1−

∑n
i=1{yi log(yi/µ̂1

i )− (yi − µ̂1
i )}+ ED1

2∑n
i=1{yi log(yi/µ̂0

i )− (yi − µ̂0
i )}+ ED0

2

(3.22)

where n denotes the total number of measurement values in the data. As mentioned, the null
model is defined by the linear predictor in (3.19) or (3.15). The variation explained by the fitted
model is now compared to the (bi)linear model and therefore we use (bi)lin as subscription in the
measure.

Equation (3.22) can be alternatively written as

R2
(bi)lin = 1− Dev1(y;a1, λ) + ED1(a1,λ)

2

Dev0(y;a0) + ED0(a0)
2

(3.23)

where a are the coefficients of the model and λ is the smoothing parameter, for smoothing models.
Again, the superscripts 0 and 1 denote quantities computed from the null and fitted model,
respectively.

As in the other R2 measures (see Section 3.1), values of (3.23) closer to 1 indicate a better fit
compared to the (bi)linear null model. Moreover, ED0(a0)

2 is equal to 1 in a unidimensional setting
and to 2 in a two-dimensional setting, and it does not depend on the smoothing parameter λ in
a smoothing setting.

Relations between R2
(bi)lin and information criteria

Actual associations between our R2
(bi)lin and information criteria for a smoother can shed additional

light on the meaning and implications of the proposed R2 measure. We have already presented
several information criteria for selection of smoothing parameters for different data (in Section 2.1).
Here we focus on the commonly used criteria in the case of Poisson data: Akaike’s Information
Criterion and Bayesian Information Criterion. Let’s recall their formulas:

AIC(λ) = Dev(y;a, λ) + 2 · ED(a, λ)

BIC(λ) = Dev(y;a, λ) + ln(n) · ED(a, λ) ,

and, consequently, the deviance can be written equivalently as:

Dev(y; a, λ) = AIC(λ)− 2 · ED(a, λ)

Dev(y; a, λ) = BIC(λ)− ln(n) · ED(a, λ) . (3.24)

One can show that AIC and BIC are linked with R2
(bi)lin. Substituting the first equation of

(3.24) in the measure presented in (3.23), we obtain:
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R2
(bi)lin = 1− AIC1 − 2 · ED1 + ED1

2

Dev0 + ED0

2

= 1 +
3
2 · ED1 + AIC1

Dev0 + ED0

2

=

[
1 +

3
2 · ED1

Dev0 + ED0

2

]
−

[
1

Dev0 + ED0

2

]
·AIC1 (3.25)

which shows the relation between R2
(bi)lin and AIC. In a similar fashion, substituting the second

equation of (3.24) in (3.23), we obtain the relationship between R2
(bi)lin and BIC:

R2
(bi)lin = 1− BIC1 − ln(n) · ED1 + ED1

2

Dev0 + ED0

2

= 1 +

[
ln(n)− 1

2

] · ED1 + BIC1

Dev0 + ED0

2

= 1 +

[
ln(n)− ln

(
e

1
2

)]
· ED1 + BIC1

Dev0 + ED0

2

=


1 +

ln
(

n√
e

)
· ED1

Dev0 + ED0

2


−

[
1

Dev0 + ED0

2

]
· BIC1 (3.26)

For simplicity of notation, on the right side of (3.25) and (3.26) we have dropped the argu-
ments in the brackets.

From equations (3.25) and (3.26), the R2
(bi)lin is a linear transformation of both AIC and BIC.

It is noteworthy that the slope of this transformation depends merely on the null model. As a
result, if we would use R2

(bi)lin as a criterion for smoothing parameter selection, i.e. maximizing
R2

(bi)lin, we would obtain an optimal value that is different from the one obtained by minimizing
the AIC and BIC.

The important point to note here is the presence of the deviance of the null model, Dev0, in
the second terms of the intercepts in equations (3.25) and (3.26). Especially in a two-dimensional
setting and with mortality data, Dev0 can be substantially higher than any quantity in the
numerator, leading to an intercept close to 1. Therefore, in the presence of larger Dev0 , the profiles
R2

(bi)lin and AIC (or BIC) will be more and more similar over a grid of smoothing parameters that
differ only in sign.

Furthermore, fitted values picked by minimizing AIC will always result in a larger R2
(bi)lin

with respect to those picked by minimizing BIC, especially for a large mortality surface (see the
different penalization produced by AIC and BIC in Section 2.1.4).
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3.4 Simulation studies

In this section, we present different simulation studies which demonstrate the performance of
the proposed R2

(bi)lin. Its features will be considered in both unidimensional and two-dimensional
contexts. Simulation settings are chosen such that they resemble mortality data, based on Poisson
data and different sample sizes.

3.4.1 The unidimensional case

Though the proposed measure R2
(bi)lin reveals its capability to identify how well a mortality model

fits in a two-dimensional setting, in this section we will illustrate the performances of R2
(bi)lin over

a single variable only. A univariate P -spline model is fit based on smoothing parameters selected
by BIC (see Section 2.1, page 17).

The R2
(bi)lin measure is constructed from a given fitted model and a null model. In a unidi-

mensional setting, the latter is represented in equation (3.15). Equation (3.15) is a simple linear
predictor where the time-axis is the only covariate. As mentioned above, we will fit this null
model by simply applying a P -spline approach with a sufficiently large smoothing parameter.
Consequently ED0 will always be equal to 2.

αj

years (j)

α j

1940 1960 1980 2000

2e−05

4e−05

6e−05

8e−05

βj

years (j)

β j

1940 1960 1980 2000

0.088

0.090

0.092

0.094

0.096

0.098

0.100

0.102

Figure 3.1: Gompertz parameters, αj and βj , over time j used in the simulation setting, cf. equa-
tions (3.27) and (3.28)

Death counts were simulated from a Poisson distribution with rates following a Gompertz
distribution (Section 1.4, page 8). In particular, we simulated mortality surfaces from the following
setting

Yij ∼ Poisson (Eij · exp(ηij)) i = 30, . . . , 100

j = 1930, . . . , 2006 , (3.27)

where the linear predictor varies over time j:

ηij = ln(αj) + βj · i (3.28)
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and i are the ages, 30, . . . 100. The values of the parameters αj and βj over year j are shown in
Figure 3.1 and they are chosen to mimic a realistic scenario.

In order to understand the role of the sample size in the outcomes of R2
(bi)lin, we simply modify

the values into the matrix of exposures Eij . Specifically, we designed two different matrices in
which Eij = 5, 000 and Eij = 25, 000 for all i = 30, . . . , 100 and j = 1930, . . . , 2006. In this way
we can generate two different mortality surfaces in which the true model is the same, whereas the
variability is different.

We will pick two particular ages only (i = 40 and i = 80) and analyze the performance of
R2

(bi)lin over time, j = 1930, . . . , 2006. We have four series of death rates (2 ages and 2 exposures)
which will be smoothed using P -spline methodology with 18 cubic B-spline bases. The proposed
R2

(bi)lin is then computed for each fitted model.
We repeated the procedure 1,000 times. Figure 3.2 shows the outcomes of a single simulation

at the given ages i = 40 and i = 80 for the different exposure matrices. True, fitted and null
models are plotted. Values for R2

(bi)lin and R2
DEV,SMO,2 are also presented.

Table 3.2 presents the median values for R2
(bi)lin and R2

DEV,SMO,2 as well as median values
for deviance, effective dimensions and selected smoothing parameter from the 1,000 simulations
by different exposures and ages. An overview of the distributions of these parameters is given in
Figure 3.3.

Median value of:
Simulated data R2

(bi)lin R2
DEV,SMO,2 Dev(y; a, λ) ED(a, λ) λ

i = 40, Eij = 25, 000 0.325 0.822 74.338 4.441 1000.000
i = 40, Eij = 5, 000 0.061 0.477 77.424 2.778 3162.278
i = 80, Eij = 25, 000 0.860 0.991 68.655 9.633 630.957
i = 80, Eij = 5, 000 0.545 0.957 72.280 7.280 630.957

Table 3.2: Median values of R2
(bi)lin, R2

DEV,SMO,2, Dev(y; a, λ), ED(a, λ) and λ from the 1,000
simulations at age 40 and 80 over years j = 1930, . . . , 2006. Different exposure matrices are used,
cf. equations (3.27) and (3.28).

As expected, R2
(bi)lin always is smaller than R2

DEV,SMO,2. R2
(bi)lin measures how much more

variation is captured by the model relative to the null linear model. The outcomes of R2
DEV,SMO,2

are close to 1 (0.991 and 0.956), especially at age 80, due to the large number of deaths at this
age.

Moreover, Figure 3.3 shows that R2
(bi)lin differs more strongly between the setting than

R2
DEV,SMO,2. In particular, results from R2

DEV,SMO,2 at age i = 80 are all very close to 1, i.e. all
models capture almost 100% of the variation.

The smoothing parameter at age 40 with Eij = 5, 000 is on average considerably larger,
leading to fitted values often similar to the linear null model. This might also be due to the fact
that the variability in the data is larger for smaller exposure. In these cases, the R2

(bi)lin will
generally be close to 0, i.e. the fitted model does not capture more variability than the linear null
model.

It is a easy to see that the values of R2
(bi)lin are mainly influenced by the difference in effective

dimensions in the fitted models. On the other hand, the deviance does not show substantial
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Figure 3.2: True, simulated and fitted deaths rates (with 95% confidence interval) along with the
null model at age 40 and 80 over years j = 1930, . . . , 2006, logarithmic scale. P -spline approach
is used to fit the data, and BIC for selecting the smoothing parameters.
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Figure 3.3: Summary of 1,000 simulations. Box-plots of R2
(bi)lin, R2

DEV,SMO,2, Dev(y; a, λ) and
ED(a, λ) for ages i = 40 and i = 80 and different exposure matrices, cf. equations (3.27) and (3.28).
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differences between the four settings (see Figure 3.3, bottom-left panel).
In conclusion, we consider it is often more meaningful and appealing to perceive how much

our fitted model improves with respect to a known model, instead of to the overall mean.

3.4.2 The two-dimensional case

In this section, we will present results from both R2
(bi)lin and R2

DEV,SMO,2 in a simulated two-
dimensional setting. As explained in Sections 3.3.1 and 3.3.2, both the Lee-Carter model and
the two-dimensional regression P -splines can be considered as extensions of the simple bilinear
model over age and time, as specified in equation (3.19). Such a bilinear model will be used in
this simulation setting as null model for the R2

(bi)lin measure.
Our study in a two-dimensional case employs equations (3.27) and (3.28) for simulating 1,000

mortality surfaces which follow Gompertz distribution with parameters αj and βj varying over
time as display in Figure 3.1. Figure 3.4 presents an example of such simulation in which the true
mortality surface is accompanied by possible simulated surfaces with different exposure matrices.

These mortality surfaces are then fitted by two-dimensional regression P -splines and the LC
model (see Sections 2.2 and 1.5.3). In particular, we selected the smoothing parameters by BIC
in the P -spline approach and we followed the Poisson likelihood approach given by Brouhns et al.
(2002) for fitting the LC model. Finally, both R2

(bi)lin and R2
DEV,SMO,2 are computed for each of

the 1,000 simulations.
Table 3.3 shows the median values from the 1,000 simulations of both R2

(bi)lin and R2
DEV,SMO,2 ,

as well as the median deviances from both the P -spline and LC approach. Two-dimensional re-
gression P -splines allow distinct smoothing parameters for each surface and consequently different
effective dimensions (Table 3.3 presents also the median values of the effective dimensions). Note
that the LC model always employs 2 ·m + n− 2 = 215 parameters, which will have an important
impact on R2

(bi)lin and R2
DEV,SMO,2.

R2
(bi)lin is substantially higher for the two-dimensional P -spline approach than for the LC

model (0.931 vs. 0.750 and 0.734 vs. 0.591 for the two simulation settings). We might conclude
that the LC model performs much worse than two-dimensional P -spline regression on the given
simulation setting. This difference is more evident than it appears looking directly at R2

DEV,SMO,2 ,
in which all the values are close to 1.

Regarding model comparison, one could check the differences in the deviances between the
two approaches (5407 vs. 19656 and 5444 vs. 8134). Again in this case the discrepancy between
simulated and fitted values is much larger in the LC model. This is due to the comparatively
rigid structure of the LC model. Though the effective dimensions in the LC model is substantially
larger, as comparison to the P -spline model, the LC model is incapable of capturing variability
in the data better.

It is worth pointing out that R2
(bi)lin combines both deviance and effective dimensions of a

fitted model in a single value, which reveals straightforwardly the gof of the model. Also in this
measure, the sample size plays an important role in the results.

The differences between the LC model and the P -spline approach are even clearer in Fig-
ure 3.5, where two particular ages from the two different simulated mortality surfaces are por-
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Figure 3.4: True and simulated death rates over age and years with different exposure matrices.
Bilinear model from the simulation setting is also plotted.
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Figure 3.5: True, simulated and fitted deaths rates with P -splines and LC model along with the
null model, logarithmic scale. Age 40 and 80 over years j = 1930, . . . , 2006.
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Simulation setting
median values of Eij = 25, 000 Eij = 5, 000

P -splines R2
(bi)lin 0.931 0.734

R2
DEV,SMO,2 0.999 0.999

Dev(y; a, λ) 5406.800 5443.667
ED(a, λ) 23.224 21.366

Lee-Carter R2
(bi)lin 0.750 0.591

R2
DEV,SMO,2 0.999 0.998

Dev(y; α,β, γ) 19656.059 8133.536
ED(α, β,γ) 215.000 215.000

Table 3.3: Median values of R2
(bi)lin, R2

DEV,SMO,2, deviance and effective dimensions/parameters
from the 1,000 simulations fitted with P -spline approach and LC. Different exposure matrices are
used, cf. equations (3.27) and (3.28).

trayed. The LC model clearly misfits the data and, additionally, it produces under-smoothed
fitted values.

3.5 Applications to the Danish data

In this section, we study the performance of R2
(bi)lin for the Danish female population introduced

in Chapter 1.
It was already clear from the residual analysis, that the P -spline approach outperforms the LC

model, even though the former employs fewer effective dimension (cf. Section 2.3.1). Nevertheless
in Table 3.1, modified R2 measures for smoothers did not reveal remarkable differences in gof
between these two approaches.

The proposed R2
(bi)lin aims to overcome this issue. Figure 3.6 shows shaded contour maps of

the actual Danish female death rates, along with the fitted values and the null model. Figure 3.7
illustrates, for selected ages, the actual death rates and fitted values from the LC model and P -
spline approach, together with the fitted values from the null model. P -splines follow the mortality
development over years more closely than the LC model and the LC model clearly under-smoothed
the actual death rates.

R2
(bi)lin values are 0.8279138 and 0.7052449 for the P -spline approach and LC model, respec-

tively. The difference is here more perceptible and informative than with R2
DEV,SMO,2.

Finally, Table 3.4 presents different outcomes from (3.23) for the Danish population, taking
into consideration different period and age ranges. The different values between P -splines and the
LC model are clear in all the fitted mortality surfaces from which we conclude that P -splines give
a better fit to these data in all scenarios. In contrast to Table 3.1, the range of the outcomes in
Table 3.4 is [0.454684, 0.827914].

3.5.1 R2
(bi)lin and information criteria

In Section 3.3.3, we presented the relations between R2
(bi)lin and the information criteria for select-

ing smoothing parameters in a smoothing context: that is, AIC and BIC. For the Danish female
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Figure 3.6: Actual and fitted deaths rates with P -splines and LC model along with the null model
given in equation (3.19). Denmark, females.

Danish Data P -splines Lee-Carter
females 1930–2006 10–100 0.827914 0.705245
males 1930–2006 10–100 0.822210 0.727210
females 1930–2006 50–100 0.702440 0.486016
males 1930–2006 50–100 0.638110 0.454684
females 1950–2006 50–100 0.720131 0.586349
males 1950–2006 50–100 0.684898 0.542944

Table 3.4: R2
(bi)lin values for the Danish population by different period and age ranges.



60 3. Explained variation in models for mortality data

lo
g(

m
j)

1940 1960 1980 2000

−10.5

−10.0

−9.5

−9.0

−8.5

−8.0

−7.5

−7.0

years (j)

age=10

Actual
Null
P−splines
Lee−Carter

lo
g(

m
j)

1940 1960 1980 2000

−7.0

−6.5

−6.0

−5.5

years (j)

age=40

Actual
Null
P−splines
Lee−Carter

lo
g(

m
j)

1940 1960 1980 2000

−4.0

−3.8

−3.6

−3.4

−3.2

−3.0

years (j)

age=70

Actual
Null
P−splines
Lee−Carter

lo
g(

m
j)

1940 1960 1980 2000

−2.0

−1.5

−1.0

−0.5

0.0

years (j)

age=100

Actual
Null
P−splines
Lee−Carter

Figure 3.7: Actual and fitted death rates at selected ages over years, logarithmic scale. 2D smooth-
ing with P -splines and LC model used for the estimation. Null model given in equation (3.19).
Denmark, females.
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population, Figure 3.8 shows the contour plots of AIC, BIC and R2
(bi)lin over the same grid of λa

and λy for the Danish female population from 1930 to 2006 and from age 30 to 100.
As mentioned in Section 2.2.1, BIC is more convenient to use in selecting smoothing param-

eters in a mortality setting, i.e. death counts are so large that effective dimension of the model
needs to be penalized more. Smoothing parameters selected by AIC and R2

(bi)lin (Fig. 3.8) are
smaller than the smoothing parameters picked by BIC.

As explained in equations (3.25) and (3.26), outcomes from R2
(bi)lin are closer to the AIC

than the BIC. Consequently, R2
(bi)lin will always be slightly higher for a fitted mortality surface in

which λa and λy are selected by AIC. In this case R2
(bi)lin is equal to 0.835897 when AIC is used,

in contrast with 0.827914 of the fitted mortality surface selected by BIC.

Figure 3.8: BIC, AIC and R2
(bi)lin over a two-dimensional grid of λa and λy. Ages from 10 to 100.

Denmark, females, 1930–2006
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3.6 Summary

In this chapter, we proposed a new gof measure for mortality data, R2
(bi)lin, an important tool for

comparing models and data in this specific setting. First, we noticed that classic measures are
essentially uninformative in the mortality context for two specific reasons. On one hand, mortality
data present an often large number of death counts. On the other hand, the classic gof measure
aims to compare fitted models with a null model, which is a simple overall mean of the data.
Consequently, commonly used R2 measures always give outcomes that are close to one, regardless
of the applied model and of the actual data.

We also presented various generalizations of the R2 for normal data which are suitable for
non-normal data. Further corrections are also needed to account for the number of parameters in
the fitted model. Moreover, working with smoothing techniques, effective dimension of the model
have to be included in gof measures. Nevertheless, none of these adjustments is enough to allow
informative comparison of explained variability of different models in mortality data.

The proposed measure is based on an alternative null model, specifically designed for mor-
tality data, that is a linear or bilinear model for unidimensional or two-dimensional models,
respectively. The equation (3.23) is a particular variant of commonly used gof measures in which
we incorporate the effective dimension (number of parameters) used by the fitted model and an
original denominator, which includes deviance and an effective dimension of a linear model.

The attractive feature of this new measure lies in the fact that the selected null model is nested
in widely used demographic and smoothing models for analysis of mortality development. Specif-
ically, both the Lee-Carter model and the two-dimensional regression P -splines can be viewed as
extensions of the bilinear model over age and time.

Whereas differences in the classic gof measures, even after several adjustments, are hardly
perceptible, R2

(bi)lin can be easily used to select and assess models and mortality data. In particular,
we showed that, though the Lee-Carter model employs a considerably large number of parameters,
P -spline methodology can better capture changes in mortality. For instance, for Danish females
for the years 1930–2006 and for ages 10–100, the LC model explains 70% more variability present
in the actual data than does the bilinear model, while two-dimensional P -splines improves the
bilinear null model by 83%. This difference in the outcomes summarizes remarkably well what
can be seen in the residual analysis, something that was not evident in common gof measures.



Chapter 4

Smooth estimates of age misreporting

In Chapter 1, we assumed that the total number of deaths over a specified age- and year-interval
is a Poisson distribution. Demographic models can be thus viewed as Poisson regression models.
Specifically, P -splines presented in Chapter 2 employed the Poisson assumption for fitting mortal-
ity surfaces, i.e. the mean and the variance are characterized by the same parameter. Therefore,
we considered the variability of data already established by the Poisson distribution.

Poisson models are widely used in the regression analysis of count data (e.g. Frome, 1983;
Frome et al., 1973; Haberman, 1974; Holford, 1983). Successive events, such as death counts
in an age- and time-interval, “occur independently and at the same rate, the Poisson model is
appropriate for the number of events observed” (McCullagh and Nelder, 1989, p. 193). At the
same time, it is recognized that counts often display extra-Poisson variation, or overdispersion,
relative to a Poisson model (among others, see Breslow, 1984; Cameron and Trivedi, 1986).

A peculiar source of overdispersion in mortality data is the so-called digit preference (DP) or
age heaping. DP is defined as the tendency to round counts or measurements to pleasant digits.
This usually leads to errors and bias in reported ages and spiky age-at-death distribution. This
is particularly seen in the analysis of historical data or of countries with relatively poor data.
Because of the large samples these digit preferences will always be picked up as a “signal” by
statistical methods, including smoothing techniques, and therefore will distort analyses.

Different techniques have been developed to deal with this problem. Digit preference is most
likely to be seen whenever laymen are involved. Hence, age misreporting has long been an issue
in demography (Coale and Li, 1991; Das Gupta, 1975; Myers, 1940; Siegel and Swanson, 2004).
Suggested solutions to compensate for age heaping are the application of summary indices to
quantify the extent of misreporting and ad hoc procedures to reduce digit preferences and adjust
age distributions. Mari Bhat (1990) proposed a model to estimate transition probabilities of age
misstatement based on iterative adjustments and generalized stable population relationships.

Besides the quantification of digit preferences and the assessment of their consequences, only a
few studies aim to model, estimate and correct the process of misreporting (Crawford et al., 2002;
Edouard and Senthilselvan, 1997; Heitjan and Rubin, 1990; Pickering, 1992; Ridout and Morgan,
1991). Lately a novel and general methodology for dealing with this issue has been proposed by
Camarda et al. (2008b).

They have proposed a general model for estimating the actual underlying age distribution as

63
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well as the preference pattern which, by transferring observations from adjacent digits, leads to
the finally observed pattern. This is achieved by combining the concept of penalized likelihood
with the composite link model (CLM, Eilers, 2007; Thompson and Baker, 1981). Additionally,
an L1-ridge regression (Tibshirani, 1996) allows extraction of both the latent distribution and the
pattern of misreporting probabilities.

In this chapter, the model proposed by Camarda et al. (2008b) will be presented in detail.
Specifically, we will first introduce a typical example of age heaping, after which the essence of the
CLM is introduced in Section 4.2, including the specific form of the composition matrix. Estima-
tion of the model is covered in Section 4.3, including difference penalties for assuring smoothness,
the estimation of the preference pattern, and the choice of optimal smoothing parameters. Com-
putational details are then given in Section 4.4. In Section 4.5, we illustrate the approach via
simulated data and present some demographic applications.

Although the model proposed by Camarda et al. (2008b) is in many respects very flexible,
the fact that observations can only shift to their nearest neighbors is rather limiting. In Sec-
tion 4.6, we generalize their approach to more general patterns of misreporting, i.e. allowing for
exchanges between digits that are more than one category apart. Further extensions are presented
in Section 4.7.

4.1 An example of digit preference

As an example for manifest age misreporting, Figure 4.1 shows the age distribution of adult
Portuguese females (ages 30 to 89) who died during 1940 (Human Mortality Database, 2008).
Systematic peaks at ages ending in 0 and, less prominently, 5 are typical features for countries
with less accurate vital registration, which certainly was the case in Portugal almost seven decades
ago.

Flanking the peaks, troughs are found at ages ending in 9, 1, 4, and 6. Moreover this
phenomenon seems particularly severe at older ages. Also, even numbers in general seem to be
preferred over odd digits.

Current age-at-death distributions are the result of the number of births and deaths, and
migration flows in the past. Individual years may show particular outcomes, like epidemics,
when birth cohorts are considerably smaller than the years before and after the crisis, or years
of armed conflicts, when deaths are higher, especially among men. Thus, there is the possibility
of irregularities in an age distribution, however, the specific reasons for such irregularities are
usually well-understood from the historic records. In the absence of such specific past events, the
assumption of a smooth age distribution is reasonable, implying that the peaks and gaps are the
result of certain preferences in reported ages. If spikes or troughs in the distribution are due to
events in the past, rather than digit preference, these digits will be excluded from the smoothing
procedure.

The observed frequencies, therefore, can be viewed as the outcome of a misreporting process
that transforms a smooth but latent age distribution into observed data. The counts at the
preferred digits are composed of the actual values at these ages, plus the misclassified cases from
the neighboring categories due to the prevalent preference pattern.
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Figure 4.1: Age-at-Death distribution for Portugal, females, 1940.

4.2 The Composite Link Model

Camarda et al. (2008b) assumed a smooth discrete sequence γ = (γ1, . . . , γJ)′, which is the
unknown latent distribution. In this specific demographic setting, j = 1, . . . , J are the ages. To
ensure non-negative elements of γ, this sequence is denoted as γ = exp(β), with β smooth, that
is neighboring elements of β being of similar size. The elements γj , j = 1, . . . , J are the counts
that would be expected, if there were no age heaping. However, the mechanism, which actually
generates observations, operates by linearly composing the values in γ to a vector µ = Cγ. The
observed counts y are realizations from Poisson variables with E(y) = µ, i.e.

P (yj) =
µ

yj

j e−µj

yj !
. (4.1)

The composition matrix C embodies the digit preference mechanism by partly redistributing
certain elements of γ to neighboring, preferred values in µ. In a general CLM the composition
matrix C need not be a square matrix, as several categories could be lumped together. Modeling
age heaping, because expected counts are redistributed only partly, the matrix C is of dimension
J × J .

4.2.1 The composition matrix C

The composition matrix C describes how the latent distribution γ was mixed before generating
the data and it is characteristic for the predominant preference pattern. Consequently, for mod-
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eling digit preferences, the matrix C needs to be defined according to the assumptions of the
misreporting process. Eilers and Borgdorff (2004) allowed misreporting only for a few selected
digits, with probabilities that did not change with the size of the underlying number, e.g. the
probability for a transfer from 10x + 7 to 10x + 8 was assumed to be the same for all x εN.

The mentioned limitation of the model proposed by Camarda et al. (2008b) lies in the as-
sumption that misreporting will only move observations to the immediate neighboring digits, both
to the left and the right. For example, observations are allowed to move from 9 to 10, but also
from 9 to 8, but not from 12 to 10. In Section 4.6, we generalize this approach and consider
preferences that move observations by two or more steps, e.g. observations shifted from 8 to 10,
or from 12 to 15, if more than 2 steps are allowed.

Let denote by pjk the proportion of γk that is moved from category k to category j. Allowing
only one-step transitions implies that pjk = 0 for |j − k| > 1. These proportions are summarized
in the J × J composition matrix C:

C =




1− p21 p12 0 0 · · · 0

p21 1− p12 − p32 p23 · · · ...

0 p32 1− p23 − p43 p34 · · · ...

0 0 p43
. . . . . . 0

...
...

...
. . . 1− pJ−2,J−1 − pJ,J−1 pJ−1,J

0 · · · · · · 0 pJ,J−1 1− pJ−1,J




(4.2)

The diagonal elements cjj = 1− pj−1,j − pj+1,j of C specify the proportions of the γj that do not
get redistributed. Note that all columns in C add up to 1. The matrix C can be adapted also
when a particular digit needs to be excluded from the redistribution process.

It is obvious that the 2 · (J −1) unknown elements pjk cannot be estimated without imposing
additional restrictions. A penalized weighted least-squares approach is suggested by Camarda
et al. (2008b) and is discussed in detail in Section 4.3.3.

4.3 Estimating the CLM and the preference pattern

4.3.1 The CLM algorithm

Thompson and Baker (1981) present the CLM and the estimation algorithm very succinctly,
and Eilers (2007) extended the approach to smooth latent distributions estimated by penalized
likelihood. Camarda et al. (2008b) briefly described the CLM for modeling digit preference. For
easier reference, in this section we provide details on the CLM and then describe the estimation
procedure. Working with death counts, the focus is on the Poisson distribution.

In case of no digit preference one would be able to directly observe counts zj , j = 1, . . . , J ,
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following a Poisson distribution such that

P (zj) =
γ

zj

j e−γj

zj !

Assuming smoothness of the elements of β immediately implies smoothness of γj = exp{βj}. In
case one aims to model a flexible functional dependence of the latent means γ on some covariate,
a regression on B-splines can be included into this framework, as well (see Section 2.1). This
leads to the more general formulation γ = exp{Xβ}, where the design matrix X contains the
basis elements covering the range of z, and the vector β gives the weights by which the individual
B-splines in the basis get multiplied. Again, smoothness of the vector β implies smoothness of γ.
In what follows, the model matrix is defined as X = I, the identity matrix.

Without any digit preference, this model can be seen as a generalized linear model (GLM)
(McCullagh and Nelder, 1989; Nelder and Wedderburn, 1972). As in Section 2.1.2 a link function
g(γ) and a linear predictor ηj are introduced:

g(γj) = ηj =
K∑

k=1

xjkβk .

The method of maximum likelihood is used to estimate β. McCullagh and Nelder (1989,
equations 2.12 and 2.13) showed that the ML equations are:

J∑

j=1

(zj − γj)
v(γj)

∂γj

∂βk
=

J∑

j=1

(zj − γj)
v(γj)

∂γj

∂ηk
xjk = 0 (4.3)

where v(γj) is the variance when E(zj) = γj . With the Poisson distribution and the log link,
ηj = ln(γj), it follows that ∂γj/∂ηj = γj and v(γj) = γj . Thus, equation (4.3) simplifies to:

J∑

j=1

(zj − γj)xjk = 0

These equations are nonlinear in β and an iterative procedure is needed to solve them.
Assume that approximate values β̃k, and corresponding γ̃j are known. For small changes in

β one has

∆γj = γj − γ̃j ≈
K∑

k=1

∂γj

∂βk
∆βk = γj

K∑

k=1

xjk(βk − β̃k)

and
J∑

j=1

K∑

l=1

γ̃jxjkxjl∆βl =
J∑

j=1

xjk(zj − γ̃j)

Add
∑

j

∑
l γ̃xjkxjlβl =

∑
j γ̃xjkη̃j to both side, to get

K∑

l=1

J∑

j=1

γ̃jxjkxjlβl =
J∑

j=1

γ̃jxjk

(
zj − γ̃j

γ̃j
+ η̃j

)
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with η̃j =
∑

k=1 xjkβ̃k.
It is easy to recognize the last system of equations as weighted linear regression of a “working

variable” (zj−γ̃j)/γ̃j +η̃j on X, with weights γ̃j . This is a special case of the iteratively reweighted
least squares (IRWLS) algorithm for the estimation of GLMs (Nelder and Wedderburn, 1972) also
used in this thesis in Section 2.1.2. In matrix notation it is

X ′W̃Xβ̃ = X ′W̃ {W̃−1(z − γ̃) + Xβ̃} (4.4)

with W̃ = diag(γ̃).
However, one does not observe the vector z, but another variable y, with µ = E(y) = Cγ,

or µi =
∑

j cijγj . The maximum likelihood equations (4.3) can be adapted in the following way:

I∑

i=1

(yi − µi)
v(µi)

∂µi

∂βk
= 0

As stated in equation (4.1) the observed elements of vector y are realizations from Poisson vari-
ables.

The derivatives of the expected values µi can be written as

∂µi

∂βk
=

J∑

j=1

cij
∂γj

∂βk
=

J∑

j=1

cijxjkγj

and the likelihood equations will thus be

I∑

i=1

(yi − µi)x̆ik = 0 ,

where x̆ik =
∑

j cijxjkγj/µi. The matrix with elements x̆ik can be interpreted as a “working X”.
The IRWLS equations become:

K∑

k=1

I∑

i=1

µ̃ix̆ikx̆ilβ̃l =
I∑

i=1

µ̃ix̆ik

(
yi − µ̃i

µ̃i
+

K∑

k=1

x̆ikβ̃k

)

or, in matrix notation:
X̆ ′W̃ X̆β̃ = X̆ ′W̃ {W̃−1(y − µ̃) + X̆β̃} (4.5)

where W̃ = diag(µ̃). A detailed derivation of (4.5) can be found in Eilers (2007).

4.3.2 Smooth latent distribution in a CLM

When X = I, then ln(γ) = β and smoothness of β implies smoothness of γ. As we have seen
in Section 2.1, we can smooth the solution vector of the coefficients β by subtracting a roughness
penalty from the log-likelihood (Eilers and Marx, 1996). Specifically the roughness of vector β

can be measured with differences. The simplest form of differences which is used to capture the
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smoothness into a vector is:

S1 =
K∑

k=2

(∆βk)2 =
K∑

k=2

(βk − βk−1)2

A rough vector β will show large differences between neighboring elements and hence give a high
value of S1, while a smooth vector will make S1 low. Ultimate smoothness is obtained when all
elements of β are equal and S1 = 0.

Higher order differences can be used as well and introduce stronger smoothness:

S2 =
K∑

k=3

(∆2βk)2 =
K∑

k=3

(βk − 2βk−1 + βk−2)2

or

S3 =
K∑

k=4

(∆3βk)2 =
K∑

k=4

(βk − 3βk−1 + 3βk−2 − βk−3)2

S2 = 0 is obtained when βk = c1k + c0, for arbitrary c0 and c1, while S3 will be zero for any β

that is a quadratic in k.
In matrix notation, let Dd be the matrix that computes dth differences: ∆dβ. For some

examples of difference matrices, we refer to equation (2.6) on page 19.
The roughness measure with differences of order d can be thus written as

Sd = β′D′
dDdβ = ‖Ddβ‖2 (4.6)

where Dd ∈ R(K−d)×K is the matrix that computes dth order differences. Like in the P -spline
approach we use d = 2 in the following.

The partial derivatives of this penalty w.r.t. the unknown parameters are given by

∂Sd

∂β
= 2D′

dDdβ .

Both in GLMs and CLMs, the solution vector β can be forced to be smooth by subtracting
a roughness penalty from the log-likelihood l(β; y) (see section 2.1 and Eilers and Marx (1996)).
This penalty is the roughness measure (4.6), weighted by the smoothing parameter λ:

l∗ = l(β; y)− λ

2
‖Ddβ‖2 .

This penalty can be easily introduced into the likelihood for the CLM, leading to the following
system of equations

(X̆ ′W̃ X̆ + λDT D)β̃ = X̆ ′W̃ {W̃−1(y − µ̃) + X̆β̃}. (4.7)

As in the P -spline approach the smoothing parameter λ balances model fidelity, as expressed by
the log-likelihood l(β; y), and smoothness of the parameter estimates, as expressed by the penalty
term. For a given value of λ, equations (4.7) can be solved iteratively. Methods for optimal choice
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of λ are discussed in Section 2.1.4 for the general P -spline approach and Section 4.3.4 introduces
the specific criterion that was proposed in Camarda et al. (2008b).

4.3.3 Finding the misreporting proportions

In order to estimate the proportions pjk of misreported counts in the matrix C (cf. equation (4.2)),
Camarda et al. (2008b) suggested solving a constrained weighted least squares regression within
the IRWLS procedure. From the structure of the composition matrix C in equation (4.2), the
vector of expected values µ can be written as

µ = Cγ = γ + Γq, (4.8)

where p = (p12, p23, . . . , pJ−1,J ; p21, . . . , pJ,J−1)T , the left-to-right and the right-to-left transfer
probabilities concatenated into a vector of length 2 · (J − 1). Correspondingly, the J × 2 · (J − 1)-
matrix Γ is

Γ =




γ2 0 · · · 0 −γ1 0 · · · 0

−γ2 γ3
... γ1 −γ2

...

0 −γ3
. . . 0 0 γ2

. . . 0
...

. . . γJ
...

. . . −γJ−1

0 · · · 0 −γJ 0 · · · · · · γJ−1




, (4.9)

where the last column containing γJ is not included as pJ is obviously set to 0.
Since y ∼ Poisson(µ), the distribution of (y − γ) can be approximated as

(y − γ) ≈ N(Γp, diag(µ)). (4.10)

In a linear model framework equation (4.10) would be estimated with a simple weighted least-
squares approach. However, as the number of unknowns in p, namely 2 · (J − 1), is considerably
larger than the number J of available data points, additional restrictions have to be imposed on p.

In order to capture the most significant probabilities, the size of the misreporting probabili-
ties p has to be constrained. Simple continuous shrinkage methods, such as ridge regression (Hoerl
and Kennard, 1988), are, in this case, a possible approach:

(Γ′WΓ + κI)p = ΓW (y − γ) (4.11)

The ridge-term κI penalizes the squared norm p′p of the coefficient vector p, the resulting esti-
mates tending to have elements of similar sizes, which is unlike what we would expect for digit
preference patterns. An increasing parameter κ brings together pj to smaller values. Furthermore,
ridge regression is not able to produce a more parsimonious model, since it shrinks all the pj at
the same pace, and hence either all or none of the estimated pj will be approximately zero.

For a typical DP pattern, we would expect that particular digits attract observations from
their neighbors, while the rest of the pjk will be close to zero because, for them, no preference is
evident. Therefore, an automatic selection of the misreporting probabilities should be combined
with a continuous shrinkage of the model.
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Equation (4.11) can be seen as a specific case of the power ridge regression introduced by
Frank and Friedman (1993). They introduced a general ridge penalty Lq-norm of the parameters
and equation (4.11) corresponds to q = 2. Within this framework, instead of the L2 norm p′p,
Camarda et al. (2008b) introduced an L1 penalty into the weighted least-squares problem (4.10).
As pointed out by Tibshirani (1996), this penalty tends to select a small number of elements, pjk,
that exhibit the strongest effects, while possibly shrinking some others to zero. Commonly called
“lasso”, this penalized regression model leads to a penalty term equal to κ

∑ |pj | .
Numerical optimization in this framework is not immediately straightforward since the ob-

jective function contains a quadratic term and a sum of absolute value. Following the proposal
of Schlossmacher (1973), Camarda et al. (2008b) avoided quadratic programming or other meth-
ods that move away from the (iterative) least squares algorithm, because a well-defined effective
dimension will be needed to compute information criteria such as AIC (see Section 4.3.4). Specif-
ically, they set

∑
j |pj | =

∑
p2

j/|pj |, turning a sum of absolute values into a weighted sum of
squares. Of course, to compute the weights, ones needs to know p. Camarda et al. (2008b) solved
this problem by iteration, using weights 1/|p̃j |, where p̃ is an approximation of the solution.

In formulas the iterative solution is given by the following system of equations:

(Γ′V Γ + κQ̃)p = Γ′V (y − γ), (4.12)

where V = diag(1/µ) and the matrix Q is

Q =




1
|p12|+ε 0 . . . . . .

0 1
|p23|+ε 0 . . . . .

. 0
. . . 0 . . . .

. . 0 1
|pj−1,j |+ε 0 . . .

. . . 0 1
|p21|+ε 0 . .

. . . . 0 1
|p32|+ε 0 .

. . . . . 0
. . . 0

. . . . . . 0 1
|pJ,J−1|+ε




. (4.13)

A small number ε is introduced to prevent numerical instabilities when elements of p become very
small. In our experience, ε = 10−6 worked well.

The additional parameter κ in (4.12) constrains the size of misreporting proportions pjk

and has to be estimated similarly to the smoothing parameter λ (see Section 4.3.4). In practice,
Camarda et al. (2008b) suggested alternately estimating µ and γ for a few iterations and afterward,
they start updating p from (4.12).

4.3.4 Optimal smoothing

The estimating equations for the penalized CLM in (4.7) and for the preference pattern in (4.12)
depend on the combination of the two smoothing parameters λ and κ. Once λ and κ are fixed,
the estimates γ̂ and p̂ are determined. To choose the optimal (λ, κ)-combination, Camarda et al.
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(2008b) minimize Akaike’s Information Criterion (AIC):

AIC(λ, κ) = Dev(y; β, λ, κ) + 2 ED(β, λ, κ) . (4.14)

Dev(y;β, λ, κ) is the deviance of the Poisson model (cf. equation (2.16) on page 25), and ED(β, λ, κ)
is the effective dimension of the model for given (λ, κ). In a similar fashion, as described in Sec-
tion 2.1.3, Camarda et al. (2008b) denoted the effective dimension as the sum of the two model
components, i.e. ED(β, λ, κ) = ED1(β, λ) + ED2(β, κ), where ED1(β, λ) denotes the effective di-
mension of the penalized CLM, and ED2(β, κ) refers to the penalized WLS-regression. Specifically,
we have

ED1(β, λ) = trace{X̆(X̆ ′Ŵ X̆ + λP )−1(X̆ ′Ŵ )} (4.15)

and
ED2(β, κ) = trace{Γ(Γ′V Γ + κQ)−1 Γ′V } . (4.16)

An efficient 2D grid-search for λ and κ is adequate for finding the minimum of the AIC (see
Figure 4.3 in Section 4.5). Both IRWLS iterations and penalized WLS were implemented in R (R
Development Core Team, 2008) and the next section will present the computational details.

4.4 Software considerations

As explained in Section 4.3, the proposed model is built up from two components: the penalized
composite link model and the constrained weighted least squares regression. We show how to
implement these two components within an IWRLS algorithm framework. We work in R (R
Development Core Team, 2008) because of its widespread use, but the following code should be
easily understood by someone who is unfamiliar with this language, if the following notation is
known.

The symbol <- is an assignment statement, an asterisk, *, means element-by-element multi-
plication, %*% means matrix multiplication, t() means transpose and solve() estimates a generic
least square model, i.e. one would write x <- solve(A, b) to solve A · x = b for x, where b can
be either a vector or a matrix.

4.4.1 The Penalized CLM component

The IRWLS related to the system of equations in (4.5) can be solved given a computed C matrix
(cf. (4.2)). Given a vector of starting values for p (p):

# Compositional matrix C

build.C <- function(p){

ld <- length(p)/2

p.u <- p[1:ld]

p.l <- p[1:ld+ld]

C <- diag(c(1-p.l, 1))

diag(C)[2:(ld+1)] <- diag(C)[2:(ld+1)] - p.u
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diag(C[-1,]) <- p.l

diag(C[,-1]) <- p.u

return(C)

}

The following routine is used for each iteration for fitting the penalized CLM in equation (4.7).
As a first step, one needs to create the following objects: the penalty matrix P , the composition
matrix C and initial values for the linear predictor η (in the code eta.old).

Sequentially, the routine updates the latent distribution (γ, gamma) the expected values (µ,
mu), the “working model matrix” (X̆, X), the weight matrix (W̃ , W), the RHS (tXr) and the LHS
of equations (4.7), with and without the additional penalty matrix (G and GpP). Finally with
eta.new, this routine solves the system of equations in (4.7), updating the linear predictors η.

# Updating the Poisson P-GLM part

UpdatePOI <- function(C, P, eta.old){

gamma <- exp(eta.old)

mu <- C %*% gamma

X <- C * ((1 / mu) %*% t(gamma))

W <- diag(as.vector(mu))

tXr <- t(X) %*% (y - mu + C %*% (gamma * eta.old))

G <- t(X) %*% W %*% X

GpP <- G + P

eta.new <- solve(GpP, tXr)

return(list(eta=eta.new, gamma=gamma, mu=mu, p=p))

}

This R-function will produce new estimates of the linear predictor (η, eta), the updated
vectors of the latent distribution (γ, gamma), expected values (µ, mu) and misreporting probabilities
(p, p).

4.4.2 The constrained WLS component

The system of equations (4.12), which solves the constrained WLS regression, needs both the
model matrix Γ (eq. (4.9)) and the penalty matrix Q for the L1 “lasso” regression problem
(cf. equation (4.13)).

Given a vector of updated expected values for the latent distribution γ, the following routine
builds up the J × 2 · (J − 1)-matrix Γ (cf. (4.9)):

# model matrix GAMMA for P-WLS

build.G <- function(gamma){

m <- length(gamma)

GAMMA1 <- rbind(diag(gamma[2:m]), rep(0, m-1))

diag(GAMMA1[2:m, ]) <- -gamma[2:m]

GAMMA2 <- rbind(diag(-gamma[1:(m-1)]), rep(0, m-1))
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diag(GAMMA2[2:m, ]) <- gamma[1:(m-1)]

GAMMA <- cbind(GAMMA1, GAMMA2)

return(GAMMA)

}

A vector of misreporting probabilities p is needed to build up the matrix Q in equation (4.13),
which will be used in the constrained WLS problem. In R:

# Penalty matrix for the P-WLS (named Q)

build.Q <- function(p){

diagonal <- 1 / (1e-06 + abs(p))

Q <- diag(as.vector(diagonal))

return(Q)

}

The small number 1e-06 is externally supplied, as mentioned in Section 4.3.3.
Given a parameter κ (kappa), the system of equations in (4.12) can be solved. From the

previous routine, expected values for the observation (µ, mu) and for the latent distribution (γ,
gamma) and misreporting probabilities (p, p) are already computed.

The following routine updates the response of the WLS regression, y − γ (here r.wls), the
weight matrix (W , W.wls), the RHS (rhs.wls) and LHS (lhs.wls) of equation (4.12), without
and with the shrinkage matrix. The L1 model for the misreporting probabilities p is finally solved.

# Updating the constrained WLS

UpdateWLS <- function(y, gamma, mu, kappa, p){

r.wls <- y - gamma

GAMMA <- build.G(gamma)

W.wls <- diag(as.vector(1 / mu))

rhs.wls <- t(GAMMA) %*% W.wls %*% r.wls

lhs.wls <- t(GAMMA) %*% W.wls %*% GAMMA

Q <- build.Q(p=p)

lhspQ <- lhs.wls + kappa*Q

p <- solve(lhspQ, rhs.wls)

return(list(p=p))

}

The 2 · (J−1) vector of misreporting probabilities p is computed and can be used as an argu-
ment for computing the matrix C as explained above. Given a (λ, κ)-combination, the complete
procedure described in this section is reiterated until convergence.

In order to speed up the grid-search over the smoothing parameters, an elegant and efficient
grid-search is employed: starting for the largest values of λ and κ, every new iterative procedure
above described will use a previously estimated linear predictor η as starting values for the new
(λ, κ)-combination. In this way, at the beginning of the process, a strong penalty is given for the
smooth latent distribution and the misreporting probabilities. This will produce rough estimates
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fairly quickly and then estimates with smaller λ and κ will only refine already fitted values, saving
a lot of time.

4.5 Simulation and applications

4.5.1 Simulation study

To demonstrate the performance of the model, Camarda et al. (2008b) applied it to simulated
scenarios with a bimodal true distribution. In this section, we present the outcomes of the model
for two different scenarios. The first is a distribution in which the observations are redistributed
according to a simple preference pattern. We refer to it as simple simulation setting. The second
scenario mimics a typical demographic age-at-death distribution from a Gompertz model. For
abbreviation, we refer to it as demographic simulation setting.

Simple simulation setting

Figure 4.2 shows one possible true distribution, i.e. the vector γ together with the simulated y such
that E(y) = µ = Cγ and the estimated values γ̂. The assumed digit preference in this example
attracted additional observations to 5 and 10 from both neighboring categories (see Table 4.1).

Transfer pattern 4 → 5 6 → 5 9 → 10 11 → 10
Probabilities 0.35 0.25 0.30 0.20

Table 4.1: Choice of transfer patterns for the simulation setting in Section 4.5.1.

The estimated values γ̂ were obtained from the optimal combination of (λ, κ), as picked from
the AIC profile shown in Figure 4.3, left image. The image on the right hand-side demonstrates
the effect of the L1 penalty. On the horizontal axis, the value of log κ, i.e. the weight of the L1

penalty, is given. For big values of κ all proportions pjk are shrunk to zero. For small values of κ

most proportions are far too large, but for increasing values of κ many of them are quickly damped
down to zero, leaving the important ones in the model. The optimally chosen κ̂ practically selects
the true proportions, which are depicted by the horizontally dashed lines. Note that the only
assumption that is made about the underlying true distribution is smoothness.

As pointed out in Section 4.3.3, the model actually estimates 2 · (J − 1) misreporting propor-
tions, which have not been restricted to be positive. A negative value of pjk implies that category
j receives a negative proportion of γk, that is, digit preference actually moves observations away
from category j to k, but the amount is expressed as a proportion of the receiving category k.
This seemingly paradoxical behavior is a consequence of the L1 penalty: depending on whether
γj < γj+1 or γj > γj+1, that is, whether the true distribution is increasing or decreasing at γj ,
the same preference leads to a smaller L1 penalty when expressed via pj,j+1 or pj+1,j , one of them
being negative.

However, a final result, in which the net proportions are stated as positive numbers, is desir-
able. Therefore, the following transformation is used to convert 2 · (J − 1) parameters to J − 1
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Figure 4.2: Raw data, true values and estimates for simulated data (simple scenario).
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Figure 4.3: Left panel: AIC contour plot for the simulated data in Figure 4.2. Right panel:
change of estimated misreporting probabilities with κ. The probabilities that are non-zero in the
simulation are represented by thick and colored lines, the zero probabilities by thin gray lines.
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Figure 4.4: True misreporting probabilities and estimates for simulated data in Figure 4.2.

positive proportions:

if pj,j−1 < 0 ⇒ pj−1,j = − δj

γj
and pj,j−1 = 0

if pj−1,j < 0 ⇒ pj,j−1 =
δj

γj+1
and pj−1,j = 0

for j = 2, . . . , J − 2 and where δj = µj − γj + γj · cj−1,j − γj−1 · cj,j−1. This procedure is simplified
for the first step j = 1 and the last j = J − 1.

The right image in Figure 4.3 shows these transformed and hence positive estimates. Addi-
tionally, Figure 4.4 summarizes true and estimated misreporting probabilities for the simulation
example.

Demographic simulation setting

The distribution used to simulate counts which mimic actual death counts is the Gompertz distri-
bution (see Section 1.4). Specifically, the true latent distribution is given by the probability density
function of the Gompertz in equation (1.5) (p. 8) with parameters a = 0.00095 and b = 0.08.

We applied to the true latent distribution, γ, a preference pattern which attracted additional
observations to ages ending in 5 and 0, with probabilities always equal to 0.2 and 0.3, respectively.

Figure 4.5 presents the true latent distribution γ from this Gompertz distribution along with
the simulated data and the fitted values. In this particular case, the smoothing parameters λ and
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Figure 4.5: Raw data, true values and estimates for simulated data (demographic scenario).
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κ are equal to 11,220 and 5.62, respectively. The left panel of Figure 4.6 presents the AIC profile
for this simulation setting. The right panel shows the behavior of the misreporting probabilities
over the values of log κ. With ticker and colored lines we depicted the misreporting probabilities
which are expected to be different from zero in this simulation study.

Figure 4.7 shows the estimated misreporting pattern: the probabilities detected by the model
are practically only the ones at ages ending with 0 and 5 (depicted with thicker and colored lines)
and the estimated values are close to 0.2 and 0.3. Exceptions can be found for younger ages in
which the observations that have been redistributed are too few for being estimated properly.
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Figure 4.7: True misreporting probabilities and estimates for simulated data in Figure 4.2. The
values c in the legend stands for the sequence c = {0, 10, 20, 30, 40, 50, 60} .

4.5.2 Portuguese ages at death

For the Portuguese age-at-death distribution introduced in Section 4.1, the model produces the
results shown in Figure 4.8. The smooth fitted curve shows a smooth density without any age
heapings. The AIC is minimized for λ and κ equal to 104 and 15.85, respectively.

The misreporting probabilities are portrayed in Figure 4.9. As expected, digit preference
mainly attracts observations to ages that end in 5 or 10, the latter ones showing the strongest
effects. The amount of misreporting increases with age, and this fits well with the demographic
experience that accurate age reporting is more problematic at the high ages. Also, for ages that
are multiples of 10, there is a slightly higher tendency to receive counts from their respective right
neighbors.
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Figure 4.8: Results for the Portuguese data, cf. Figure 4.1. Observed and estimated distribution
of age at death (left panel). AIC contour plot (right panel).
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As pointed out by Camarda et al. (2008b), the model is computationally quite intensive
when J is considerably large. In their paper, an example had J = 204. With mortality data J is
commonly smaller and, for instance, for the Portuguese age-at-death distribution, J is only equal
to 60 with J +2(J−1) = 178 parameters. In any case, the penalties for the latent distribution and
the misreporting probabilities worked properly in reducing the effective dimensions, as well as in
capturing the actual weight distribution with an impressive precision. Based on equations (4.15)
and (4.16), the effective dimension of the fitted model for the Portuguese data is equal to 74.
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Figure 4.10: Observed and estimated distribution of age at death for the Greek data.

4.5.3 Greek ages at death

For a different purpose than modeling the misreporting pattern, Kostaki and Panousis (2001)
presented demographic data with evident age heaping. Specifically the age-at-death distribution
for the Greek female population in 1960, from age 20 to 84 shows systematic peaks at ages ending
in 0 and, less prominently, 5, as shown in Figure 4.10.

Also in this case, the model proposed by Camarda et al. (2008b) is a suitable statistical tool
for extracting the latent distribution (see Figure 4.10), as well as the pattern of misclassification
as demonstrated in Figure 4.11.

4.6 More general misreporting patterns

Although this model is in many respects very flexible, the fact that observations can only shift to
their nearest neighbors is rather limiting. In the original paper, Camarda et al. (2008b) overcame
this seemingly over-simplistic assumption showing a modified simulation example.
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Figure 4.11: Misreporting probabilities for the Greek data. Probabilities to digits multiples of 5
and 10 are depicted in thicker and colored lines.

In this simulation setting, specific digits could attract observations both from their next
neighbors and also from digits that are two steps away. The model has thus reduced the two-step
misreporting probabilities to two one-step probabilities, i.e. instead of shifting the corresponding
proportions in one sweep by two steps, which the original model does not provide for, they get
assigned to their next neighbors first. However, these proportions then get stacked on top of the
one-step estimates to the preferred target digits. Hence the original model can “decompose” more
complex preference patterns into subsequent simpler steps.

Nevertheless the interpretation of the estimated misreporting probabilities is not as straight-
forward as in the one-step probabilities examples. Here we directly generalize the model starting
from the compositional matrix C (cf. (4.2)).

We include a more general pattern of misreporting, i.e. allow for exchanges between digits
that are more than one category apart. For a simple case, in which we include two categories and
J = 8, the matrix C needs to be modified as follows

C =




1− p21 − p31 p12 p13 0
p21 1− p12 − p32 − p42 p23 p24

p31 p32 1− p13 − p23 − p43 − p53 p34

0 p42 p43 1− p24 − p34 − p54 − p64

0 0 p53 p54

0 0 0 p64

0 0 0 0
0 0 0 0
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0 0 0 0
0 0 0 0

p35 0 0 0
p45 p46 0 0

1− p35 − p45 − p65 − p75 p56 p57 0
p65 1− p46 − p56 − p76 − p86 p67 p68

p75 p76 1− p57 − p67 − p87 p78

0 p86 p87 1− p68 − p78




.

Also in this example, the diagonal elements cjj = 1− pj−2,j − pj−1,j − pj+1,j − pj+2,j specify
the proportions of the γj that did not get redistributed. Moreover, as in the original model, pjk

denotes the proportion of γk that is moved from age k to age j. The additional feature that we
propose is that two-step transitions are allowed, implying that pjk = 0 only for |j − k| > 2.

For instances, p42 indicates the probability that death counts from age 2 will move to age
4. In this way, it is possible to estimate a more general pattern of misreporting probabilities.
On the other hand, the number of parameters increases enormously, i.e. we need to estimate
2(J − 1) + 2(J − 2) probabilities as well as the true latent distribution. Furthermore, Γ (cf. (4.9)
in the previous model) becomes a J × [2(J − 1) + 2(J − 2)] matrix with the following complex
structure:

Γ =




γ2 0 0 0 0 −γ1 0 0 0 0

−γ2 γ3 0 0
... γ1 −γ2 0 0

...

0 −γ3 γ4 0
... 0 γ2 −γ3 0

...

0 0 −γ4
. . .

... 0 0 γ3
. . .

...

0 0 0
. . .

... 0 0 0
. . .

...
...

...
...

. . . 0
...

...
...

. . . 0
...

...
...

. . . γJ
...

...
...

. . . −γJ−1

0 0 0 0 −γJ 0 0 0 0 γJ−1

γ3 0 0 0 0 −γ1 0 0 0 0

0 γ4 0 0
... 0 −γ2 0 0

...

−γ3 0 γ5 0
... γ1 0 −γ3 0

...

0 −γ4 0 γ6
... 0 γ2 0

. . .
...

0 0 −γ5
. . .

... 0 0 γ3
. . .

...
...

... 0
. . . γJ

...
...

...
. . . −γJ−2

...
...

...
. . . 0

...
...

...
. . . 0

0 0 0 0 −γJ 0 0 0 0 γJ−2




.

Consequently the vector of misreporting probabilities used in the constrained WLS component
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of the model (cf. Section 4.3.3) can be written in the following way:

p = (p12, p23, . . . , pJ−1,J ; p21, p31, . . . , pJ,J−1; p13, p24, . . . , pJ−2,J ; p31, p42, . . . , pJ,J−2; )T .

An essential aspect of this extension lies in the fact that, despite the matrices C and Γ, we
can still use formulas and algorithms of the original model. Specifically, we will use the system of
equations given in (4.7) and (4.11) for the latent distribution and the misreporting probabilities,
respectively. Furthermore the AIC is still able to select a suitable (λ, κ)-combination (cf. Fig. 4.12
in Section 4.6.1).

No changes are needed in the constrained WLS component. The “lasso” model can still guar-
antee a selection of the misreporting parameters. The L1 penalty can cope with commonly called
“large p, small n” problems such as our extension, which contains a huge amount of misreporting
probabilities.

Also in the extension of the model, we have not restricted misreporting probabilities to be
positive. Hence we need to generalize the transformation presented in Section 4.5.1 in order to
obtain as final results only the net proportions as positive numbers. We separated the effects
of the misreporting probabilities from the next neighbors and the probabilities from digits that
are two steps away. Hence, we first construct a matrix C1, which includes only pjk such as
|j − k| = 1 (cf. (4.2)). In this way, we can compute the expected values as if there was only one-
step misreporting, µ1. The transformation in Section 4.5.1 is then used to obtain net proportions
as positive numbers only for the next neighbors. We define the quantities δj as

δj = (µj − µ1
j ) + γj · ci−2,i − γj−2 · ci,i−2 .

For j = 3, . . . , J − 3, the following transformation is applied in order to convert the 2(J − 2)
misreporting probabilities from digits that are two steps away in J − 2 positive proportions:

if δj > 0 ⇒ pj,j+2 =
δj

γj+2
and pj+2,j = 0

if δj < 0 ⇒ pj+2,j = − δj

γj
and pj,j+2 = 0

This procedure is simplified for the first two steps j = 1, 2 and the last two j = J − 2, J − 1.

4.6.1 Simulation study

In this section, we demonstrate the performance of the new approach on simulated data. We use
similar setting in Camarda et al. (2008b, Section 5.1).

A normal distribution is used as true latent distribution γ. Digits 10 and 20 attract obser-
vation from categories both one and two categories away. The structure of the transfer pattern is
given in Table 4.2.

Figure 4.12 (left panel) shows one possible true distribution along with the simulated y such
that E(y) = µ = Cγ, where C is given in equation (4.6). Estimated values γ̂ are plotted, too,
and they reproduce the true smooth latent distribution extremely well. The selected smoothing
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Transfer pattern 8→10 9→10 11→10 12→10 18→20 19→20 21→20 22→20
Probabilities 0.30 0.40 0.35 0.25 0.30 0.40 0.35 0.25

Table 4.2: Choice of transfer patterns for the extended simulation setting.

parameters, λ̂ and κ̂ are equal to 3981.07 and 19.95, respectively. The right panel of Figure 4.12
presents the AIC profile obtained for this simulation setting.
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Figure 4.12: Results for simulated data in Section 4.6.1 (cf. Table 4.2). Raw data, true values and
estimates (left panel). AIC contour plot (right panel).

The advantage of the generalization is particularly evident for the estimated misreporting pat-
terns. Now we can easily disentangle the contribution of both next neighbors and the misreported
counts from two categories apart. Figure 4.13 presents both true misreporting probabilities, as in
Table 4.2 and the fitted ones. The similarity between true and fitted values is remarkable, despite
the complexity of the misreporting pattern.

Figure 4.14 shows the effect of the L1 penalty on the generalization of the model. The total
number of fitted misreporting probabilities is equal to 2(J−1)+2(J−2) and, after the mentioned
transformation, we have only 2 · J − 3 positive proportions. The constrained WLS can cope
exceptionally well with this amount of parameters: the optimally chosen κ̂ practically selects only
the true proportions (cf. Table 4.2).

4.6.2 Application of actual data

In Figure 4.1, we presented age-at-death distribution for Portuguese females in 1940 from age
30 to 89. In Section 4.5.2, we applied the model proposed by Camarda et al. (2008b) to these
data (see Fig. 4.8 and 4.9). Nevertheless, it is extremely likely that ages such as 30, 45, 65, 75
and 85 also attract death counts from two categories away. Therefore generalization presented in
Section 4.6 was applied to these data.
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Figure 4.13: True and fitted misreporting probabilities for simulated data in Section 4.6.1 (cf. Ta-
ble 4.2).
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Figure 4.15: True and fitted misreporting probabilities for simulated data in Section 4.6.1 (cf. Ta-
ble 4.2).

Figure 4.15 (left panel) shows the actual age-at-death distribution along with the fitted latent
distribution. The difference between these outcomes and the fitted values from the simpler model
(cf. Fig. 4.8) is negligible. On the other hand, with the proposed extension, we are able to separate
the misreporting probabilities from the next neighbors and the misreporting probabilities from
digits that are two steps away. The right panel of Figure 4.15 shows the AIC profile which presents
a clear minimum and selects smoothing parameters λ and κ equal to 25,119 and 19.95, respectively.

Since we are dealing with 2 · 60− 3 = 117 net and positive misreporting proportions, we used
an alternative graphical device for portraying such a large amount of parameters. First, it would
be more convenient to display the probabilities in four different plots: pjk such as |j−k| = 1 (one-
step misreporting from right and left digits) and pjk such as |j − k| = 2 (two-step misreporting
from right and left digits). Moreover, instead of plotting histograms, as in the previous sections,
we use shaded contour maps similar to the ones used for mortality surfaces. Here, we employ
different colors for different levels of misreporting probabilities.

Figure 4.16 shows the fitted misreporting probabilities for the Portuguese data over the units
and the age decades. Higher probabilities are depicted with darker colors, whereas light grey
indicates misreporting probabilities equal to zero. It is easily seen that digits ending with 10 and
5 shows the cells with the darkest colors and counts are misreported from both one and two digits
away. Death counts are particularly misreported downward. Therefore, we have darker colored
cells in the left panels. The introduction in the model of misreporting probabilities from more
than one digit away helps to capture misstatements in ages ending with 5 and especially at older
ages. A tendency of misreporting age-at-death toward ages ending with 2 and 8 is also evident.
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Figure 4.16: Fitted misreporting probabilities over units and tens of ages for Portuguese data
(cf. Fig. 4.1). Generalization of the model presented in Section 4.6. Higher probabilities are
depicted with darker colors. Light grey indicates misreporting probabilities equal to zero.
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4.7 Further extensions

The method proposed by Camarda et al. (2008b) demonstrates how digit preferences can be
modeled by combining the composite link model with the concept of penalized likelihood. The
only assumption that is made about the underlying true distribution is smoothness. The approach
directly addresses the process that leads to heaping of certain values. Extracting the latent
distribution will be most important in many applications, however, the pattern of misclassification
may also be of interest in itself. The model presented by Camarda et al. (2008b) goes beyond the
mere quantification of digit preference provided by many indices and allows the analysis of both
aspects.

The misreporting pattern was allowed to partly redistribute observations from any digit to its
adjacent neighbors. Again a penalty, in this case an L1 penalty, restrains the problem and makes
estimation feasible. Allowing this rather flexible preference pattern the tendency to misreport
need not be the same for identical end-digits, but may vary over the measurement range, which
is often seen in real data.

Though the model proposed by Camarda et al. (2008b) allows estimation of the latent distri-
bution with more complicated transfer patterns, an evident limitation lies in the assumption that
misreporting will only move observations to the next neighboring digits. We propose an extension
which can include more complex preference patterns, i.e. allow for exchanges between digits that
are more than one category apart.

The simulation study and actual application presented in Sections 4.6.1 and 4.6.2 deal only
with exchanges from one and two digits away. Further generalizations are also possible by plugging
additional misreporting probabilities into the C matrix. Naturally, this kind of extension increases
enormously the number of parameters and their interpretability.

We envision a different generalization of the model. In case of mortality data with age heaping,
digit preferences may improve over time. In this case, the transfer probabilities for different years
are expected to change smoothly. This trend can be handled by an additional penalty that controls
the temporal pattern in the misreporting pattern. Two-dimensional smoothing with penalized
likelihood, such as presented in Section 2.2, is a natural approach in this context.
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Chapter 5

A Warped Failure Time Model for

Human Mortality

Life-span distributions can be described by three alternative, albeit interchangeable measures (see
Section 1.2): the probability density function, the survival function, and the hazard function.
Similarly, mortality developments may not only be described by studying death rates, but also
by investigating the corresponding frequency distribution of the ages-at-death. Even though we
analyze the same phenomenon, different views on the same problem may shed additional light on
our understanding of changes in human mortality.

Traditionally, mortality dynamics are studied by direct investigation of the hazard over time
(see models in Chapter 1). A different approach would be to ask how the age-axis would need to
be transformed so that one age-at-death distribution would conform to another (which could be
a different country at the same point in time, or the same country at different points in time).

This approach is similar to the accelerated failure time (AFT) model which is routinely used
in failure time analysis of technical devices (among others, see Kalbfleisch and Prentice, 2002,
ch. 7). In AFT models the time-axis is linearly transformed, implying uniformly slower or faster
aging, usually introduced by some experimental conditions.

However, the assumption that all cohorts postpone death or speed up their lives at a constant
rate across the age range is too simplistic for human mortality studies. Mortality changes are not
driven by simple gains in longevity that shift and uniformly re-scale the age-at-death distributions
from one year to another. Therefore, more general transformations will have to be considered.

The idea of transforming the axis of the independent variable nonlinearly to achieve good
alignment of functions has been proposed in diverse fields and in regression setting is commonly
called “warping”. Two procedures have a long tradition. Marker registration or procrustes analysis
involve identifying the timing of specified features in the function, and then transforming time so
that these marker events occur at the same time. For a fuller treatment, we refer the reader to
Bookstein (1991). Dynamic time warping is a registration technique frequently used in engineering
literature. This methodology aims to estimate the shift or warping function from one curve to
another to align two functions. An early reference on the methodology is given by Sakoe and
Chiba (1978). Kneip and Gasser (1988, 1992) and Wang and Gasser (1997) give statistical details
and different perspectives on this approach.

91
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Silverman (1995) developed a technique that does not require markers in a “Functional Data
Analysis” (FDA) framework (Ramsay and Silverman, 2005), and Ramsay and Li (1998) made use
of the smooth monotone function introduced by Ramsay (1998b) for a more general approach.
On the other hand, Dijksterhuis and Eilers (1997), and also Ledauphin et al. (2006) proposed
procedures to project time intensity curves on a nonparametric prototype curve with a linear
registration of time and intensity domains. A parametric model for aligning chromatograms has
been proposed by Eilers (2004a).

In classic regression, analysis transformation of the independent axis to align actual data
to the Normal distribution has been studied since Tukey (1957) and Box and Cox (1964). For
a review of the proposed parametric families in the literature, we refer to Sachia (1992). Al-
ternatively, nonparametric estimation of the transformation for regression analysis has also been
proposed (among others see Breiman and Friedman, 1985; Tibshirani, 1988). Transformation of
distributions has been also used in density estimation methodology. Early parametric approaches
are presented in Wand et al. (1991) and Ruppert and Wand (1992). Ruppert and Cline (1994)
generalized the previous approaches using a smooth, monotonic transformation function.

Warping ideas have also been introduced into the analysis of mortality data by Eilers (2004b).
Focusing on adult mortality Eilers (2004b) uses Normal distribution and seeks for a non-parametric
transformation of the age-axis, such that the actual age-at-death distribution becomes essentially
Normal. He called the model “Shifted Warped Normal” (SWaN).

Camarda et al. (2008a) recently proposed a new model for analyzing mortality development
using warping ideas. They presented an extension of the accelerated failure time model for com-
parison of density functions and called the model Warped Failure Time (WaFT) model. The
aim of the WaFT model is to estimate a warping function such that the age-axis is transformed,
and one age-at-death distribution conforms to another. They assumed only smoothness for the
warping function. Moreover, a penalized Poisson likelihood approach was proposed to estimate
the model.

In this chapter, we present the model proposed by Camarda et al. (2008a) in detail. Specifi-
cally, we first introduce the general idea of transformation of random variables that will give the
basic structure for the model. Section 5.2 illustrates the WaFT model for describing the mean
of Poisson-distributed death counts. Particular emphasis is given to the representation of the
warping function. Estimation of the model is covered in Section 5.3, including difference penalties
for assuring smoothness of the warping function and the choice of optimal smoothing parame-
ters. In Section 5.5, we illustrate the approach via simulated data and present some demographic
applications. Conclusions and an outlook for future work are given in Section 5.6.

5.1 Comparing age-at-death distributions

To investigate the changes in mortality that lead to the different pattern, we want to transform
the age-axis, such that, the two densities coincide. More specifically, we define one distribution
as the target, with density f(y), and want to obtain the transformation function w(x) so that the
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density of the other distribution, g(x), conforms to the target density on the warped axis, i.e.,

g(x) = f(w(x)) · |w′(x)| , (5.1)

with y = w(x).
This general rule for transforming the x-axis in order to match two densities is used in

the next section to build up the model. Note that one needs to account for the derivative of
the transformation function for correcting the transformed target distribution, f(w(x)). This
correction will play an important role in choosing the representation of w(x) in Section 5.2.1.
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Figure 5.1: Life-table age-at-death distribution of Danish females for the years 1930 and 2006.

Figure 5.1 shows the age-at-death distributions, as derived from period life-tables (Keyfitz
and Caswell, 2005), for Danish women older than 30 in 1930 and in 2006. Instead of pure death
counts, Camarda et al. (2008a) used a period life-table approach for adjusting the effect of birth
cohort sizes in the age-at-death distributions (see Section 1.3, page 5). In this way, they exclude
exposure population in the approach.

As mentioned, a linear w(x) which shifts and/or stretches the age-axis to conform one dis-
tribution to another would be too simplistic for human mortality. Figure 5.1 clearly shows this
issue: for instance, the age-at-death distribution in 1930 is neither a shifted nor a stretched ver-
sion of the age-at-death distribution in 2006. On the other hand, parametric assumption of the
transformation function will impose too much structure on the model and may lead to misleading
interpretation.

Following these considerations, Camarda et al. (2008a) suggested freeing the transformation



94 5. A Warped Failure Time Model for Human Mortality

function w(x) from any rigid shape. Therefore, the assumption will be the smoothness of w(x).
Moreover, they assume that the transformation function w(x) is increasing. This assumption has
the effect that different ages follow the same ordering after the transformation, i.e., if x < x′,
then w(x) < w(x′). This assumption also guarantees that w(x) can be inverted. Therefore the
absolute values in (5.1) can be dropped. This approach leads to a nonlinear transformation of
the independent axis which is commonly called “warping”. On the other hand, we deal with a
transformation of time as in the AFT models. Hence Camarda et al. (2008a) called their model
Warped Failure Time (WaFT) model.

5.2 The Warped Failure Time Model

The WaFT model is not restricted to any particular target distribution, f(x; θ). The parameter(s)
θ can be fixed, but are mostly be estimated from data. In the following, we nevertheless consider
the parameters as θ fixed. Section 5.5 will present different approaches for estimating f(·) both
parametrically and non-parametrically.

The observed death counts at age xi, i = 1, . . . , n are denoted by yi. Ages xi can be seen as
midpoints of particular bins which collapse all the death counts in the bin to a certain age. If pi

is the probability of finding a raw observation in cell i, i.e. in the bin around age xi, the likelihood
of the given histogram is proportional to the multinomial likelihood

∏n
i=1 pyi

i . Bishop et al. (1975)
demonstrated that one can equivalently work with the likelihood of n Poisson variables with
expectations µi = piy+, where y+ =

∑n
i yi.

In other words, we can write the likelihood of the observed death count yi as

P (yi) =
µyi

i e−µi

yi!
. (5.2)

Using the relation (5.1), the values µi derive from the density g(x) that generated the data.
Therefore

µi = E(yi) = γ · f(w(xi; α), θ) · ∂

∂x
w(xi; α)

= γ · f(w(xi; α), θ) · v(xi;α) , (5.3)

where γ is a normalizing constant such that
∑

i yi =
∑

i µi and f(·) is the target density. The
warping function w(xi;α) is to be determined such that, after transforming the age-axis, the
density matches the specified target.

Different from equation (5.1), the model in (5.3) does not compute the absolute values for
the partial derivative of the warping function, v(xi; α). This is because monotonicity of w(xi;α)
is assumed. We will see that, in actual demographic applications, this assumption holds and we
do not have to impose any additional constraints.

5.2.1 Warping function representation

The representation of the warping function is a crucial key in building up the WaFT model (5.3).
To allow for arbitrary shape of w(·), Camarda et al. (2008a) suggested representing the warping
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function by a linear combination of K B-splines of degree q. Their knots are equally spaced by a
distance h:

w(x;α) =
K∑

k=1

Bq
k(x) αk . (5.4)

As showed in Section 2.1, B-splines are a base of local functions that is well-suited for a non-
parametric estimation of a function. A relatively large number of knots will ensure the flexibility
we need to nonlinearly transform the age-axis. Smoothness of the warping function will be enforced
by a difference penalty on neighbouring coefficients αk, as Section 5.3.2 show.

This representation naturally allows for incorporating the derivative of the warping function
w(x;α), which is needed in the transformation approach in (5.3). Moreover, when considering a
warping function for transforming the age-axis, one can be interested in w(·), as well as in the
relative change of w(·). In particular, in our case x represents age, in which the first derivative of
w(·) can be interpreted as speed.

A linear combination of B-splines can be easily derived with respect to x and the formula is
given by

∂

∂x
w(x;α) = v(x; α) =

1
h

K∑

k=1

Bq−1
k (x) [αk − αk+1] , (5.5)

c.f. Eilers and Marx (1996, p. 91). Note that the basis of v(x;α) is again a B-spline basis of a
degree less than for w(x; α) in (5.4).

Equivalently, operating directly on the coefficients αk, we can write (5.5) in the following
way:

∂

∂x
w(x; α) = v(x; α) =

K∑

k=1

Cq
k(x) αk, (5.6)

where Cq
k(x) = 1

h [Bq−1
k (xi)−Bq−1

k−1(xi)].
As an example of a derivative from functions represented as a linear combination of B-spline,

we use the simulated data presented in Section 2.1.1 (page 17 of this thesis). Figure 5.2 shows
both the function itself and its derivative along with the true functions. We employ a P -spline
approach to smooth the fitted coefficients, and cross-validation is used to select the smoothing
parameter since Normal-distributed data are used for this simulation example (see Sections 2.1.1
and 2.1.4).

Figure 5.2 presents also the B-splines basis of degree q = 3 and q = 2 for the function and its
derivative, respectively. In the latter case, the B-splines are multiplied by 1

h . It is worth pointing
out that the smoothing parameter selection is carried out directly on the function and information
about the derivative is not taken into account in this approach.

5.3 A Penalized Poisson Likelihood Approach

In order to estimate the coefficients α in (5.3), Camarda et al. (2008a) proposed a penalized
Poisson likelihood approach. For the sake of clarity, we first introduce the estimation procedure
of the WaFT model without any penalization, and then, in Section 5.3.2, we will present the
approach used to ensure smoothness of the warping function.
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Figure 5.2: P -spline regression for simulated data. Fitted and true values for the function (upper
panel) and its derivative (lower panel). B-spline bases with equally-spaced knots, k = 20, q = 3,
d = 2 and λ selected by CV.
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5.3.1 An algorithm for the WaFT model

The Poisson log-likelihood function, with a log-link, for the model in (5.3) is given by

l(α|y; θ) ∝
n∑

i=1

[yi ln(µi)− µi] =
n∑

i=1

[yi ηi − exp(ηi)] . (5.7)

The linear predictor, ηi can be easily derived from (5.3):

ηi = ln(µi) = ln(γ) + ln [f(w(xi;α), θ)] + ln [v(xi; α)] (5.8)

The estimates of the solution to the first-order conditions are obtained by differentiating the
log-likelihood (5.7) with respect to the elements of α:

∂

∂α
l(α|y; θ) =

n∑

i

(yi − µi)
∂ηi

∂αk
= 0 , (5.9)

where the partial derivative of the linear predictor (5.8) is given by

∂ηi

∂αk
=

∂ ln(µi)
∂αk

=
∂f(w(xi;α),θ)

∂w(xi;α)

f(w(xi; α),θ)
· ∂w(xi; α)

∂αk
+

∂v(xi;α)
∂αk

v(xi;α)
. (5.10)

In matrix notation, we can more succinctly write (5.10) in the following way:

Q = diag

(
f ′

f

)
·B(x) + diag

(
1
v

)
·C(x) . (5.11)

Here B(x) = [Bq
k(xi)]ik and C(x) = [Cq

k(xi)]ik as specified in the previous Section 5.2.1. Namely,
B(x) is the B-splines basis of the warping function and C(x) is given by the differences between
B-splines in the basis of the function v(·), as in equation (5.6). The vectors f and f ′ are,
respectively, target function and its derivative with respect to w(·), evaluated on the transformed
axis.

Given (5.9) and (5.11), the iteratively reweighted least squares (IRWLS) algorithm can be
adapted to solve these equations1. Specifically, equation (5.11) is the basic structure for the
working model matrix, which clearly depends on the coefficients α and needs to be updated with
each iteration. Moreover, the normalizing constant γ needs to be included in the algorithm. In
matrix notation, we have the following modified IRWLS algorithm:

(X̃ ′W̃ X̃)β̃ = X̃ ′W̃ (W̃−1(y − µ̃) + X̃β̃) , (5.12)

Here the final model matrix is X̃ = [1 : Q̃] . The first column is the regressor for the constant
γ, which does not depend on α. The coefficient vector includes both B-spline coefficients and
normalizing vector, i.e. β′ = [ln(γ),α′]. The diagonal matrix W̃ = diag(µ̃) is the common weight
matrix in a Poisson GLM setting.

1See Section 4.3.1 for a detailed description of the IRWLS algorithm.



98 5. A Warped Failure Time Model for Human Mortality

5.3.2 Smoothing the warping function

In Section 2.1, we introduced the P -spline approach for smoothing univariate functions (Eilers
and Marx, 1996). This methodology combines (fixed-knot) B-splines with a roughness penalty
and can be incorporated into the WaFT model.

Following the P -splines scheme, the number of B-spline basis K for the warping function is
chosen purposely high. Specifically, in the following we use K = 15 B-splines of degree q = 3.
One can easily see that this number of B-splines will lead to undersmoothed outcomes. To ensure
smoothness, a roughness penalty on the coefficient vector α is used as shown in Section 2.1.1.

In particular, the roughness of vector α can be measured with differences of order d and the
following penalty can be computed:

Sd = α′D′
dDdα = ‖Ddα‖2 ,

cf. equation (4.6), p. 69.
This penalty, weighted by a positive regularization parameter λ, can be introduced into the

likelihood for the WaFT model. The system of equations in 5.12 is then modified as follows:

(X̃ ′W̃ X̃ + λP )β̃ = X̃ ′W̃ (W̃−1(y − µ̃) + X̃β̃) , (5.13)

where

P =

(
0 0
0 P̆

)

and P̆ = D′
dDd . The specific structure of the matrix P is due to the normalizing constant γ,

which is not penalized in the WaFT model. As in the standard P -spline approach, the smoothness
of the warping function can be controlled via the value of the parameter λ.

5.3.3 Optimal smoothing

The estimating equations for the penalized likelihood in (5.13) depend on the smoothing parameter
λ. Once λ is fixed, the estimates α̂ and, consequently, w(xi; α̂) are determined. In Section 2.1.4,
we already presented different criteria for selecting λ in a typical P -spline setting. For the WaFT
model, Camarda et al. (2008a) minimize the Bayesian Information Criterion (AIC) to choose the
optimal amount of smoothing for the warping function:

BIC(λ) = Dev(y; α, λ) + ln(n) · ED(α, λ) . (5.14)

Dev(y; a, λ) is the deviance of the Poisson model (see equation (2.16)) and ED is the effective
dimension of the model for a given smoothing parameter. As explained in Section 2.1.3, for the
effective dimension Camarda et al. (2008a) follow the suggestion of Hastie and Tibshirani (1990)
to take the trace of the hat-matrix from the estimated linearized smoothing problem in (5.13):

ED(α, λ) = tr(Hλ) = tr
{

X̆(X̆ ′Ŵ X̆ + λP )−1(X̆ ′Ŵ )
}

, (5.15)
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where Ŵ is the matrix of weights at the last iteration of the IRWLS.
An efficient grid-search is sufficient: ln(λ) varies on a grid, and the value that minimizes BIC

is picked (see Figure in Section 5.5). The presented penalized Poisson likelihood approach was
implemented in R (R Development Core Team, 2008), and some computational details will be
presented in the next section.

5.4 Software considerations

The estimation procedure for the WaFT model is a modified version of the IRWLS algorithm.
We show how to implement the procedure in R (R Development Core Team, 2008) since its use
is widespread, the following code should be easily understood by someone who is unfamiliar with
this language, so long as the notation presented in Section 4.4 is known.

Furthermore, we denote with B, the B-spline basis B(x), C represents the matrix C(x) and
P stands for the penalty P , already multiplied by a certain value λ, which is externally supplied.
Finally, we assume that our target distribution is known and can be evaluated for arbitrary points
on the age-axis. Specifically, dens(x,par) is the target distribution function, where x and par

are the age-axis on which f(·) is evaluated, and the estimated parameter(s) θ̂, respectively. In the
same way, the function dens1(x,par) represents the derivative of the target density with respect
to the (transformed) age-axis.

5.4.1 Starting specifications

The WaFT model itself is rather computationally intensive, therefore proper starting values for the
B-spline coefficients α and for the normalizing constant γ help speed up the iterative procedure,
and to ensure convergence. The idea is to first estimate a warping function that only shifts the
distribution, so that the modes of the two densities coincide. The starting B-spline coefficients,
α(1), of such warping function are given by the linear system of equations:

(B(x)′B(x) + P ) α(1) = B(x) w(1) ,

where w(1) is the simple shift warping function. Given that w1 represents w(1), in R, we can
compute the following objects:

# Starting B-spline coefficients

alpha.st <- solve(t(B) %*% B + P, t(B) %*% w1)

# Starting warping function

w.st <- B %*% alpha.st

# Starting derivative of the warping function

v.st <- C %*% alpha.st

Since the starting warping function is a straight line with slope 1, i.e. w(1)(x) = x + c , we
expect that v.st (starting v) is simply a column vector of ones of dimension n × 1. Summing
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over all observations on both side of model (5.3), we have:

n∑

i

yi = γ ·
n∑

i

[f(w(xi; α),θ) · v(xi; α)] ,

and consequently, applying the log-link function:

ln(γ) = ln

[
n∑

i

yi

]
− ln

[
n∑

i

[f(w(xi; α),θ) · v(xi; α)]

]
,

which simplifies to

ln(γ) = ln

[
n∑

i

yi

]
− ln

[
n∑

i

f(w(xi; α), θ)

]
.

for v(xi; α(1)) , i.e. derivative of the warping function at the starting coefficients α(1) practically
all equal to 1.

This result can then be used to find proper starting values for ln(γ) (ln.gamma), given θ̂

(theta.hat):

# Target density over starting warping function

f.st <- dens(w.st, theta.hat)

# Starting normalizing constant

ln.gamma <- log(sum(y)) - log(sum(f.st))

# Starting coefficient vector

beta <- c(ln.gamma, alpha.st)

The last line combines both ln(γ) and α in the coefficient vector β (beta).

5.4.2 Fitting the WaFT model

In this section, we present an R-function for updating the penalized system of equations in (5.13).
In particular, it updates both coefficients β and expected values µ. The routine requires starting
values for β, the B-spline bases for the warping function and its derivative and the penalty matrix
P .

The function first selects the log of the normalizing constant ln(γ) (ln.gamma) and the B-
spline coefficients α (alpha) from the coefficient vector β. The warping function w (w), and its
derivative v (v) are then computed following equations (5.4) and (5.6).

The known functions dens() and dens1() are employed to evaluate target density (f) and
its derivative (f1) over the updated transformed age-axis. Equation (5.8) is used to compute
the linear predictor η (eta) and via the response function exp(·), we obtain an estimate of the
expected value µ (mu). The diagonal weight matrix (W , W) is then set up.

Equation (5.11) is used to compute the matrix Q (Q) and subsequently, for the IRWLS
in (5.13), we updated the RHS (RHS) and the LHS, without and with additional penalty matrix
(LHS and LHSpP). Finally, the R-function solve() is employed to update the coefficient vector β

(beta.new).
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# Updating the WaFT system of equations

UpdateWaFT <- function(y, beta, B, C, P){

nb <- ncol(B)

ln.gamma <- log(beta[1])

alpha <- beta[1:nb+1]

w <- B %*% alpha

v <- C %*% alpha

f <- dens(w, theta.hat)

f1 <- dens1(w, theta.hat)

eta <- ln.gamma + log(f) + log(v)

mu <- exp(eta)

W <- diag(mu)

Q <- diag(f1/f) %*% B + diag(1/v) %*% C

X <- cbind(1, Q)

LHS <- t(X) %*% W %*% X

LHSpP <- G + P

RHS <- t(X)%*%(y - mu) + LHS%*%beta

beta.new <- solve(LHSpP, RHS)

return(list(beta=beta.new, mu=mu))

}

Given a certain λ, the previous function is re-iterated until convergence.
In order to speed up the grid-search over the smoothing parameter, we employed an efficient

grid-search, already described in Section 4.4 for a different purpose. Here we start from the
estimated starting value as described in Section 5.4.1, with a large value of λ, and then the actual
penalized IRWLS algorithm will use the previously estimated coefficients α as starting values for
the new and now smaller λ.

When comparing age-at-death distribution for human mortality, an additional practice can be
employed in order to speed up the process and guarantee the convergence. Specifically, it is applied
when comparing two distributions from the same population, but distant in time and consequently
significantly different in their shape. In such a case, we propose fitting the WaFT model for an
age-at-death distribution closer in time and then using estimated coefficients α as starting values
for the more distant distribution, using a sort of chain principle in the time-dimension.

5.5 Simulation and applications

5.5.1 Simulation study

To demonstrate the performance of the model, we applied it to simulated data. In this section we
will present the results of the model for two different simulated scenarios. Both of them mimic
demographic data, but they differ from each other with respect to the estimating procedure for
the target distribution.

The first simulation scenario uses a target distribution with known parameters that will be
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then directly employed in fitting of the WaFT model. We will refer to it as parametric sim-
ulation setting. The second scenario will assume a known target distribution represented in a
non-parametric setting. For abbreviation, we refer to it as non-parametric simulation setting.

Parametric simulation setting

In order to resemble demographic data, we assume a Gompertz target distribution (see Sec-
tion 1.4). The probability density distribution is given by:

f(yi) = aebxi exp
[a

b
(1− ebxi)

]
. (5.16)

As explained in Section 1.2, we can derive the cumulative distribution function from (5.16). For a
Gompertz distribution, this allows us to simulate life-times analytically. In our example, we assume
the parameters a = 0.005 and b = 0.12 and we simulate n = 10, 000 life-times. Figure 5.3 (left
panel) presents an example from this simulated setting with the true target Gompertz distribution
(in black), along with the histogram of the simulated life-times (in grey).

A known nonlinear warping function operates to transform the Gompertz life-times2. The
WaFT model is then employed to fit the histogram of the warped life-times and to estimate the
warping function. We assume a Gompertz distribution as target function and θ = (0.005, 0.12),
specifically the known true Gompertz parameters. In Section 5.5.2, we see how these parameters
can be estimated from actual data. For the example in Figure 5.3, the value of λ selected by BIC
is equal to 22.9, with the effective dimension equal to 7.43. The BIC profile is shown in the right
panel of Figure 5.3.

Figure 5.3 shows also the histogram of the warped counts, along with the fitted values with
an evident good fit. Figure 5.4 (left panel) shows the true warping function used in this setting,
as well as the fitted w(x, α̂) for the given example. The grey dotted bisector in the right panel
represents the identity transformation of the x-axis. It is easily seen that the WaFT model is
able to reproduce the true warping function remarkably well for central xi. Conversely, the model
cannot properly capture the warping function at the edges of the distribution. This is mainly due
to the presence of few counts at the boundary of the x-axis.

As mentioned in Section 5.2.1, the representation of the warping function allows us to easily
compute ∂w(·)

∂x = v(·). Figure 5.4 (right panel) presents a both true and fitted derivative of the
warping function for the given example. The derivative shows again the misfit of the WaFT model
at the edges of the distribution. On the other hand, the model is flexible enough to capture the
non-linearity of the warping function clearly portrayed by the derivative.

To assess the variability of the results, in this simulation study, this procedure was replicated
1,000 times, leading to 1,000 estimated distributions, warping functions and associated derivatives.
Figure 5.5 (upper panel) presents the true Gompertz target function along with the true warped
distribution and the 99% pointwise confidence interval from the 1,000 estimated distributions
obtained in the simulation study.

In a similar fashion, the central and lower panels in Figure 5.5, the true warping function and

2Here the true warping function is given by w(xi; c, d, ω) = xi + c x2
i + d · [cos(xi ω) − 1] with [c, d, ω] =[

0.003, 10, 2π
100

]
.
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Figure 5.3: Left panel: an example of simulated data (grey) from a Gompertz distribution (black).
Warped histogram and related fitted values from the WaFT model are depicted in blue and red,
respectively. Right panel: BIC profile.
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Figure 5.4: Outcomes from an example of the parametric simulation setting. Left panel: true
and fitted warping function. The grey dotted bisector represents the identity transformation of
the x-axis. Right panel: true and fitted derivative of warping function. The grey dotted line
represents the derivative of any simple shifted transformation of the x-axis.
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its derivative are accompanied by the 99% confidence interval from the simulation study.
While the true warping function is captured in the central part of the distribution, we see

a moderate bias at the boundaries, where much less data are available. This feature translates
into a corresponding bias of the density in Figure 5.5 (top). The estimates of the derivative
v(x, α̂) are obtained by using the smoothing parameter determined from a criterion based on
the warping function w(·). The always linear boundaries behavior of w(x, α̂) is translated into a
basically flat derivative v(x, α̂). Simultaneous estimation of a smooth function and its derivatives
by using a single smoothing parameter has been noted in the literature as being cumbersome (see
discussion in Section 5.6). Here the problem is aggravated by the data sparseness in the tails of
the distribution.

Non-parametric simulation setting

Often, parametric distributions cannot properly describe a particular target distribution, and they
do not allow enough flexibility for comparing different density functions. In order to deal with
this issue, the WaFT model also allows us to use a non-parametric target distribution.

Figure 5.6 (left panel) presents an example of a non-parametric target distribution (in black).
It is represented by a linear combination of B-splines as explained in Section 2.1. We choose
K = 15 B-splines of q = 3, and the associated coefficients are selected for leading to a fairly
smooth true target distribution3. We can write the target density distribution as follows:

f(xi) =
K=15∑

k=1

B3
k(xi) ak .

Since we are now dealing with a non-parametric density, the cumulative hazard function does
not allow a closed-form inversion formula. Therefore, life-times cannot be simulated analytically.
A possible solution is the specification of piecewise-constant hazards within each interval [xi−1, xi].
Given this assumption, inverting the cumulative hazard function is relatively simple via numerical
approximations. This approach has been used to simulate n = 10, 000 life-times from the non-
parametric target density and an example is shown in Figure 5.6 (left panel in grey).

A known warping function has been used to warp the simulated life-times4. In this way, we
obtained the histogram of the warped life-times which are fitted using the WaFT model. Specifi-
cally, the parameters θ of the target distribution are replaced by the known B-spline coefficients
of the target distribution and the remaining components of the model are unchanged since we
assumed fixed θ during the estimation procedure (see Section 5.3).

Figure 5.6 (left panel) shows the warped data along with the fitted distribution for the given
simulated example. The associated BIC profile is presented on the right panel in Figure 5.6 and
the selected λ is equal to 13.8, with effective dimension equal to 7.63.

For the presented example of the non-parametric simulation setting, warping function and
its derivative are presented in Figure 5.7. Also in this case, the WaFT cannot accurately capture

3The smooth target density f(x; α) follows a mixture of a Gompertz and a negative exponential distribution.
4For this simulation study the true warping function is given by w(xi; c, d, ω) = 2 + xi + c x2

i + d · [cos(xi ω)− 1]
with [c, d, ω] =

[
0.001, 5, 2π

100

]
.
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Figure 5.5: Outcomes from 1,000 replications of the parametric simulation setting. Upper panel:
target Gompertz distribution (black) and true warped histogram (blue). The light-blue shadow
depicts the 99% confidence interval for the fitted distributions. Central panel: true warping func-
tion and 99% confidence interval of the fitted warping functions. Lower panel: true derivative of
the warping function and 99% confidence interval of the fitted derivatives of the warping functions.
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Figure 5.6: Left panel: an example of simulated data (grey) from a non-parametric distribution
(black) represented as a linear combination of B-splines. Warped histogram and related fitted
values from the WaFT model are depicted in blue and red, respectively. Right panel: BIC profile.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

x

w
(x

;α
) 

 , 
 w

(x
;α̂

)

w(x;α)
w(x;α̂)

0 10 20 30 40 50 60 70

0.8

0.9

1.0

1.1

1.2

1.3

1.4

x

v(
x;

α)
  ,

  v
(x

;α̂
)

v(x;α)
v(x;α̂)
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and fitted warping function. The grey dotted bisector represents the identity transformation of
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the warping function and its derivative at the boundaries of the data. Therefore, outcomes about
the edges of the distribution need to be interpreted with particular care.

As in the previous simulation setting, we replicated the procedure 1,000 times, leading again
to 1,000 estimated distributions, warping functions and associated derivatives. Figure 5.8 (upper
panel) presents the true non-parametric target function given by a linear combination of B-splines.
The true warped distribution is plotted with the 99% pointwise confidence interval from the 1,000
fitted distributions.

The true warping function and the 99% confidence interval from the simulation study are in
the central panel in Figure 5.8. It is worth pointing out that the WaFT model cannot capture
only at the highest xi the non-linearity of the warping function where we have few counts. Unlike
the parametric setting, Figure 5.8 (central panel) shows a relatively good fit at the left tail of the
distribution in which the density is not close to zero.

The lower panel in Figure 5.8 shows the derivative of the true warping function along with
the 99% confidence interval from the simulation study. The problem that had been described in
the parametric simulation setting is present in the case of a non-parametric target density as well.
Again data sparseness in the tail is an issue here, which will have to be addresses in the extended
version of the model.

5.5.2 Applications to the Danish data

Gompertz target distribution

For the Danish age-at-death distributions introduced in Section 5.1, we use the year 2006 as the
target density. Since we are dealing with mortality over age 30, we choose a Gompertz distribution
as a parametric model for the age-at-death distribution in 2006. A maximum likelihood estimator
has been employed to estimate the parameters of the Gompertz. And a Newton-Raphson method
was needed due to the non-linearity of the Gompertz model (Deuflhard, 2004). We obtained the
parameters θ̂ = (â, b̂)′ = (1.14e−5, 0.11)′ for the Japanese females in 2006.

Given the fixed target Gompertz distribution for year 2006, the WaFT model has been used
to warp the age-axis and fit the Danish age-at-death distribution in 1930. Figure 5.9 (left panel)
shows the target distribution with its Gompertz estimates as well as the fitted values from the
WaFT model. The BIC profile for this Danish example is presented in the right panel of Figure 5.9,
and the smoothing parameter λ was selected equal to 47.9. Figure 5.10 shows both the resulting
transformation function w(x, α̂) and its derivative. The identity transformation is indicated by a
dashed line. The warping function is clearly nonlinear, that is, neither a simple shift nor a uniform
scaling can map one density on to the other.

The impact of the nonlinearity in the fitted warping function is evident in fitting a WaFT
model with a very large smoothing parameter. With this approach, since the order of the penalty in
w(·) is set to d = 2, the “ultimate smooth” warping function is a simple linear fit (see Section 2.1.3).
Figure 5.11 shows outcomes for a linear transformation of the age-axis for the Danish population
over age 30. The left panel of Figure 5.11 clearly shows a misfit of the model for almost the full
age-range. In this example, we considered λ = 108 which leads to effective dimension of about
three, i.e. two parameters for the warping function and the normalizing parameter γ. Conversely,
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Figure 5.8: Outcomes from 1,000 replications of the non-parametric simulation setting. Upper
panel: target non-parametric distribution (black) and true warped histogram (blue). The light-
blue shadow depicts the 99% confidence interval for the fitted distributions. Central panel: true
warping function and 99% confidence interval of the fitted warping functions. Lower panel: true
derivative of the warping function and 99% confidence interval of the fitted derivatives of the
warping functions.
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Figure 5.9: Left panel: Life-table age-at-death distributions for the Danish data over age 30. Data
from 2006 are fitted with a Gompertz function and used as target distribution. Data from 1930
are estimated with the WaFT model. Right panel: BIC profile.
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warping function w(x, α̂). The identity transformation is indicated by a dashed grey line. Right
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the effective dimension of the WaFT model selected by BIC is equal to 8.19.
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Figure 5.11: Comparison between linear and non-linear transformation of the age-axis. Left panel:
Life-table age-at-death distributions for the Danish data over age 30. Data from 2006 are fitted
with a Gompertz function and used as target distribution, data from 1930 are estimated with the
WaFT model with λ equal to 108 (green) and 47.9 (red). Right panel: estimated death warping
functions w(x, α̂). ED stands for the effective dimension of the full WaFT model.

Non-parametric target distribution

The Gompertz distribution plays a prominent role in the study of adult human mortality, but
sometimes such parametric distribution cannot properly describe more complex patterns of adult
mortality (see Section 1.4). Instead of searching alternative parametric distributions for portraying
the target density, we can free the WaFT from any parametric assumption even regarding the
estimation of the target distribution.

We estimate a target distribution using a P -spline approach for Poisson death counts, as
described in Section 2.1.2. In this way, the target age-at-death distribution can be described as
a linear combination of B-splines in which the associated coefficients are penalized following the
methodology introduced by Eilers and Marx (1996). Once a target distribution is fitted, we follow
the approach described in Section 5.5.1 for the non-parametric simulated example.

Figure 5.12 shows outcomes from a P -spline approach for the Japanese women above age 10
over which Gompertz distribution with only two parameters is likely inappropriate. For fitting the
age-at-death distribution for the target density (year 2006), we used 25 equally-spaced B-splines
with degree q = 3 and order of difference d = 2. Given these specifications, the value of the
smoothing parameter selected by minimizing the BIC is equal to 100.

Figure 5.12 presents also the fitted values from the WaFT model. Since we do not assume
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Figure 5.12: Life-table age-at-death distributions for the Danish data over age 10. Non-parametric
P -splines estimate for the target distribution (year 2006). Data from 1930 are estimated with the
WaFT model.

any parametric distribution, the WaFT model actually warps the age-axis such that the Danish
age-at-death distribution in 1930 conforms the age-at-death distribution in 2006. Figure 5.13
shows both the fitted transformation function and its derivative. Also in this case, the derivative
clearly shows that a simple linear warping of the age-axis would not be enough to account for the
differences in the age-at-death distributions between these two years.

5.6 Further extensions

In this chapter, we present a new approach for dealing with the estimation of a nonlinear transfor-
mation to align densities (Camarda et al., 2008a). The proposed WaFT model is a rather general
tool and brings together the ideas of warping and smoothing. Starting from a specific target
distribution, the model allows estimation of the warping function of the age-axis that can map
one density onto the other.

The only assumption that is made about the warping function is smoothness and, implicitly,
monotonicity. By using a P -spline approach, not only can the warping function be estimated,
but we may also directly express its derivative via B-splines. A penalized Poisson likelihood
approach is then employed to estimate the model. The target function can be estimated either
with parametric or non-parametric approaches which provides to great flexibility.

Simulation studies have shown that the WaFT model can properly capture nonlinear trans-
formations of the x-axis. The derivatives of the warping function are accurate in the central part
of the distribution where higher death counts are available. We also noticed that fitted derivatives
of the warping function are inaccurate at the boundaries of the distribution. This problem can
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Figure 5.13: Outcomes from the Danish female population over age 10. Left panel: estimated
warping function w(x, α̂). The identity transformation is indicated by a dashed grey line. Right
panel: estimated derivative of the warping function v(x, α̂). The grey dotted lines represent any
simple shift transformation of the x-axis.

be generally observed when derivatives are to be estimated. Several authors have pursued the
idea of finding better smoothing estimators for the derivative itself. Among others, see Erickson
et al. (1995); Härdle et al. (1992); Härdle and Stoker (1989); Song et al. (1995); Stoker (1993).
Nevertheless, Ramsay (1998a) pointed out that “typically one sees derivatives go wild at the ex-
tremes, and the higher the derivative, the wilder the behavior” and that further problems arise
when it comes to smoothing parameter selection. We expect that using splines explicitly designed
for estimating derivatives of a function, as suggested by Heckman and Ramsay (2002) with the
L-splines, can further enhance the WaFT model. Alternatively, a different weight system within
the penalized IRWLS can help increase the leverage of the death counts close to the boundaries.

Outcomes from actual data revealed that simple linear transformations of the age-axis are
inappropriate for portraying the mortality development over time and therefore a flexible model
such as the WaFT is a suitable tool for comparing age-at-death distributions.

In this chapter, we present only applications from human mortality, hence stressing the
generalization of the more simple accelerated failure time models. However, the WaFT model
is appropriate for comparison of any two densities. We therefore envision alternative applications
of the WaFT model in which nonlinear transformation of the x-axis is a suitable and reasonable
idea. Such wider applications, however, are beyond the aims of this thesis.

Analyzing life-table age-at-death distributions can be misleading because life-table construc-
tion itself already involves estimation procedures and adjustments (see ch. 3 in Preston et al.,
2001). We expect that using actual death counts and exposures in the estimation procedure will
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improve the WaFT model and will allow for embedding it in a more straightforward setting, which
is closer to the raw data.

In this chapter, we fitted actual mortality data either over age 30 or over age 10. The former
restriction was due to the using of the Gompertz model for estimation of the target distribution.
A P -spline methodology is employed to estimate the target distribution just over age 10, since,
as mentioned in Section 1.3, infant mortality presents features which P -splines cannot cope with.
If we would consider age-at-death distribution for all age, i.e. x ≥ 0, then the warping function
would warp the non-negative axis R+

0 onto itself. If we restrict our attention to a limited age-
range, e.g. ages beyond 30, than the warped age-axis will have a different domain. As warping
of the age-axis can be interpreted as the gain (or loss) in longevity, ages at death that formerly
correspond to younger ages in case of mortality decline can now be found at much higher ages.
Consequently, we should adjust the support for the two densities (f(·), which is the target, and
g(·), which operates on the original age-axis) accordingly.

If we use data from life-table distribution, as we currently do, then the corresponding age-
intervals can be easily obtained. If we intend to model only a particular age-range on the original
axis, then the warped age-range should correspond to the same proportion of deaths as does the
age-range for x (relative to the full age-axis R+

0 ).
Finally, in case of mortality data, a generalization of the WaFT can account for a two-

dimensional setting. Warping functions between two subsequent years are expected to change
smoothly. Therefore, one can cope with a sequence of warping functions over time by an additional
penalty that controls the temporal pattern in the age-axis transformation. In Section 2.2, we
presented a two-dimensional smoothing methodology which generalized the unidimensional P -
spline approach. Such concepts can be used to generalize the WaFT model to two dimensions, as
well.
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Chapter 6

Conclusions

Mortality, i.e. the risk of death, changes with age and also steadily changes over time, at least in
the developed world for more than the last 150 years. Understanding mortality dynamics over age
and time is crucial for demography, as they are one of the driving forces of population change. An
ongoing mortality decline and hence increasing longevity has considerable consequences both for
the individual, as well as for society as a whole. Changing family structures, health care provision,
saving for old age, and the financing of future pensions are but a few important fields.

Both the trajectory of death risks over age and over time, in general, change gradually, apart
from certain “crisis” years of epidemics, wars, or political and social turmoil. It is this smooth
behavior that is the focus of this thesis.

Analysis of mortality started with the first life-table about 350 years ago, which is not only
is the birth date of modern demography, but can also be seen as a milestone in statistics. While
starting from individuals’ ages at death, contemporary national vital statistics provide aggregated
data on life-spans, classified by sex, age at death, year of death, and, mostly also, year of birth.
Together with counts of the corresponding population at risk, these data are the basis for the
study of mortality.

The data used throughout this dissertation are taken from the Human Mortality Database
(HMD). This database contains information from official sources in different countries and provides
them for scientific analyses in a uniform format. Data contained in the HMD are known for their
reliability and accuracy and offer a valuable resource for mortality research. In this thesis, we
focus on methodology and not on the analysis of particular countries, so any actual data analyses,
which are mostly performed on data taken from Denmark and Portugal, are provided as examples
and could be replaced by different countries represented in the HMD.

Despite the regular, that is, smooth pattern of mortality, life (and death) still is, at least to a
certain extent, a stochastic process. The statistical tools used to analyze life span distributions are
commonly summarized under the notion of survival analysis, which predominantly deals with data
on individuals. In the case of aggregated data, the concepts of survival analysis of course still are
valid, however, the aggregation process leads to changes in the statistical models. The connection
between individual and aggregated data is nicely represented by the so-called Lexis diagram, one
of the key graphical displays in demography. The hazard of dying is the central concept in both the
analysis of individual life spans as well as aggregated mortality data. Approximating the hazard
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by a piecewise constant function, the observed numbers of deaths in an age-year square of the
Lexis surface can be modeled as Poisson variates with means equal to the product of exposures
multiplies by the age-year specific hazard. In this way, generalized linear models and all their
extensions are available as analysis tools for mortality research over age and time. They are also
the basis for the models proposed in this thesis.

Given the wealth of data, more traditional demographic methods for analyzing mortality
surfaces, i.e. data on deaths and exposures cross-classified by age and year of occurrence, tend to
apply a high number of parameters leading to all but parsimonious models. Nevertheless, to gain
a better understanding of mortality dynamics, a mere descriptive representation of the empirical
death rates is not informative. Furthermore, with increasing interest in the upper tail of the life
span distribution, to gain insights in the prospects of mortality at high ages, data sparseness can
become an issue even when working with aggregated mortality data. Hence, using models that
explicitly address the smooth nature of mortality dynamics, both over age and time, is an obvious
step.

Several models for capturing changes in mortality have been suggested in the literature, and
we have provided a comprehensive overview. These models range from the classic parametric
distributions of Gompertz and Makeham, which only target mortality changes over adult ages, to
age-period-cohort models, which, in their overparameterized version, suffer from a fundamental
identification problem. As an alternative, a bilinear model proposed by Lee and Carter about 25
years ago is used in many fields of current demography as a kind of standard for capturing age-
time dynamics in mortality surfaces. Still the Lee-Carter model is a highly parameterized model.
Given its importance in the demographic community, new models will have to be compared to
the Lee-Carter model. Another approach to model changes in mortality are so-called relational
models, which were among the first to attempt to model mortality in both its dimensions. They
use a standard mortality function and a simple linear transformation for relating this standard to
different distributions, i.e. across time or across countries.

The starting point of this thesis are two-dimensional smoothing methods for Poisson-distributed
count data. P -splines are our method of choice. In one dimension, this approach combines a rela-
tively large number of B-splines with a roughness penalty. On one hand, B-splines provide enough
flexibility to capture trends in the data. On the other hand, an additional penalty on neighboring
coefficients is used to ensure smoothness and reduces the number of parameters. This fact avoids
the need for backfitting and knot selection schemes. P -splines can be seen as a generalization of a
linear regression model, in which the B-splines act as regressors. The least squares algorithm (in
the Normal case) or the iteratively reweighted least-squares algorithm (in the generalized linear
model case) can then be employed and the only change is an additional penalty on the coefficients
weighted by a positive regularization parameter. This allows for a continuous turning over differ-
ent amount of smoothness. In order to measure the roughness of the coefficients, a matrix of dth
order differences is constructed and included in the penalty. For a fixed smoothing parameter, the
parameters can be easily estimated, and, as in the classic linear regression setting, we can specify
the hat matrix for the fitted P -splines model.

For smoothing mortality data, both over age and time P -splines can be generalized to a
two-dimensional setting. Kronecker and tensor products of simple unidimensional B-splines basis
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are used for constructing a two-dimensional basis with local support. We showed how to apply a
roughness penalty over the two dimensions of the mortality surface.

We illustrated several criteria for selecting the smoothing parameter, such as the Akaike’s
Information Criterion or the Bayesian Information Criterion. Since we model Poisson data, the
deviance of the fitted model has been used as a measure of discrepancy. We showed that the hat-
matrix contains information about the effective dimensions of the model and we use this feature in
the selection of the smoothing parameter. Different amounts of smoothing can be employed over
the two mortality dimensions. Since two-dimensional P -splines are still in a regression setting,
the hat-matrix can be computed and consequently effective dimension and information criteria
can be rearranged in a two-dimensional setting for selecting the two smoothing parameters.

Additional features of P -splines are an easy computation of standard errors and residual
analysis, as they can be directly borrowed from classic regression methodology, as well. We re-
viewed the most common residuals for Poisson-distributed data, Pearson, Anscombe and deviance
residuals and we describe their relations and features. Specifically, deviance residuals have been
demonstrated to perform better in the case of Poisson-distributed data.

We also showed how shaded contour maps of the deviance residuals from fitted models over
ages and years can be used to locate where the model cannot properly capture mortality trends and
to understand additional demographic insights. Using this graphical technique, we demonstrated
how the P -splines can capture mortality development more accurately than the Lee-Carter model
does, despite the fact that the P -spline smoothing model uses remarkably fewer degrees of freedom.

As mentioned, demography enjoys a wealth of data. Large sample sizes are the rule rather that
the exception and this fact has implications for statistical inference. Not only are the confidence
limits of the fitted P -spline models extremely narrow, but other measures of goodness-of-fit also
become basically uninformative and are not able to properly discriminate between models of
different complexity. If we want to compare different models for mortality surfaces, we therefore
need new measures. The particular emphasis here was to assess how much of the mortality
dynamics is captured by a model. Statistically speaking, this is a question of explained variation.

The classic measure of explained variation is the R2 from the Normal linear model. For
Poisson-distributed data, such as death counts, adaptations have to be made. These are available
for the more general case of exponential families. Proportional reduction in uncertainty, due to
the inclusion of regressors is based on the Kullback-Leibler divergence. Practically, we presented
R2 measures which make use of the different forms of residuals presented in the previous chapter,
namely Pearson and deviance residuals.

In the statistical and demographic models previously introduced, we usually employ a mod-
erate to large number of parameters. In these cases, R2 measures may be inflated and need to be
adjusted. That means that the number of parameters needs to be incorporated into such mea-
sures, too. Hence, we presented several adjustments for goodness-of-fit measures for models that
employed relatively large number of parameters.

Since P -splines can be incorporated into a generalized linear model framework, R2 measures,
based on deviance residuals can be applied for this smoothing approach as well. Nevertheless, P -
splines, and smoothing methods in general, require further adjustments. Specifically, we showed
the relation between the number of parameters and effective dimensions. Using this relationship,
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we derived general R2 measures for smoothing methods.
We also showed that R2 measures, when applied to real data, and even when adjusted, are

always close to 1, regardless of the applied mortality model and the specific actual data set. Such
outcomes are essentially uninformative, and this is mainly due to two reasons. One is the large
sample size. The other is that the classic goodness-of-fit measures compare fitted models to a null
model, which is a simple overall mean of the data.

We proposed a new measure of explained variation, which we called R2
(bi)lin, that overcomes

these issues and can be used for comparing models for mortality data. The basic idea is to consider
a different null model, which is particularly appropriate for mortality data. This model is linear
or bilinear for unidimensional or two-dimensional data, respectively. We showed how the bilinear
model is nested within a P -spline model but also a Lee-Carter model, and therefore it is natural
to use it as the null model if these models are to be compared.

Specifically, we presented a new representation for P -splines as mixed models. This allowed us
to separate the fixed and the random part of the model. Using the Singular Value decomposition
and a specific penalty for the coefficients of the B-splines, we showed how the fixed part of the
mixed models representation is exactly the linear or bilinear model which is then used as null
model in the proposed R2

(bi)lin. On the other hand, we showed that a bilinear model over age and
time is a special case of the Lee-Carter model, in which its vectors of parameters vary linearly
over ages and years. As a consequence of these findings, the variation explained by such models
is now compared to the bilinear model.

The relations between R2
(bi)lin and information criteria such as Akaike’s and Bayesian Infor-

mation Criteria have also been derived. Specifically, we showed that the proposed new measure
of explained variation can be relatively close to the Akaike’s Information Criterion due to the
presence of the Deviance of the null model in the denominator of R2

(bi)lin. Nevertheless, if we
would use R2

(bi)lin as a criterion for smoothing parameter selection, we would obtain an optimal
value that is different from the one obtained by minimizing the other criteria.

In order to evaluate the performance of the proposed measure, we carried out different sim-
ulation studies, in both one and two dimensions. The simulation settings closely resembled real
mortality data. R2

(bi)lin was able to capture differences between mortality models. Both in sim-
ulated and actual examples, the two-dimensional P -spline approach gave a better fit than the
Lee-Carter model did.

For instance, R2
(bi)lin for the Danish female population from 1930 to 2006 and from age 30 to

100 turned out to be 0.828 and 0.705 for the two-dimensional P -spline regression and Lee-Carter
model, respectively. Therefore, if we compare this to the limit model that is contained in both
the two-dimensional P -spline regression and Lee-Carter model, i.e. the bilinear model, then we
see that the P -spline approach captures more of the additional variability than the Lee-Carter
approach does.

We have emphasized the high quality of the data contained in the Human Mortality Database,
however, if we go back in time, then data quality may become an issue. The particular problem
we may have to deal with in historical mortality data, or in countries with relatively poor data, is
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age heaping or, in a more general context, digit preference. This is the tendency to round numbers
to pleasant digits. In particular, age-at-death distributions can present systematic peaks at ages
ending in 0 and, less prominently, 5. Such misreported data can generate misleading outcomes
and adjustments are often required before any further statistical analysis. Also in this context,
smoothing approaches prove to be valuable.

We suggested a general model that combines the concept of penalized likelihood with the com-
posite link model. The composite link model allows us to describe how a latent true age-at-death
distribution is mixed by the digit preference mechanism, by partly redistributing certain death
counts to the preferred ages, so that the actual age-at-death distribution is observed. The mixing
can be embodied in a matrix whose elements basically contain the probabilities of redistribution.
The only assumption that is made about the underlying true latent distribution is smoothness.

For estimating this model, a generalization of the iteratively reweighted least squares algo-
rithm can be used, which also includes the composition matrix for the misreporting pattern. The
model matrix in the algorithm has to be adapted and needs to be updated in each iteration, since
it depends on the misreporting pattern. Smoothness of the latent distribution is enforced with a
difference penalty, analogous to the penalty employed in the P -spline approach. Also here, the
penalty is weighted by the smoothing parameter, which needs to be optimized.

The misreporting pattern can be quite general, i.e. we allow a partial redistribution of the
observations from any digit to its adjacent neighbors. In this way, the tendency to misreport need
not be the same for identical end-digits, but may vary over the age range, which is often seen in
real demographic data. We also proposed a more general approach, in which exchanges between
digits that are more than one category apart can be made.

Consequently, this rather flexible preference pattern leads to a huge number of misreporting
probabilities that need to be estimated. To estimate this second model component, we use a
weighted least-squares regression within the iteratively reweighted least-squares procedure. Again
a penalty, in this case a L1-ridge penalty, restrains the problem and makes estimation feasible.
This constrained weighted least-squares regression depends on an additional smoothing parameter.
We showed how the Akaike’s Information Criterion can properly select both smoothing parameters
via a two-dimensional grid-search. Specifically we showed how the effective dimension of the model
can be denoted by the sum of the two model components, i.e. the penalized composite link model
and the penalized weighted least-squares regression.

Simulation studies and applications on actual data demonstrated that this new approach
gives remarkably accurate results. It directly addresses the process that leads to heaping of certain
ages, and the model goes beyond the mere quantification of the digit preference as provided by
many commonly used indices. Extracting the latent distribution will be most important in many
applications, however, the pattern of misclassification may also be of interest in itself.

Changes in mortality over time, which in recent times mostly have been reductions of mortality,
can also be viewed as gains in life spans. Deaths that would have occurred at younger ages in
the past now happen at older ages. Such a way of describing mortality improvements address
the age-at-death distribution (the density) rather than the hazard. So we may ask the question:
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Which transformation of the age-axis would have to be applied to transform one age-at-death
distribution into another. Again, smoothness of the transformation is the only assumption we are
willing to make.

In the simplest case, the transformation is linear, leading to a simple accelerated failure
time model. A uniform rescaling of the age-axis, however, for the most part is too rigid to
capture human mortality dynamics. Therefore, we considered nonlinear transformations and,
consequently, we introduced a model which brings together the ideas of warping the time-axis and
smoothing methodologies. We called it Warped Failure Time (WaFT) model.

In the WaFT model, we first choose a target distribution which is assumed fixed during the
estimation procedure. For an observed life-table age-at-death distribution, the model estimates the
warping function, so that after transforming the age-axis, the density of the observed distribution
matches the specified target. We showed that a B-splines representation of the warping function
naturally allows for controlling smoothness and incorporating derivative of the warping function,
which is needed in this transformation approach.

We presented an algorithm to estimate the coefficients via a penalized Poisson likelihood. In
particular, we illustrated a generalization of the iteratively reweighted least-squares algorithm.
For the WaFT model, the model matrix depends on the B-spline coefficients and needs to be
updated with each iteration. A normalizing constant is also incorporated into the model and into
the estimation procedure in order to adjust the correct sample size.

Following again a P -spline approach, the number of B-splines in the warping function is
purposely chosen high and the spline coefficients are restrained by a roughness penalty. Also
in this case, a smoothing parameter controls the trade-off between smoothness of the warping
function and model fidelity. In choosing the optimal smoothing parameter, we minimized the
Bayesian Information Criterion.

The WaFT model is computationally rather intensive, therefore proper starting values for the
B-spline coefficients are needed. We showed how to first estimate a warping function that only
shifts the distribution, so that the modes of the two densities coincide. Routines for fitting the
adjusted iteratively reweighted least-squares algorithm are also given.

The target density can be given by a parametric distribution, such as the Gompertz distribu-
tion, but additional flexibility can be gained if the target function is estimated non-parametrically
as well. A unidimensional P -splines density estimator can be used in this case.

Simulation studies showed that the WaFT model can properly capture nonlinear transforma-
tions of the age-axis. Moreover, analyses of actual data revealed that simple linear transformations
of the age-axis are inappropriate for portraying the mortality development over time and therefore,
a flexible model such as the WaFT is a suitable tool for comparing age-at-death distributions.

This thesis demonstrated the usefulness of smoothing methods, in particular P -spline approaches,
for the analysis of several aspects of mortality development. A new measure of explained variation
for comparing different models for bivariate mortality surfaces has been proposed. Two new
models have been suggested. One addresses the smoothness of death counts across the age-range,
which can be distorted by age-misreporting. The other one offers an alternative way of exploring
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mortality changes by looking at gains (or losses) in lifespans rather than by addressing decreases
(or increases) in hazards. As a common theme, no rigid parametric restrictions are made and
estimates are derived based on smoothness assumptions only. While motivated by a mortality
context, both the model for digit preference and the warped failure time model offer opportunities
outside the field of demography.
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